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Abstract

Vision Transformers (ViTs) have become the backbone of vision foundation models,
yet their optimization for multi-channel domains—such as cell painting or satellite
imagery—remains underexplored. A key challenge in these domains is capturing
interactions between channels, as each channel carries different information. While
existing works have shown efficacy by treating each channel independently during
tokenization, this approach naturally introduces a major computational bottleneck
in the attention block: channel-wise comparisons leads to a quadratic growth in
attention, resulting in excessive FLOPs and high training cost. In this work, we
shift focus from efficacy to the overlooked efficiency challenge in cross-channel
attention and ask: “Is it necessary to model all channel interactions?". Inspired
by the philosophy of Sparse Mixture-of-Experts (MoE), we propose MoE-ViT, a
Mixture-of-Experts architecture for multi-channel images in ViTs, which treats
each channel as an expert and employs a lightweight router to select only the most
relevant experts per patch for attention. Proof-of-concept experiments on real-world
datasets—JUMP-CP and So2Sat—demonstrate that MoE-ViT achieves substantial
efficiency gains without sacrificing, and in some cases enhancing, performance,
making it a practical and attractive backbone for multi-channel imaging.

1 Introduction
. . .

Figure 1: Conceptual illustration
of multi-channel imaging. Each
patch contains multiple channels
represented by different colors.

Vision Transformers (ViTs) have become the de facto backbone
of many modern vision foundation models [5, 16]. However,
their generalization beyond conventional RGB images (i.e., 3-
channel inputs) remains underexplored—particularly in the context
of multi-channel imaging (Figure 1) such as cellular fluorescence
microscopy or satellite remote sensing [1]. Addressing this gap is
important given the growing prevalence of multi-channel datasets
in scientific and industrial domains, where the number of spectral
or modality-specific channels continues to increase. Multi-channel
modalities carry distinct and complementary information—each
channel may correspond to a unique wavelength, staining protocol,
or sensing modality, revealing structures or patterns invisible to
other channels [1, 7, 18]. Effectively modeling the relationships
across channels is thus crucial for unlocking the full potential of
multi-channel imaging [1].
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Common approaches to adapt ViTs for multi-channel settings typically adopt a channel-wise design:
instead of treating a patch as a multi-channel concatenated token, these models process each channel
separately, creating a distinct patch token per channel [1, 2, 11]. While this design improves
downstream performance by better capturing channel-specific interactions, it introduces a critical
drawback: the attention cost scales quadratically with both the number of patches (N ) and channels
(C), increasing from the standard O(N2) to O(N2C2). This leads to prohibitively high FLOPs and
memory usage, severely limiting real-world deployment—especially when C or N are large.

In this work, we shift focus from maximizing efficacy to tackling the efficiency directly, raising a
natural question:

(Q) Do all channels need to participate in attention for every patch? Or can we selectively
involve only the most relevant channel interactions per patch?

Our answer is: No—not all channel interactions are necessary; Yes—we can selectively involve
only the relevant ones. Motivated by the Sparse Mixture-of-Experts (MoE) design, where a router
activates only the top-k relevant experts for each input, we map channels onto experts and introduce
a lightweight channel router that dynamically selects only the most relevant channels for each
patch’s attention. This reduces complexity from O(N2C2) to O(N2Ck), where k ≪ C (often 1–2),
dramatically lowering computation while preserving the most important cross-channel interactions.

As a proof-of-concept, we evaluate our method on two multi-channel imaging datasets: the cellular
perturbation dataset JUMP-CP [7] (8 channels) and the remote sensing dataset So2Sat [18] (18
channels). Using the same backbone and architecture as recent state-of-the-art channel-wise ViTs
[5, 2], we simply replace the standard multi-head attention in each Transformer layer with our
proposed channel-router-based attention. This minimal change allows our model to match—and in
some cases outperform—strong baselines, while requiring fewer FLOPs.

By introducing sparsity into the cross-channel dimension, our approach achieves a principled balance
between accuracy and efficiency, enabling scalable, cost-efficient adoption of multi-channel ViTs in
large-scale and resource-constrained applications.

