Under review as a conference paper at ICLR 2026

EDGE-WISE TOPOLOGICAL DIVERGENCE GAPS:
GUIDING SEARCH IN COMBINATORIAL OPTIMIZA-
TION

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce a topological feedback mechanism for the Travelling Salesman
Problem (TSP) by analyzing the divergence between a tour and the minimum
spanning tree (MST). Our key contribution is a canonical decomposition theorem
that expresses the tour-MST gap as edge-wise topology-divergence gaps from the
RTD-Lite barcode. Based on this, we develop a topological guidance for 2-opt
and 3-opt heuristics that increases their performance. We carry out experiments
with fine-optimization of tours obtained from heatmap-based methods, TSPLIB,
and random instances. Experiments demonstrate the topology-guided optimiza-
tion results in better performance and faster convergence in many cases.

1 INTRODUCTION

The Travelling Salesman Problem (TSP) remains a cornerstone of combinatorial optimisation and
a proving ground for machine—learning-augmented solvers. Despite impressive progress from neu-
ral construction policies (Vinyals et al.l 2015} Kool et al |2019) and reinforcement-learning (RL)
refinements (da Costa et al., [2020; [Chen et al., 2024)), state-of-the-art pipelines still rely on blind
post-hoc local search (e.g. 2-opt) to reach competitive tour lengths. These moves examine O(n?)
edge pairs without principled guidance and dominate run-time on medium-size instances.

Building on recent advances in topological data analysis for graphs, in particular the RTD-Lite bar-
code (Tulchinskii et al.,|2025)), we prove a canonical decomposition theorem: the usual tour—-MST
length gap equals the sum of non-negative, edge-wise topology-divergence gaps. Each gap is the
length of a bar in the RTD-Lite barcode and pinpoints how much a single tour edge deviates from
its uniquely associated MST edge.

The Travelling Salesman Problem (TSP) is routinely framed as a pure cost-minimisation task: al-
most every heuristic, exact solver and learning approach measures progress solely by the total tour
length. This perspective ignores how cities are connected as the tour evolves, even though decades of
geometric and clustering work show that good tours first respect the instance’s intrinsic connectivity
before shaving residual distance (Zahn, 1971} |Held & Karp, |1970). Consequently, contemporary
neural solvers spend vast computation on blind local search to repair long-range “topological mis-
takes” that went undetected during learning (Kool et al., 2019; Fan et al., 2024)).

Topology as a missing optimisation signal. We argue that explicit topological feedback can
bridge this gap. Leveraging recent advances in graph topology, we employ the topology divergence
framework (Tulchinskii et al.| 2025) to compare a candidate tour with the instance’s minimum-
spanning tree (MST). Our principal theorem constructs a canonical bijection between tour edges
and MST edges that decomposes the classical tour-MST length gap into non-negative, edge-wise
topological divergence gaps. Each gap quantifies the difference in scale at which MST clusters are
connected by the tour: large bars reveal tour edges that bridge distant vertex clusters much later than
the MST does. By inspecting these bars we know, for every step of a constructive or improvement
algorithm, which edge most distorts the natural connectivity structure.

From length optimisation to topology-aware optimisation. Building on this insight we develop
two lightweight mechanisms: (i) a topology-guided 2-opt that cuts local-search swaps by always

Under review as a conference paper at ICLR 2026

attacking the highest divergence edge first, and (ii) a gap-shaped Q-learning framework whose
reward combines tour length with the predicted topological gap, leading to faster convergence and
better final tours. Crucially, both methods run in O(n?) extra time, matching the cost of distance-
matrix construction.

Our experiments on TSPLIB and random Euclidean benchmarks demonstrate that adding this single
topological signal deliver the first empirically validated link between persistent-homology theory
and large-scale combinatorial optimization. We believe this topological perspective-and the practical
gains it brings-opens a promising research direction beyond length-only objectives.

To the best of our knowledge this is the first work that (i) provides an edge-wise topological charac-
terization of tour sub-optimality and (ii) demonstrates its utility in both classical and learning-based
TSP solvers.

Our contributions are summarized as follows:

¢ Canonical Tour-MST Decomposition. We prove a theorem establishing a one-to-one
mapping between tour edges and MST edges that decomposes the tour—-MST length gap
into a sum of non-negative, edge-specific divergence values (persistent bar lengths). This
gives a principled, quantitative measure of how much each tour edge contributes to subop-
timality.

¢ Connection to LKH’s a-Score. We show that the well-known a-score used in the LKH-3
TSP solver is mathematically equivalent to a particular variant of the RTD-Lite barcode
measure. This links our topological perspective to a successful traditional heuristic.

* Topology-Guided Local Search. We introduce topology-guided 2-opt and 3-opt heuristics
that prioritize removing edges with large divergence gaps. On random Euclidean instances
(up to 300 nodes) and TSPLIB benchmarks, this strategy consistently finds shorter tours
and often converges in fewer iterations compared to standard 2-opt/3-opt.

* Integration with Neural Solvers. We demonstrate that topology-guided 2-opt can sig-
nificantly improve the fine-optimization of tours generated by recent heatmap-based TSP
solvers, even on very large instances (up to 10,000 nodes). Notably, our approach achieves
better tours in less time than vanilla 2-opt post-processing on these neural outputs.

* Topology-Shaped Reinforcement Learning. We design an RTDL-gap-shaped reward for
a Q-learning TSP solver, enabling an RL agent to receive per-edge feedback based on topo-
logical divergence. This reward shaping stabilizes training and reduces the final optimality
gap by over 25% in fewer episodes compared to a purely length-based reward.

In summary, our work bridges topology and large-scale combinatorial optimization, providing a
novel optimization signal that goes beyond traditional distance-based objectives. We believe this
topological perspective opens a promising avenue for developing more structured and efficient
search strategies in TSP and related problems.

