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Abstract

Data valuation aims to quantify the usefulness of individual data sources in training
machine learning (ML) models, and is a critical aspect of data-centric ML research.
However, data valuation faces significant yet frequently overlooked privacy chal-
lenges despite its importance. This paper studies these challenges with a focus
on KNN-Shapley, one of the most practical data valuation methods nowadays.
We first emphasize the inherent privacy risks of KNN-Shapley, and demonstrate
the significant technical difficulties in adapting KNN-Shapley to accommodate
differential privacy (DP). To overcome these challenges, we introduce TKNN-
Shapley, a refined variant of KNN-Shapley that is privacy-friendly, allowing for
straightforward modifications to incorporate DP guarantee (DP-TKNN-Shapley).
We show that DP-TKNN-Shapley has several advantages and offers a superior
privacy-utility tradeoff compared to naively privatized KNN-Shapley in discerning
data quality. Moreover, even non-private TKNN-Shapley achieves comparable
performance as KNN-Shapley. Overall, our findings suggest that TKNN-Shapley
is a promising alternative to KNN-Shapley, particularly for real-world applications
involving sensitive data. 1

1 Introduction

Data valuation is an emerging research area that evaluates the contribution of individual data sources
to the training of machine learning (ML) models. It is crucial in data marketplaces for ensuring
equitable compensation for data owners [32], and in explainable ML for identifying influential
training data [15]. The importance of data valuation is highlighted by US Senate’s DASHBOARD
Act [31], requiring companies to provide users with an assessment of their data’s economic value.
Moreover, OpenAI’s Future Plan [22] underscores “the fair distribution of AI-generated profits” as a
key question nowadays.

Data Shapley & KNN-Shapley. Data Shapley is the class of techniques using the Shapley value
from cooperative game theory to data valuation, treating data owners as players and measuring their
contributions. It was first introduced by [9, 12] and has since seen many variants [11, 21, 8, 30, 36,
16, 19, 34, 13, 28]. However, the exact calculation of Shapley values is computationally infeasible in
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general [5]. Fortunately, a breakthrough by [11] showed that computing the exact Data Shapley for
K-Nearest Neighbors (KNN) – one of the oldest yet still popular ML algorithms – is surprisingly
easy and efficient. KNN-Shapley quantifies data value based on KNN’s Data Shapley score; it can be
applied to large, high-dimensional CV/NLP datasets by calculating the value scores on the last-layer
neural network embeddings. KNN-Shapley has gained prominence due to its superior computational
efficiency and effectiveness in data valuation, and has been applied to various domains such as active
learning, continual learning, NLP, and semi-supervised learning [10, 25, 18, 17, 4, 23].

Motivation: privacy risks in data valuation. In this work, we study a critical, yet often overlooked
concern in the deployment of data valuation: privacy leakage associated with data value scores
released to data holders. The value of a single data point is always relative to other data points in the
training set. This, however, can potentially reveal sensitive information about the rest of data holders
in the dataset. This problem becomes even more complex when considering a strong threat model
where multiple data holders collude, sharing their received data values to determine the membership
of other data holders. As data valuation techniques such as KNN-Shapley become increasingly
popular in various applications, understanding and addressing their privacy challenges is of utmost
importance. In this work, we study this critical issue through the lens of differential privacy (DP) [6],
the de-facto standard for privacy-preserving applications.

1.1 List of Contributions

Privacy Risks & Challenges of Privatization for KNN-Shapley (Section 3). We demonstrate that
data value scores (specifically KNN-Shapley) indeed serve as a new channel for private information
leakage, potentially exposing sensitive information about individuals in the dataset. In particular, we
explicitly design a privacy attack where an adversary could infer the presence/absence of certain data
points based on the variations in the KNN-Shapley scores, analogous to the classic membership infer-
ence attack on ML model [26]. Additionally, we highlight the technical challenges in incorporating
the current KNN-Shapley technique with differential privacy, such as its large global sensitivity.

