
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

PEER PRESSURE: MODEL-TO-MODEL REGULARIZA-
TION FOR SINGLE SOURCE DOMAIN GENERALIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Neural networks are frequently deployed on multiple unseen target domains, which
are distributionally different from the source domain on which the model is trained.
Data augmentation is the most popular tool for single source domain generaliza-
tion, which expands the source domain by generating simulated ones, commonly
adopted by existing approaches. In this work, we observe that the performance
of such augmentation-based methods in the target domains frequently fluctuates
during training, posing challenges in model selection under realistic scenarios. We
argue that the fluctuation stems from the inability of the model to accumulate the
knowledge learned from diverse augmentations, exacerbating feature distortion
during training. Based on this observation, we propose a novel generalization
method, coined Parameter-Space Ensemble with Entropy Regularization (PEER),
that uses a proxy model to learn the augmented data on behalf of the main model.
The main model is updated by averaging its parameters with the proxy model,
progressively accumulating knowledge over the training steps. Maximizing the mu-
tual information between the output representations of the two models guides the
learning process of the proxy model, mitigating feature distortion during training.
Extensive experimental results demonstrate the effectiveness of PEER in reducing
the OOD performance fluctuation and enhancing generalization across various
datasets, including PACS, Digits, Office-Home, and VLCS. Notably, our method
with simple random augmentation achieves state-of-the-art performance, surpassing
prior approaches on sDG that utilize complex data augmentation strategies.

1 INTRODUCTION

0 25 50 75 100
Number of Training Epochs

62

63

64

65

66

Ta
rg

et
 D

om
ai

n 
Ac

cu
ra

cy
 (%

)

Random Aug. Adversarial Aug.

Figure 1: We observe that data augmen-
tation improves generalization perfor-
mance, but it causes fluctuations in tar-
get domain accuracy during the train-
ing. This phenomenon becomes more
pronounced as the complexity of the
augmentation increases.

Real-world deployment of deep neural networks frequently
encounters domain shift, which refers to the discrepancy be-
tween the training domain and the unseen target domain on
which the model is tested. An important aspect of domain
shift is that it hinders the generalization of trained models
(Kurakin et al., 2018). Nevertheless, a trained model is
commonly expected to perform well on various OOD data,
given a limited source of training data. Similarly, single
source domain generalization (sDG) is the task of building
a robust model that performs well across multiple OOD
target domains, trained from a single source domain (Wang
et al., 2021a). Existing approaches commonly utilize data
augmentation to generate simulated target domains (Volpi
et al., 2018b) and attempt to learn domain-invariant features
from the augmented data.

This paper highlights an overlooked issue of leveraging data
augmentation for sDG, particularly focusing on the fluctu-
ation of OOD target domain performance amidst training,
referred to as mid-train OOD fluctuation (Fig. 1). We find
that this phenomenon stems from the model’s incapability to accumulate the knowledge obtained
from diverse augmentations and demonstrate that the features obtained from previous steps are largely
distorted during training (see Fig. 2). We further illustrate that the fluctuation worsens when the

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

SourceTarget
 A

Target
 B

Target A Target B

Model trained on Source+
= generalization on Target A

OriginalAugmented+

Source+ 

(a)

Target
 B

Target A Target BOriginal

Target
 A

Source+

Source++

Model trained on Source++
= learned features are distorted

Augmented++

(b)

Figure 2: Illustration of pitfalls of augmentation in generalizing to unseen target domains. (a)
Augmentation-based methods expand the source domain by providing diverse augmented samples
(i.e., Source+). This enhances the model’s generalization capability towards the unseen target domain
(i.e., Target A). (b) Throughout the course of training, it iteratively simulates diverse unseen domains.
However, at the same time, diverse augmentations lead to the distortion of the learned representations,
thereby triggering OOD fluctuation.

model’s trained features are distorted by augmented samples discrepant from the previously trained
data and show that augmented samples are surprisingly inconsistent from their original state. This
complicates model selection and potentially undermines generalization at test time, and thus, it is
crucial to mitigate this issue.

Based on our observations, we suggest a novel generalization method coined PEER (Parameter-Space
Ensemble with Entropy Regularization), that mitigates the augmentation-induced feature distortion
by averaging parameters at various points along the model’s learning trajectory (Izmailov et al., 2018).
Specifically, our method leverages two interacting modules, i.e., the task model and the proxy model,
to accumulate the knowledge acquired during training. The parameter-averaged task model guides the
learning process of the proxy model, significantly reducing the aforementioned mid-train OOD fluctu-
ation. Consequently, our framework stacks the generalization effect of varying data augmentation into
the task model, reaching state-of-the-art performance across various sDG benchmarks (e.g., PACS,
Digits), even in benchmarks where conventional sDG methods face difficulties in generalization (e.g.,
Office-Home, VLCS).

Our contributions are summarized as follows:

• We highlight an overlooked issue of the mid-train OOD fluctuation of augmentation-based sDG
methods which poses serious issues in model selection and reveal that it stems from the distortion
of the trained features.

• Based on our observation, we introduce PEER, a novel framework for sDG that stabilizes the
learning process and boosts the target domain accuracy by accumulating the generalization effect
of diverse augmentations using a parameter-space ensemble model.

• Our method achieves state-of-the-art performance across a wide range of benchmarks against
existing augmentation-based sDG methods.

2 RELATED WORKS

Domain generalization. In the multi-source domain generalization (DG) literature, learning domain-
invariant features has shown success in training robust models (Arjovsky et al., 2019). Specifically,
these algorithms aim to disentangle the knowledge shared across domains (Klindt et al., 2021; Ren
et al., 2021). A recent line of work highlighted the use of pre-trained models for model-to-model
regularization, e.g., Cha et al. (2022) used an external pre-trained model to encourage the learning of
domain-invariant features, and Li et al. (2023) expanded this approach by using multiple pre-trained
models. In contrast, we refrain from using an external model and show that a training model can
effectively perform regularization. On a different note, Arpit et al. (2022) studied the instability of the
model’s OOD performance and suggested an ensemble algorithm to alleviate the stochastic nature of
the learning process. In contrast, we relieve the computational burden of ensembles by using a single

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

parameter-averaged model (Ainsworth et al., 2023; Rame et al., 2022; Jolicoeur-Martineau et al.,
2023) and incorporate an alignment strategy (Choshen et al., 2022; Frankle et al., 2020) to assist this.

Single source domain generalization. In the sDG setting, only one domain is available for training,
which makes it hard to apply conventional approaches developed for DG. To tackle this, a line of
work focused on generating diverse domains using sophisticated data augmentation strategies, e.g.,
adversarial augmentation (Volpi et al., 2018b) or learnable augmentation modules (Fan et al., 2021;
Qiao et al., 2020; Li et al., 2021; Wang et al., 2021b; Xu et al., 2023; Zheng et al., 2024). On the other
hand, we reveal a universal phenomenon (i.e., mid-train OOD fluctuation) associated with utilizing
data augmentation for generalization, and present a simple strategy to alleviate it.

Mode connectivity and parameter-space ensembles. Our work draws inspiration from the mode
connectivity (Frankle et al., 2020) property of neural networks, which refers to the presence of
a continuous manifold of non-increasing error that connects the minima identified by two global
minimizers (i.e., trained models) (Garipov et al., 2018; Lubana et al., 2023). The concept is com-
monly used to justify how individual models can be merged to produce parameter-space ensembles
(Wortsman et al., 2022; Rame et al., 2022) and also form the basis for designing model alignment
methods to encourage mode connectivity between models (Entezari et al., 2021; Choshen et al., 2022;
Ainsworth et al., 2023; Ramé et al., 2023). To analyze mode connectivity between models, a common
practice is to measure the loss barrier (Frankle et al., 2020), quantified as the rise in loss values when
the parameters of two models are averaged. Extending this, we suggest an effective alignment method
to encourage mode connectivity between models trained with varying augmented data.

3 OBSERVATION: PITFALLS OF AUGMENTATION FOR GENERALIZATION

In this section, we reveal an overlooked problem in augmentation-based sDG methods. We first
provide a brief background on the augmentation-based approaches to sDG (Sec. 3.1). Then, we
highlight the performance fluctuation of models trained with data augmentation (Sec. 3.2).

3.1 AUGMENT-AND-ALIGN: AUGMENTATION-BASED APPROACHES TO SDG

Let DS = {(xi, yi)}Ni=1 be a source domain where xi ∈ X is an input image and yi ∈ Y is its
corresponding label. The goal of sDG is to build a model F from DS that is capable of generalizing
to unknown target domains {D(1)

T , · · · ,D(t)
T } distributionally different from the source domain. The

model F = C ◦H consists of a feature extractor H : X → H and the classifier C : H → Y . Clearly,
the classifier relying on the domain-specific features would not generalize to unseen target domains,
and thus it is crucial to learn domain-invariant features from the source domain.

Existing approaches utilize data augmentation to simulate domain shift and aim to extract domain-
invariant features by aligning the feature distribution between the original sample x and its augmented
view x̄ = G(x), where G is the augmentation function. The objective of such augmentation-based
sDG approaches, omitting some arguments for simplicity, can be written as:

argmin
H,C

E(x,y)∈DS

(
LCE(C(H(x)), y) + Lalign(x, x̄;H)

)
, (1)

where LCE is the cross-entropy loss and Lalign is an alignment loss for capturing domain-invariant
features by comparing H(x) and H(x̄). The commonly used alignment loss is InfoNCE (Oord et al.,
2018), which lower bounds the mutual information I(H(x), H(x̄)). Importantly, such alignment only
guarantees to retrieve augmentation-invariant features (Von Kügelgen et al., 2021), and simple input
transformations for generating the augmented views are often insufficient to capture domain-invariant
ones (Aminbeidokhti et al., 2023). Therefore, recent methods devise more complex data augmentation
strategies (Wang et al., 2021b; Li et al., 2021) to simulate diverse shifts in distribution.

However, it is still unclear whether such augmentation strategies can guarantee generalization to the
target domain, especially given that it is unseen. In the sequel, we illustrate that this discrepancy
makes the model performance fluctuate in the target domain.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Table 1: Empirical study of (a) target domain accu-
racy, (b) mid-train OOD fluctuation, and (c) source-
target dataset distance. We use MNIST as a source.

Method SVHN M-M S-D USPS Avg.

(a) Target domain accuracy

NoAug 27.83 52.72 39.65 76.94 49.29
RandAug [11] 57.76 77.15 73.65 87.94 73.98
AdvAug [38] 62.21 82.20 69.39 85.26 74.77

(b) Variance of the target domain accuracy

NoAug 4.76 2.77 1.72 0.32 1.33
RandAug [11] 2.51 1.04 1.05 1.49 1.52
AdvAug [38] 3.58 2.56 2.36 3.48 2.99

(c) Source-target dataset distance [2] (×103)

- 3.46 2.65 2.75 0.92 2.45

1 10 20 30

Augmentation Magnitude

1
5

10
15

20
N.

 o
f T

ra
ns

fo
rm

at
io

ns

0.34 0.42 0.49 0.90

0.40 0.64 0.77 1.76

0.45 0.78 0.87 1.98

0.50 0.86 0.91 2.09

0.55 0.91 0.93 2.08
0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Figure 3: OTDD distance [2] between the origi-
nal data (MNIST) and its augmented view.