2 RELATED WORK

Classical TSP heuristics. Local improvement schemes such as 2-opt, 3-opt, and Lin—Kernighan
(LK) remain mainstays of high-quality TSP solvers (Croes| 1958} |Lin & Kernighan, 1973} Helsgaun,
2000). LK and LKH rely on clever neighbourhood pruning to reduce the search space. The MST
and 1-tree bounds have long provided global cost estimates (Held & Karp,|1970), yet have not been
used to prioritize specific move choices.

Neural and RL approaches. Pointer networks (Vinyals et al.l 2015)), attention models (Kool et al.,
2019)), population RL (Team,|[2023)), and diffusion-based methods (Sanokowski et al.,[2024) produce
near-optimal tours but delegate final polishing to classical local search, which accounts for most
wall-time (Fan et al.| 2024)). Attempts to learn local moves directly (da Costa et al.,[2020) still lack
a principled signal for which edge to change next.

Topological data analysis (TDA) for graphs. Persistence barcodes capture multiscale connectivity;
RTD [Barannikov et al.| and its efficient variant RTD-Lite compare two weighted graphs in O(n?)
time (Tulchinskii et al., 2025). Prior work used RTD as a scalar loss to preserve topology in neural

Under review as a conference paper at ICLR 2026

representations; our work is the first to exploit its edge-level information inside a combinatorial
solver.

Topology-aware optimisation. Graph clustering via MST edge removal dates back to (Zahn,|1971).
Recent “heat-map+MCTS” pipelines (Xia et al.} 2024} Sun & Yang| [2023; |Fu et al.| [2021;|Q1u et al.,
2022 Min et al., 2023) acknowledge structural cues but still lack a rigorous measure of per-edge
mis-alignment. We fill this gap by providing an exact, computable divergence for each edge and
showing how it drives both local search and RL.

In summary, our paper bridges topological data analysis (TDA) and combinatorial optimization: it
supplies a theoretically grounded, edge-wise error signal and demonstrates tangible performance
gains in both classical and learning-based TSP solvers.

3 APPROACH

Consider an undirected weighted complete graph G = (V, E) with weight w(e) for edge e. Let
Tiour be a candidate TSP tour. For now, removing the longest tour edge €,,4, consider Ty, as a
Hamiltonian path 7" from a start city s to an end city ¢, sometimes called an (s, t)-tour. Let T, be
a minimum spanning tree (MST) of G. We first formalize the relationship between Ti, and T in
terms of their edge sets and weights:

Theorem 1. We construct a one-to-one correspondence ¢ between edges of T and T,,5; so that the

standard (TSP tour)-MST gap L (s t)—tour — Lmst is decomposed as the natural sum of edge-wise
non-negative topology divergence gaps:

L(s,t)—tour — Lpst = Z w(¢(e)) - w(e) ey
e€E(Thmst)
w(¢(€)) - 1,U(€) Z Oa for anye S E(Tmst)- (2)

In other words, every MST edge e is paired with a unique tour edge ¢(e) whose weight is greater
than or equal to w(e), and these weight differences exactly sum up to the gap between the (s, t)-tour
length and the MST length

Proof. Assume for simplicity, that all edges in the union F(7,,s;) U E(T) have distinct weights,
if some weights are the same then just choose an order on edges with the same weight. For e €
E(Tmst), let A, B € V denote the endpoints of e. Let € € E(T') denotes the smallest weight edge
of T such that A and B are connected after addition of smaller or equal w(¢é) weight T'—edges to
7<) In particular, A and B are connected by a path consisting of smaller than w(e) weight
Tnst—edges and bigger or equal w(e) and smaller or equal w(é) weight T—edges. Notice that
such path is not unique in general, but, by construction, it always contains the edge ¢. Then define
¢(e) = é. Conversely, given an edge é € E(T), let A, B, are its endpoints. Let ¢’ € E(T) denotes
the smallest weight edge of T, s¢ such that A, B are connected by a path after the addition of smaller
or equal w(e') weight T, —edges to T <*(€), Then the correspondence ¢ : & ¢’ is the inverse
to ¢. It follows that

¢ E(Thmst) — E(T), 3)

is a one-to-one correspondence and that (2) holds. O

Application to Hamiltonian cycles. Let 7i,, be a Hamiltonian cycle. By definition,
RTDL-Barcode(A, B) is computed for two undirected weighted graphs A, B with a bijection of
vertices. The procedure for its computation (Algorithm 1, (Tulchinskii et al., |2025)), involves
minimum spanning trees of A, B. To incorporate topological information into TSP solvers, we
compute the RTDL-Barcode(Tioyr, G). The minimum spanning tree of Tioyr iS Tiour \ {€max}
where e,,q, 1S an edge of T},,, having the largest weight. The Theorem 1 implies a bijec-
tion ¢ between E(Tiour) \ {€maxz} and E(T,,st). For each e € E(Ti) we define a penalty
p(e) = w(e) — w(¥(e)) > 0 as a measure of its “badness”, that is, how far it is from a min-
imum spanning tree. A penalty for e,,,, is not defined by this procedure. We set p(€maz) =
Milee(zeE(Tyon,) | p(z)>0} P(€). This value exhibited the best performance in computational ex-
periments. A visualization of the described mapping between MST and tour edges is provided in

Figure

Under review as a conference paper at ICLR 2026

—== MST —— Tour €max
MST Tour

Figure 1: Visualization of the mapping between edges of the Hamiltonian cycle 7o, and the mini-
mum spanning tree T1,s. Each tour edge (except enax) is bijectively matched to an MST edge.

Probability
(=]
w
(=]

0 20 40 60 80 100
The edges are sorted in asc. order of RTDL barcode

Figure 2: Probability of belonging to an optimal tour vs. RTDL barcode of an edge.