TKNN-Shapley: an efficient, privacy-friendly data valuation technique (Section 4). To address
the privacy concerns, we derive a novel variant of KNN-Shapley. This new method considers the
Data Shapley of an alternative form of KNN classifier called Threshold-KNN (TKNN) [2], which
takes into account all neighbors within a pre-specified threshold of a test example, rather than the
exact K nearest neighbors. We derive the closed-form formula of the exact Data Shapley for TKNN
(i.e., TKNN-Shapley), with improved computational efficiency over the original KNN-Shapley.
DP-TKNN-Shapley (Section 5). Importantly, we recognize that TKNN-Shapley can be conveniently
transformed into a differentially private version. Moreover, we prove that such a DP variant satisfies
several favorable properties, including (1) efficient computation, (2) the capability to withstand
collusion among data holders without compromising the privacy guarantee, and (3) the ease of
integrating subsampling for privacy amplification.

Numerical experiments (deferred to full paper). We experiment across 11 commonly used bench-
mark datasets and 2 NLP datasets. Key observations include: (1) TKNN-Shapley surpasses KNN-
Shapley in terms of computational efficiency; (2) DP-TKNN-Shapley significantly outperforms the
naively privatized KNN-Shapley in terms of privacy-utility tradeoff in discerning data quality; (3)
even non-private TKNN-Shapley achieves comparable performance as KNN-Shapley.

Overall, our work suggests that TKNN-Shapley, being a privacy-friendly, yet more efficient and
effective alternative to the original KNN-Shapley, signifies a milestone toward practical data valuation.

2 Background of Data Valuation

In this section, we formalize the data valuation problem for ML, and review the method of Data
Shapley and KNN-Shapley.

Setup & Goal. Consider a dataset D := {zi}Ni=1 consisting of N data points where each data point
zi := (xi, yi) is collected from a data owner i. The objective of data valuation is to attribute a score
to each training data point zi, reflecting its importance or quality in ML model training. Formally, we
aim to determine a score vector (ϕzi)

N
i=1, wherein ϕzi ∈ R represents the value of data point zi. For

any reasonable data valuation method, the value of a data point is always relative to other data points
in the dataset. For instance, if a data point has many duplicates in the dataset, its value will likely be
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lower. Hence, ϕzi is a function of the leave-one-out dataset D−zi := D \ {zi}. We write ϕzi(D−zi)
when we want to stress the dependency of a data value score with the rest of the data points.

Utility Function. Most of the existing data valuation techniques are centered on the concept of
utility function, which maps an input dataset to a score indicating the usefulness of the training set.
A common choice for utility function is the validation accuracy of a model trained on the input
training set. Formally, for a training set S, a utility function v(S) := acc(A(S)), where A is a
learning algorithm that takes a dataset S as input and returns a model; acc(·) is a metric function that
evaluates the performance of a given model, e.g., the classification accuracy on a hold-out validation
set.

Data Shapley. The Shapley value (SV) [24] is a classic concept from game theory to attribute the total
gains generated by the coalition of all players. At a high level, it appraises each point based on the
(weighted) average utility change caused by adding the point into different subsets of the training set.
Formally, given a utility function v(·) and a training set D, the Shapley value of a data point z ∈ D is
defined as ϕz (D−z; v) :=

1
N

∑N
k=1

(
N−1
k−1

)−1 ∑
S⊆D−z,|S|=k−1 [v(S ∪ {z})− v(S)]. For notation

simplicity, when the context is clear, we omit the utility function and/or leave-one-out dataset, and
write ϕz(D−z), ϕz(v) or ϕz depending on the specific dependency we want to stress. The popularity
of the Shapley value is attributable to the fact that it is the unique data value notion satisfying a set of
axioms which seem to be necessary for a reasonable data value notion (see the original work of Data
Shapley [9, 12] and the references therein for a detailed discussion).