3.2 MID-TRAIN OOD FLUCTUATION OF AUGMENTATION-BASED SDG METHODS

Recall Fig. 1, we find that augmentation-based sDG methods commonly exhibit large fluctuation
of OOD performance throughout training, dubbed mid-train OOD fluctuation. Then, the following
questions naturally arise: “How does the fluctuation relate to the generalization performance? Where
does the fluctuation stem from?” Here, we investigate the relationships between the fluctuation and
target domain accuracy through the lens of source-target dataset distance and examine the impact of
data augmentation on the fluctuation.

We begin by observing that the target domain accuracy is closely related to the mid-train OOD
fluctuation by comparing two augmentation-based sDG methods: random augmentation (RandAug,
Cubuk et al. (2020)) and adversarial augmentation (AdvAug, Li et al. (2021)). As shown in the last
column (Avg.) of Table 1-(a) and (b), the models with better generalization performance also display
larger fluctuation. Clearly, the complexity of the data augmentation the models employed aligns with
the target domain accuracy and fluctuation.

To further investigate their relationships, we adopt a similarity metric that measures the geometric
distance between datasets (i.e., OTDD (Alvarez-Melis & Fusi, 2020)). By comparing different target
domains (e.g., SVHN and USPS), we observe that the source-target discrepancy shown in Table 1-(c)
is closely associated with the target domain accuracy and fluctuation. In other words, the models
exhibit relatively small fluctuation on the target domain that is similar to the source domain (i.e.,
USPS) and vice versa (i.e., SVHN). Similarly, the models tend to show higher accuracy on target
domains with smaller discrepancies (i.e., USPS) and vice versa (i.e., SVHN).

To better understand our observations above, we examine the discrepancy between the original
dataset (MNIST) and its augmented view across varying degrees of random augmentation (Cubuk
et al., 2020). As shown in Fig. 3, we observe that the discrepancy becomes more significant as the
augmentation becomes diverse and its magnitude becomes stronger. Notably, such discrepancies
often even exceed the source-target distance (i.e., 0.92 in Table 1-(c)).

Our observations suggest that data augmentation improves generalization capacity by simulating
diverse domain shifts, but at the same time, it leads to the distortion of the learned representations and
triggers mid-train OOD fluctuation, as depicted in Fig. 2. Based on our findings, we now proceed to
present our method that effectively retains knowledge accumulated throughout the training, thereby
alleviating fluctuations while achieving better generalization performance.

4 PARAMETER-SPACE ENSEMBLE WITH ENTROPY REGULARIZATION

We now present a novel generalization method for sDG, coined Parameter-Space Ensemble with
Entropy Regularization (PEER), that mitigates the augmentation-induced feature distortion and its
associated issues (e.g., mid-train OOD fluctuation). Our approach involves two interacting modules
with identical architectures: a frozen task model F and a trainable proxy model P . The task model

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

guides the proxy model’s learning process through entropy regularization of feature representations
(Sec. 4.1). Subsequently, the task model is updated via parameter-averaging with the regularized
proxy model, progressively accumulating the proxy model’s knowledge throughout training (Sec. 4.2).
The concept of our method is depicted in Fig. 4. The pseudo-code of our method is provided in
Algorithm 1.

4.1 REGULATING THE PROXY MODEL WITH PEER

Train
k epoch

P0

Update

Initialize

F0 Update

Reg.

F1 F2

Train
k epochP1

*

Update

P2
* ...

...

Update

 Task 

 Proxy 

Reg.

Figure 4: The PEER framework consists of
two interacting modules: a proxy model
P and the task model F . During training,
the task model retains the knowledge of the
proxy model via parameter-averaging.

Our goal is to learn a robust task model F from a
single source domain that can generalize to multiple
unseen target domains, where the task model consists
of a frozen encoder Hf : X → H and a frozen clas-
sification head Cf : H → Y , i.e., F = Cf ◦ Hf .
However, directly training the task model with vary-
ing augmented data is prone to feature distortion. Our
key idea is to introduce a proxy model P that trains
on behalf of the task model and under the its guidance.
Specifically, the proxy model P = Cp ◦ Hp shares
the same architecture as the task model and consists
of an encoder Hp : X → H and a classification head
Cp : H → Y . The proxy model is initialized by copy-
ing the task model at the beginning of training, i.e.,
θp ← θ

(0)
f where θp is the parameters of the proxy

model P and θ
(n)
f is the parameters of the task model

F at n-th training epoch.

Our method PEER imposes regularization to the proxy model at the intermediate feature level. Instead
of directly comparing the intermediate representation in H, we map the representations from Hf

and Hp using a shared projection head R : H → R, following the empirical analysis by Gupta et al.
(2022) and our experimental findings (Table 11) regarding its optimization efficacy.

The objective for PEER is then defined as:

LPEER(Hf (x), Hp(x̄)) = BT(R(Hf (x)), R(Hp(x̄))), (2)

where x denotes the original sample and x̄ the augmented view created by an augmentation function
G, and BT (Barlow Twins) is a feature decorrelation loss (Zbontar et al., 2021):

BT(z, z+) =
∑
i

(1−Mii)
2 + λ

∑
i

∑
j ̸=i

M2
ij , (3)

where M refers to the cross-correlation matrix of the two feature representations z, z+, and λ is
a balancing coefficient. The actual computation involves an empirical cross-correlation matrix M
between a batch of representations. The first term

∑
i(1 −Mii)

2 aligns two representations by
spurring the diagonal values in M of (z, z+) to be 1. The second term

∑
i

∑
j ̸=i M

2
ij minimizes

redundancy in the representation by encouraging the off-diagonal values to be closer to 0. Intuitively,
regularizing with PEER guides the proxy model P to learn features selected by the task model F .

Notably, in Eq. (2), the task model and the proxy model receive nonidentical inputs x and x̄,
respectively, reflecting our idea that the frozen task model is expected to provide a rich feature
representation of the original sample x, while the training proxy model can better comprehend the
newly augmented sample x̄.

We train only the proxy model P using a classification loss (i.e., cross-entropy) with the regularization:

LP =
∑

x′∈{x,x̄}
LCE(Cp(Hp(x

′)), y) + w · LPEER(Hf (x), Hp(x̄)), (4)

where w is a balancing coefficient. In Sec. 4.3, we further elaborate the PEER regularization as a
maximization of the mutual information (MI).

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 1: Parameter-space Ensemble with Entropy Regularization (PEER)
1 Input: Task model F and its parameter θf , augmentation function G, data from source domain Ds,

augmentation reinitialization criteria k;
2 Output: Fully updated task model F and its parameter θf
3 Pre-train F with Ds without G
4 Initialize P by setting its parameter θp with θf from F
5 Initialize trajectory Θ← { }
6 while not converge do
7 if n% k=0 then
8 Reinitialize G // for random augmentation, change augmentation strength

9 Θ← Θ ∪ {θ(n)
p } // save a snapshot of P

10 θf ← AVERAGE(Θ) // update F (Eq. (5))

11 for i = 1 : niterations do
12 Augment the i-th mini-batch sampled from Ds with augmentation function G
13 Train P with PEER following Eq. (4)

4.2 ACCUMULATING KNOWLEDGE IN THE TASK MODEL WITH PEER

The task model F is gradually updated through parameter-averaging with the proxy model P . This
updating process progressively improves the task model’s generalization throughout training, ensuring
it remains effective as the regulator of the ever-growing proxy model (Burns et al., 2023). Specifically,
we update the task model by parameter-averaging with the proxy model for every k epoch through
the proxy model’s learning trajectory i.e., Θ =

{
θ
(k)
p , θ

(2k)
p · · · , θ(⌊

n
k ⌋·k)

p

}
where n is the current

training epoch, and update the task model with:

θf ←
1

|Θ|
∑
θ∈Θ

θ. (5)

Also, we reinitialize the augmentation function G for every k epoch (e.g., changing the policy –
number and of transformations/ magnitude – of random augmentation). This periodic update of the
task model allows it to stack the effect of diverse augmentations, similar to an ensemble model (Rame
et al., 2022).

For the parameter-averaged task model to enjoy ensemble effects, it’s crucial to ensure mode con-
nectivity (Frankle et al., 2020) between the task model and the proxy model, which can be sufficed
by sharing an identical initialization or backbone (Neyshabur et al., 2020). As our proxy model is
initialized from the task model, it naturally satisfies this requirement. To further benefit parameter-
averaging, the two models must be closely located in the feature space, which can be obtained
by tuning the models on an identical source data (Ramé et al., 2023; Choshen et al., 2022). Our
regularization with PEER (Eq. (2)) encourages the proxy model to be aligned with the task model in
the feature space by treating the augmented domain similarly to the source domain. In Sec. 5, we
show that the task model and the proxy model benefit from the regularization’s alignment effect. In
Appendix A, we empirically demonstrate that the task model cannot function as an effective regulator
of the proxy model without the updating process (w/o ParamAvg. in Table 5).

4.3 DISCUSSION

PEER as mutual information (MI) maximization. The idea of PEER is that we can leverage the
frozen task model to regularize the proxy model by maximizing the shared information between
the two models. PEER aims to maximize the MI between the intermediate output features of the
two encoders Hf and Hp. The entropy regularization aligns the proxy model to the task model,
preventing the proxy model from deviating too far from the task model. From this perspective, an
intended objective for PEER could be formulated as maxH I(Hf (x̄);Hp(x)) where I(X;Y ) =
Ep(x,y)[log p(x | y)/p(x)] indicates the mutual information (MI). PEER uses a feature decorrelation
loss Eq. (3) (Zbontar et al., 2021) to maximize the lower bound of MI as a surrogate objective for MI
optimization under a Gaussian assumption (Tsai et al., 2021). We further elaborate on the adequacy
of feature decorrelation loss for MI optimization in Appendix A and report experimental results

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

of using an alternative objective e.g., InfoNCE (Oord et al., 2018) for Eq. (3) (Table 7). In Sec. 5,
we provide experimental analysis on the effect of PEER by showing its effectiveness in alleviating
augmentation-induced feature distortion.

5 EXPERIMENT

In this section, we investigate the following questions: (1) How effective is our method compared
to prior sDG approaches? (Tables 2 and 3) (2) Does our method reduce the fluctuation of OOD
performance? (Table 4) (3) What effect does our method have on the model’s learned features and
loss landscape connectivity? (Figs. 5, 6 and 7) (4) How effective is our method compared to previous
model-to-model regularization approaches (Table 5) or ensemble methods (Table 6)?

