
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

EDGE-WISE TOPOLOGICAL DIVERGENCE GAPS:
GUIDING SEARCH IN COMBINATORIAL OPTIMIZA-
TION

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce a topological feedback mechanism for the Travelling Salesman
Problem (TSP) by analyzing the divergence between a tour and the minimum
spanning tree (MST). Our key contribution is a canonical decomposition theorem
that expresses the tour-MST gap as edge-wise topology-divergence gaps from the
RTD-Lite barcode. Based on this, we develop a topological guidance for 2-opt
and 3-opt heuristics that increases their performance. We carry out experiments
with fine-optimization of tours obtained from heatmap-based methods, TSPLIB,
and random instances. Experiments demonstrate the topology-guided optimiza-
tion results in better performance and faster convergence in many cases.

1 INTRODUCTION

The Travelling Salesman Problem (TSP) remains a cornerstone of combinatorial optimisation and
a proving ground for machine–learning-augmented solvers. Despite impressive progress from neu-
ral construction policies (Vinyals et al., 2015; Kool et al., 2019) and reinforcement-learning (RL)
refinements (da Costa et al., 2020; Chen et al., 2024), state-of-the-art pipelines still rely on blind
post-hoc local search (e.g. 2-opt) to reach competitive tour lengths. These moves examine O(n2)
edge pairs without principled guidance and dominate run-time on medium-size instances.

Building on recent advances in topological data analysis for graphs, in particular the RTD-Lite bar-
code (Tulchinskii et al., 2025), we prove a canonical decomposition theorem: the usual tour–MST
length gap equals the sum of non-negative, edge-wise topology-divergence gaps. Each gap is the
length of a bar in the RTD-Lite barcode and pinpoints how much a single tour edge deviates from
its uniquely associated MST edge.

The Travelling Salesman Problem (TSP) is routinely framed as a pure cost-minimisation task: al-
most every heuristic, exact solver and learning approach measures progress solely by the total tour
length. This perspective ignores how cities are connected as the tour evolves, even though decades of
geometric and clustering work show that good tours first respect the instance’s intrinsic connectivity
before shaving residual distance (Zahn, 1971; Held & Karp, 1970). Consequently, contemporary
neural solvers spend vast computation on blind local search to repair long-range “topological mis-
takes” that went undetected during learning (Kool et al., 2019; Fan et al., 2024).

Topology as a missing optimisation signal. We argue that explicit topological feedback can
bridge this gap. Leveraging recent advances in graph topology, we employ the topology divergence
framework (Tulchinskii et al., 2025) to compare a candidate tour with the instance’s minimum-
spanning tree (MST). Our principal theorem constructs a canonical bijection between tour edges
and MST edges that decomposes the classical tour–MST length gap into non-negative, edge-wise
topological divergence gaps. Each gap quantifies the difference in scale at which MST clusters are
connected by the tour: large bars reveal tour edges that bridge distant vertex clusters much later than
the MST does. By inspecting these bars we know, for every step of a constructive or improvement
algorithm, which edge most distorts the natural connectivity structure.

From length optimisation to topology-aware optimisation. Building on this insight we develop
two lightweight mechanisms: (i) a topology-guided 2-opt that cuts local-search swaps by always

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

attacking the highest divergence edge first, and (ii) a gap-shaped Q-learning framework whose
reward combines tour length with the predicted topological gap, leading to faster convergence and
better final tours. Crucially, both methods run in O(n2) extra time, matching the cost of distance-
matrix construction.

Our experiments on TSPLIB and random Euclidean benchmarks demonstrate that adding this single
topological signal deliver the first empirically validated link between persistent-homology theory
and large-scale combinatorial optimization. We believe this topological perspective-and the practical
gains it brings-opens a promising research direction beyond length-only objectives.

To the best of our knowledge this is the first work that (i) provides an edge-wise topological charac-
terization of tour sub-optimality and (ii) demonstrates its utility in both classical and learning-based
TSP solvers.

Our contributions are summarized as follows:

• Canonical Tour–MST Decomposition. We prove a theorem establishing a one-to-one
mapping between tour edges and MST edges that decomposes the tour–MST length gap
into a sum of non-negative, edge-specific divergence values (persistent bar lengths). This
gives a principled, quantitative measure of how much each tour edge contributes to subop-
timality.

• Connection to LKH’s α-Score. We show that the well-known α-score used in the LKH-3
TSP solver is mathematically equivalent to a particular variant of the RTD-Lite barcode
measure. This links our topological perspective to a successful traditional heuristic.

• Topology-Guided Local Search. We introduce topology-guided 2-opt and 3-opt heuristics
that prioritize removing edges with large divergence gaps. On random Euclidean instances
(up to 300 nodes) and TSPLIB benchmarks, this strategy consistently finds shorter tours
and often converges in fewer iterations compared to standard 2-opt/3-opt.

• Integration with Neural Solvers. We demonstrate that topology-guided 2-opt can sig-
nificantly improve the fine-optimization of tours generated by recent heatmap-based TSP
solvers, even on very large instances (up to 10,000 nodes). Notably, our approach achieves
better tours in less time than vanilla 2-opt post-processing on these neural outputs.

