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Abstract

Vision Transformers (ViTs) have become the backbone of vision foundation models,1

yet their optimization for multi-channel domains—such as cell painting or satellite2

imagery—remains underexplored. A key challenge in these domains is capturing3

interactions between channels, as each channel carries different information. While4

existing works have shown efficacy by treating each channel independently during5

tokenization, this approach naturally introduces a major computational bottleneck6

in the attention block: channel-wise comparisons leads to a quadratic growth in7

attention, resulting in excessive FLOPs and high training cost. In this work, we8

shift focus from efficacy to the overlooked efficiency challenge in cross-channel9

attention and ask: “Is it necessary to model all channel interactions?". Inspired10

by the philosophy of Sparse Mixture-of-Experts (MoE), we propose MoE-ViT, a11

Mixture-of-Experts architecture for multi-channel images in ViTs, which treats12

each channel as an expert and employs a lightweight router to select only the most13

relevant experts per patch for attention. Proof-of-concept experiments on real-world14

datasets—JUMP-CP and So2Sat—demonstrate that MoE-ViT achieves substantial15

efficiency gains without sacrificing, and in some cases enhancing, performance,16

making it a practical and attractive backbone for multi-channel imaging.17

1 Introduction18

. . .

Figure 1: Conceptual illustration
of multi-channel imaging. Each
patch contains multiple channels
represented by different colors.

Vision Transformers (ViTs) have become the de facto backbone19

of many modern vision foundation models [5, 16]. However,20

their generalization beyond conventional RGB images (i.e., 3-21

channel inputs) remains underexplored—particularly in the context22

of multi-channel imaging (Figure 1) such as cellular fluorescence23

microscopy or satellite remote sensing [1]. Addressing this gap is24

important given the growing prevalence of multi-channel datasets25

in scientific and industrial domains, where the number of spectral26

or modality-specific channels continues to increase. Multi-channel27

modalities carry distinct and complementary information—each28

channel may correspond to a unique wavelength, staining protocol,29

or sensing modality, revealing structures or patterns invisible to30

other channels [1, 7, 18]. Effectively modeling the relationships31

across channels is thus crucial for unlocking the full potential of32

multi-channel imaging [1].33

Common approaches to adapt ViTs for multi-channel settings typically adopt a channel-wise design:34

instead of treating a patch as a multi-channel concatenated token, these models process each channel35

separately, creating a distinct patch token per channel [1, 2, 11]. While this design improves36

downstream performance by better capturing channel-specific interactions, it introduces a critical37

drawback: the attention cost scales quadratically with both the number of patches (N ) and channels38

(C), increasing from the standard O(N2) to O(N2C2). This leads to prohibitively high FLOPs and39

memory usage, severely limiting real-world deployment—especially when C or N are large.40
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In this work, we shift focus from maximizing efficacy to tackling the efficiency directly, raising a41

natural question:42

(Q) Do all channels need to participate in attention for every patch? Or can we selectively
involve only the most relevant channel interactions per patch?

43

Our answer is: No—not all channel interactions are necessary; Yes—we can selectively involve44

only the relevant ones. Motivated by the Sparse Mixture-of-Experts (MoE) design, where a router45

activates only the top-k relevant experts for each input, we map channels onto experts and introduce46

a lightweight channel router that dynamically selects only the most relevant channels for each47

patch’s attention. This reduces complexity from O(N2C2) to O(N2Ck), where k ≪ C (often 1–2),48

dramatically lowering computation while preserving the most important cross-channel interactions.49

As a proof-of-concept, we evaluate our method on two multi-channel imaging datasets: the cellular50

perturbation dataset JUMP-CP [7] (8 channels) and the remote sensing dataset So2Sat [18] (1851

channels). Using the same backbone and architecture as recent state-of-the-art channel-wise ViTs52