2 Related Works

Vision Transformers (ViTs) for Multi-Channel Imaging. While ViTs have achieved remarkable
success on RGB images, their extension to multi-channel imaging—where each channel often
carries distinct and complementary information—remains underexplored. Channel-ViT [1] processes
channels separately at the patch level, improving accuracy but increasing computation. ChAda-
ViT [2] leverages self-supervised pretraining with token padding/masking, while DiChaViT [11]
enhances both intra- and inter-channel feature diversity. However, these methods still incur the
high cost of exhaustive cross-channel attention. Although techniques such as Hierarchical Channel
Sampling (HCS) [1, 11] reduce cost by randomly selecting channels during training, this randomness
can overlook patch-relevant channels and still requires full-channel interaction at inference. We
address these limitations with a lightweight channel router that selectively activates only the most
relevant channels, enabling efficient yet informative cross-channel interactions.

Sparse Mixture-of-Experts (MoE). The SMoE model builds on the traditional Mixture-of-Experts
framework by introducing sparsity to enhance both computational efficiency and model scalability [14,
3]. Unlike dense models, SMoE activates only a subset of relevant experts for each task using top-k
operation, reducing computational load and enabling effective handling of complex, high-dimensional
data. This selective activation has proven advantageous across diverse domains, including vision and
language tasks, where it can dynamically adapt different parts of the network to specialized sub-tasks
or data types [13, 9, 17, 12].

In this work, we pioneer the adaptation of SMoE to the multi-channel image domain—a setting that
remains underexplored yet holds significant potential—leveraging its computational efficiency to
model diverse channel interactions in a more lightweight manner, making it readily deployable in
practical scenarios.
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Figure 2: Overview of MoE-ViT. (a) While the vanilla ViT adopts a standard Multi-Head Attention
module in the transformer encoder block, MoE-ViT replaces it with a specialized Multi-Head Channel
MoE module tailored for multi-channel imaging. (b) Inside the Multi-Head Channel MoE module,
input patches pass through the channel router, which allocates each patch to the most relevant channels
for interaction (top-2 in this example). Once routing is completed, based on patch and expert indices,
we loop each channel to perform patch–channel cross-attention. Specifically, patches routed to a given
channel (Channel 4 in this example) serve as the source matrix (Query), while patches belonging to
that channel serve as the target matrix (Key and Value) for the cross-attention operation.

3 Methodology

3.1 SMoE Notation

The SMoE comprises several experts, denoted as f1, f2, . . . , fE , where E represents the total number
of experts, and a router,R, which selects necessary experts in a sparse fashion. For a given embedding
x, the top-k experts are engaged by R based on the highest scores R(x)j , where j indicates the
expert index. This procedure is formulated as follows:

y =

k∑
j=1

R(x)j · fj(x),

R(x) = Top-K(softmax(g(x)), k),
v = softmax(g(x)),

Top-K(v, k) =

{
v, if v is in the top k,

0, otherwise.

(1)

where y denotes the final output of the SMoE layer, computed as the weighted sum of expert outputs
fj(x) scaled by their router-assigned weightsR(x)j . The function g is a trainable module—typically
a small Feedforward Neural Network (FFN) with one or a few layers [15, 13]. The Top-K(·) operation
preserves an element of a vector v only if its probability ranks within the top K; otherwise, it is
replaced with zero.

3.2 Our Approach: MoE-ViT

Motivated by SMoE’s principle of selecting only the most relevant experts, we extend this philosophy
to multi-channel imaging by treating each channel as an expert. This aligns naturally with the SMoE
paradigm, where each expert specializes in capturing a certain context—in our case, channel-specific
information—and is activated sparsely so that only the most significant channels are involved. To
implement this idea, we replace the Multi-Head Attention module in the ViT architecture with our
proposed Channel MoE, in which a channel router (a single-layer FFN) selects the channels to
interact with for a given patch. We then perform patch–channel cross-attention: patches routed
to a given channel serve as queries, while patches within that channel act as keys and values to
capture cross-channel interactions at the patch level. This lightweight design significantly reduces
the computational cost compared to prior approaches that required interactions with all available
channels. An overview of MoE-ViT is shown in Figure 2. We next describe two main stages: (1)
Patch–Channel Routing (Section 3.2.1) and (2) Patch–Channel Cross-Attention (Section 3.2.2).
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3.2.1 Patch-Channel Routing

We consider a multi-channel image input X ∈ RB×H×W×C , where B is the batch size, (H,W ) are
the image resolutions, and C is the number of channels. Similar to ViT [6], we first partition the image
into non-overlapping patches of size (P, P ) along the spatial dimensions, resulting in N = HW

P 2

patches per channel. Each patch is then flattened into a vector, yielding a sequence xp ∈ RN×(P 2·C),
where N is the number of spatial patches and C is the number of channels. We then apply a trainable
linear projection to map each vector to a D-dimensional token embedding.