5.1 EXPERIMENTAL SETUP

Datasets. Following prior works (Li et al., 2021; Wan et al., 2022), we evaluate our method on two
standard benchmarks for sDG. PACS (Li et al., 2017) consists of 4 domains of differing styles (Photo,
Art, Cartoon, and Sketch) with 7 classes. By default, we train our model with the Photo domain
and evaluate it on the remaining target domains. Digits comprises of 5 different digit classification
datasets, MNIST (Deng, 2012), SVHN (Netzer et al., 2011), MNIST-M (M-M) (Ganin et al., 2015),
SYNDIGIT (S-D) (Ganin & Lempitsky, 2015), and USPS (Le Cun et al., 1989). We train our model
with the first 10,000 samples of the MNIST dataset and assess its generalization accuracy across the
remaining domains.

We also include Office-Home (Venkateswara et al., 2017) and VLCS (Fang et al., 2013), challenging
benchmarks for sDG methods. Office-Home is a common multi-DG benchmark consisting of 4
datasets (Real-world, Art, Clipart, Product) with differing styles with 65 classes. We train on the
Real-world domain and evaluate with the remaining domains. VLCS is also a benchmark for multi-
DG, comprised of 4 datasets, PASCAL-VOC (V), LabelMe (L), Caltech-101 (C), and SUN09 (S)
with varying styles. We used the PASCAL-VOC dataset as the source and the rest as target domains.

Baselines. We first consider ERM (Koltchinskii, 2011) and also compare our method with several
strong augmentation-based approaches, i.e., M-ADA (Qiao et al., 2020), L2D (Wang et al., 2021b),
PDEN (Li et al., 2021), and AdvST (Zheng et al., 2024). Finally, we include MetaCNN (Wan et al.,
2022), which learns generalized meta-features.

Implementation. We use the same backbone architecture as prior works to ensure fair comparison.
Specifically, we used AlexNet and multi-layer CNN for PACS and Digits, respectively, following
earlier works (Wan et al., 2022; Li et al., 2021; Volpi et al., 2018a). For Office-Home and VLCS,
we used ResNet-18. Additional experimental results across various backbone models (e.g., ResNet-
18/50) are provided in Appendix (Tables 9 and 10). For the implementation of our method, we use
random augmentation (Cubuk et al., 2020) to generate augmented samples. We set k = 10 and
the balancing coefficients λ = 0.005, and w = 2 for all experiments. Hyperparameter studies are
provided in Appendix D.1. We report the final test accuracy of the task model and report the OOD
fluctuation measured as the variance of the target domain accuracy for every k-th epoch (Table 4).
Throughout this section, we use the abbreviation RA for Random Augmentation and P for PEER.

5.2 MAIN RESULTS

In Tables 2 and 3, we report experimental results using the accuracy for each target domain and the
mean accuracy across all target domains. In standard sDG benchmarks (i.e., PACS, Digits; Table 2),
our method achieves state-of-the-art target domain accuracy in many of the target domains and
outperforms all baselines in terms of mean accuracy. Notably, our method outperforms current SoTA
methods by 2.30% and 0.96%. It is worth noting that our simple method boosted the mean accuracy
of random augmentation (RandAug) by 7.08% ↑ in Digits and 3.76% ↑ in PACS.

In more challenging benchmarks (i.e., Office-Home, VLCS; Table 3), previous augmentation-based
methods (e.g., PDEN, RandAug) show either small gains or negative effects in enhancing gen-
eralization. Similarly, naively applying random augmentation for these benchmarks lowered the
target domain accuracy. In contrast, with PEER, the accuracy of the model trained with random
augmentation shows a significant performance gain of 10.62% in Office-Home and 6.66% in VLCS.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: Target domain accuracy on PACS and Digits († indicates numbers are from original authors).

PACS Digits

Method A C S Avg. SVHN M-M S-D USPS Avg.

ERM [31] 54.43 42.74 42.02 46.39 27.83 52.72 39.65 76.94 49.29
ADA† [15] 58.72 45.58 48.26 50.85 35.51 60.41 45.32 77.26 54.62
M-ADA† [46] 58.96 44.09 49.96 51.00 42.55 67.94 48.95 78.53 59.49
L2D† [63] 56.26 51.04 58.42 55.24 62.86 87.30 63.72 83.97 74.46
PDEN [38] 57.41 45.77 65.01 56.06 62.21 82.20 69.39 85.26 74.77
AdvST [68] 53.95 46.11 49.63 49.90 67.50 79.80 78.10 94.80 80.10
MetaCNN† [60] 54.05 53.58 63.88 57.17 66.50 88.27 70.66 89.64 78.76

RandAug [11] 54.17 47.48 65.11 55.59 57.76 77.15 73.65 87.94 73.98
PEER (ours) 62.66 47.40 68.21 59.42 70.79 76.84 83.05 93.57 81.06

Table 3: Target domain accuracy on Office-Home and VLCS.

Office-Home VLCS

Method Art Clipart Product Avg. L C S Avg.

ERM [31] 52.78 40.19 68.73 53.90 59.06 97.30 74.25 76.87
L2D [63] 54.02 41.77 66.30 54.03 56.21 95.52 66.90 72.87
PDEN [38] 53.39 43.38 66.25 54.34 62.55 96.11 73.52 77.39

RandAug [11] 43.10 45.47 61.67 50.01 57.58 93.18 66.56 72.44
PEER (ours) 56.81 54.23 70.84 60.63 67.00 97.73 72.56 79.10

Table 4: Variance of the target domain accuracy.

PACS Digits Office-Home VLCS

Method A C S Avg. SVHN M-M S-D USPS Avg. Art Clipart Product Avg. L C S Avg.

L2D [63] 3.70 5.30 13.37 7.46 3.53 3.01 2.59 4.44 3.39 5.22 1.90 5.58 4.23 5.72 0.59 1.66 2.66
PDEN [38] 3.39 5.22 7.23 5.28 3.58 2.56 2.36 3.48 2.99 10.63 2.17 7.46 6.75 2.44 2.39 2.81 2.55
RandAug [11] 2.23 4.81 5.01 4.02 2.51 1.04 1.05 1.49 1.52 3.49 2.17 2.74 1.89 3.02 1.61 1.96 2.20
PEER (ours) 2.01 3.98 4.77 3.59 2.03 1.11 1.04 1.24 1.36 3.99 1.41 1.80 1.31 2.05 1.61 2.10 1.92

Metric Source-target dataset distance (×103)

OTDD [2] 13.37 29.52 49.94 30.94 3.46 2.65 2.75 0.92 2.45 19.53 19.29 20.63 19.82 11.79 10.14 11.77 11.23

Finally, Table 4 demonstrates the fluctuation of OOD performance, measured as the variance across
the target domain accuracy. We observe that our method successfully reduces the mid-train OOD
fluctuation across all benchmarks. In our framework, the task model accumulates knowledge of the
proxy model throughout the training. Thus, regularizing with the task model encourages the proxy
model to preserve the knowledge of previous steps, similar to a memory buffer used in continual
learning (Wang et al., 2024). In the next section, we illustrate that the task model indeed preserves
the knowledge of the proxy model through parameter averaging.

5.3 DETAILED ANALYSIS ON PEER

5.3.1 ADVANTAGES OF PEER IN MODEL-TO-MODEL REGULARIZATION

In Table 5, we demonstrate the advantages of PEER compared to previous approaches that utilize
a pre-trained model (i.e., teacher) for regularization, where T+RA and P+RA refer to applying the
teacher and the PEER regularization, respectively. We observe that both the teacher and the task
model in PEER reduce the OOD fluctuation, while the fully-trained teacher (T+RA) often displays
a stronger regularization effect compared to PEER (P+RA). However, PEER achieves superior sDG
target domain accuracy in both datasets compared to the teacher. This is due to the teacher model’s
static nature, which limits its capability to process newly augmented samples. In contrast, our task
model, evolving with the proxy model, is less vulnerable to these limitations.

We further validate the effectiveness of the updating process by ablating parameter-averaging (w/o
ParamAvg. in Table 5). Instead of updating the task model by parameter-averaging, we simply freeze
a snapshot of the proxy model for every k epoch and use the latest snapshot as the regulator. As

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 5: Comparitive study on PEER vs. Teacher.

PACS Digits

Method Regulator A C S Avg. SVHN M-M S-D USPS Avg.

Variance of the target domain accuracy (OOD Fluctuation)

RandAug [11] N/A 2.23 4.81 5.01 4.02 2.51 1.04 1.05 1.49 1.52
T+RA Teacher 1.27 2.49 5.30 3.02 1.95 1.17 1.10 1.11 1.33
P+RA PEER (w/o ParamAvg.) 1.69 3.38 4.62 3.23 1.93 1.10 1.11 1.22 1.34
P+RA PEER 2.01 3.98 4.77 3.59 2.03 1.11 1.04 1.24 1.36

Target Domain Accuracy

RandAug [11] N/A 54.17 47.48 65.11 55.59 57.76 77.15 73.65 87.94 73.98
T+RA Teacher 58.61 46.66 64.23 56.50 63.37 72.63 77.91 87.39 75.33
P+RA PEER (w/o ParamAvg.) 57.73 46.69 61.33 55.25 59.99 77.26 72.3 88.28 74.46
P+RA PEER 62.66 47.40 68.21 59.42 70.79 76.84 83.05 93.57 81.06

shown in Table 5, the non-averaged task model sacrifices the target domain accuracy for addressing
OOD fluctuation, which illustrates the effectiveness of parameter-averaging.

5.3.2 EFFECT OF PEER ON PARAMETER-AVERAGING

Snapshot A 
 ( 0)

Interpolated ( =0.5) Snapshot B 
 ( 100)

50

60

70

80

90

100

Ac
cu

ra
cy

Source, ERM
Target, ERM
Source, PEER
Target, PEER

Figure 5: Mode connectivity in the
proxy model’s trajectory. PEER benefits
parameter-averaging between snapshots
of P through its regularization effects.

Here, we investigate the effect of PEER regularization
in benefiting parameter-averaging for the task model F
update. We observe that the regularization brings forth
an alignment between different steps of the proxy model
in its learning trajectory Θ. To clarify, we find different
steps of the proxy model θ(i)p , θ

(j)
p to be aligned by the

regularization. To show this, we follow the practice of
Frankle et al. (2020) and analyze the loss barrier between
snapshots of the proxy model in its learning trajectory.
Fig. 5 illustrates the mode connectivity of the proxy model
training with data augmentation with/without PEER on
Digits (source: MNIST, target: SVHN). Here, we analyze
the connectivity of the proxy model in its early stage of
training (θ(0)p ) and at the late stage (θ(100)p ) by interpolating
the two αθ

(0)
p + (1 − α)θ

(100)
p , where α ∈ [0, 1] be the interpolation weight. We note that PEER

aligns the model’s snapshots(θ(0)p , θ
(100)
p ) in its learning trajectory, gifting a stronger performance

gain when it is interpolated (α = 0.5), especially in the OOD target domain. In other words, PEER’s
regularization enables the task model to function as a robust parameter-space ensemble, which can
guide the proxy model’s generalization to unseen target domains.