• Topology-Shaped Reinforcement Learning. We design an RTDL-gap-shaped reward for
a Q-learning TSP solver, enabling an RL agent to receive per-edge feedback based on topo-
logical divergence. This reward shaping stabilizes training and reduces the final optimality
gap by over 25% in fewer episodes compared to a purely length-based reward.

In summary, our work bridges topology and large-scale combinatorial optimization, providing a
novel optimization signal that goes beyond traditional distance-based objectives. We believe this
topological perspective opens a promising avenue for developing more structured and efficient
search strategies in TSP and related problems.

2 RELATED WORK

Classical TSP heuristics. Local improvement schemes such as 2-opt, 3-opt, and Lin–Kernighan
(LK) remain mainstays of high-quality TSP solvers (Croes, 1958; Lin & Kernighan, 1973; Helsgaun,
2000). LK and LKH rely on clever neighbourhood pruning to reduce the search space. The MST
and 1-tree bounds have long provided global cost estimates (Held & Karp, 1970), yet have not been
used to prioritize specific move choices.

Neural and RL approaches. Pointer networks (Vinyals et al., 2015), attention models (Kool et al.,
2019), population RL (Team, 2023), and diffusion-based methods (Sanokowski et al., 2024) produce
near-optimal tours but delegate final polishing to classical local search, which accounts for most
wall-time (Fan et al., 2024). Attempts to learn local moves directly (da Costa et al., 2020) still lack
a principled signal for which edge to change next.

Topological data analysis (TDA) for graphs. Persistence barcodes capture multiscale connectivity;
RTD Barannikov et al. and its efficient variant RTD-Lite compare two weighted graphs in O(n2)
time (Tulchinskii et al., 2025). Prior work used RTD as a scalar loss to preserve topology in neural

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

representations; our work is the first to exploit its edge-level information inside a combinatorial
solver.

Topology-aware optimisation. Graph clustering via MST edge removal dates back to (Zahn, 1971).
Recent “heat-map+MCTS” pipelines (Xia et al., 2024; Sun & Yang, 2023; Fu et al., 2021; Qiu et al.,
2022; Min et al., 2023) acknowledge structural cues but still lack a rigorous measure of per-edge
mis-alignment. We fill this gap by providing an exact, computable divergence for each edge and
showing how it drives both local search and RL.

In summary, our paper bridges topological data analysis (TDA) and combinatorial optimization: it
supplies a theoretically grounded, edge-wise error signal and demonstrates tangible performance
gains in both classical and learning-based TSP solvers.

3 APPROACH

Consider an undirected weighted complete graph G = (V,E) with weight w(e) for edge e. Let
Ttour be a candidate TSP tour. For now, removing the longest tour edge emax consider Ttour as a
Hamiltonian path T from a start city s to an end city t, sometimes called an (s, t)-tour. Let Tmst be
a minimum spanning tree (MST) of G. We first formalize the relationship between Ttour and Tmst in
terms of their edge sets and weights:
Theorem 1. We construct a one-to-one correspondence ϕ between edges of T and Tmst so that the
standard (TSP tour)-MST gap L(s,t)−tour − Lmst is decomposed as the natural sum of edge-wise
non-negative topology divergence gaps:

L(s,t)−tour − Lmst =
∑

e∈E(Tmst)

w(ϕ(e))− w(e) (1)

w(ϕ(e))− w(e) ≥ 0, for any e ∈ E(Tmst). (2)

In other words, every MST edge e is paired with a unique tour edge ϕ(e) whose weight is greater
than or equal to w(e), and these weight differences exactly sum up to the gap between the (s, t)-tour
length and the MST length

Proof. Assume for simplicity, that all edges in the union E(Tmst) ∪ E(T) have distinct weights,
if some weights are the same then just choose an order on edges with the same weight. For e ∈
E(Tmst), let A,B ∈ V denote the endpoints of e. Let ẽ ∈ E(T) denotes the smallest weight edge
of T such that A and B are connected after addition of smaller or equal w(ẽ) weight T−edges to
T

w<w(e)
mst . In particular, A and B are connected by a path consisting of smaller than w(e) weight
Tmst−edges and bigger or equal w(e) and smaller or equal w(ẽ) weight T−edges. Notice that
such path is not unique in general, but, by construction, it always contains the edge ẽ. Then define
ϕ(e) = ẽ. Conversely, given an edge ẽ ∈ E(T), let Ã, B̃, are its endpoints. Let e′ ∈ E(T) denotes
the smallest weight edge of Tmst such that Ã, B̃ are connected by a path after the addition of smaller
or equal w(e′) weight Tmst−edges to Tw<w(ẽ). Then the correspondence ψ : ẽ 7→ e′ is the inverse
to ϕ. It follows that

ϕ : E(Tmst)→ E(T), (3)

is a one-to-one correspondence and that (2) holds.