In our setting, we treat each channel separately, similar to channel-wise ViTs, and denote the token
at spatial position i and channel j as Pi,j ∈ RD. We add both learnable positional embeddings
(for spatial location) and channel embeddings (for channel identity), followed by a feed-forward
transformation applied to each token:

P ′
i,j = Pi,j + posi + chanj , (2)

hi,j = FFN(P ′
i,j) ∈ RD. (3)

With the token embeddings prepared, existing approaches typically perform multi-head attention
over all tokens across all channels, incurring a computational cost of O(N2C2). Instead, we adopt
the SMoE philosophy to achieve sparsity in channel interactions. Specifically, we adapt the original
SMoE formulation (Equation 1) by setting the number of experts equal to the number of channels,
assigning one expert per channel so that each expert specializes in channel-specific information.

Formally, we define a set of C channel experts {fk}Ck=1, one per channel. Each token (i.e., patch
embedding) is routed to a subset of these channel experts for interaction. To this end, we introduce a
gating function g : RD → RC , implemented as a single linear layer in MoE-ViT, which produces
routing scoresR(·). At the same time, we obtain the set of top-k selected experts E(·) as follows:

R(hi,j) = Top-K(softmax(g(hi,j)), k) ∈ RC (4)
E(i, j) = { c | R(hi,j)[c] ̸= 0 } (5)

whereR(hi,j) denotes the routing scores2 of the patch at (i, j), and E(i, j) denotes the set of expert
(channel) indices selected for that patch. By doing so, each patch is sparsely routed to k channels and
is now ready for patch–channel cross-attention.

3.2.2 Patch-Channel Cross-Attention

Once routing is complete, next is to capture interactions between each patch and its selected channels
(i.e., the patches within those channels). Specifically, for each channel k, we form two matrices: (i) a
source matrix Sk, containing all patches routed to channel k; and (ii) a target matrix Tk, containing
all patches from channel k, as illustrated in Figure 2 (b). Formally, these matrices are defined as:

Sk =
{
hi,j

∣∣ k ∈ E(i, j),∀i, j } ∈ RNk×D, (6)

Tk =
{
hi,k

∣∣ ∀i} ∈ RMk×D. (7)

where Nk is the number of patches routed to channel k, and Mk is the number of patches in channel
k. We perform cross-attention from the sources to the targets, employing a shared projection for the
sources and channel-specific projections for the targets, using scaled dot-product attention as follows:

Qk = SkW
Q, Kk = TkW

K
k , Vk = TkW

V
k , (8)

Ak = softmax

(
QkK

⊤
k√

dk

)
∈ RNk×Mk , Ok = AkVk ∈ RNk×D. (9)

2For balancing, following standard MoE regularization techniques (e.g., importance/load losses [14]), we
employ this regularizer to encourage uniform expert activation and mitigate routing collapse.
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Algorithm 1: Patch-Channel Routing and Cross-Attention

Input: Patches Pi,j ∈ RD for position i and channel j
Output: Updated patch embeddings ĥi,j ∈ RD

1 /* Token Embedding + Positional & Channel Embedding */
2 for j = 1, . . . , C do
3 for i = 1, . . . ,H ×W do
4 P ′

i,j ← Pi,j + posi + chanj
5 hi,j ← FFN(P ′

i,j) ; // Shape: [D]

6 /* Patch-Channel Routing */
7 foreach hi,j do
8 R(hi,j)← Top-K(softmax(g(hi,j)), k)
9 E(i, j)← { c | R(hi,j)[c] ̸= 0 }

10 /* Patch-Channel Cross-Attention */
11 for k = 1, . . . ,K do
12 Sk ←

{
hi,j

∣∣ k ∈ E(i, j),∀i, j } ; // Shape: [Nk ×D]

13 Tk ←
{
hi,k

∣∣ ∀i} ; // Shape: [Mk ×D]

14 Qk ← SkW
Q, Kk ← TkW

K
k , Vk ← TkW

V
k

15 Ak ← softmax
(

QkK
T
k√

dk

)
; // Shape: [Nk ×Mk]

16 Ok ← AkVk ; // Shape: [Nk ×D]

17 /* Aggregation */
18 foreach (i, j) do
19 ĥi,j ←

∑
k∈E(i,j)

R(hi,j)k ·Ok[idx(i, j)] ; // Shape: [D]

Here, WQ, WK
· , and WV

· ∈ RD×D are learnable linear projections. It is worth noting that the
channel-specific key (WK

k ) and value (WV
k ) projections serve the role of channel-specific experts in

the sparse MoE formulation (Equation 1), with each expert fk specialized for processing information
from its corresponding channel.