We further investigate the PEER’s role in parameter-averaging in Table 6, specifically showing the
failure cases of parameter-averaging without model alignment. Here, P-ENS refers to the parameter-
space ensembles. In both PACS and Digits, parameter-space ensembling without regularization
(P-ENS w/o PEER) falls behind ensembling with regularization. Notably in PACS, we observe
failure cases of parameter-space ensembling without regularization, where the ensemble effect (i.e.,
gain in generalization ability) was very marginal. This failure case in parameter-averaging is an
interesting observation as averaging the parameters between different training step snapshots of the
same model has shown great success in many previous works (Grill et al., 2020; Izmailov et al., 2018).
In Appendix C.2, we provide a deeper analysis of this topic.

5.3.3 EFFECT OF PEER ON LEARNED FEATURES

In this section, we analyze the PEER’s effect on the learned feature representations. In detail,
we share two results: (1) parameter-averaging allows the task model to accumulate the proxy
model’s knowledge, (2) the PEER regularization guides the proxy model to mitigate feature distortion
(Appendix C.1).

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

0 1 2 3 4 5 6
Layers Proxy Model

0

1

2

3

4

5

6

La
ye

rs
 Ta

sk
 M

od
el

Task Model vs Proxy Model

0.5

0.6

0.7

0.8

0.9

1.0

(a) Epoch 30

0 1 2 3 4 5 6
Layers Proxy Model

0

1

2

3

4

5

6

La
ye

rs
 Ta

sk
 M

od
el

Task Model vs Proxy Model

0.5

0.6

0.7

0.8

0.9

1.0

(b) Epoch 60

0 1 2 3 4 5 6
Layers Proxy Model

0

1

2

3

4

5

6

La
ye

rs
 Ta

sk
 M

od
el

Task Model vs Proxy Model

0.5

0.6

0.7

0.8

0.9

1.0

(c) Epoch 90

0 1 2 3 4 5 6
Layers Proxy Model

0

1

2

3

4

5

6

La
ye

rs
 Ta

sk
 M

od
el

Task Model vs Proxy Model

0.5

0.6

0.7

0.8

0.9

1.0

(d) Epoch 120

Figure 6: Layer-wise feature similarity between the fully updated task model and the proxy model at
different epochs. The task model gradually accumulates the knowledge of the proxy model.

Table 6: The target domain accuracy of the parameter-space ensemble († indicates numbers are from
original authors).

PACS Digits

Method Ensemble A C S Avg. SVHN M-M S-D USPS Avg.

ERM [31] ✗ 54.43 42.74 42.02 46.39 27.83 52.72 39.65 76.94 49.29
MetaCNN† [60] ✗ 54.05 53.58 63.88 57.17 66.50 88.27 70.66 89.64 78.76

P-ENS w/o PEER ✓ 63.20 41.08 56.25 53.51 71.87 76.42 82.36 92.23 80.72
P-ENS PEER (ours) ✓ 62.66 47.40 68.21 59.42 70.79 76.84 83.05 93.57 81.06

To show this, we follow the practice of Neyshabur et al. (2020) and compute the Centered Kernel
Alignment (CKA) metric (Kornblith et al., 2019) between trained models. The CKA metric measures
the similarity between feature representations, where 1.0 indicates perfect alignment. Specifically,
we compute and visualize the CKA similarity for different layers of the multi-layer CNN network
trained on the Digits setting (see Appendix E.4 for details). Each matrix in Figs. 6 and 7 displays the
similarity between the two models, its diagonal values indicating the similarity between corresponding
layers’ feature representations, i.e. brighter boxes indicate more shared knowledge.

We report that the parameter-averaging allows the task model to function similarly to a buffer which
accumulates the knowledge of the proxy model across previous training steps. Fig. 6, we illustrate
the feature similarity between the task model F (θf ) and the proxy model P (θp). We can see that
the fully updated task model is closely aligned with different stages of the proxy model’s trajectory
(indicated by bright diagonal values in Fig. 6), suggesting that the parameter-averaging effectively
consolidates knowledge from various augmentations and preserves features that might otherwise be
distorted during training. We continue this discussion on Appendix C.1, where we show that PEER
plays an important role in addressing the feature distortion during training (Fig. 7).

5.4 ABLATION STUDY

We conduct an ablation study to evaluate the impact of various components on overall performance,
including the regularization objective (Table 7), hyperparameters w, λ, and k (Tables 8a and 8b) ,
model size (Tables 9 and 10) , and the role of the projection head (Table 11).

6 CONCLUSION

This paper presents PEER, a novel generalization method to address the issues of augmentation-based
approaches to single source domain generalization. We highlight the feature distortion induced by
augmentation, which triggers fluctuations in the target domain performance during training. Based on
our observations, we propose a parameter-averaged task model that accumulates the generalization
effect of the training proxy model. Entropy regularization on their learned feature representation
aligns the two models, addressing feature distortion. Experiments on various datasets (PACS, Digits,
Office-Home, VLCS) demonstrate the effectiveness of our method in stabilizing the learning process
and enhancing the generalization performance.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Reproducibility Statement For reproducibility, we provide the source code, the data pickle files,
and the scripts used in our experiments. Please refer to the README.md file in the supplementary
materials on how to access the datasets. We also used a fixed seed setting, which is implemented in
the source code. We also include notebook (.ipynb) files to reproduce the figures appearing in our
paper. Lastly, in Sec. 5.1 and Appendix E, we thoroughly explain how our method and its experiments
are implemented.

REFERENCES

Samuel K. Ainsworth, Jonathan Hayase, and Siddhartha Srinivasa. Git re-basin: Merging models
modulo permutation symmetries, 2023.

David Alvarez-Melis and Nicolo Fusi. Geometric dataset distances via optimal transport. Advances
in Neural Information Processing Systems, 33:21428–21439, 2020.

Masih Aminbeidokhti, Fidel A. Guerrero Peña, Heitor Rapela Medeiros, Thomas Dubail, Eric
Granger, and Marco Pedersoli. Domain generalization by rejecting extreme augmentations, 2023.

Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant risk minimization,
2019.

Devansh Arpit, Huan Wang, Yingbo Zhou, and Caiming Xiong. Ensemble of averages: Improv-
ing model selection and boosting performance in domain generalization. Advances in Neural
Information Processing Systems, 35:8265–8277, 2022.

Randall Balestriero, Mark Ibrahim, Vlad Sobal, Ari Morcos, Shashank Shekhar, Tom Goldstein,
Florian Bordes, Adrien Bardes, Gregoire Mialon, Yuandong Tian, Avi Schwarzschild, Andrew Gor-
don Wilson, Jonas Geiping, Quentin Garrido, Pierre Fernandez, Amir Bar, Hamed Pirsiavash,
Yann LeCun, and Micah Goldblum. A cookbook of self-supervised learning, 2023. URL
https://arxiv.org/abs/2304.12210.

Lucas Beyer, Xiaohua Zhai, Amélie Royer, Larisa Markeeva, Rohan Anil, and Alexander Kolesnikov.
Knowledge distillation: A good teacher is patient and consistent, 2022.

Collin Burns, Pavel Izmailov, Jan Hendrik Kirchner, Bowen Baker, Leo Gao, Leopold Aschenbrenner,
Yining Chen, Adrien Ecoffet, Manas Joglekar, Jan Leike, Ilya Sutskever, and Jeff Wu. Weak-to-
strong generalization: Eliciting strong capabilities with weak supervision, 2023.

Junbum Cha, Kyungjae Lee, Sungrae Park, and Sanghyuk Chun. Domain Generalization by Mutual-
Information Regularization with Pre-trained Models. arXiv e-prints, art. arXiv:2203.10789, March
2022. doi: 10.48550/arXiv.2203.10789.

Leshem Choshen, Elad Venezian, Noam Slonim, and Yoav Katz. Fusing finetuned models for better
pretraining. arXiv preprint arXiv:2204.03044, 2022.

Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V Le. Randaugment: Practical automated
data augmentation with a reduced search space. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition workshops, pp. 702–703, 2020.

Li Deng. The mnist database of handwritten digit images for machine learning research. IEEE Signal
Processing Magazine, 29(6):141–142, 2012.

Rahim Entezari, Hanie Sedghi, Olga Saukh, and Behnam Neyshabur. The role of permutation
invariance in linear mode connectivity of neural networks. arXiv preprint arXiv:2110.06296, 2021.

Daniel Falbel. torchvision: Models, Datasets and Transformations for Images, 2023.
https://torchvision.mlverse.org, https://github.com/mlverse/torchvision.

Xinjie Fan, Qifei Wang, Junjie Ke, Feng Yang, Boqing Gong, and Mingyuan Zhou. Adversari-
ally adaptive normalization for single domain generalization. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 8208–8217, 2021.

11

https://arxiv.org/abs/2304.12210


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Chen Fang, Ye Xu, and Daniel N Rockmore. Unbiased metric learning: On the utilization of multiple
datasets and web images for softening bias. In Proceedings of the IEEE International Conference
on Computer Vision, pp. 1657–1664, 2013.

Jonathan Frankle, Gintare Karolina Dziugaite, Daniel Roy, and Michael Carbin. Linear mode
connectivity and the lottery ticket hypothesis. In International Conference on Machine Learning,
pp. 3259–3269. PMLR, 2020.

Yaroslav Ganin and Victor Lempitsky. Unsupervised domain adaptation by backpropagation. In
International Conference on Machine Learning, pp. 1180–1189. PMLR, 2015.

Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François
Laviolette, Mario Marchand, and Victor Lempitsky. Domain-adversarial training of neural networks.
Journal of Machine Learning Research 17 (2016) 1-35, 2015.

Timur Garipov, Pavel Izmailov, Dmitrii Podoprikhin, Dmitry P Vetrov, and Andrew G Wilson.
Loss surfaces, mode connectivity, and fast ensembling of dnns. Advances in neural information
processing systems, 31, 2018.

Jianping Gou, Baosheng Yu, Stephen J. Maybank, and Dacheng Tao. Knowledge distillation: A
survey. International Journal of Computer Vision, 129(6):1789–1819, mar 2021. doi: 10.1007/
s11263-021-01453-z.

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond, Elena
Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Gheshlaghi Azar,
et al. Bootstrap your own latent-a new approach to self-supervised learning. Advances in neural
information processing systems, 33:21271–21284, 2020.

Kartik Gupta, Thalaiyasingam Ajanthan, Anton van den Hengel, and Stephen Gould. Understanding
and improving the role of projection head in self-supervised learning, 2022.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network, 2015.

Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon, Karan Grewal, Philip Bachman, Adam
Trischler, and Yoshua Bengio. Learning deep representations by mutual information estimation
and maximization. In ICLR 2019. ICLR, April 2019.

Weiran Huang, Mingyang Yi, and Xuyang Zhao. Towards the generalization of contrastive self-
supervised learning, 2021.

Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov, and Andrew Gordon Wilson. Av-
eraging weights leads to wider optima and better generalization. arXiv preprint arXiv:1803.05407,
2018.

Alexia Jolicoeur-Martineau, Emy Gervais, Kilian Fatras, Yan Zhang, and Simon Lacoste-Julien.
Population parameter averaging (papa). arXiv preprint arXiv:2304.03094, 2023.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua
Bengio and Yann LeCun (eds.), 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL http:
//arxiv.org/abs/1412.6980.