Application to Hamiltonian cycles. Let Ttour be a Hamiltonian cycle. By definition,
RTDL-Barcode(A,B) is computed for two undirected weighted graphs A,B with a bijection of
vertices. The procedure for its computation (Algorithm 1, (Tulchinskii et al., 2025)), involves
minimum spanning trees of A,B. To incorporate topological information into TSP solvers, we
compute the RTDL-Barcode(Ttour, G). The minimum spanning tree of Ttour is Ttour \ {emax}
where emax is an edge of Ttour having the largest weight. The Theorem 1 implies a bijec-
tion ψ between E(Ttour) \ {emax} and E(Tmst). For each e ∈ E(Ttour) we define a penalty
p(e) = w(e) − w(ψ(e)) ≥ 0 as a measure of its “badness”, that is, how far it is from a min-
imum spanning tree. A penalty for emax is not defined by this procedure. We set p(emax) =
mine∈{x∈E(Ttour) | p(x)>0} p(e). This value exhibited the best performance in computational ex-
periments. A visualization of the described mapping between MST and tour edges is provided in
Figure 1.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 1: Visualization of the mapping between edges of the Hamiltonian cycle Ttour and the mini-
mum spanning tree Tmst. Each tour edge (except emax) is bijectively matched to an MST edge.

Figure 2: Probability of belonging to an optimal tour vs. RTDL barcode of an edge.

RELATION BETWEEN RTDL BARS AND α-SCORE

α-score is used for edge selection in the LKH-3 algorithm (Helsgaun, 2000) for TSP and VRP
problems. α-score is another measure of edge’s “badness”. Let G be a weighted graph with weights
wi,j , G1 ⊂ G a subgraph without an arbitrary vertex “1” and incident edges. For an edge (i, j):

α(i, j) = L(R+(i, j))− L(R), (4)

where R is the minimal 1-tree of G, and R+(i, j) is the the minimal 1-tree of G with a restriction
to contain the edge (i, j), L(·) is a length function. We establish connection between α-score and
RTDL barcode in the following

Proposition. For i, j ̸= 1, α(i, j) equals to the length of a bar in the RTDL-Barcode(Gi,j
1 , G1),

corresponding to an edge (i, j). Both G1, Gi,j
1 are graphs having all the vertices of G without the

vertex 1. G1 is defined above, and Gi,j
1 has only one edge (i, j) with a weight wi,j .

The proof if provided in Appendix B.

4 EXPERIMENTS

4.1 RTDL BARCODES AND OPTIMAL TOURS

How the value of an edge’s RTDL barcode is related to the TSP solution? To study this dependency,
we generated 100 random 2-dimensional TSP problems and found 1) non-optimal tours by running
2-opt procedure with varying number of iterations 2) optimal tours by running Concorde1. Then, for
each non-optimal tour we ordered edges in an ascending order of their RTDL barcodes and estimated
an empirical probability for an edge to belong to an optimal tour. Figure 2 shows that edges with
a low barcode tend to belong to an optimal tour with high probability. See Appendix A for more
results.

1https://www.math.uwaterloo.ca/tsp/concorde/

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Method TSP-100 TSP-200 TSP-300
Length Time(s) Length Time(s) Length Time(s)

2-opt 8.244 1.01 11.465 12.25 13.940 47.51
2-opt+RTDL 8.226 2.84 11.356 18.08 13.798 62.30

2-opt+RTDL+opt(D) 8.170 2.77 11.303 16.81 13.654 57.03
3-opt 8.137 12.30 11.284 160.19 13.747 701.86

3-opt+RTDL 8.082 13.49 11.157 131.50 13.594 545.50
3-opt+RTDL+opt(D) 8.011 11.43 11.126 104.61 13.546 456.67

Table 1: 2D Euclidean TSP. Improvements of 2-opt and 3-opt with RTDL barcodes.

4.2 IMPROVEMENTS IN 2-OPT, 3-OPT

Then, we apply RTDL-barcode to improve 2-opt and 3-opt algorithms. In this simplified setting
we can test the influence of RTDL-derived weights of edges alone without interfering factors like
complex training pipelines. The value of RTDL-barcode corresponding to a tour’s edge defines its
“badness”. As a candidate for an optimal tour, the natural idea is to try to remove such edges from
the tour before the others. In the vanilla 2-opt (Algorithm 1 in Appendix) the order of picking
edges which Algorithm attempts to remove is not specified, typically it is sequential. We modify
the 2-opt algorithm by picking edges in a descending order by their RTDL barcodes (Algorithm 2
in Appendix). The modified algorithm is denoted by 2-opt+RTDL. Table 1 presents experimental
results. We report average tour length and average optimization time. All the results are averaged
over 100 trials. For all the settings, an ordering by RTDL leads to a shorter tours with a cost of
slightly longer time. For 3-opt algorithm, an ordering by RTDL both improves tour length and
optimization time.

Also, we apply an heuristic from Helsgaun (2000). Helsgaun (2000) note that given scalars associ-
ated with vertices πi one can modify a distance matrix di,j ← di,j + πi + πj . The relative order of
tour’s lengths after this modification remains unchanged. Thus, the optimal tour doesn’t change too.
The π values are optimized by a subgradient procedure to make the nodes of 1-tree to have degree 2,
that is, more similar to a tour. Obviously, steps of standard 2-opt and 3-opt doesn’t change after such
modification. However, steps of 2-opt/3-opt+RTDL do change. In Table 1 this heuristic is denoted
by opt(D) and it is shown to improve results even further.