[5, 2], we simply replace the standard multi-head attention in each Transformer layer with our53

proposed channel-router-based attention. This minimal change allows our model to match—and in54

some cases outperform—strong baselines, while requiring fewer FLOPs.55

By introducing sparsity into the cross-channel dimension, our approach achieves a principled balance56

between accuracy and efficiency, enabling scalable, cost-efficient adoption of multi-channel ViTs in57

large-scale and resource-constrained applications.58

2 Related Works59

Vision Transformers (ViTs) for Multi-Channel Imaging. While ViTs have achieved remarkable60

success on RGB images, their extension to multi-channel imaging—where each channel often61

carries distinct and complementary information—remains underexplored. Channel-ViT [1] processes62

channels separately at the patch level, improving accuracy but increasing computation. ChAda-63

ViT [2] leverages self-supervised pretraining with token padding/masking, while DiChaViT [11]64

enhances both intra- and inter-channel feature diversity. However, these methods still incur the65

high cost of exhaustive cross-channel attention. Although techniques such as Hierarchical Channel66

Sampling (HCS) [1, 11] reduce cost by randomly selecting channels during training, this randomness67

can overlook patch-relevant channels and still requires full-channel interaction at inference. We68

address these limitations with a lightweight channel router that selectively activates only the most69

relevant channels, enabling efficient yet informative cross-channel interactions.70

Sparse Mixture-of-Experts (MoE). The SMoE model builds on the traditional Mixture-of-Experts71

framework by introducing sparsity to enhance both computational efficiency and model scalability [14,72

3]. Unlike dense models, SMoE activates only a subset of relevant experts for each task using top-k73

operation, reducing computational load and enabling effective handling of complex, high-dimensional74

data. This selective activation has proven advantageous across diverse domains, including vision and75

language tasks, where it can dynamically adapt different parts of the network to specialized sub-tasks76

or data types [13, 9, 17, 12].77

In this work, we pioneer the adaptation of SMoE to the multi-channel image domain—a setting that78

remains underexplored yet holds significant potential—leveraging its computational efficiency to79

model diverse channel interactions in a more lightweight manner, making it readily deployable in80

practical scenarios.81

3 Methodology82

3.1 SMoE Notation83

The SMoE comprises several experts, denoted as f1, f2, . . . , fE , where E represents the total number84

of experts, and a router,R, which selects necessary experts in a sparse fashion. For a given embedding85

x, the top-k experts are engaged by R based on the highest scores R(x)j , where j indicates the86

expert index. This procedure is formulated as follows:87
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Figure 2: Overview of MoE-ViT. (a) While the vanilla ViT adopts a standard Multi-Head Attention
module in the transformer encoder block, MoE-ViT replaces it with a specialized Multi-Head Channel
MoE module tailored for multi-channel imaging. (b) Inside the Multi-Head Channel MoE module,
input patches pass through the channel router, which allocates each patch to the most relevant channels
for interaction (top-2 in this example). Once routing is completed, based on patch and expert indices,
we loop each channel to perform patch–channel cross-attention. Specifically, patches routed to a given
channel (Channel 4 in this example) serve as the source matrix (Query), while patches belonging to
that channel serve as the target matrix (Key and Value) for the cross-attention operation.

y =

k∑
j=1

R(x)j · fj(x),

R(x) = Top-K(softmax(g(x)), k),
v = softmax(g(x)),

Top-K(v, k) =

{
v, if v is in the top k,

0, otherwise.

(1)

where y denotes the final output of the SMoE layer, computed as the weighted sum of expert outputs88

fj(x) scaled by their router-assigned weightsR(x)j . The function g is a trainable module—typically89

a small Feedforward Neural Network (FFN) with one or a few layers [15, 13]. The Top-K(·) operation90

preserves an element of a vector v only if its probability ranks within the top K; otherwise, it is91

replaced with zero.92

3.2 Our Approach: MoE-ViT93

Motivated by SMoE’s principle of selecting only the most relevant experts, we extend this philosophy94

to multi-channel imaging by treating each channel as an expert. This aligns naturally with the SMoE95