RELATION BETWEEN RTDL BARS AND a-SCORE

a-score is used for edge selection in the LKH-3 algorithm (Helsgaun, [2000) for TSP and VRP
problems. a-score is another measure of edge’s “badness”. Let G be a weighted graph with weights
w; ;, G1 C G a subgraph without an arbitrary vertex “1” and incident edges. For an edge (7, j):

a(i,j) = L(R™(i,5)) — L(R), @)

where R is the minimal 1-tree of G, and R* (3, j) is the the minimal 1-tree of G with a restriction
to contain the edge (4, j), L(-) is a length function. We establish connection between a-score and
RTDL barcode in the following

Proposition. For i,j # 1, a(i, j) equals to the length of a bar in the RTDL-Barcode(b Gy,
corresponding to an edge (7,7). Both G1, G}7 are graphs having all the vertices of G without the
vertex 1. G is defined above, and G7” has only one edge (i, j) with a weight w; ;.

The proof if provided in Appendix B}

4 EXPERIMENTS

4.1 RTDL BARCODES AND OPTIMAL TOURS

How the value of an edge’s RTDL barcode is related to the TSP solution? To study this dependency,
we generated 100 random 2-dimensional TSP problems and found 1) non-optimal tours by running
2-opt procedure with varying number of iterations 2) optimal tours by running Concord Then, for
each non-optimal tour we ordered edges in an ascending order of their RTDL barcodes and estimated
an empirical probability for an edge to belong to an optimal tour. Figure [2| shows that edges with
a low barcode tend to belong to an optimal tour with high probability. See Appendix [A]for more
results.

"https://www.math.uwaterloo.ca/tsp/concorde/

Under review as a conference paper at ICLR 2026

Method TSP-100 TSP-200 TSP-300
Length Time(s) Length Time(s) Length Time(s)
2-opt 8.244 1.01 11.465 12.25 13.940 47.51
2-opt+RTDL 8.226 2.84 11.356 18.08 13.798 62.30
2-opt+RTDL+opt(D) 8.170 2.77 11.303 16.81 13.654 57.03
3-opt 8.137 12.30 11.284 160.19 13.747 701.86
3-opt+RTDL 8.082 13.49 11.157 131.50 13.594 545.50

3-opt+RTDL+opt(D) 8.011 1143 11.126 104.61 13.546 456.67

Table 1: 2D Euclidean TSP. Improvements of 2-opt and 3-opt with RTDL barcodes.

4.2 IMPROVEMENTS IN 2-OPT, 3-OPT

Then, we apply RTDL-barcode to improve 2-opt and 3-opt algorithms. In this simplified setting
we can test the influence of RTDL-derived weights of edges alone without interfering factors like
complex training pipelines. The value of RTDL-barcode corresponding to a tour’s edge defines its
“badness”. As a candidate for an optimal tour, the natural idea is to try to remove such edges from
the tour before the others. In the vanilla 2-opt (Algorithm (1| in Appendix) the order of picking
edges which Algorithm attempts to remove is not specified, typically it is sequential. We modify
the 2-opt algorithm by picking edges in a descending order by their RTDL barcodes (Algorithm
in Appendix). The modified algorithm is denoted by 2-opt+RTDL. Table [I] presents experimental
results. We report average tour length and average optimization time. All the results are averaged
over 100 trials. For all the settings, an ordering by RTDL leads to a shorter tours with a cost of
slightly longer time. For 3-opt algorithm, an ordering by RTDL both improves tour length and
optimization time.

Also, we apply an heuristic from |Helsgaun| (2000). |[Helsgaun| (2000) note that given scalars associ-
ated with vertices m; one can modify a distance matrix d; ; < d; ; + m; + m;. The relative order of
tour’s lengths after this modification remains unchanged. Thus, the optimal tour doesn’t change too.
The 7 values are optimized by a subgradient procedure to make the nodes of 1-tree to have degree 2,
that is, more similar to a tour. Obviously, steps of standard 2-opt and 3-opt doesn’t change after such
modification. However, steps of 2-opt/3-opt+RTDL do change. In Table[I] this heuristic is denoted
by opt(D) and it is shown to improve results even further.

We conclude that the ordering by RTDL barcodes always brings some improvement in objective
without a significant increase of an execution time. Figure |[3al shows that for 2-opt ordering by
RTDL results in less number of trials per iteration — number of checked pairs of edges before tour
improvement. For 3-opt, ordering by RTDL results in faster convergence, see Figure[3b] See ablation
study in Appendix [E]

Non-metric TSP. We also have carried out experiments with non-metric TSP (least weight Hamil-
tonian cycle problem), where edges’ weights are sampled from (0, 1). Again, an addition of RTDL
always brings an improvement, see Table [5|in Appendix.

TSPLib instances. We also conducted experiments on tasks from TSPLib. For each task, opti-
mization was run 100 times with different initial tours, see Table 3] For certain initial tours, the
plain 2-opt algorithm struggled to reach the optimal solution and occasionally exceeded its iteration
limit, whereas 2-opt+RTDL never encountered such issues under the same initial conditions. See
Appendix [C] for more details.

4.3 RTDL FOR HEATMAP-GUIDED 2-OPT

In the case of large-scale TSP, there is a separate line of solvers that do not predict the optimal tour
directly but rather generate a heatmap. Each entry ®; ; of the n x n heatmap ® reflects the relevance
of the edge (7, j) to the optimal solution. In order to obtain a feasible solution given a heatmap,
specialized decoding strategies are used (Sun & Yang| [2023). In this work, we follow [Sun & Yang
(2023)) and further improve the initial tour obtained through greedy decoding of generated heatmaps
with the 2-opt and 2-opt + RTDL algorithms. With this experiment, we aim to to verify whether
RTDL-based edge traversal further improves 2-opt when initial tour is already a good approximation
of the optimal solution.