We conclude that the ordering by RTDL barcodes always brings some improvement in objective
without a significant increase of an execution time. Figure 3a shows that for 2-opt ordering by
RTDL results in less number of trials per iteration – number of checked pairs of edges before tour
improvement. For 3-opt, ordering by RTDL results in faster convergence, see Figure 3b. See ablation
study in Appendix E.

Non-metric TSP. We also have carried out experiments with non-metric TSP (least weight Hamil-
tonian cycle problem), where edges’ weights are sampled from (0, 1). Again, an addition of RTDL
always brings an improvement, see Table 5 in Appendix.

TSPLib instances. We also conducted experiments on tasks from TSPLib. For each task, opti-
mization was run 100 times with different initial tours, see Table 3. For certain initial tours, the
plain 2-opt algorithm struggled to reach the optimal solution and occasionally exceeded its iteration
limit, whereas 2-opt+RTDL never encountered such issues under the same initial conditions. See
Appendix C for more details.

4.3 RTDL FOR HEATMAP-GUIDED 2-OPT

In the case of large-scale TSP, there is a separate line of solvers that do not predict the optimal tour
directly but rather generate a heatmap. Each entry Φi,j of the n×n heatmap Φ reflects the relevance
of the edge (i, j) to the optimal solution. In order to obtain a feasible solution given a heatmap,
specialized decoding strategies are used (Sun & Yang, 2023). In this work, we follow Sun & Yang
(2023) and further improve the initial tour obtained through greedy decoding of generated heatmaps
with the 2-opt and 2-opt + RTDL algorithms. With this experiment, we aim to to verify whether
RTDL-based edge traversal further improves 2-opt when initial tour is already a good approximation
of the optimal solution.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

(a) 2-opt, 2-opt+RTDL. (b) 3-opt, 3-opt+RTDL.

Figure 3: Avg. number of trials per iteration.

Table 2: Average length and running time of 2-opt and 2-opt + RTDL algorithms applied initial tours
obtain through heatmap greedy decoding.

Method TSP-500 TSP-1000 TSP-10000
Length Time(s) Length Time(s) Length Time(s)

DIFUSCO
2-opt 16.98 0.38 24.01 5.78 75.87 7027.63
2-opt + RTDL 16.88 0.23 23.60 1.76 74.28 865.5

ATT-GCN
2-opt 17.63 1.09 24.72 12.54 77.36 17567.5
2-opt + RTDL 17.3 0.55 24.2 3.05 75.54 1567.69

DIMES
2-opt 17.74 1.66 24.84 16.05 77.68 25363.25
2-opt + RTDL 17.35 0.73 24.31 3.56 75.3 1797

UTSP
2-opt 17.54 0.93 24.57 10.20 – –
2-opt + RTDL 17.25 0.56 24.12 2.95 – –

SoftDist
2-opt 17.41 0.75 24.31 6.43 75.41 5264.88
2-opt + RTDL 17.24 0.49 24.09 2.65 74.65 1549.5

Following the work Xia et al. (2024), we use the heatmaps learned by the DIFUSCO (Sun & Yang,
2023), ATT-GCN Fu et al. (2021), DIMES (Qiu et al., 2022), UTSP (Min et al., 2023), and SoftDist
(Xia et al., 2024) approaches. We use all available problems for testing: 128 problems of size 500,
128 problems of size 1000 and 16 problems of size 10000. For each model and problem size, we
report the average length of optimized tours and the average time of tour optimization. As shown
in Table 2, in most cases, the proposed 2-opt + RTDL leads to solutions with a shorter average tour
length and a more efficient computation. Figure 4 further confirms that 2opt + RTDL provides faster
convergence for all models. For an additional examination, we also provide the average length of
the initial tours through heatmaps’ greedy decoding in Table 6. For visual analysis, we provide the
initial tours along with 2-opt and 2-opt + RTDL optimized tours for the same TSP-500 problem
and all models in Figure 5. We find that RTDL updates every 5 (5, 100) iteration and N = 500
(N = 1000, N = 10000) for TSP-500 (TSP-1000, TSP-10000) works universally well for all
models. The sensitivity analysis in Figure 8 shows that more frequent RTDL updates typically lead
to shorter average tour length while larger N is aligned with faster computation.

4.4 RTD FOR DEEP Q-LEARNING

To further evaluate the potential of incorporating topological insights into the Traveling Salesman
Problem (TSP), we design a series of experiments based on a popular class of reinforcement learning
(RL) methods-Deep Q-Networks (DQN). Our aim is to assess both a baseline learning strategy and a
modified approach that takes advantage of additional topological information through reward tuning.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Figure 4: Evolution of average length during tour optimization for heatmap-guided 2-opt and 2opt
+ RTDL.

Figure 5: Example of solutions for the same TSP-500 problem through different models and opti-
mization methods. For each model, we provide initial tour obtained through heatmap greedy decod-
ing, 2-opt and 2-opt + RTDL optimized tours.

For these experiments, we randomly generated TSP tasks with different numbers of cities and then
asked our models to iteratively construct tours multiple times for each instance independently. Each
model is given 600 episodes to build a tour from scratch, and we record their best results.

In the DQN framework, the central idea is to learn a Q-function, Q(s, a), which approximates the
expected cumulative reward of taking action a in state s and then following the current policy there-
after. In the context of TSP, the “state” corresponds to a partially constructed tour, while the “action”
represents choosing the next city to visit. By updating the Q-function through repeated interactions,
the agent gradually learns to prefer actions that are more likely to lead to shorter tours, thereby
improving its decision-making process across episodes. Details of the algorithm are provided in
Appendix D.