KNN-Shapley. The Shapley value’s formula suggests that the exact Shapley value can be com-
putationally prohibitive in general, as it requires evaluating v(S) for all possible subsets S ⊆ D.
Surprisingly, [11, 29] showed that for K-Nearest Neighbor (KNN), the computation of the exact Data
Shapley score is highly efficient.
Theorem 1 (Informal, [11, 29]). For unweighted KNN classifier, consider the utility function v(S)
as the classification accuracy on a hold-out validation set D(val) of size N (val), the Shapley values
for all training data points (ϕKNN

z1 , . . . , ϕKNN
zN ) can be computed recursively as follows:

ϕKNN
zN := fN (D), and ϕKNN

zi := ϕKNN
zi+1

+ fi(D) for i = 1, . . . , N − 1

where the exact form of functions fi(D) can be found in full paper, and achieves O(N (val)N logN)
runtime in total (dominated by the sorting data points in D).

Following its introduction, KNN-Shapley has rapidly gained attention and follow-up works [10, 18,
17, 4] due to its computational efficiency and effectiveness in discerning data quality. In particular, it
has been recognized by recent studies as “the most practical data valuation technique capable of
handling large-scale data effectively” [23, 13].

3 Privacy Risks & Challenges of Privatization for KNN-Shapley

Figure 1: The potential privacy risks in data valuation arise
from the dependency of the data value score ϕzi on the rest
of the dataset D−zi . Our goal is to privatize ϕ−zi(D−zi)
such that it provides strong differential privacy guarantee for
the rest of the dataset D−zi .

Scenario. Figure 1 illustrates the data
valuation scenario and potential pri-
vacy leakages considered in our pa-
per. Specifically, a centralized, trusted
server collects data point zi from data
owner i for each i ∈ [N ]. The cen-
tral server’s role is to provide each
data owner i with an assessment of
the value of their data zi, e.g., the
KNN-Shapley value ϕKNN

zi . A real life
example: Mayo Clinic has created
a massive digital health patient data
marketplace platform [33], where the
patients submit part of their medical
records onto the platform, and life sci-
ence companies/labs pay a certain amount of money to purchase patients’ data. The platform’s
responsibility is to gauge the worth of the data of each patient (i.e., the data owner) to facilitate fair
compensation.
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Privacy risks. The privacy risks associated with KNN-Shapley (as well as other data valuation tech-
niques) arise from the fact that ϕKNN

zi (D−zi) depends on other data owners’ data D−zi . Consequently,
the data value score ϕKNN

zi may inadvertently reveal private information (e.g., membership) about the
rest of the dataset. The dependency of a data value score on the rest of the dataset is an unavoidable
aspect of data valuation, as the value of a data point is inherently a relative quantity determined by its
role within the complete dataset.
Remark 1 (Other privacy risks in data valuation). It is important to note that in this work, we
do not consider the privacy risks of revealing individuals’ data to the central server. This is a
different type of privacy risk that needs to be addressed using secure multi-party computation (MPC)
technique [35], and it should be used together with differential privacy in practice. In addition, to
use KNN-Shapley or many other data valuation techniques, the central server needs to maintain a
clean, representative validation set, the privacy of which is not considered by this paper.

K = 1 K = 3 K = 5 K = 7 K = 9 K = 11 K = 13 K = 15

2DPlanes 0.56 0.595 0.518 0.52 0.57 0.55 0.515 0.6
Phoneme 0.692 0.54 0.513 0.505 0.505 0.588 0.512 0.502

CPU 0.765 0.548 0.52 0.572 0.588 0.512 0.612 0.615
Fraud 0.625 0.645 0.6 0.592 0.622 0.532 0.538 0.558

Creditcard 0.542 0.643 0.628 0.665 0.503 0.67 0.602 0.66
Apsfail 0.532 0.595 0.625 0.6 0.53 0.645 0.532 0.52
Click 0.61 0.525 0.588 0.538 0.588 0.582 0.622 0.618
Wind 0.595 0.51 0.518 0.528 0.558 0.562 0.505 0.577

Pol 0.725 0.695 0.7 0.62 0.57 0.522 0.535 0.532

Table 1: Results of the AUROC of the MI attack
on KNN-Shapley detailed in the full paper. The
higher the AUROC score is, the larger the privacy
leakage is. The detailed algorithm description and
experiment settings can be found in full paper’s
Appendix.