Under review as a conference paper at ICLR 2026

5000

108

— 2-opt — 3-opt
4000 —— 2-opt + RTDL 105 — 3-opt+RTDL
» 3000 w 104
© el
= 2000 F 10
1000 102
0 10!
0 100 200 300 400 0 50 100 150 200 250 300 350
lterations Iterations
(a) 2-opt, 2-opt+RTDL. (b) 3-opt, 3-opt+RTDL.

Figure 3: Avg. number of trials per iteration.

Table 2: Average length and running time of 2-opt and 2-opt + RTDL algorithms applied initial tours
obtain through heatmap greedy decoding.

Method TSP-5 QO TSP-1 OQO TSP- IOQOO
Length Time(s) Length Time(s) Length Time(s)
DIFUSCO
2-opt 16.98 0.38 24.01 5.78 75.87 7027.63
2-opt+ RTDL 16.88 0.23 23.60 1.76 74.28 865.5
ATT-GCN
2-opt 17.63 1.09 24.72 12.54 77.36 17567.5
2-opt+ RTDL 17.3 0.55 24.2 3.05 75.54 1567.69
DIMES
2-opt 17.74 1.66 24.84 16.05 77.68 25363.25
2-opt+ RTDL 17.35 0.73 24.31 3.56 75.3 1797
UTSP
2-opt 17.54 0.93 24.57 10.20 - -
2-opt+ RTDL 17.25 0.56 24.12 2.95 - -
SoftDist
2-opt 17.41 0.75 24.31 6.43 75.41 5264.88

2-opt+RTDL 17.24 0.49 24.09 2.65 74.65 1549.5

Following the work Xia et al.|(2024), we use the heatmaps learned by the DIFUSCO (Sun & Yang,
2023)), ATT-GCN |Fu et al.|(2021)), DIMES (Qiu et al.|[2022), UTSP (Min et al.| [2023)), and SoftDist
(Xia et al.} 2024) approaches. We use all available problems for testing: 128 problems of size 500,
128 problems of size 1000 and 16 problems of size 10000. For each model and problem size, we
report the average length of optimized tours and the average time of tour optimization. As shown
in Table 2] in most cases, the proposed 2-opt + RTDL leads to solutions with a shorter average tour
length and a more efficient computation. Figure @] further confirms that 2opt + RTDL provides faster
convergence for all models. For an additional examination, we also provide the average length of
the initial tours through heatmaps’ greedy decoding in Table[6] For visual analysis, we provide the
initial tours along with 2-opt and 2-opt + RTDL optimized tours for the same TSP-500 problem
and all models in Figure 5] We find that RTDL updates every 5 (5, 100) iteration and N = 500
(N = 1000, N = 10000) for TSP-500 (TSP-1000, TSP-10000) works universally well for all
models. The sensitivity analysis in Figure [§]shows that more frequent RTDL updates typically lead
to shorter average tour length while larger NV is aligned with faster computation.

4.4 RTD FOR DEEP Q-LEARNING

To further evaluate the potential of incorporating topological insights into the Traveling Salesman
Problem (TSP), we design a series of experiments based on a popular class of reinforcement learning
(RL) methods-Deep Q-Networks (DQN). Our aim is to assess both a baseline learning strategy and a
modified approach that takes advantage of additional topological information through reward tuning.

Under review as a conference paper at ICLR 2026

TSP-500 TSP-1000

Model
—— DIFUSCO
—— ATT-GCN
—— DIMES
—— UTSP
—— SoftDist
Method
— 2-opt
---- 2-opt+RTDL

Avg. Length
N N

N
S

—
@®

0 100 200 300 400 500 0 200 400 600 800 1000
Iteration Iteration

Figure 4: Evolution of average length during tour optimization for heatmap-guided 2-opt and 2opt
+ RTDL.

DIFUSCO ATT-GCN DIMES UTSP SoftDist

Length=19.2 Length 25.98 Length=27.09 Length=23.09 Length=20.15
1.0 -

e o2 °o o
= o0

Greedy Decoding
Y coordinate

°
o

Length=17.23 Length=18.05 Length=17.48 Length=17.29 Length=17.27
1.0
308
506
o=
N S04
S
>
0.2
0.0
Length=16.79 Length=17.3 Length=17.1 Length=17.0 Length=17.05
1.0
3,08
=
£06
+3
e 804
oS
ey
DD
02 04 06 08 10 00 02 08 10 00 02 04 08 1.0 00 02 04 08 1.0 00 02
X coordinate X coordmate X coordmate X coordmate X coordmate

Figure 5: Example of solutions for the same TSP-500 problem through different models and opti-
mization methods. For each model, we provide initial tour obtained through heatmap greedy decod-
ing, 2-opt and 2-opt + RTDL optimized tours.

For these experiments, we randomly generated TSP tasks with different numbers of cities and then
asked our models to iteratively construct tours multiple times for each instance independently. Each
model is given 600 episodes to build a tour from scratch, and we record their best results.

In the DQN framework, the central idea is to learn a Q-function, (s, a), which approximates the
expected cumulative reward of taking action a in state s and then following the current policy there-
after. In the context of TSP, the “state” corresponds to a partially constructed tour, while the “action”
represents choosing the next city to visit. By updating the Q-function through repeated interactions,
the agent gradually learns to prefer actions that are more likely to lead to shorter tours, thereby
improving its decision-making process across episodes. Details of the algorithm are provided in

Appendix

In our setup, the reward is dense: at each step the agent receives a negative edge weight cor-
responding to the cost of the chosen edge. This ensures that the cumulative reward over an
episode is exactly the negative tour length. To incorporate topological information, we compute
the RTDL-Barcode(Tiour, G), Where Tty is the constructed Hamiltonian cycle and G is the full
graph of cities. Following Theorem each tour edge e € F(Tioyr) \ {€max} 18 paired with an MST
edge via the bijection), while the pair for ey, is defined independently. This allows us to assign a