In our setup, the reward is dense: at each step the agent receives a negative edge weight cor-
responding to the cost of the chosen edge. This ensures that the cumulative reward over an
episode is exactly the negative tour length. To incorporate topological information, we compute
the RTDL-Barcode(Ttour, G), where Ttour is the constructed Hamiltonian cycle and G is the full
graph of cities. Following Theorem 1, each tour edge e ∈ E(Ttour) \ {emax} is paired with an MST
edge via the bijection ψ, while the pair for emax is defined independently. This allows us to assign a

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Experimental results of 2-opt, 2-opt+RTDL, and 2-opt+RTDL-Full compared against Con-
corde on TSPlib tasks. All algorithms were run under the same time and iteration limits. We also
report the GAP (%) relative to the best solution obtained by Concorde. Details of the algorithms are
provided in Appendix B.

2-opt 2-opt+RTDL-Full 2-opt+RTDL
Name Tour len. Time GAP (%) Tour len. Time GAP (%) Tour len. Time GAP (%)

ulysses16 74.54 ± 0.48 0.02s 0.6 74.51 ± 0.41 0.06s 0.54 74.49 ± 0.46 0.06s 0.52
ulysses22 76.28 ± 0.43 0.05s 0.8 76.18 ± 0.37 0.11s 0.64 76.25 ± 0.51 0.13s 0.78

att48 34842.07 ± 648.93 0.20s 3.9 34632.78 ± 608.78 0.79s 3.3 34848.44 ± 609.44 1s 4.0
eil51 451.66 ± 31.26 0.23s 4.9 450.84 ± 7.54 0.44s 4.9 446.68 ± 7.82 0.58s 3.9

berlin52 8150.23 ± 240.14 0.27s 8.0 8133.56 ± 217.95 0.53s 7.0 7957.48 ± 237.26 0.69s 5.5
st70 714.90 ± 46.18 0.63s 5.5 705.53 ± 10.45 1.02s 4.1 709.45 ± 11.09 0.62s 4.7
eil76 604.50 ± 37.62 1.12s 11.0 583.92 ± 11.66 1.01s 7.2 586.20 ± 11.36 1.83s 7.6
pr76 113227.56 ± 12746.41 0.81s 4.7 113392.47 ± 2581.35 1.1s 4.8 112657.0 ± 2221.49 1.56s 4.2
gr96 541.12 ± 12.91 1.56s 5.6 543.32 ± 12.71 1.66s 6.1 538.54 ± 12.01 2.6s 5.1

kroC100 22009.93 ± 553.36 1.95s 6.1 22020.69 ± 528.93 1.7s 6.1 21815.72 ± 598.33 2.79s 5.1

per-edge topological reward

rRTDL(e) = w(e)− w(ψ(e)) ≥ 0.

This value is added step-wise to the environment reward at the moment the edge is selected. These
penalties are then distributed as additional per-step rewards, effectively guiding the agent towards
topologically meaningful tours while preserving the standard length-based reward.

To ensure fairness, all models are trained on identical city configurations with fixed starting and end-
ing points, and are evaluated under equivalent conditions. Additionally, we benchmark the learned
solutions against the global optimum computed using the Concorde TSP solver. The experiments,
summarized in Figure 6, demonstrate that RTDL-based reward shaping significantly stabilizes and
improves the training of DQN agents. The baseline DQN quickly plateaus and even diverges after
about 300 episodes, whereas DQN+RTDL remains stable and continues to reduce the tour length.
Overall, DQN+RTDL consistently produces shorter tours and exhibits lower variance across seeds
compared to the baseline. The numerical results in Table 4 corroborate these findings across different
TSP sizes.

Table 4: Mean tour lengths for different TSP sizes comparing the baseline DQN and the RTDL-
enhanced variant.

Method TSP-50 TSP-70 TSP-100
DQN (base) 8.76 10.31 18.66
DQN + RTDL 7.65 8.46 11.75

(a) 50 cities (b) 100 cities

Figure 6: Learning curves of the baseline DQN and DQN+RTDL on TSP instances with 50 and 100
cities. Each curve is averaged over five random initializations.

5 CONCLUSION

In this work, we have introduced a novel topological perspective on the TSP problem by decom-
posing the classical tour–MST total gap into edge-wise divergence contributions. We successfully

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

used topological signal to construct topology-guided 2-opt, 3-opt leading to lower tour lengths for
random Euclidean instances and TSPLib benchmark. Moreover, topology-guided 2-opt provided
improvements for fine-optimization of tours generated by TSP solvers based on heatmaps, up to
10000 nodes. Using this insight, we proposed a topology-aware reinforcement learning framework
in which each MST edge receives a localized reward proportional to its divergence contribution.
Empirically, this fine-grained reward allocation accelerates convergence, yields more stable learning
curves, and ultimately improves tour quality compared to conventional, monolithic reward schemes.
Furthermore, we established an equivalence between the α-score from the LKH-3 algorithm and
a specific variant of the RTDL barcode, strengthening the link between our topological methods
and established heuristic techniques. By bridging persistent homology with modern RL, our work
opens a new avenue for incorporating global graph structure into deep reinforcement learning for
combinatorial optimization.