A Simple Membership Inference (MI) Attack
on KNN-Shapley (detailed in full paper). We
further illustrate the privacy risks of revealing
data value scores with a concrete example. Anal-
ogous to the classic membership inference at-
tack on ML model [26], in full paper we show
an example of privacy attack where an adversary
could infer the presence/absence of certain data
points in the dataset based on the variations in
the KNN-Shapley scores. The design is analo-
gous to the membership inference attack against
ML models via the likelihood ratio test [3]. The
AUROC score of the attack results is shown in
Table 1. As we can see, our MIA attack can
achieve a detection performance that is better than the random guess (0.5) for most of the settings.
On some datasets, the attack performance can achieve > 0.7 AUROC. This demonstrates that privacy
leakage in data value scores can indeed lead to non-trivial privacy attacks, and underscores the need
for privacy safeguards in data valuation.2

Challenges in making KNN-Shapley being differentially private (overview). Despite the growing
popularity of data valuation techniques, particularly KNN-Shapley, integrating it with differential
privacy (DP) faces significant challenges, which we briefly outline here (detailed in full paper):
(1) Large global sensitivity: The global sensitivity of ϕKNN

zi (D−zi) can substantially surpass the
magnitude of ϕKNN

zi . Introducing noise based on global sensitivity leads to privatized data value
scores that may significantly deviate from their non-private equivalents, affecting the utility of value
scores. (2) Computational hurdles with privacy amplification by subsampling: Incorporating
KNN-Shapley with subsampling technique is computationally demanding due to the recursive nature
of the calculations.

4 The Shapley Value for Threshold-based Nearest Neighbor

Considering the privacy concerns and privatization challenges associated with the original KNN-
Shapley method, we introduce TKNN-Shapley, a privacy-friendly alternative of KNN-Shapley which
also achieves improved computational efficiency. At the core of this novel method is Threshold-KNN
(TKNN) classifier, a simple variant of the KNN classifier.

4.1 Threshold-based Nearest Neighbor Classifier (TKNN)

Threshold-KNN (TKNN) [2] is a variant of KNN classifier that considers neighbors within a pre-
specified threshold of the query example, rather than exclusively focusing on the exact K nearest
neighbors. Formally, for a training set S and a validation data point z(val) = (x(val), y(val)), we
denote NBx(val),τ (S) := {(x, y)|(x, y) ∈ S, d(x, x(val)) ≤ τ} the set of neighbors of x(val) in S

2We stress that the goal here is to demonstrate that the data value scores can indeed serve as another channel
of privacy leakage. We do not claim any optimality of the attack we construct here. Improving MI attacks for
data valuation is an interesting future work.
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within a pre-specified threshold τ , where d(·, ·) is a distance metric. TKNN with training set S makes
prediction for x(val) based on the votings of neighbors in NBx(val),τ (S). Similar to the utility function
for KNN, we consider the utility function for TKNN classifier as its accuracy on a hold-out validation
set D(val) (see full paper for details). Compared with the standard KNN, TKNN (1) is more robust
to outliers, (2) has higher inference efficiency, and (3) is also a consistent estimator. See Section
4 in the full paper for a more detailed discussion.

4.2 Data Shapley for TKNN (TKNN-Shapley)

With the introduction of TKNN classifier and its utility function, we now present our main result, the
closed-form, efficiently computable Data Shapley formula for the TKNN classifier.
Theorem 2 (Informal). For TKNN classifier, consider the utility function v(S) as the classification
accuracy on a hold-out validation set D(val) of size N (val), the Shapley values for all training data
points (ϕTKNN

z1 , . . . , ϕTKNN
zN ) can be computed non-recursively:

ϕTKNN
zi = f (D−zi) for i = 1, . . . , N

where the exact form of function f(·) can be found in full paper; at a high level, f(D−zi) makes
counting queries over D−zi and compute final results from counting queries’ answers. One can
compute all (ϕTKNN

zi )Ni=1 in O(N (val)N) runtime.