Under review as a conference paper at ICLR 2026

Table 3: Experimental results of 2-opt, 2-opt+RTDL, and 2-opt+RTDL-Full compared against Con-
corde on TSPIlib tasks. All algorithms were run under the same time and iteration limits. We also
report the GAP (%) relative to the best solution obtained by Concorde. Details of the algorithms are
provided in Appendix

2-opt 2-opt+RTDL-Full 2-opt+RTDL
Name Tour len. Time GAP (%) Tour len. Time GAP (%) Tour len. Time GAP (%)
ulysses16 74.54 +0.48 0.02s 0.6 7451 £ 0.41 0.06s 0.54 74.49 + 0.46 0.06s 0.52
ulysses22 76.28 £+ 0.43 0.05s 0.8 76.18 £+ 0.37 0.11s 0.64 76.25 £+ 0.51 0.13s 0.78
att48 34842.07 + 648.93 0.20s 39 34632.78 £ 608.78 0.79s 33 34848.44 £ 609.44 1s 4.0
eil51 451.66 4 31.26 0.23s 4.9 450.84 £+ 7.54 0.44s 49 446.68 1 7.82 0.58s 3.9
berlin52 8150.23 £ 240.14 0.27s 8.0 8133.56 +£217.95 0.53s 7.0 7957.48 + 237.26 0.69s 5.5
st70 714.90 £ 46.18 0.63s 5.5 705.53 £+ 1045 1.02s 4.1 70945 £ 11.09 0.62s 4.7
eil76 604.50 £ 37.62 1.12s 11.0 583.92 + 11.66 1.01s 7.2 586.20 + 11.36 1.83s 7.6
pr76 113227.56 + 12746.41 0.81s 4.7 113392.47 4+ 2581.35 1.1s 4.8 112657.0 4 2221.49 1.56s 4.2
2r96 541.12 £ 1291 1.56s 5.6 54332 £ 12.71 1.66s 6.1 538.54 + 12.01 2.6s 5.1
kroC100 22009.93 4 553.36 1.95s 6.1 22020.69 £ 528.93 1.7s 6.1 21815.72 + 598.33 2.79s 5.1

per-edge topological reward
rrroL(e) = w(e) —w(yP(e)) > 0.
This value is added step-wise to the environment reward at the moment the edge is selected. These

penalties are then distributed as additional per-step rewards, effectively guiding the agent towards
topologically meaningful tours while preserving the standard length-based reward.

To ensure fairness, all models are trained on identical city configurations with fixed starting and end-
ing points, and are evaluated under equivalent conditions. Additionally, we benchmark the learned
solutions against the global optimum computed using the Concorde TSP solver. The experiments,
summarized in Figure[6] demonstrate that RTDL-based reward shaping significantly stabilizes and
improves the training of DQN agents. The baseline DQN quickly plateaus and even diverges after
about 300 episodes, whereas DQN+RTDL remains stable and continues to reduce the tour length.
Overall, DQN+RTDL consistently produces shorter tours and exhibits lower variance across seeds
compared to the baseline. The numerical results in Table[d|corroborate these findings across different
TSP sizes.

Table 4: Mean tour lengths for different TSP sizes comparing the baseline DQN and the RTDL-
enhanced variant.

Method TSP-50 TSP-70 TSP-100
DQN (base) 8.76 10.31 18.66
DQN + RTDL 7.65 8.46 11.75
Tour length per Episode averaged for 5 seeds Loss per Episode Tour length per Episode averaged for 5 seeds Loss per Episode
250 6
\ — DON — DON A — DQN — DQN
25|y DQN RTDL 8 DQN RTDL A" DQNRTDL 5 DQN RTDL
200l T = Concorde (4.36) 4 W ---= Concorde (5.94)
Ul 6 v’\ 4
E) s “vv\nl EE) ‘fm‘ .
T; 15.0 ‘."%f g . ;) W gs
g s iy N N
100 "
75 1
10
50 o 0
0 200 400 600 0 200 400 600 0 200 400 600 0 200 400 600

Episode Episode Episode Episode

(a) 50 cities (b) 100 cities

Figure 6: Learning curves of the baseline DQN and DQN+RTDL on TSP instances with 50 and 100
cities. Each curve is averaged over five random initializations.
5 CONCLUSION

In this work, we have introduced a novel topological perspective on the TSP problem by decom-
posing the classical tour—MST total gap into edge-wise divergence contributions. We successfully

Under review as a conference paper at ICLR 2026

used topological signal to construct topology-guided 2-opt, 3-opt leading to lower tour lengths for
random Euclidean instances and TSPLib benchmark. Moreover, topology-guided 2-opt provided
improvements for fine-optimization of tours generated by TSP solvers based on heatmaps, up to
10000 nodes. Using this insight, we proposed a topology-aware reinforcement learning framework
in which each MST edge receives a localized reward proportional to its divergence contribution.
Empirically, this fine-grained reward allocation accelerates convergence, yields more stable learning
curves, and ultimately improves tour quality compared to conventional, monolithic reward schemes.
Furthermore, we established an equivalence between the a-score from the LKH-3 algorithm and
a specific variant of the RTDL barcode, strengthening the link between our topological methods
and established heuristic techniques. By bridging persistent homology with modern RL, our work
opens a new avenue for incorporating global graph structure into deep reinforcement learning for
combinatorial optimization.

6 REPRODUCIBILITY STATEMENT

The source code for the experiments is available in the supplementary material. Hyperparameters
are either disclosed in Sectiond] or were equal to defaults in code.

REFERENCES

Serguei Barannikov, Ilya Trofimov, Nikita Balabin, and Evgeny Burnaev. Representation topology
divergence: A method for comparing neural network representations. International Conference
on Machine Learning, ICML 2022.

Qi Chen, Ceyue Liu, Jiahao Sun, Hang Yuan, and Jian Tang. A generalizable deep 1l solver for the
traveling salesman problem. In Proceedings of the 12th International Conference on Learning
Representations (ICLR), Vienna, Austria, 2024.