David A. Klindt, Lukas Schott, Yash Sharma, Ivan Ustyuzhaninov, Wieland Brendel, Matthias
Bethge, and Dylan Paiton. Towards nonlinear disentanglement in natural data with temporal
sparse coding. In International Conference on Learning Representations, 2021. URL https:
//openreview.net/forum?id=EbIDjBynYJ8.

Vladimir Koltchinskii. Oracle Inequalities in Empirical Risk Minimization and Sparse Recovery
Problems: École d’Été de Probabilités de Saint-Flour XXXVIII-2008, volume 2033. Springer
Berlin Heidelberg, 01 2011. ISBN 978-3-642-22146-0. doi: 10.1007/978-3-642-22147-7.

Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. Similarity of neural
network representations revisited. In International conference on machine learning, pp. 3519–3529.
PMLR, 2019.

12

http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://openreview.net/forum?id=EbIDjBynYJ8
https://openreview.net/forum?id=EbIDjBynYJ8


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. In F. Pereira, C.J. Burges, L. Bottou, and K.Q.
Weinberger (eds.), Advances in Neural Information Processing Systems, volume 25. Cur-
ran Associates, Inc., 2012. URL https://proceedings.neurips.cc/paper/2012/file/
c399862d3b9d6b76c8436e924a68c45b-Paper.pdf.

Ananya Kumar, Aditi Raghunathan, Robbie Matthew Jones, Tengyu Ma, and Percy Liang. Fine-tuning
can distort pretrained features and underperform out-of-distribution. In International Conference
on Learning Representations, 2022. URL https://openreview.net/forum?id=UYneFzXSJWh.

Alexey Kurakin, Ian J Goodfellow, and Samy Bengio. Adversarial examples in the physical world.
In Artificial intelligence safety and security, pp. 99–112. Chapman and Hall/CRC, 2018.

Y. Le Cun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel.
Handwritten digit recognition with a back-propagation network. In Proceedings of the 2nd
International Conference on Neural Information Processing Systems, NIPS’89, pp. 396–404,
Cambridge, MA, USA, 1989. MIT Press.

Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M Hospedales. Deeper, broader and artier domain
generalization. In Proceedings of the IEEE international conference on computer vision, pp.
5542–5550, 2017.

L. Li, K. Gao, J. Cao, Z. Huang, Y. Weng, X. Mi, Z. Yu, X. Li, and B. Xia. Progres-
sive domain expansion network for single domain generalization. In 2021 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR), pp. 224–233, Los Alamitos,
CA, USA, jun 2021. IEEE Computer Society. doi: 10.1109/CVPR46437.2021.00029. URL
https://doi.ieeecomputersociety.org/10.1109/CVPR46437.2021.00029.

Ziyue Li, Kan Ren, XINYANG JIANG, Yifei Shen, Haipeng Zhang, and Dongsheng Li. SIMPLE:
Specialized model-sample matching for domain generalization. In The Eleventh International
Conference on Learning Representations, 2023.

Ekdeep Singh Lubana, Eric J Bigelow, Robert P Dick, David Krueger, and Hidenori Tanaka. Mecha-
nistic mode connectivity. In International Conference on Machine Learning, pp. 22965–23004.
PMLR, 2023.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y. Ng. Read-
ing digits in natural images with unsupervised feature learning. In NIPS Workshop on Deep
Learning and Unsupervised Feature Learning 2011, 2011. URL http://ufldl.stanford.edu/
housenumbers/nips2011_housenumbers.pdf.

Behnam Neyshabur, Hanie Sedghi, and Chiyuan Zhang. What is being transferred in transfer learning?
Advances in neural information processing systems, 33:512–523, 2020.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive
coding, 2018.

Liam Paninski. Estimation of entropy and mutual information. Neural Comput., 15(6):1191–1253,
jun 2003. ISSN 0899-7667. doi: 10.1162/089976603321780272.

Ben Poole, Sherjil Ozair, Aaron Van Den Oord, Alex Alemi, and George Tucker. On variational
bounds of mutual information. In International Conference on Machine Learning, pp. 5171–5180.
PMLR, 2019.

Fengchun Qiao, Long Zhao, and Xi Peng. Learning to learn single domain generalization. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 12556–12565, 2020.

Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, and Piotr Dollár. Designing
network design spaces. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 10428–10436, 2020.

Alexandre Rame, Matthieu Kirchmeyer, Thibaud Rahier, Alain Rakotomamonjy, Patrick Gallinari,
and Matthieu Cord. Diverse weight averaging for out-of-distribution generalization. In NeurIPS,
2022.

13

https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://openreview.net/forum?id=UYneFzXSJWh
https://doi.ieeecomputersociety.org/10.1109/CVPR46437.2021.00029
http://ufldl.stanford.edu/housenumbers/nips2011_housenumbers.pdf
http://ufldl.stanford.edu/housenumbers/nips2011_housenumbers.pdf


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Alexandre Ramé, Kartik Ahuja, Jianyu Zhang, Matthieu Cord, Léon Bottou, and David Lopez-Paz.
Model ratatouille: Recycling diverse models for out-of-distribution generalization. In International
Conference on Machine Learning, pp. 28656–28679. PMLR, 2023.

Xuanchi Ren, Tao Yang, Yuwang Wang, and Wenjun Zeng. Rethinking content and style: Exploring
bias for unsupervised disentanglement. In 2021 IEEE/CVF International Conference on Computer
Vision Workshops (ICCVW), pp. 1823–1832, 2021. doi: 10.1109/ICCVW54120.2021.00209.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. Imagenet
large scale visual recognition challenge, 2014.

Haizhou Shi and Hao Wang. A unified approach to domain incremental learning with memory:
Theory and algorithm. Advances in Neural Information Processing Systems, 36, 2024.

Aman Shrivastava, Yanjun Qi, and Vicente Ordonez. Estimating and maximizing mutual information
for knowledge distillation. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 48–57, 2023.

C. Tao, H. Wang, X. Zhu, J. Dong, S. Song, G. Huang, and J. Dai. Exploring the equivalence of
siamese self-supervised learning via a unified gradient framework. In 2022 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 14411–14420, Los Alamitos, CA, USA,
jun 2022. IEEE Computer Society. doi: 10.1109/CVPR52688.2022.01403.

Yao-Hung Hubert Tsai, Shaojie Bai, Louis-Philippe Morency, and Ruslan Salakhutdinov. A note on
connecting barlow twins with negative-sample-free contrastive learning, 2021.

Hemanth Venkateswara, Jose Eusebio, Shayok Chakraborty, and Sethuraman Panchanathan. Deep
hashing network for unsupervised domain adaptation. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 5018–5027, 2017.

Riccardo Volpi, Hongseok Namkoong, Ozan Sener, John Duchi, Vittorio Murino, and Silvio Savarese.
Generalizing to unseen domains via adversarial data augmentation, 2018a.

Riccardo Volpi, Hongseok Namkoong, Ozan Sener, John C Duchi, Vittorio Murino, and Silvio
Savarese. Generalizing to unseen domains via adversarial data augmentation. Advances in neural
information processing systems, 31, 2018b.

Julius Von Kügelgen, Yash Sharma, Luigi Gresele, Wieland Brendel, Bernhard Schölkopf, Michel
Besserve, and Francesco Locatello. Self-supervised learning with data augmentations provably
isolates content from style. Advances in neural information processing systems, 34:16451–16467,
2021.

Chaoqun Wan, Xu Shen, Yonggang Zhang, Zhiheng Yin, Xinmei Tian, Feng Gao, Jianqiang Huang,
and Xian-Sheng Hua. Meta convolutional neural networks for single domain generalization. In
2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4672–4681,
2022. doi: 10.1109/CVPR52688.2022.00464.

Jindong Wang, Cuiling Lan, Chang Liu, Yidong Ouyang, Tao Qin, Wang Lu, Yiqiang Chen, Wenjun
Zeng, and Philip S. Yu. Generalizing to unseen domains: A survey on domain generalization,
2021a.

Liyuan Wang, Xingxing Zhang, Hang Su, and Jun Zhu. A comprehensive survey of continual learning:
Theory, method and application. IEEE Transactions on Pattern Analysis and Machine Intelligence,
2024.

Zijian Wang, Yadan Luo, Ruihong Qiu, Zi Huang, and Mahsa Baktashmotlagh. Learning to diversify
for single domain generalization. In Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), pp. 834–843, October 2021b.

D.H. Wolpert and W.G. Macready. No free lunch theorems for optimization. IEEE Transactions on
Evolutionary Computation, 1(1):67–82, 1997. doi: 10.1109/4235.585893.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Mitchell Wortsman, Gabriel Ilharco, Samir Yitzhak Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes,
Ari S. Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, and Ludwig
Schmidt. Model soups: averaging weights of multiple fine-tuned models improves accuracy
without increasing inference time, 2022.

Qinwei Xu, Ruipeng Zhang, Yi-Yan Wu, Ya Zhang, Ning Liu, and Yanfeng Wang. Simde: A
simple domain expansion approach for single-source domain generalization. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4798–4808, 2023.

Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and Stéphane Deny. Barlow twins: Self-supervised
learning via redundancy reduction. In International Conference on Machine Learning, pp. 12310–
12320. PMLR, 2021.

Guangtao Zheng, Mengdi Huai, and Aidong Zhang. Advst: Revisiting data augmentations for
single domain generalization. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 38, pp. 21832–21840, 2024.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A STUDY ON MODEL-TO-MODEL REGULARIZATION

In this section, we further study the topic of model-to-model regularization. We first begin by
revisiting previous works on model-to-model regularization, highlighting the differences from our
approach. Next, we provide experimental results on using a pre-trained teacher for regularization.
Using this, we show the strength of our approach against previous model-to-model regularization
methods.

Previous Methods: Using a teacher for regularization. Model-to-model regularization is fre-
quently used to boost a model’s performance in tasks such as knowledge distillation (Hinton et al.,
2015; Beyer et al., 2022) or generalization (Cha et al., 2022; Li et al., 2023). Here, an underlying
idea is that the supervisor (i.e. teacher) be a model displaying strong performance, namely OOD
robustness. A common approach is to use a pre-trained model that is trained on a large dataset, or
with a larger model architecture. However, there exist issues in deploying strong teacher models for
the sDG task. First, using pre-trained teacher models contradicts the grounding idea of single source
domain generalization (sDG). To our understanding, the goal of sDG is to devise a generalization
method that can function well in a realistic environment where the source data is limited. Reflecting
this, the sDG setting strictly forbids the use of additional source domains for training. In this sense,
using a model that is already trained on a much larger dataset seems to go against this. Furthermore,
if the teacher model is available for use, a more efficient method would be to directly utilize the
teacher for inference, while its operating cost would be much larger.