The primary technical challenge in proving Theorem 2 is showing that Data Shapley ϕTKNN
zi (D−zi)

solely depends on several counting queries on D−zi . The complete version and proof of TKNN-
Shapley can be found in full paper.

Comparison with KNN-Shapley. TKNN-Shapley offers several advantages over the original
KNN-Shapley. (1) Non-recursive: In contrast to the KNN-Shapley formula (Theorem 2), which is
recursive, TKNN-Shapley has an explicit formula for computing the Shapley value of every point zi.
This non-recursive nature not only simplifies the implementation, but also makes it straightforward
to incorporate techniques like subsampling. (2) Computational efficiency: TKNN-Shapley has
O(N (val)N) runtime in total, which is better than the O(N (val)N logN) runtime for KNN-Shapley.
Remark 2 (Why we consider Threshold KNN?). We opt for TKNN over KNN because the ’recursive
form’ of KNN-Shapley, stemming from ‘sorting’ operation in standard KNN predictions, complicates
integration with DP. Conversely, TKNN’s Data Shapley avoids this form as its neighbor selection
relies solely on the queried example and training point, independent of other training points, which
facilitates its integration with DP. A similar rationale for using TKNN is discussed in [37].

5 Differentially Private TKNN-Shapley (Overview)

As TKNN-Shapley ϕTKNN
zi (D−zi) can be computed based on the results of several counting queries on

D−zi , one can make it differentially private by privatizing these counting queries. In Section 5 in the
full paper, we detail how to use the Gaussian mechanism for privatization. The differentially private
version of TKNN-Shapley value, ϕ̂TKNN

zi (D−zi), is computed using privatized queries, and inherits the
privacy guarantees from the Gaussian mechanism due to DP’s post-processing property.

While the privatization of TKNN-Shapley may seem simple, we stress that simplicity is appreciated
in DP as complex mechanisms pose challenges for correct implementation and auditing [20, 7]. Fur-
thermore, recognizing and developing TKNN-Shapley itself as a privacy-friendly alternative solution
to KNN-Shapley involves addressing a series of highly non-trivial challenges and considerations.

Advantages of DP-TKNN-Shapley (Overview). We outline the benefits of DP-TKNN-Shapley
here: (1) Efficient Computation: DP-TKNN-Shapley efficiently computes data value scores for
all data points by reusing privatized counting queries. This streamlined approach maintains DP
guarantees with reduced runtime. (2) Collusion Resistance: By treating the release of all Shapley
values as a unified mechanism and reusing privatized statistics, we prove that DP-TKNN-Shapley
satisfies joint differential privacy (JDP) [14], providing resilience against collusion among groups of
data contributors without any privacy degradation. (3) Easy Subsampling Integration: DP-TKNN-
Shapley’s structure allows for easy integration of subsampling, improving both privacy guarantees
and computational efficiency.
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6 Conclusion & Future Work

In this work, we uncover the inherent privacy risks associated with data value scores and introduce
TKNN-Shapley, a privacy-friendly alternative to the widely-used KNN-Shapley. In our full paper’s
experiments (Section 6), we demonstrate that TKNN-Shapley outperforms KNN-Shapley in com-
putational efficiency, and is as good as discerning data quality. Moreover, the privatized version of
TKNN-Shapley significantly surpasses the naively privatized KNN-Shapley.

Future Work. (1) Privacy risks of data revelation to central server: in this work, we assume
the existence of a trusted central server, and we do not consider the privacy risks associated with
revealing individuals’ data to the central server. Future work should consider integrating secure
multi-party computation (MPC) techniques to mitigate this risk [27]. MPC can allow the computation
of KNN-Shapley without revealing individual data to the central server, thereby preserving privacy.
We envision an end-to-end privacy-preserving data valuation framework that combines both DP
and MPC. (2) Impact of Randomization on Payment Fairness: the incorporation of differential
privacy necessarily adds a degree of randomness to the data value scores. This randomization could
potentially impact the fairness of payments to data providers [1]. The influence of this randomness
and its potential implications for payment fairness are interesting future works.
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