paradigm, where each expert specializes in capturing a certain context—in our case, channel-specific96

information—and is activated sparsely so that only the most significant channels are involved. To97

implement this idea, we replace the Multi-Head Attention module in the ViT architecture with our98

proposed Channel MoE, in which a channel router (a single-layer FFN) selects the channels to99

interact with for a given patch. We then perform patch–channel cross-attention: patches routed100

to a given channel serve as queries, while patches within that channel act as keys and values to101

capture cross-channel interactions at the patch level. This lightweight design significantly reduces102

the computational cost compared to prior approaches that required interactions with all available103

channels. An overview of MoE-ViT is shown in Figure 2. We next describe two main stages: (1)104

Patch–Channel Routing (Section 3.2.1) and (2) Patch–Channel Cross-Attention (Section 3.2.2).105

3.2.1 Patch-Channel Routing106

We consider a multi-channel image input X ∈ RB×H×W×C , where B is the batch size, (H,W ) are107

the image resolutions, and C is the number of channels. Similar to ViT [6], we first partition the image108

into non-overlapping patches of size (P, P ) along the spatial dimensions, resulting in N = HW
P 2109

patches per channel. Each patch is then flattened into a vector, yielding a sequence xp ∈ RN×(P 2·C),110

where N is the number of spatial patches and C is the number of channels. We then apply a trainable111

linear projection to map each vector to a D-dimensional token embedding.112
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In our setting, we treat each channel separately, similar to channel-wise ViTs, and denote the token113

at spatial position i and channel j as Pi,j ∈ RD. We add both learnable positional embeddings114

(for spatial location) and channel embeddings (for channel identity), followed by a feed-forward115

transformation applied to each token:116

P ′
i,j = Pi,j + posi + chanj , (2)

hi,j = FFN(P ′
i,j) ∈ RD. (3)

With the token embeddings prepared, existing approaches typically perform multi-head attention117

over all tokens across all channels, incurring a computational cost of O(N2C2). Instead, we adopt118

the SMoE philosophy to achieve sparsity in channel interactions. Specifically, we adapt the original119

SMoE formulation (Equation 1) by setting the number of experts equal to the number of channels,120

assigning one expert per channel so that each expert specializes in channel-specific information.121

Formally, we define a set of C channel experts {fk}Ck=1, one per channel. Each token (i.e., patch122

embedding) is routed to a subset of these channel experts for interaction. To this end, we introduce a123

gating function g : RD → RC , implemented as a single linear layer in MoE-ViT, which produces124

routing scoresR(·). At the same time, we obtain the set of top-k selected experts E(·) as follows:125

R(hi,j) = Top-K(softmax(g(hi,j)), k) ∈ RC (4)
E(i, j) = { c | R(hi,j)[c] ̸= 0 } (5)

whereR(hi,j) denotes the routing scores1 of the patch at (i, j), and E(i, j) denotes the set of expert126

(channel) indices selected for that patch. By doing so, each patch is sparsely routed to k channels and127

is now ready for patch–channel cross-attention.128

3.2.2 Patch-Channel Cross-Attention129

Once routing is complete, next is to capture interactions between each patch and its selected channels130

(i.e., the patches within those channels). Specifically, for each channel k, we form two matrices: (i) a131

source matrix Sk, containing all patches routed to channel k; and (ii) a target matrix Tk, containing132

all patches from channel k, as illustrated in Figure 2 (b). Formally, these matrices are defined as:133

Sk =
{
hi,j

∣∣ k ∈ E(i, j),∀i, j } ∈ RNk×D, (6)

Tk =
{
hi,k

∣∣ ∀i} ∈ RMk×D. (7)

where Nk is the number of patches routed to channel k, and Mk is the number of patches in channel134

k. We perform cross-attention from the sources to the targets, employing a shared projection for the135

sources and channel-specific projections for the targets, using scaled dot-product attention as follows:136

Qk = SkW
Q, Kk = TkW

K
k , Vk = TkW

V
k , (8)