Our Method: Using a group of PEER for regularization. Our approach to model-to-model
regularization alleviates the irony of using a pre-trained teacher model by replacing it with a parameter-
space ensemble (task model F ). Unlike previous approaches (Cha et al., 2022; Li et al., 2023), the
PEER does not violate the constraints of the sDG setting. Specifically, the task model in PEER does not
use additional training data as it is the training model itself. Second, it is of an identical architecture to
the training proxy model, hence we need not worry about excessive computation costs. Furthermore,
using a task model regulator of the identical architecture allows the proxy model to directly update
the task model via parameter-averaging, without additional cost. On the other hand, when using a
pre-trained teacher model, updating the teacher would require excessive gradient computation (e.g.,
online distillation (Gou et al., 2021)).

More importantly, our approach to model-to-model regularization is more easily applicable to real-
world problems than using a pre-trained teacher, owing to the adaptive nature of the task model. In
PEER, the task model is created during the training process. Hence, the task model effortlessly adapts
to the new dataset. This adaptivity makes PEER applicable to any given task or dataset. On the other
hand, a teacher is a fixed model that is supposedly pre-trained on large datasets. The fixed nature of
the teacher limits its applicability, as the teacher would only work if the teacher’s pre-trained data is
similar to the new training data. For instance, a strong digit classification (Deng, 2012) model will
not function well as a teacher for the image classification task (Li et al., 2023).

Experiment: PEER vs. Teacher In this section, provide detailed information on our experimental
results reported in Sec. 5.3.1, and emphasize the competitiveness of PEER against using a strong
teacher model for regularization. Specifically, we demonstrate that a task model in PEER serves
as a more robust regulator compared to a pre-trained teacher model. Specifically, we empirically
show that a suitable teacher model is not always available. For analysis, we use the PACS and Digits
datasets and compare three model-to-model regularization methods (1) None: The baseline without
model-to-model regularization (2) Teacher: Following the practice of Cha et al. (2022), we selected
the pre-trained RegNetY-16GF (Radosavovic et al., 2020) as a teacher for PACS. In contrast, in Digits,
we could not obtain a pre-trained model fit for use as the teacher. Hence, we follow the practice of
Cha et al. (2022) and use a model pre-trained on both the source and target domains of Digits. We
will later elaborate on why the RegNetY-16GF does not apply to the Digits experiment. (3) PEER:
The task model in PEER has the same architecture as the proxy model. At the beginning of training,
it is identical to the proxy model and then updated during the training process by averaging the
parameters of the proxy model and the task model. The model is trained with random augmentation
and follows the setup stated in Sec. 5.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

We share the results of the experiment in Table 5. Here, the methods T+RA and P+RA refer to
applying the teacher regularization and the PEER regularization, respectively. First, we compare the
effectiveness of the two regulators (the teacher and the task model in PEER) in reducing the OOD
target domain performance fluctuation. In Table 5, we see that both the teacher and the task model
in PEER reduce the OOD fluctuation (measured as variance), while the teacher displays a stronger
regularization effect than the task model. We view that this result reflects the reality that the teacher
is a fully trained model, while the task model is updated alongside the proxy model’s training process,
and hence is a weak supervisor, at least at the beginning of training (Burns et al., 2023). On the other
hand, we see that thePEER shows higher sDG target domain accuracy (59.42) in PACS than using a
teacher (56.50). We believe that this results from the nature of the frozen teacher. To illustrate, the
teacher is a frozen model, and hence a model regularized by the teacher may have been bound by the
teacher’s supervision. On the other hand, the PEER uses a task model that grows alongside the proxy
model, and hence less likely to share the issues exhibited by the teacher. This pattern is repeated in
the Digits experiment at Table 5, where the teacher was slightly better in reducing the fluctuation,
while our method with PEER showed a higher target domain accuracy.

In Table 5, we also test the case when the task model is not updated with parameter-averaging i.e.,
PEER (w/o ParamAvg.). Instead of updating the task model via parameter-averaging, we simply froze
a snapshot of the proxy model every k epoch and used it as the regulator. Here, we can see that the
non-averaged task model showed effectiveness in alleviating the OOD fluctuation while limiting the
target domain accuracy.

We find that for certain tasks, a teacher model is hard to obtain. In other words, there is no universal
model for use as the teacher. For instance, in the PACS experiment, the RegNetY-16GF displayed
sufficient capabilities as a model-to-model regularize. However, using the RegNetY-16GF as the
teacher for the Digits experiment was not available. Notably, RegNetY-16GF marked low validation
accuracy in the target domain, nor was it able to guide the proxy model. We believe that this difference
is derived from the discrepancy between the two datasets. For instance, PACS is a collection of
images without any distortion, while Digits is a dataset solely comprised of digit images. Hence,
we view that the large gap between the pre-trained dataset of the RegNetY-16GF and the Digit
classification datasets is responsible for this behavior. This issue can be explained with the work of
Wolpert & Macready (1997), where the authors demonstrate that there exists a trade-off between a
model’s performance on a certain task and the performance on all remaining tasks. In contrast, the
PEER is applicable to any task, as it gradually adapts to the dataset using the proxy model.

B DISCUSSIONS

B.1 DISCUSSION ON THE FLUCTUATION

We illustrate the mid-train OOD fluctuation in Fig. 1. Here, the worst-case performance of the
fluctuating model (red) consistently falls below that of the stable model (blue). This describes the
issues of deploying a fluctuating model, as the fluctuation poses challenges in early stopping and
model selection.

Arpit et al. (2022) has studied a similar phenomenon within the multi-DG literature, attributing
the fluctuation to the stochastic nature of the learning process (e.g., random seed, order of data).
While we acknowledge the role of other contributing factors, we hypothesize that the mid-train
OOD fluctuation primarily stems from the model’s inability to accumulate the knowledge learned
from varying augmentations. In specific, we view that the model’s trained features are distorted, or
forgotten during training (Kumar et al., 2022; Shi & Wang, 2024).

B.2 DISCUSSION ON PEER AS A MUTUAL INFORMATION OPTIMIZATION

Here, we further elaborate on the PEER. Specifically, we elaborate on why optimizing with Eq. (3) can
maximize the mutual information (MI) To recapitulate, the PEER aims to maximize the MI between
the output feature representations of the task model F and the proxy model P . However, directly
optimizing MI is challenging, as its exact estimation is intractable (Paninski, 2003). There exists
InfoNCE loss (Oord et al., 2018) which adopts a lower bound of MI (Poole et al., 2019) as a surrogate

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 7: Target domain accuracy with different entropy regularization functions.

PACS Digits

Method Reg. Obj. A C S Avg. SVHN M-M S-D USPS Avg.

PEER (ours) BT [67] 62.66 47.40 68.21 59.42 70.79 76.84 83.05 93.57 81.06
PEER (ours) InfoNCE [43] 60.03 48.11 67.91 58.68 68.34 75.80 82.69 93.92 80.19

0 1 2 3 4 5 6
Layers Trained

0

1

2

3

4

5

6

La
ye

rs
 O

rig
in

al

Original vs Trained

0.4

0.5

0.6

0.7

0.8

0.9

(a) Epoch 30 (w/o PEER)

0 1 2 3 4 5 6
Layers Trained

0

1

2

3

4

5

6

La
ye

rs
 O

rig
in

al

Original vs Trained

0.4

0.5

0.6

0.7

0.8

0.9

(b) Epoch 120 (w/o PEER)

0 1 2 3 4 5 6
Layers Trained

0

1

2

3

4

5

6

La
ye

rs
 O

rig
in

al

Original vs Trained

0.5

0.6

0.7

0.8

0.9

(c) Epoch 30 (w/ PEER)

0 1 2 3 4 5 6
Layers Trained

0

1

2

3

4

5

6

La
ye

rs
 O

rig
in

al

Original vs Trained

0.5

0.6

0.7

0.8

0.9

(d) Epoch 120 (w/ PEER)

Figure 7: Layer-wise feature similarity (CKA) between the proxy model after initialization and after
training with different epochs. Without PEER regularization, the model suffers feature distortion.

objective for MI optimization:

INCE(X;Y ) ≜ E
[
K−1

K∑
i=1

log
exp(f(xi, yi))

K−1
∑K

j=1 exp(f(xi, yi))

]
≤ I(X;Y ).

However, an issue of InfoNCE as a variational bound of MI is that InfoNCE requires a large batch
size for convergence (Shrivastava et al., 2023; Hjelm et al., 2019), making it doubtful for use in small
datasets (e.g., PACS). Consequently, we indirectly approximate InfoNCE with a feature decorrelation
loss (Zbontar et al., 2021), based on empirical and theoretical results that show its functional proximity
(Huang et al., 2021; Tao et al., 2022). Contrary to InfoNCE, the feature decorrelation converges
effectively with small batch sizes and large vector dimensions, fit for many sDG settings with smaller
datasets, or with images of large sizes.

In Table 7, we report the experimental results of replacing our regularization objective Eq. (3)
with the InfoNCE. We find that both objectives are effective, while our default objective showed
stronger results. We believe there are a number of factors behind this result (e.g., batch size, dataset
(Balestriero et al., 2023)).

C EFFECT OF PEER ON THE MODEL

In this section, we further analyze the effect of PEER, namely on the proxy model’s learned features
and on its loss landscape.

C.1 EFFECT ON LEARNED FEATURES (CONTINUED)

In this section, we study the effect of PEER on the learned feature representations.

We show that regularization plays an important role in reducing the proxy model’s feature distortion
during training. We compare two cases (a) Without PEER: CKA similarity of the proxy model P at
different epochs of training and its original state before training (b) With PEER: CKA similarity of the
PEER applied proxy model P at different epochs n (θ(n)p ) and its original state (θ(0)p ). Notably, the
diagonal elements in Fig. 7d are brighter in color than their counterparts (Fig. 7b), which indicates
that PEER allows the proxy model to preserve its pre-trained features. The model is trained with
random augmented MNIST data, and the feature similarity is also computed on the MNIST data.

Next, we provide a more detailed analysis. In Fig. 8, we report the case where there is no regularization
from the task model (without PEER). Here, the diagonal values indicate the corresponding layers
between the initialization and the trained model. We can see that as training continues (Fig. 7b), a

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

0 1 2 3 4 5 6
Layers Trained

0

1

2

3

4

5

6

La
ye

rs
 O

rig
in

al

Original vs Trained

0.4

0.5

0.6

0.7

0.8

0.9

(a) Epoch 30

0 1 2 3 4 5 6
Layers Trained

0

1

2

3

4

5

6

La
ye

rs
 O

rig
in

al

Original vs Trained

0.5

0.6

0.7

0.8

0.9

(b) Epoch 60

0 1 2 3 4 5 6
Layers Trained

0

1

2

3

4

5

6

La
ye

rs
 O

rig
in

al

Original vs Trained

0.4

0.5

0.6

0.7

0.8

0.9

(c) Epoch 90

0 1 2 3 4 5 6
Layers Trained

0

1

2

3

4

5

6

La
ye

rs
 O

rig
in

al

Original vs Trained

0.4

0.5

0.6

0.7

0.8

0.9

(d) Epoch 120

Figure 8: Layer-wise Feature Similarity (CKA) between the proxy model’s initialization and the
trained proxy model (without PEER). Without PEER regularization, the model suffers feature distor-
tion.