6 REPRODUCIBILITY STATEMENT

The source code for the experiments is available in the supplementary material. Hyperparameters
are either disclosed in Section 4, or were equal to defaults in code.

REFERENCES

Serguei Barannikov, Ilya Trofimov, Nikita Balabin, and Evgeny Burnaev. Representation topology
divergence: A method for comparing neural network representations. International Conference
on Machine Learning, ICML 2022.

Qi Chen, Ceyue Liu, Jiahao Sun, Hang Yuan, and Jian Tang. A generalizable deep rl solver for the
traveling salesman problem. In Proceedings of the 12th International Conference on Learning
Representations (ICLR), Vienna, Austria, 2024.

George A. Croes. A method for solving traveling salesman problems. Operations Research, 1958.

Pedro F. da Costa, Luı́s A. A. Rodrigues, and Luı́s M. S. Russo. Learning 2-Opt heuristics for the
traveling salesman problem via deep reinforcement learning. In Proceedings of the 34th AAAI
Conference on Artificial Intelligence (AAAI), New York, NY, USA, 2020.

Xinyu Fan, Shunhua Jiang, Cong Xie, and Xiaoming Sun. Rethinking post-hoc search-based neural
approaches for large-scale TSP. In Proceedings of the 41st International Conference on Machine
Learning (ICML), Proceedings of Machine Learning Research, Vienna, Austria, 2024. PMLR.
URL https://proceedings.mlr.press/v238/fan24a.html.

Zhang-Hua Fu, Kai-Bin Qiu, and Hongyuan Zha. Generalize a small pre-trained model to arbitrarily
large tsp instances. In Proceedings of the AAAI conference on artificial intelligence, volume 35,
pp. 7474–7482, 2021.

Michael Held and Richard Karp. The traveling-salesman problem and minimum 1-trees. Operations
Research, 1970.

Keld Helsgaun. An effective implementation of the Lin–Kernighan traveling salesman heuristic.
European journal of operational research, 126(1):106–130, 2000.

Wouter Kool, Herke van Hoof, and Max Welling. Attention, learn to solve routing problems! In
International Conference on Learning Representations, 2019. URL https://github.com/
wouterkool/attention-learn-to-route.

Shen Lin and Brian W. Kernighan. An effective heuristic algorithm for the travelling-salesman
problem. Operations Research, 1973.

Yimeng Min, Yiwei Bai, and Carla P Gomes. Unsupervised learning for solving the travelling
salesman problem. Advances in Neural Information Processing Systems, 36:47264–47278, 2023.

Ruizhong Qiu, Zhiqing Sun, and Yiming Yang. Dimes: A differentiable meta solver for combina-
torial optimization problems. Advances in Neural Information Processing Systems, 35:25531–
25546, 2022.

9

https://proceedings.mlr.press/v238/fan24a.html
https://github.com/wouterkool/attention-learn-to-route
https://github.com/wouterkool/attention-learn-to-route

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Sebastian Sanokowski, Sepp Hochreiter, and Sebastian Lehner. A diffusion model framework
for unsupervised neural combinatorial optimization (DiffUCO). In Proceedings of the 41st In-
ternational Conference on Machine Learning (ICML), Proceedings of Machine Learning Re-
search, Vienna, Austria, 2024. PMLR. URL https://proceedings.mlr.press/v238/
sanokowski24a.html.

Zhiqing Sun and Yiming Yang. Difusco: Graph-based diffusion solvers for combinatorial optimiza-
tion. Advances in neural information processing systems, 36:3706–3731, 2023.

InstaDeep Research Team. Training performant rl populations for combinatorial optimisation. In
NeurIPS, 2023.

Eduard Tulchinskii, Daria Voronkova, Ilya Trofimov, Evgeny Burnaev, and Serguei Barannikov.
RTD-Lite: Scalable topological analysis for comparing weighted graphs in learning tasks. In
Proceedings of the 28th International Conference on Artificial Intelligence and Statistics (AIS-
TATS), volume 258 of Proceedings of Machine Learning Research. PMLR, 2025. URL https:
//proceedings.mlr.press/v258/tulchinskii25a.html.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. In Advances in Neural
Information Processing Systems, 2015.

Yifan Xia, Xianliang Yang, Zichuan Liu, Zhihao Liu, Lei Song, and Jiang Bian. Position: Rethinking
post-hoc search-based neural approaches for solving large-scale traveling salesman problems.
arXiv preprint arXiv:2406.03503, 2024.

Charles T. Zahn. Graph-theoretical methods for detecting and describing gestalt clusters. IEEE
Transactions on Computers, 1971.

10

https://proceedings.mlr.press/v238/sanokowski24a.html
https://proceedings.mlr.press/v238/sanokowski24a.html
https://proceedings.mlr.press/v258/tulchinskii25a.html
https://proceedings.mlr.press/v258/tulchinskii25a.html

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

(a) 2-opt 100, iterations. (b) 2-opt 200, iterations.

(c) 2-opt 300, iterations. (d) 2-opt, converged.

Figure 7: Probability of belonging to an optimal tour vs. RTDL barcode of an edge.