George A. Croes. A method for solving traveling salesman problems. Operations Research, 1958.

Pedro F. da Costa, Luis A. A. Rodrigues, and Luis M. S. Russo. Learning 2-Opt heuristics for the
traveling salesman problem via deep reinforcement learning. In Proceedings of the 34th AAAI
Conference on Artificial Intelligence (AAAI), New York, NY, USA, 2020.

Xinyu Fan, Shunhua Jiang, Cong Xie, and Xiaoming Sun. Rethinking post-hoc search-based neural
approaches for large-scale TSP. In Proceedings of the 41st International Conference on Machine
Learning (ICML), Proceedings of Machine Learning Research, Vienna, Austria, 2024. PMLR.
URLhttps://proceedings.mlr.press/v238/fan24a.htmll

Zhang-Hua Fu, Kai-Bin Qiu, and Hongyuan Zha. Generalize a small pre-trained model to arbitrarily
large tsp instances. In Proceedings of the AAAI conference on artificial intelligence, volume 35,
pp. 7474-7482, 2021.

Michael Held and Richard Karp. The traveling-salesman problem and minimum 1-trees. Operations
Research, 1970.

Keld Helsgaun. An effective implementation of the Lin—Kernighan traveling salesman heuristic.
European journal of operational research, 126(1):106—130, 2000.

Wouter Kool, Herke van Hoof, and Max Welling. Attention, learn to solve routing problems! In
International Conference on Learning Representations, 2019. URL https://github.com/
wouterkool/attention—-learn—-to-route.

Shen Lin and Brian W. Kernighan. An effective heuristic algorithm for the travelling-salesman
problem. Operations Research, 1973.

Yimeng Min, Yiwei Bai, and Carla P Gomes. Unsupervised learning for solving the travelling
salesman problem. Advances in Neural Information Processing Systems, 36:47264-47278, 2023.

Ruizhong Qiu, Zhiqing Sun, and Yiming Yang. Dimes: A differentiable meta solver for combina-
torial optimization problems. Advances in Neural Information Processing Systems, 35:25531—
25546, 2022.

https://proceedings.mlr.press/v238/fan24a.html
https://github.com/wouterkool/attention-learn-to-route
https://github.com/wouterkool/attention-learn-to-route

Under review as a conference paper at ICLR 2026

Sebastian Sanokowski, Sepp Hochreiter, and Sebastian Lehner. A diffusion model framework
for unsupervised neural combinatorial optimization (DiffUCO). In Proceedings of the 41st In-
ternational Conference on Machine Learning (ICML), Proceedings of Machine Learning Re-
search, Vienna, Austria, 2024. PMLR. URL https://proceedings.mlr.press/v238/
sanokowski24a.html.

Zhiqging Sun and Yiming Yang. Difusco: Graph-based diffusion solvers for combinatorial optimiza-
tion. Advances in neural information processing systems, 36:3706-3731, 2023.

InstaDeep Research Team. Training performant rl populations for combinatorial optimisation. In
NeurlPS, 2023.

Eduard Tulchinskii, Daria Voronkova, Ilya Trofimov, Evgeny Burnaev, and Serguei Barannikov.
RTD-Lite: Scalable topological analysis for comparing weighted graphs in learning tasks. In
Proceedings of the 28th International Conference on Artificial Intelligence and Statistics (AIS-
TATS), volume 258 of Proceedings of Machine Learning Research. PMLR, 2025. URL https:
//proceedings.mlr.press/v258/tulchinskii2ba.htmll

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. In Advances in Neural
Information Processing Systems, 2015.

Yifan Xia, Xianliang Yang, Zichuan Liu, Zhihao Liu, Lei Song, and Jiang Bian. Position: Rethinking
post-hoc search-based neural approaches for solving large-scale traveling salesman problems.
arXiv preprint arXiv:2406.03503, 2024.

Charles T. Zahn. Graph-theoretical methods for detecting and describing gestalt clusters. IEEE
Transactions on Computers, 1971.

10

https://proceedings.mlr.press/v238/sanokowski24a.html
https://proceedings.mlr.press/v238/sanokowski24a.html
https://proceedings.mlr.press/v258/tulchinskii25a.html
https://proceedings.mlr.press/v258/tulchinskii25a.html

Under review as a conference paper at ICLR 2026

1.00 100
2075 5075
% 0.50 % 0.50
o o
o o
& 025 & 0.25
0.00 0.00
0 20 40 60 80 100 0 20 40 60 80 100
The edges are sorted in asc. order of RTDL barcode The edges are sorted in asc. order of RTDL barcode
(a) 2-opt 100, iterations. (b) 2-opt 200, iterations.
100 Loo
2075 2075
% 0.50 % 0.50
L e}
o [=]
& 025 & 025
0.00 0.00
0 20 40 60 80 100 0 20 40 60 80 100
The edges are sorted in asc. order of RTDL barcode The edges are sorted in asc. order of RTDL barcode
(c) 2-opt 300, iterations. (d) 2-opt, converged.

Figure 7: Probability of belonging to an optimal tour vs. RTDL barcode of an edge.

A ADDITIONAL RESULTS

Figure [7] shows probabilities for an edge to belong to an optimal tour, edges are taken from 2-opt
optimization with varying number of iterations. Table [5] shows results for of 2-opt and 3-opt for
non-metric TSP problems.

B RELATION OF RTDL BARS AND ALPHA-SCORE

Let G be a weighted graph with weights w; ;. Consider a subgraph G; C G without an arbitrary
vertex “1” and incident edges.

Definition. The 1-tree is a spanning tree of (G; with the vertex 1 and two edges connecting the vertex
land G 1.

a-score is used for edge selection in the state-of-the-art LKH algorithm [Helsgaun| (2000) for TSP
and VRP problems. a-score is a measure of edge’s “badness”. Edges with low a-score tend to
belong to the optimal tour with high probability. For an edge (4, j):

O‘(iuj) = L(R+(Zv.7)) - L(R)7

where R is the minimal 1-tree of G, and R (4, j) is the the minimal 1-tree of G with a restriction to
contain the edge (i, j), L(+) is a length function.