Ak = softmax

(
QkK

⊤
k√

dk

)
∈ RNk×Mk , Ok = AkVk ∈ RNk×D. (9)

Here, WQ, WK
· , and WV

· ∈ RD×D are learnable linear projections. It is worth noting that the137

channel-specific key (WK
k ) and value (WV

k ) projections serve the role of channel-specific experts in138

the sparse MoE formulation (Equation 1), with each expert fk specialized for processing information139

from its corresponding channel.140

Finally, for each original token (i, j) we aggregate the outputs from all experts it visited. By default141

we use uniform averaging over the selected experts:142

1For balancing, following standard MoE regularization techniques (e.g., importance/load losses [14]), we
employ this regularizer to encourage uniform expert activation and mitigate routing collapse.
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Algorithm 1: Patch-Channel Routing and Cross-Attention

Input: Patches Pi,j ∈ RD for position i and channel j
Output: Updated patch embeddings ĥi,j ∈ RD

1 /* Token Embedding + Positional & Channel Embedding */
2 for j = 1, . . . , C do
3 for i = 1, . . . ,H ×W do
4 P ′

i,j ← Pi,j + posi + chanj
5 hi,j ← FFN(P ′

i,j) ; // Shape: [D]

6 /* Patch-Channel Routing */
7 foreach hi,j do
8 R(hi,j)← Top-K(softmax(g(hi,j)), k)
9 E(i, j)← { c | R(hi,j)[c] ̸= 0 }

10 /* Patch-Channel Cross-Attention */
11 for k = 1, . . . ,K do
12 Sk ←

{
hi,j

∣∣ k ∈ E(i, j),∀i, j } ; // Shape: [Nk ×D]

13 Tk ←
{
hi,k

∣∣ ∀i} ; // Shape: [Mk ×D]

14 Qk ← SkW
Q, Kk ← TkW

K
k , Vk ← TkW

V
k

15 Ak ← softmax
(

QkK
T
k√

dk

)
; // Shape: [Nk ×Mk]

16 Ok ← AkVk ; // Shape: [Nk ×D]

17 /* Aggregation */
18 foreach (i, j) do
19 ĥi,j ←

∑
k∈E(i,j)

R(hi,j)k ·Ok[idx(i, j)] ; // Shape: [D]

ĥi,j =
∑

k∈E(i,j)

R(hi,j)k ·Ok[idx(i, j)] (10)

where ĥi,j is the updated embedding of patch (i, j), and idx(i, j) retrieves the row of Ok corre-143

sponding to (i, j) in Sk. In summary, keeping the backbone and all other modules unchanged, but144

replacing the standard Multi-Head Attention in the Transformer encoder with our proposed MoE-145

ViT channel-routing mechanism, allows each patch to be updated only through interactions with146

its relevant channels, thereby reducing computational cost. The overall procedure of MoE-ViT is147

summarized in Algorithm 1.148

Complexity. For the attention term, in standard multi-head self-attention over multi-channel149

inputs, each of the NC tokens (N spatial patches per channel and C channels) attends to all others,150

yielding O(BN2C2D) for (QK⊤, AV ). In our MoE design, the router assigns each token to only151

k ≪ C channels. Let Nk and Mk be the numbers of source and target tokens for channel k. With152

Mk ≈ N and
∑C

k=1 Nk = kNC (uniform routing), the total becomes O(BN2CkD), a k
C fraction153

of the full attention cost.154

For the projection term, standard attention applies a shared WQ to all tokens and a shared WK ,WV155

per channel, costing O(BNCD2) per type, i.e., 3 × O(BNCD2). Our design keeps WQ shared156

but applies WK
k and WV

k only to k selected channels, giving O(BNkD2) per type.157

The attention and projection costs equal the standard case only when k = C and scales down with158

smaller k. Since attention scales as O(N2) and projection as O(N), reducing the attention cost159

dominates overall FLOPs savings for N ≫ D, enabling substantial efficiency gains while preserving160

cross-channel modeling.161
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4 Experiments162