0 1 2 3 4 5 6
Layers Trained

0

1

2

3

4

5

6

La
ye

rs
 O

rig
in

al

Original vs Trained

0.5

0.6

0.7

0.8

0.9

(a) Epoch 30

0 1 2 3 4 5 6
Layers Trained

0

1

2

3

4

5

6

La
ye

rs
 O

rig
in

al

Original vs Trained

0.5

0.6

0.7

0.8

0.9

(b) Epoch 60

0 1 2 3 4 5 6
Layers Trained

0

1

2

3

4

5

6

La
ye

rs
 O

rig
in

al

Original vs Trained

0.4

0.5

0.6

0.7

0.8

0.9

(c) Epoch 90

0 1 2 3 4 5 6
Layers Trained

0

1

2

3

4

5

6

La
ye

rs
 O

rig
in

al

Original vs Trained

0.5

0.6

0.7

0.8

0.9

(d) Epoch 120

Figure 9: Layer-wise Feature Similarity (CKA) between the proxy model’s initialization and the
trained proxy model (with PEER). With PEER, the model suffers less feature distortion.

lot of trained knowledge is distorted in the later layers of the model. In contrast, Fig. 9 shows that
when regularized with the task model (with PEER), the proxy model preserves a lot of knowledge
even in the later epochs (Fig. 7d). Yet, we do not claim that PEER allows the proxy model to perfectly
preserve its trained knowledge amidst diverse augmentation (Wolpert & Macready, 1997). Rather,
we believe that by regularizing the proxy model, we can ultimately benefit the parameter-averaged
task model. In the following section, we will empirically show that the regularization indeed benefits
the parameter-averaging.

C.2 EFFECT ON PARAMETER-AVERAGING (CONTINUED)

In this section, we provide an extended analysis of how regularizing the proxy model P with the task
model (i.e., PEER) aids parameter averaging. We argue that the regularization aids the ensembling
effect by aligning different snapshots of the proxy model θ(i)p , θ

(j)
p that were trained on very different

augmented domains.

To show this, we perform a simple experiment: "Can parameter-averaging proxy model snapshots
without regularization create a robust regulator?". Similar to PEER update, we periodically save
snapshots of the proxy model training with random augmentation for every k epoch. The experiment
takes place in the PACS and the Digits benchmarks, and follows the same setting stated in Sec. 5.
For PACS, the proxy model is trained for 200 epochs with random augmented data, where k is set as
10. In Digits, the model is trained for 100 with k set as 10. After training, we parameter average the
saved snapshots to form a parameter-space ensemble. Note that in this case, no regularization took
place.

We share the results in Table 6. As a recap, we explain the notations used in Table 6. In the
table, P-ENS refers to the parameter-space ensembles. In both PACS and Digits, parameter-space
ensembling with regularization (PEER) outcompetes ensembling without regularization (P-ENS
w/o PEER). Notably in PACS, we observe failure cases of parameter-space ensembling without
regularization, where the ensemble effect (i.e., gain in generalization ability) was very marginal. As
noted in Sec. 5.3.2, this failure case is noteworthy since parameter averaging across different training
snapshots of models with the same initialization has been highly successful in many prior studies
(Grill et al., 2020; Izmailov et al., 2018).

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 8: (a) Target domain accuracy and (b) fluctuation on PACS with different hyperparameters.

(a) Target domain accuracy

Method Hyperparam. A C S Avg.

Hyperparameter: w

Ours w = 0.1 59.96 45.83 66.57 57.45
Ours w = 0.5 60.07 46.11 66.2 57.46
Ours w = 1.0 61.22 46.20 65.79 57.74
Ours w = 2.0 61.20 46.08 66.00 57.56
Ours w = 4.0 59.99 45.84 63.51 56.45
Ours w = 10.0 60.14 45.88 65.26 57.09

Hyperparameter: λ

Ours λ = 0.001 60.01 47.38 66.4 57.93
Ours λ = 0.005 61.20 46.08 66.00 57.56
Ours λ = 0.01 60.78 48.25 65.2 58.08
Ours λ = 0.1 61.04 45.63 66.36 57.68

Hyperparameter: k

Ours k = 1 56.99 42.30 67.25 55.51
Ours k = 5 62.17 47.42 63.52 57.70
Ours k = 10 61.20 46.08 66.00 57.76
Ours k = 20 63.45 47.11 62.23 57.60

(b) Variance of target domain accuracy

Method Hyperparam. A C S Avg.

Hyperparameter: w

Ours w = 0.1 2.19 4.38 4.45 3.67
Ours w = 0.5 2.05 3.91 4.82 3.59
Ours w = 1.0 2.14 4.38 4.45 3.67
Ours w = 2.0 2.01 3.98 4.77 3.59
Ours w = 4.0 2.44 3.77 4.75 3.65
Ours w = 10.0 2.11 4.14 4.56 3.50

Hyperparameter: λ

Ours λ = 0.001 2.13 3.65 5.22 3.67
Ours λ = 0.005 2.01 3.98 4.77 3.59
Ours λ = 0.01 1.99 4.04 4.71 3.58
Ours λ = 0.1 2.44 4.16 4.58 3.73

Hyperparameter: k

Ours k = 1 2.35 4.74 4.93 4.01
Ours k = 5 2.14 4.26 4.81 3.74
Ours k = 10 2.01 3.98 4.77 3.59
Ours k = 20 2.39 3.85 4.56 3.60

Generally, for a parameter-averaged model to display ensemble effects, some conditions should be
simultaneously met (Ramé et al., 2023). (1) Share an identical initialization: models that share an
initialization backbone tend to display very low loss barriers, showing mode connectivity. (2) Trained
on same data: Models trained on identical source data (Choshen et al., 2022) tend to display mode
connectivity, while models trained on varying data commonly do not (Ainsworth et al., 2023). In
our case, the first condition is already met, while the second condition may have been broken due
to the varying effects of data augmentation. Drawing from this, we hypothesize that the failure
case above potentially derives from violating the second condition. In specific, we believe that
the discrepancy between two very different augmented domains breaks the alignment between the
model snapshots. In this sense, the PEER may help parameter-space ensembling by encouraging the
regularized proxy model to align the newly augmented domain to the task model’s source domain
Sec. 4.1. Unfortunately, the alignment of models in its loss landscape is a topic that has not yet been
thoroughly analyzed from a theoretical perspective, especially for models with deep architectures.
While our empirical analysis may provide some insight, we believe further research is required on
this topic.

D ABLATION STUDY

D.1 STUDY OF HYPERPARAMETERS

We explore our method’s sensitivity to hyperparameters. (w): w is the hyperparameter used in Eq. (4),
which functions as the balancing weight of the ERM objective and the regularization objective Eq. (2).
We find that w does not severely impact the course of training unless set to 0. We find that during
training, the two losses are automatically tuned to match the magnitude of the w. (λ): λ is the
hyperparameter used for PEER that operates as the balancing weight of the two functions in Eq. (3).
We begin with the value in the original paper (Zbontar et al., 2021) with λ = 0.005, and an alternate
value 1

r introduced in Tsai et al. (2021) where r is the length of a vector inR (regularization head
output space). We observe that our method is resilient to the switch between two candidate values of
λ although we cannot guarantee they are optimal. (k): The augmentation reinitialization criteria k is
set as 10 for all experiments to ensure that the proxy model is sufficiently trained before switching
the augmentation strategy. We find that switching k with larger numbers causes no problem in
training, but setting them too low k < 2 poses issues in aligning the proxy model with the task model,
undermining the fluctuation stabilization effect.

We share the experimental results of our study on hyperparameters in Table 8a and Table 8b. As
illustrated above, our method PEER showed resilience to changes in w and λ. Both the target domain

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 9: Target domain accuracy with different backbone architectures.

PACS Office-Home VLCS

Method A C S Avg. Art Clipart Product Avg. L C S Avg.

AlexNet ResNet-18 ResNet-18

RandAug [11] 54.17 47.48 65.11 55.59 43.10 45.47 61.67 50.01 57.58 93.18 66.56 72.44
PEER (ours) 62.66 47.40 68.21 59.42 56.81 54.23 70.84 60.63 67.00 97.73 72.56 79.10

ResNet-18 ResNet-50 ResNet-50

RandAug [11] 65.64 38.27 56.32 53.68 64.11 53.86 76.70 64.89 56.95 94.39 71.09 74.15
PEER (ours) 70.08 50.85 70.71 63.88 67.10 59.88 79.69 68.89 62.46 99.01 79.03 80.16

Table 10: Variance of the target domain accuracy with backbone architectures.

PACS Office-Home VLCS

Method A C S Avg. Art Clipart Product Avg. L C S Avg.

AlexNet ResNet-18 ResNet-18

RandAug [11] 2.23 4.81 5.01 4.02 3.49 2.17 2.74 1.89 3.02 1.61 1.96 2.20
PEER (ours) 2.01 3.98 4.77 3.59 3.99 1.41 1.80 1.31 2.05 1.61 2.10 1.92

ResNet-18 ResNet-50 ResNet-50

RandAug [11] 6.17 7.32 6.44 6.64 7.17 2.41 4.55 4.71 3.45 2.11 2.73 2.76
PEER (ours) 3.03 4.56 9.44 5.68 2.24 4.41 0.81 2.49 2.67 1.72 3.57 2.65

Table 11: Target domain accuracy with/without projection head R.

PACS Digits

Method Proj. Head. A C S Avg. SVHN M-M S-D USPS Avg.

PEER (ours) ✓ 62.66 47.40 68.21 59.42 70.79 76.84 83.05 93.57 81.06
PEER (ours) ✗ 62.76 43.26 66.00 57.34 76.34 93.07 68.96 80.36 79.68

accuracy and the OOD fluctuation were insensitive to the change in these two hyperparameters.
However, we find that k affects the fluctuation stabilization effect of our method, where setting k < 1
resulted in a slightly higher variance (4.01). This aligns with our expectations, as the proxy and task
model may not benefit from the PEER regularization in just a single epoch. However, we discover that
k influences the stabilization of fluctuations in our method, with k < 2 leading to a slightly higher
variance (4.01). This aligns with our expectations, as the proxy and task model may not fully benefit
from the PEER regularization within a single epoch.

D.2 STUDY OF MODEL SIZE

In this section, we present our findings on the effect of model size on generalization. We observe
that larger models/backbones generally improve target domain accuracy. To demonstrate this, we
replaced the backbones in three experiments: switching from AlexNet to ResNet-18 for PACS, and
from ResNet-18 to ResNet-50 for Office-Home and VLCS. All backbones (AlexNet, ResNet-18,
ResNet-50) were pre-trained on the same Imagenet1k dataset. We found that as the backbone size
increased, target domain accuracy improved (Table 8a), though mid-train OOD fluctuation (variance
of the target domain accuracy) increased slightly (Table 8b). However, the gain in accuracy outweighs
the rise in variance, suggesting that larger models enhance generalization. We recommend future
work to replace default backbones (e.g., AlexNet for PACS, 3-layer MLP for Digits) with larger ones
(e.g., ResNets, ViTs).