Proposition. For i,j # 1, a(i,j) equals to a length of a bar in the RTDL-Barcode(G%7, G1),
corresponding to an edge (i,7). Both G, G}7 are graphs having all the vertices of G without the
vertex 1. G is defined above, and G717 has only one edge (i, j) with a weight w; ;.

Proof. An algorithm for calculating RTDL-Barcode(A, B) is the following (Tulchinskii et al., 2025)).
A precondition of RTDL evaluation is a bijection between vertices of graphs A, B. The auxiliary
graph C' containing a union of edges of A, B and weights on edges wS = min(w?,w?) is con-
structed. When an edge is missing, its weight is considered +o00. Then, the Kruskal’s algorithm
for finding the MST of the graph C'is executed. Let ¢© be an edge from the MST of the graph C.
The edge e“ connects two connected components Cy, Cy. In the Algorithm of RTDL calculation,
edges from the MST of A are added in an increasing order by a weight. After adding some edge e**
a path connecting C; and C (any of their vertices) appears. Thus, e is paired with e?*. Together
they form a bar (e“, e4) in the RTDL-Barcode. Note, that always wS < w?. If e # €, then
after adding e” to C; U Cs a cycle appears. As shown in (Helsgaun| 2000), the 1-tree R* (4, j) (if

11

Under review as a conference paper at ICLR 2026

i,§ > 1) can be obtained from the RUe by removing the longest edge in the aforementioned cycle.
Obviously, such edge is €“. Thus, a(i, j) = w2 — w¢. O

In Table[3]and Appendix [C] we also evaluate two variants of 2-opt+RTDL:
e 2-opt+RTDL-Full - described in Algorithm [2} but applied to all edges during each opti-
mization stage.

* 2-opt+RTDL - described in Algorithm [2} where edges are selected in batches of size 10
for each optimization cycle.

Algorithm 1: 2-opt algorithm

Initialize tour;

repeat
START:
improved < false;
foreach e; in tour do
foreach e in tour do
tour_new < tour;
remove e, e from tour_new and rewire it;
if Len(tour_new) < Len(tour) then
tour < tour_new;
improved < true;
goto START:
end

end
end
until improved,

return tour

Algorithm 2: 2-opt+RTDL algorithm

Initialize tour;
N + min(10, [tour])

repeat
START:
improved < false ;
E + edges from t our[0:N] sorted by RTDL barcodes in desc. order;
foreach ¢, in E do
foreach es in E do
tour_new < tour;
remove eq, es from tour_new and rewire it;
if Len(tour_new) < Len(tour) then
tour < tour_new;
improved < true ;
goto START:
end

end

end

if N < |tour| then

N + min(N + 10, |tour]);
improved < true ;

end
until improved,

return tour

12

Under review as a conference paper at ICLR 2026

Method TSP-100 TSP-200 TSP-300
Length Time(s) Length Time(s) Length Time(s)
2-opt 1.871 0.21 2.340 1.60 2.732 4.02
2-opt+RTDL 1.631 2.31 1.866 9.65 2.061 32.90
2-opt+RTDL+opt(D) 1.581 4.16 1.832 18.53 2.037 50.65
3-opt 1.161 28.05 1.234 346.36 1.304 1482.76
3-opt+RTDL 1.156 29.00 1.210 32949 1.282 1602.79

3-opt+RTDL+opt(D) 1.144 22.03 1.203 31040 1.278 1327.23

Table 5: Non-metric TSP. Improvements of 2-opt and 3-opt with RTDL barcodes.

Table 6: Average length of initial tours obtained via heatmap greedy decoding.

Model TSP-500 TSP-1000 TSP-10000
DIFUSCO 18.51 29.12 113.74
ATT-GCN 24.45 38.29 205.84
DIMES 29.17 46.61 331.73
UTSP 21.89 33.51 -
SoftDist 19.48 26.97 84.20
TSP 500
DIFUSCO ATT-GCN DIMES UTSP SoftDist
17.05 2 . by . 17.45 1
%17_00 :,‘;« 17.6 1;; 3 17.5 .Et: 17.40 R
31695 175) 174 fx 173
S1600 T © 174 g o + 75, B L . 1730
z . 5 ¥ o 174 8 S 173 & % 175 %
16.85 A 17.3 = e . . .
17.3 17.20
100 200 200 400 200 400 600 0 200 400 100 200 300 400
Time Time Time Time Time
Freq e 10 e 50 N * 50 + 150 + 250 = 350 * 450 + 2-opt
o 1 o 25 ° 100 e 10 = 100 + 200 A 300 v 400 e 500
5
TSP 1000
DIFUSCO ATT-GCN DIMES UTSP SoftDist
201 3 28 + 246 + 24.30 7
- £, 8 2438
520 g s 245 Iz 24.25
§ 39 ,‘»_'. Ak, 26 at e 284 e 24.20 5
.238 * e T 243 e 15
52 s, e B e . e oy | o o PR o
Z 37 2 at + :{« 2 s 24 43 S0 242 d e 24.10 {;5':; =
236 1 242 * 3 - . 24.1 .
500 1000 1000 2000 1000 2000 3000 500 1000 1500 2000 2500 O 500 1000
Time Time Time Time Time
Freq 5 e 25 e 100 e 100 = 300 + 500 a4 700 v 900 + 2-opt
o 1 e 10 e 50 N * 200 + 400 + 600 = 800 * 1000

Figure 8: Sensitivity analysis for heatmap-guided 2-opt + RTDL. Freq refers to RTDL update fre-
quency, N refers to number of vertices to optimize. Grey area indicates solutions better than 2-opt
solution, i.e. shorter average length and faster computation.