Datasets We evaluate MoE-ViT and baselines across two datasets in different domains (microscopy163

and satellite imagery), showing its general utility in reducing compute (FLOPs) while increasing164

accuracy. (1) JUMP-CP[7] is a microscopy dataset with images of cell crops (224×224) that165

underwent chemical perturbations. We focus on plate BR00116991 as in [1], which contains 127k166

training, 45k validation, and 45k test images. The images have 5 fluorescence and 3 bright field167

channels, totaling 8 channels. The task is to classify treatment groups from 161 classes. (2)168

So2Sat [18] contains satellite imagery from two remote sensors with 8 channels from Sentinel-1 and169

10 channels from Sentinel-2, totaling 18 channels. Each crop is 32×32. The task is to classify 17170

climate zones. We use 352k training and 24k test images.171

Baselines As MoE-ViT builds upon channel-wise ViTs by introducing a simple yet effective mod-172

ification to the multi-head attention (MHA) module in the Transformer encoder, we compare it173

against the most representative and well-established ViT-based baselines. Specifically, we consider174

a standard ViT (ViT-Small)[6] that integrates all channels jointly, and two channel-wise variants:175

ChAda-ViT[2] and DiChaViT [11]. ChAda-ViT follows the Channel-ViT [1] design and incorporates176

enhancements originally intended for self-supervised training, while DiChaViT further improves intra-177

and inter-channel representations in the latent space. For fair comparison, we trained ChAda-ViT178

from scratch in a supervised setting, without self-supervised pretraining.179

Experimental Settings We follow the experimental setup of Channel-ViT [1], training MoE-ViT and180

baselines—vanilla ViT [5], ChAda-ViT [2], and DiChaViT [11]—for 100 epochs on JUMP-CP and181

So2Sat, evaluating top-1 classification accuracy using the CLS token representation. Due to licensing182

restrictions, Channel-ViT results are unavailable. GFLOPs are reported as a proxy for attention cost.183

Baselines follow their original configurations, while MoE-ViT adapts ChAda-ViT with our sparse184

MoE attention. All models use ViT-Small backbones with AdamW [10] and hierarchical channel185

sampling (HCS) [1] during training. We employ patch size 16 and 8 for JUMP-CP and So2Sat,186

respectively.187

Table 1: Performance comparison on the JUMP-CP dataset (ViT-S/16 as the backbone). Attn. denotes
attention, and # of Act. Param. denotes the number of activated parameters in the entire model.
Complexity and GFLOPs are measured during inference. For MoE-ViT, calculations include the
channel router and channel-specific key/value projections in cross-attention, while keeping all other
Transformer encoder modules identical to the baseline.

JUMP-CP
Acc Attn. Complexity Attn. GFLOPs # of Act. Param.

ViT 56.24 O(N2d) 0.29G 22.28M
ChAda-ViT 68.16 O(N2C2d) 5.65G 21.60M
DiChaViT 68.49 O(N2C2d) 5.65G 21.60M
MoE-ViT (Top-k=1) 64.06 O(N2Ckd) 2.33G 21.62M
MoE-ViT (Top-k=2) 66.44 O(N2Ckd) 2.81G 25.18M
MoE-ViT (Top-k=C) 70.16 O(N2C2d) 5.65G 46.47M

4.1 Primary Results188

Tables 1 and 2 summarize the performance and efficiency trade-offs of MoE-ViT compared to existing189

baselines. We make the following key observations:190

(1) Balancing accuracy and efficiency. On both datasets, the vanilla ViT achieves the lowest191

attention cost (0.29G GFLOPs in JUMP-CP and 0.02G GFLOPs in So2Sat) but also the lowest top-1192

classification accuracy (56.24% and 58.93%, respectively), reflecting the limitations of embedding193

all channels jointly without explicitly modeling cross-channel interactions. In contrast, channel-wise194