A ADDITIONAL RESULTS

Figure 7 shows probabilities for an edge to belong to an optimal tour, edges are taken from 2-opt
optimization with varying number of iterations. Table 5 shows results for of 2-opt and 3-opt for
non-metric TSP problems.

B RELATION OF RTDL BARS AND ALPHA-SCORE

Let G be a weighted graph with weights wi,j . Consider a subgraph G1 ⊂ G without an arbitrary
vertex “1” and incident edges.

Definition. The 1-tree is a spanning tree ofG1 with the vertex 1 and two edges connecting the vertex
1 and G1.

α-score is used for edge selection in the state-of-the-art LKH algorithm Helsgaun (2000) for TSP
and VRP problems. α-score is a measure of edge’s “badness”. Edges with low α-score tend to
belong to the optimal tour with high probability. For an edge (i, j):

α(i, j) = L(R+(i, j))− L(R),
where R is the minimal 1-tree of G, and R+(i, j) is the the minimal 1-tree of G with a restriction to
contain the edge (i, j), L(·) is a length function.

Proposition. For i, j ̸= 1, α(i, j) equals to a length of a bar in the RTDL-Barcode(Gi,j
1 , G1),

corresponding to an edge (i, j). Both G1, Gi,j
1 are graphs having all the vertices of G without the

vertex 1. G1 is defined above, and Gi,j
1 has only one edge (i, j) with a weight wi,j .

Proof. An algorithm for calculating RTDL-Barcode(A, B) is the following (Tulchinskii et al., 2025).
A precondition of RTDL evaluation is a bijection between vertices of graphs A,B. The auxiliary
graph C containing a union of edges of A,B and weights on edges wC

e = min(wA
e , w

B
e) is con-

structed. When an edge is missing, its weight is considered +∞. Then, the Kruskal’s algorithm
for finding the MST of the graph C is executed. Let eC be an edge from the MST of the graph C.
The edge eC connects two connected components C1, C2. In the Algorithm of RTDL calculation,
edges from the MST of A are added in an increasing order by a weight. After adding some edge eA
a path connecting C1 and C2 (any of their vertices) appears. Thus, eC is paired with eA. Together
they form a bar (eC , eA) in the RTDL-Barcode. Note, that always wC

e ≤ wA
e . If eA ̸= eC , then

after adding eA to C1 ∪ C2 a cycle appears. As shown in (Helsgaun, 2000), the 1-tree R+(i, j) (if

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

i, j > 1) can be obtained from theR∪eA by removing the longest edge in the aforementioned cycle.
Obviously, such edge is eC . Thus, α(i, j) = wA

e − wC
e .

In Table 3 and Appendix C, we also evaluate two variants of 2-opt+RTDL:

• 2-opt+RTDL-Full - described in Algorithm 2, but applied to all edges during each opti-
mization stage.

• 2-opt+RTDL - described in Algorithm 2, where edges are selected in batches of size 10
for each optimization cycle.

Algorithm 1: 2-opt algorithm
Initialize tour;

repeat
START:
improved← false;
foreach e1 in tour do

foreach e2 in tour do
tour new← tour;
remove e1, e2 from tour new and rewire it;
if Len(tour new) < Len(tour) then

tour← tour new ;
improved← true;
goto START:

end
end

end
until improved;

return tour

Algorithm 2: 2-opt+RTDL algorithm
Initialize tour;
N ← min(10, |tour|)
repeat

START:
improved← false ;
E ← edges from tour[0:N] sorted by RTDL barcodes in desc. order;
foreach e1 in E do

foreach e2 in E do
tour new← tour;
remove e1, e2 from tour new and rewire it;
if Len(tour new) < Len(tour) then

tour← tour new ;
improved← true ;
goto START:

end
end

end
if N < |tour| then

N ← min(N + 10, |tour|);
improved← true ;

end
until improved;

return tour

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Method TSP-100 TSP-200 TSP-300
Length Time(s) Length Time(s) Length Time(s)

2-opt 1.871 0.21 2.340 1.60 2.732 4.02
2-opt+RTDL 1.631 2.31 1.866 9.65 2.061 32.90

2-opt+RTDL+opt(D) 1.581 4.16 1.832 18.53 2.037 50.65
3-opt 1.161 28.05 1.234 346.36 1.304 1482.76

3-opt+RTDL 1.156 29.00 1.210 329.49 1.282 1602.79
3-opt+RTDL+opt(D) 1.144 22.03 1.203 310.40 1.278 1327.23

Table 5: Non-metric TSP. Improvements of 2-opt and 3-opt with RTDL barcodes.

Table 6: Average length of initial tours obtained via heatmap greedy decoding.

Model TSP-500 TSP-1000 TSP-10000
DIFUSCO 18.51 29.12 113.74
ATT-GCN 24.45 38.29 205.84
DIMES 29.17 46.61 331.73
UTSP 21.89 33.51 –
SoftDist 19.48 26.97 84.20

Figure 8: Sensitivity analysis for heatmap-guided 2-opt + RTDL. Freq refers to RTDL update fre-
quency, N refers to number of vertices to optimize. Grey area indicates solutions better than 2-opt
solution, i.e. shorter average length and faster computation.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Table 7: Comparison of failure cases for different TSP solvers on TSPLib instances. For each
instance we report the percentage of runs where the constructed tour length exceeds 10% above the
global optimum (“Len. > 10% opt.”) and the percentage of runs that failed to converge within the
allocated time budget (“Time limit”) in 20 seconds.