13

Under review as a conference paper at ICLR 2026

Table 7: Comparison of failure cases for different TSP solvers on TSPLib instances. For each
instance we report the percentage of runs where the constructed tour length exceeds 10% above the
global optimum (“Len. > 10% opt.”) and the percentage of runs that failed to converge within the
allocated time budget (“Time limit”) in 20 seconds.

2-opt 2-opt+RTDL-Full 2-opt+RTDL

Name GAP > 10% | Timelimit (%)] GAP > 10%] Timelimit(%)] GAP > 10%) Time limit (%) |
ulysses16 0.0 0.0 0.0 0.0 0.0 0.0
ulysses22 0.0 0.0 0.0 0.0 0.0 0.0
att48 0.6 0.0 0.7 0.0 0.4 0.0
eil51 0.7 0.0 0.9 0.0 0.5 0.0
berlin52 27.1 0.0 235 0.0 20.7 0.0
st70 5.6 4.0 5.9 0.0 4.0 0.0
eil76 7.7 2.7 9.7 0.2 2.3 1.5
pr76 1.6 0.0 2.7 0.0 1.2 0.0
2196 4.9 0.0 6.4 0.0 3.0 0.0
kroC100 9.2 0.0 11.8 0.0 7.8 0.0
rd100 12.25 0.0 19.0 0.0 9.0 0.0
kroD100 6.75 0.0 6.75 0.0 3.75 0.0
eil101 45.25 39.0 4.75 15 7.25 7.75
lin105 12.25 0.5 19.0 0.25 12.0 0.5
ch130 9.0 0.0 75 0.0 2.0 0.0
ch150 11.2 0.0 19.2 0.0 5.0 0.0

TSP Instance: €il76 (n=76)

Running Times Tour Distances
35
2-opt 2-opt
2-opt + RTDL-Full 2-opt + RTDL-Full
ap 4 2-opt + RTDL 30 4 2-opt + RTDL
254
& 304 g
H £ 204
= =
- Qutliers - Outliers
=] =]
o o 04
T 204 20 g 151
=4 =4 03
& 15 &)
10 4 10 4 02
101 s 4 0l
54
0o T T T T oo
5 10 15 20 1000 1500 2000
01— T . T T , T \ . 0 ' r : . , . T
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 500 750 1000 1250 1500 1750 2000 2250
Time (s) Tour Length

Figure 9: The distributions of calculation times and resulting tour lengths for different versions of
2-opt.

C ROBUSTNESS ANALYSIS OF 2-OPT AND RTDL VARIANTS

In this section, we conduct extensive experiments with 2-opt, 2-opt+RTDL, and 2-opt+RTDL-Full
to evaluate their ability to converge from different initial tours.

We observe that plain 2-opt sometimes fails to converge to the global optimum from certain initial
tours, whereas 2-opt+RTDL consistently avoids such cases. Figure 0]shows the distributions of con-
vergence times and resulting tour lengths for the 76-city Christofides/Eilon instance, while Table
summarizes the frequency of extreme cases across a broader set of problems.

In particular, we report two types of failures: (i) runs where the tour length exceeds 10% above the
global optimum (“GAP > 10%”), and (ii) runs that exceed the time budget of 20 seconds (“Time
limit”). The plain 2-opt baseline shows the highest rate of such failures, while 2-opt+RTDL-Full
significantly reduces them. The 2-opt+RTDL variant achieves the most robust performance overall,
with consistently lower failure rates across different TSPLib instances.

14

Under review as a conference paper at ICLR 2026

D DQN ALGORITHM

In this section, we present the standard Deep Q-Learning (DQN) algorithm [3| applied to the TSP.

Algorithm 3: Deep Q-Learning (DQN) for TSP

Initialize replay buffer D;

Initialize Q-network with random weights 6,

Initialize target network with weights ireer — 0;
Initialize environment with fixed city coordinates env;
Initialize best _tour and best_length + o0;

for episode =1to M do

state < env.reset ();

fort =1to 1 do

With probability € select random action a, otherwise a +— arg max, Q(state, a; 0);
state’, reward, done < env.step(a);

Store (state, a, reward, state’, done) in D;

if |D| > batch_size then
Sample random minibatch of transitions from D;
yj < reward; ++ - (1 — done;) - maxg Q(state;-,a’; Orarget)

L) + % Y2, (Q(state;, az:0) —y;)™:
Update 6 + 0 — « - Vg L(0);

end

if t mod C' = 0 then

‘ elarget — 0,

end

if done then
if tour length < best_length then

| Update best _tour and best_length;

end
break;

end

state < state’;

end

end
return best_tour

E ABLATION STUDY

In ablation study, we compare sorting edges by RTDL bars with sorting by distances in a descending
order, see Table

F LIMITATIONS

While our experiments focused on synthetic and benchmark TSPLIB instances, real-world route
planning often involves additional constraints (time windows, capacities, dynamic updates) whose
interaction with the topological reward scheme remains to be explored.

G THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used LLMs to polish writing in the “introduction” and “abstract” sections.

15

Under review as a conference paper at ICLR 2026

Method TSP-100 TSP-200 TSP-300
Length Time(s) Length Time(s) Length Time(s)

2-opt+dist. 8.474 0.72 11.780 6.32 14.291 26.64
2-opt+RTDL 8.226 2.84 11.356 18.08 13.798 62.30

Table 8: 2D Euclidean TSP. Ablation study of RTDL barcodes.

16

	Introduction
	Related Work
	Approach
	Experiments
	RTDL barcodes and optimal tours
	Improvements in 2-opt, 3-opt
	RTDL for heatmap-guided 2-opt
	RTD for Deep Q-Learning

	Conclusion
	Reproducibility statement
	Additional results
	Relation of RTDL bars and alpha-score
	Robustness Analysis of 2-opt and RTDL variants
	DQN algorithm
	Ablation study
	Limitations
	The Use of Large Language Models (LLMs)