E IMPLEMENTATION DETAIL

In this section, we report the implementation details of our method.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

E.1 DATASETS

Here, we elaborate on the datasets used in our experiments.

PACS (Li et al., 2017) consists of 4 domains of differing styles (Photo, Art, Cartoon, and Sketch)
with 7 classes. In default, we train our model with the Photo domain and evaluate the remaining
target domains. We use the train/test split provided by the original paper (Li et al., 2017).

Digits is comprised of 5 different digit classification datasets, MNIST (Deng, 2012), SVHN (Netzer
et al., 2011), MNIST-M (Ganin et al., 2015), SYNDIGIT (Ganin & Lempitsky, 2015), USPS (Le Cun
et al., 1989). In our experiment, we train our model with the first 10,000 samples of the MNIST
dataset and assess its generalization accuracy across the remaining four domains.

Office-Home (Venkateswara et al., 2017) is a common benchmark for DG, but not for sDG. The
benchmark consists of 4 datasets (Real-world, Art, Clipart, Product) with differing styles with 65
classes. We train on the Real-world domain and evaluate the remaining domains.

VLCS (Fang et al., 2013) is also a common benchmark for DG, but not commonly used to evaluate
sDG methods. The benchmark consists of 4 datasets (PASCAL-VOC, LabelMe, Caltech-101, SUN09)
with differing styles with 5 classes. We train on the PASCAL-VOC domain and test the trained model
on the remaining target domains.

For reproducibility, we provide the data used in our experiments as serialized pickle files (i.e., .pkl
files).

E.2 DATA AUGMENTATION

In our experiments, we used the Random Augmentation (Cubuk et al., 2020) strategy as the aug-
mentation function. The random augmentation method has two hyperparameters, the augmentation
magnitude, and the number of transformations. Generally, previous works have used random aug-
mentation by fixing the hyperparameters.

As outlined in Algorithm 1, we periodically reinitialize the augmentation function by randomly
selecting two hyperparameters, ensuring diverse augmented samples (Fig. 3). We find that changing
the random augmentation configuration during training enhances generalization. While training a
single model on these varied samples can lead to feature distortion, PEER mitigates this through
parameter averaging. In Sec. 5, we have shown that simple random augmentation outperforms
sophisticated augmentation strategies devised for single source domain generalization.

E.3 BASELINES

Here, we provide detailed descriptions of each baseline. ERM (Koltchinskii, 2011) is the baseline of
training without data augmentation, followed by several augmentation-based sDG methods that use
complex adversarial schemes to generate challenging augmentations (Qiao et al., 2020; Wang et al.,
2021b; Li et al., 2021). M-ADA (Qiao et al., 2020) adopted a Wasserstein autoencoder to regularize
perturbation in the latent space, L2D (Wang et al., 2021b) takes a meta-learning approach to generate
augmented domains, while PDEN (Li et al., 2021) and AdvST (Zheng et al., 2024) expand the
training domains by progressively learning multiple augmentation modules, each simulating different
domain shifts. Alternatively, MetaCNN (Wan et al., 2022) used a meta-convolutional network to
learn generalized meta-features from local convolutional features. In contrast, we show that with
PEER, simple random augmentation can outperform all the baselines.

E.4 MODEL ARCHITECTURE

We report the details of model architectures used in our experiments. All models were built to match
the architecture used in previous studies.

Task Model The task model architecture varies in each experiment. For each experiment, we report
the feature extractor H and the regularization head R of the task model F . Please note that the proxy
model P uses a model with an identical architecture as the task model F .

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

The task model used in the PACS experiment is AlexNet (Krizhevsky et al., 2012), pre-trained on
ImageNet (Russakovsky et al., 2014). The model consists of 5 convolutional layers with channels
of {96, 256, 384, 384, 256}, followed by two fully-connected layers of size 4096 units. The
regularization head R is a 3 layer MLP. The output dimension of the regularization head is 1024.

The task model used in the Digits experiment is a multi-layer CNN network (i.e. conv-pool-conv-
pool-fc-fc-softmax). The architecture consists of two 5 × 5 convolutional layers, with 64 and 128
channels respectively. Each convolutional layer is followed by a MaxPooling layer (2 × 2). The
network also includes two fully connected layers with sizes of 1024, 1024 being the final output
dimension of the feature extractor. The regularization head R is a 2 layer MLP. The output dimension
of the regularization head is 128.

Lastly, the task model used in the Office-Home and VLCS experiment is a ResNet-18 network. The
ResNet is torchvision implemented and pre-trained on the ImageNet dataset. The regularization head
R is a 3 layer MLP. The output dimension of the regularization head is 1024.

Teacher Model for the PEER vs. Teacher Experiment For the PEER vs. Teacher experiment,
we used pre-trained models as a teacher model. In the PACS experiment, we used a pre-trained
RegNetY-16GF model. The RegNetY-16GF is a variant of the RegNet family, a line of foundation
image models introduced in Radosavovic et al. (2020) for image classification. The name of the
model indicates its configurations, where the "Y" indicates the convolution method, and the "16GF"
represents the model’s capacity or complexity. We implement the model, and its model weights using
the torchvision (Falbel, 2023) library. For the Digits experiment, we used a pre-trained model sharing
the same architecture as the task model. As elaborated in Appendix A, this is because a pre-trained
model fit for use in digit classification was hard to obtain. Hence, following the practice of Cha et al.
(2022), we trained the model with the source and target domains of Digits to create an Oracle model.

E.5 MODEL TRAINING

In this section, we elaborate on the details of the training process. We explicitly state the training
hyperparameters (e.g., number of training epochs, augmentation reinitialization criteria k, learning
rate, the type of the optimizer, learning rate scheduler, and batch size). All experiments are carried
out using a single NVIDIA RTX 6000.

PACS For the PACS experiment, we set the training epochs as 200, and the augmentation reinitial-
ization criteria k as 10. We tuned the number of epochs by analyzing the training behavior of the
generators. We set the learning rate as 1e− 4, using the Adam optimizer (Kingma & Ba, 2015). The
batch size was set as 128. In total, the PACS experiment took roughly 101 minutes.

Digits For the Digits experiment, we set the training epochs as 1000, and the augmentation
reinitialization criteria k as 10. The learning rate was tuned as 0.0001, using the Adam optimizer.
The batch size was set as 128. In total, the Digits experiment took roughly 233 minutes.

Office-Home For the Office-Home experiment, the training epochs are set as 200, and the k as 10.
The learning rate was set as 0.0001, using the Adam optimizer. The batch size was set as 64. In total,
the Office-Home experiment took roughly 128 minutes.

VLCS Lastly, for the VLCS experiment, we train for 200 epochs, and the k as 10. The learning
rate was set as 0.0001, using the Adam optimizer. The batch size was set as 128. In total, the VLCS
experiment took roughly 117 minutes.

E.6 MODEL PRE-TRAINING

In this section, we report the information regarding the pre-training process. As mentioned above, we
pre-trained our task model with the source domain before the main training procedure. We announce
the number of pre-training epochs, the learning rate, the optimizer, the learning rate scheduler, and
the batch size.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

PACS We pre-trained the AlexNet with the train data of the Photo domain, using the train split
introduced in the original paper (Li et al., 2017). We pre-trained the model for 60 epochs, with a
learning rate of 0.005 using the SGD optimizer. We further used the Step learning rate scheduler with
a gamma rate (i.e. the strength of the learning rate decay) of 0.5. The batch size was set as 32.

Digits For the Digits experiment, we set the number of pre-training epochs as 100, with a learning
rate of 0.0001 using the Adam optimizer. The batch size was set as 256.

Office-Home We pre-trained the ResNet18 with the train split of the Real World domain. We
pre-trained the model for 100 epochs, with a learning rate of 0.0001 using the Adam optimizer. We
used no learning rate scheduler. The batch size was set as 64.

VLCS We pre-trained the ResNet18 with the train split of the PASCAL VOC domain. We pre-
trained the model for 100 epochs, with a learning rate of 0.0001 using the Adam optimizer. We used
no learning rate scheduler. The batch size was set as 64.

E.7 HYPERPARAMETERS

In this part, we state the hyperparameters used in our experiments.

λ is a balancing coefficient for LPEER, an objective adopting the feature-decorrelation loss introduced
in Zbontar et al. (2021). We tuned λ using experimental results of the original paper and Tsai et al.
(2021). In the original paper, the author reported the optimal value of the balancing term as 0.005,
which remains consistent under varying projection dimensions. We set this as a starting point for
hyperparameter tuning. We find that if λ balances the off-diagonal term (i.e. redundancy reduction
term) and the diagonal term (i.e. alignment term) to a similar degree, no significant differences are
observed. Furthermore, switching λ to 1

d ≈ 0.0001 showed no significant changes to the learning
process. Here, d denotes the projection dimension of the regularization head R (regularization
head output space). While we cannot guarantee an optimal value for λ, we set λ = 0.005 for our
experiments using PEER.

k is an augmentation reinitialization criterion that performs two roles. (1) Augmentation reinitial-
ization: For every k epoch, the augmentation function is initialized. Here, reinitialization refers to
the change in augmentation policy. For instance, for random augmentation, reinitialization refers
to the change in augmentation strength. Alternatively, for augmentation techniques that utilize a
learnable module (Li et al., 2021), the reinitialization would refer to reinitializing the parameters of
the augmentation module. The motive behind the reinitialization is to expose the proxy model with
diverse augmentations, (2) PEER update: For every k epoch, the parameters of the proxy model P are
used to update the task model by averaging their parameters.

Lastly, w is a hyperparameter used in Eq. (4), which balances the ERM objective and the regularization
objective Eq. (2). As studied in Appendix D.1, w does not affect the performance of our method. We
have set w as 2.0 based upon experimental results in Table 8.

24


	Introduction
	Related Works
	Observation: Pitfalls of Augmentation for Generalization
	Augment-and-Align: Augmentation-based Approaches to sDG
	Mid-train OOD fluctuation of Augmentation-Based sDG Methods

	Parameter-Space Ensemble with Entropy Regularization
	Regulating the Proxy Model with peer
	Accumulating Knowledge in the Task Model with peer
	Discussion

	Experiment
	Experimental Setup
	Main Results
	Detailed Analysis on peer
	Advantages of peer in Model-to-Model Regularization
	Effect of peer on Parameter-Averaging
	Effect of PEER on Learned Features

	Ablation Study

	Conclusion
	Study on Model-to-Model Regularization
	Discussions
	Discussion on the fluctuation
	Discussion on peer as a Mutual Information Optimization

	Effect of peer on the model
	Effect on Learned Features (continued)
	Effect on Parameter-Averaging (continued)

	Ablation Study
	Study of Hyperparameters
	Study of Model Size

	Implementation Detail
	Datasets
	Data Augmentation
	Baselines
	Model Architecture
	Model Training
	Model pre-training
	Hyperparameters