ViTs such as ChAda-ViT and DiChaViT substantially improve accuracy (+12.25% on JUMP-CP and195

+5.01% on So2Sat) but incur a significant increase in attention cost (5.65G GFLOPs in JUMP-CP196

and 0.47G GFLOPs in So2Sat). Our proposed MoE-ViT strikes a favorable balance between these197

extremes: with Top-k = 2, it reduces attention cost by roughly 50% (2.81G GFLOPs in JUMP-CP)198

compared to ChAda-ViT while sacrificing only 2.05% accuracy; notably, on So2Sat, it even improves199
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Table 2: Performance comparison in So2Sat dataset (ViT-S/8 as the backbone). Attn. denotes
attention, and # of Act. Param. denotes the number of activated parameters in the entire model.
Complexity and GFLOPs are measured during inference. For MoE-ViT, calculations include the
channel router and channel-specific key/value projections in cross-attention, while keeping all other
Transformer encoder modules identical to the baseline.

So2Sat
Acc Attn. Complexity Attn. GFLOPs # of Act. Param.

ViT 58.93 O(N2d) 0.02G 21.76M
ChAda-ViT 63.94 O(N2C2d) 0.47G 21.35M
DiChaViT 63.80 O(N2C2d) 0.47G 21.35M
MoE-ViT (Top-k=1) 63.12 O(N2Ckd) 0.35G 21.43M
MoE-ViT (Top-k=2) 64.66 O(N2Ckd) 0.36G 24.98M

accuracy by +0.72% while using 23% fewer GFLOPs, demonstrating competitive performance at200

markedly lower computational cost.201

(2) Full-channel MoE-ViT (Top-k = C). When the number of active experts is set equal to the202

total number of channels, MoE-ViT matches the attention cost of cross-channel attention baselines203

(5.65G GFLOPs in JUMP-CP and 0.47G GFLOPs in So2Sat) but achieves higher accuracy—a gain204

of +1.67% on JUMP-CP and +0.72% on So2Sat over the best baseline. This improvement is likely205

due to the use of channel-specific key and value projections in MoE-ViT. By assigning each channel206

its own expert, the model effectively increases its representational capacity. Despite this increase in207

parameters, the theoretical computational complexity is not elevated, since the MoE formulation only208

activates a subset of experts per forward pass.209

(3) Extreme sparsity (Top-k = 1). Under the most restrictive configuration, MoE-ViT achieves210

the lowest attention cost among all non-trivial methods (2.33G GFLOPs in JUMP-CP and 0.35G211

GFLOPs in So2Sat) while still outperforming vanilla ViT, demonstrating robustness to high sparsity212

in expert activation.213

(4) Dataset dependency. The relative efficiency gains of MoE-ViT are more pronounced in JUMP-214

CP, which contains larger images (224×224), than in So2Sat (32×32). This suggests that the215

computational savings from sparse expert routing scale with the number of spatial tokens, and216

datasets with larger spatial resolutions stand to benefit more from the proposed method.217

(5) Activated parameters and model capacity. Interestingly, vanilla ViT has a higher number of218

activated parameters than MoE-ViT with Top-k = 1 (22.28M vs. 21.62M in JUMP-CP), despite its219

lower attention complexity and inferior accuracy. This is because it concatenates all channels into a220

single vector, resulting in a higher-dimensional representation that is projected into the embedding221

space. Moreover, MoE-ViT with larger Top-k values can involve significantly more parameters during222

inference (e.g., 46.47M at Top-k = C in JUMP-CP) without incurring a quadratic increase in FLOPs.223

This ability to leverage substantially greater model capacity while maintaining modest computational224

cost is a key advantage—and arguably the most compelling aspect—of the MoE design.225