2-opt 2-opt+RTDL-Full 2-opt+RTDL
Name GAP > 10% ↓ Time limit (%) ↓ GAP > 10% ↓ Time limit (%) ↓ GAP > 10% ↓ Time limit (%) ↓

ulysses16 0.0 0.0 0.0 0.0 0.0 0.0
ulysses22 0.0 0.0 0.0 0.0 0.0 0.0

att48 0.6 0.0 0.7 0.0 0.4 0.0
eil51 0.7 0.0 0.9 0.0 0.5 0.0

berlin52 27.1 0.0 23.5 0.0 20.7 0.0
st70 5.6 4.0 5.9 0.0 4.0 0.0
eil76 7.7 2.7 9.7 0.2 2.3 1.5
pr76 1.6 0.0 2.7 0.0 1.2 0.0
gr96 4.9 0.0 6.4 0.0 3.0 0.0

kroC100 9.2 0.0 11.8 0.0 7.8 0.0
rd100 12.25 0.0 19.0 0.0 9.0 0.0

kroD100 6.75 0.0 6.75 0.0 3.75 0.0
eil101 45.25 39.0 4.75 1.5 7.25 7.75
lin105 12.25 0.5 19.0 0.25 12.0 0.5
ch130 9.0 0.0 7.5 0.0 2.0 0.0
ch150 11.2 0.0 19.2 0.0 5.0 0.0

Figure 9: The distributions of calculation times and resulting tour lengths for different versions of
2-opt.

C ROBUSTNESS ANALYSIS OF 2-OPT AND RTDL VARIANTS

In this section, we conduct extensive experiments with 2-opt, 2-opt+RTDL, and 2-opt+RTDL-Full
to evaluate their ability to converge from different initial tours.

We observe that plain 2-opt sometimes fails to converge to the global optimum from certain initial
tours, whereas 2-opt+RTDL consistently avoids such cases. Figure 9 shows the distributions of con-
vergence times and resulting tour lengths for the 76-city Christofides/Eilon instance, while Table 7
summarizes the frequency of extreme cases across a broader set of problems.

In particular, we report two types of failures: (i) runs where the tour length exceeds 10% above the
global optimum (“GAP > 10%”), and (ii) runs that exceed the time budget of 20 seconds (“Time
limit”). The plain 2-opt baseline shows the highest rate of such failures, while 2-opt+RTDL-Full
significantly reduces them. The 2-opt+RTDL variant achieves the most robust performance overall,
with consistently lower failure rates across different TSPLib instances.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

D DQN ALGORITHM

In this section, we present the standard Deep Q-Learning (DQN) algorithm 3 applied to the TSP.

Algorithm 3: Deep Q-Learning (DQN) for TSP
Initialize replay buffer D;
Initialize Q-network with random weights θ;
Initialize target network with weights θtarget ← θ;
Initialize environment with fixed city coordinates env;
Initialize best tour and best length←∞;

for episode = 1 to M do
state← env.reset();
for t = 1 to T do

With probability ε select random action a, otherwise a← argmaxaQ(state, a; θ);
state′,reward,done← env.step(a);
Store (state, a,reward, state′,done) in D;

if |D| ≥ batch size then
Sample random minibatch of transitions from D;
yj ← rewardj + γ · (1− donej) ·maxa′ Q(state′j , a

′; θtarget);

L(θ)← 1
B

∑
j

(
Q(statej , aj ; θ)− yj

)2
;

Update θ ← θ − α · ∇θL(θ);
end
if t mod C = 0 then

θtarget ← θ;
end
if done then

if tour length < best length then
Update best tour and best length;

end
break;

end
state← state′;

end
end
return best tour

E ABLATION STUDY

In ablation study, we compare sorting edges by RTDL bars with sorting by distances in a descending
order, see Table 8.

F LIMITATIONS

While our experiments focused on synthetic and benchmark TSPLIB instances, real-world route
planning often involves additional constraints (time windows, capacities, dynamic updates) whose
interaction with the topological reward scheme remains to be explored.

G THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used LLMs to polish writing in the “introduction” and “abstract” sections.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Method TSP-100 TSP-200 TSP-300
Length Time(s) Length Time(s) Length Time(s)

2-opt+dist. 8.474 0.72 11.780 6.32 14.291 26.64
2-opt+RTDL 8.226 2.84 11.356 18.08 13.798 62.30

Table 8: 2D Euclidean TSP. Ablation study of RTDL barcodes.

16

	Introduction
	Related Work
	Approach
	Experiments
	RTDL barcodes and optimal tours
	Improvements in 2-opt, 3-opt
	RTDL for heatmap-guided 2-opt
	RTD for Deep Q-Learning

	Conclusion
	Reproducibility statement
	Additional results
	Relation of RTDL bars and alpha-score
	Robustness Analysis of 2-opt and RTDL variants
	DQN algorithm
	Ablation study
	Limitations
	The Use of Large Language Models (LLMs)