Overall, these results demonstrate that MoE-ViT not only matches or surpasses the accuracy of226

cross-channel attention baselines, but also offers fine-grained control over the efficiency–accuracy227

trade-off via the Top-k parameter, making it adaptable to diverse computational budgets and dataset228

characteristics.229

4.2 Ablation Study230

To better understand the efficiency gains from the top-k design in MoE-ViT, we conducted an ablation231

study varying both the patch size and the number of activated experts (top-k). Figure 3 illustrates the232

GFLOPs of the attention mechanism under these configurations for both the JUMP-CP and So2Sat233

datasets. We make the following observations: (1) Across both datasets, decreasing the patch size234

from 16 to 8 drastically increases the computational cost of attention—from 2.81 to 22.61 GFLOPs235

(8×) in JUMP-CP and from 0.085 to 0.359 GFLOPs (4×) in So2Sat at top-k = 2—as reducing the236

patch dimension (P ) naturally increases the number of tokens (N = HW
P 2 ). (2) With a fixed patch237

size, increasing top-k from 1 to 4 gradually increases GFLOPs (e.g., from 15.02 to 22.61, 30.19,238
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Figure 3: Ablation study comparing the Baseline (ChAda-ViT) and Ours (MoE-ViT) for varying
top-k values (i.e., channels) with patch sizes of 8 and 16 on both the JUMP-CP and So2Sat datasets.

and 37.77 in JUMP-CP), since more experts are involved in interactions per patch. (3) Despite this239

increase, MoE-ViT’s GFLOPs remain well below those of the baseline (ChAda-ViT), which exceeds240

65 GFLOPs due to attending to all available channels. This highlights the effectiveness of adopting a241

top-k design to control sparsity.242

5 Future Directions243

In this work, we presented a proof-of-concept demonstrating how a sparse mixture-of-experts (MoE)244

formulation can substantially reduce the FLOPs of channel-wise ViT architectures without sacrificing245

accuracy. Building on this work, we outline three main directions for future research.246

Training and Inference Time Optimization. While FLOPs provide a proxy for efficiency, actual247

training and inference time also depends on hardware utilization. To fully realize the benefits of MoE248

architectures, future work could explore tighter co-optimization between architecture and hardware.249

Leveraging specialized MoE libraries such as DeepSeek-MoE [4] or FastMoE [8]—which provide250

optimized kernels and routing strategies for modern accelerators—could yield further gains.251

Increasing Sparsity in the Target Matrix. Our current formulation reduces computation by252

assigning channel-specific experts, but the framework can be generalized further. For example, one253

could incorporate a patch-specific router that dynamically allocates experts across spatial regions,254

thereby further sparsifying the target matrix and reducing computational cost. Patch allocation could255

be made even sparser by combining our approach with batch-prioritized routing strategies, such as256

those proposed by Riquelme et al. [13], which prioritizes patches by their routing scores.257

Expanding to More Biological Datasets. Finally, there exists a rich set of multi-channel, large 2D258

(digital pathology), and 3D datasets both within biology and beyond where the proposed MoE-ViT259

framework could be applied.260

6 Conclusion261

In this work, we addressed a key limitation of channel-wise ViTs—their prohibitive computational262

cost in multi-channel imaging domains. By reinterpreting channels as experts and introducing a263

lightweight channel router, we proposed MoE-ViT, a sparse mixture-of-experts formulation that264

selectively activates only the most relevant cross-channel interactions per patch. This design reduces265

the quadratic complexity (O(N2C2)) of cross-channel attention to O(N2Ck)—linear in C for266

fixed k—while preserving classification accuracy. Experiments on two distinct datasets, JUMP-CP267

microscopy and So2Sat satellite imagery, show that MoE-ViT consistently achieves substantial268

FLOPs reductions while outperforming strong baselines such as ChAda-ViT and DiChaViT. Ablation269

studies further reveal that patch size has the largest impact on computational cost, while Top-k270

provides a tunable trade-off between capacity and efficiency at relatively low additional cost. Overall,271

these results demonstrate that sparse expert routing offers a principled approach to scaling ViTs to272

high-channel regimes without incurring prohibitive computation.273
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