Finally, for each original token (i, j) we aggregate the outputs from all experts it visited. By default
we use uniform averaging over the selected experts:

ĥi,j =
∑

k∈E(i,j)

R(hi,j)k ·Ok[idx(i, j)] (10)

where ĥi,j is the updated embedding of patch (i, j), and idx(i, j) retrieves the row of Ok corre-
sponding to (i, j) in Sk. In summary, keeping the backbone and all other modules unchanged, but
replacing the standard Multi-Head Attention in the Transformer encoder with our proposed MoE-
ViT channel-routing mechanism, allows each patch to be updated only through interactions with
its relevant channels, thereby reducing computational cost. The overall procedure of MoE-ViT is
summarized in Algorithm 1.

Complexity. For the attention term, in standard multi-head self-attention over multi-channel
inputs, each of the NC tokens (N spatial patches per channel and C channels) attends to all others,
yielding O(BN2C2D) for (QK⊤, AV ). In our MoE design, the router assigns each token to only
k ≪ C channels. Let Nk and Mk be the numbers of source and target tokens for channel k. With
Mk ≈ N and

∑C
k=1 Nk = kNC (uniform routing), the total becomes O(BN2CkD), a k

C fraction
of the full attention cost.

For the projection term, standard attention applies a shared WQ to all tokens and a shared WK ,WV

per channel, costing O(BNCD2) per type, i.e., 3 × O(BNCD2). Our design keeps WQ shared
but applies WK

k and WV
k only to k selected channels, giving O(BNkD2) per type.
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The attention and projection costs equal the standard case only when k = C and scales down with
smaller k. Since attention scales as O(N2) and projection as O(N), reducing the attention cost
dominates overall FLOPs savings for N ≫ D, enabling substantial efficiency gains while preserving
cross-channel modeling.

4 Experiments

Datasets We evaluate MoE-ViT and baselines across two datasets in different domains (microscopy
and satellite imagery), showing its general utility in reducing compute (FLOPs) while increasing
accuracy. (1) JUMP-CP[7] is a microscopy dataset with images of cell crops (224×224) that
underwent chemical perturbations. We focus on plate BR00116991 as in [1], which contains 127k
training, 45k validation, and 45k test images. The images have 5 fluorescence and 3 bright field
channels, totaling 8 channels. The task is to classify treatment groups from 161 classes. (2)
So2Sat [18] contains satellite imagery from two remote sensors with 8 channels from Sentinel-1 and
10 channels from Sentinel-2, totaling 18 channels. Each crop is 32×32. The task is to classify 17
climate zones. We use 352k training and 24k test images.

Baselines As MoE-ViT builds upon channel-wise ViTs by introducing a simple yet effective mod-
ification to the multi-head attention (MHA) module in the Transformer encoder, we compare it
against the most representative and well-established ViT-based baselines. Specifically, we consider
a standard ViT (ViT-Small)[6] that integrates all channels jointly, and two channel-wise variants:
ChAda-ViT[2] and DiChaViT [11]. ChAda-ViT follows the Channel-ViT [1] design and incorporates
enhancements originally intended for self-supervised training, while DiChaViT further improves intra-
and inter-channel representations in the latent space. For fair comparison, we trained ChAda-ViT
from scratch in a supervised setting, without self-supervised pretraining.

Experimental Settings We follow the experimental setup of Channel-ViT [1], training MoE-ViT and
baselines—vanilla ViT [5], ChAda-ViT [2], and DiChaViT [11]—for 100 epochs on JUMP-CP and
So2Sat, evaluating top-1 classification accuracy using the CLS token representation. Due to licensing
restrictions, Channel-ViT results are unavailable. GFLOPs are reported as a proxy for attention cost.
Baselines follow their original configurations, while MoE-ViT adapts ChAda-ViT with our sparse
MoE attention. All models use ViT-Small backbones with AdamW [10] and hierarchical channel
sampling (HCS) [1] during training. We employ patch size 16 and 8 for JUMP-CP and So2Sat,
respectively.

Table 1: Performance comparison on the JUMP-CP dataset (ViT-S/16 as the backbone). Attn. denotes
attention, and # of Act. Param. denotes the number of activated parameters in the entire model.
Complexity and GFLOPs are measured during inference. For MoE-ViT, calculations include the
channel router and channel-specific key/value projections in cross-attention, while keeping all other
Transformer encoder modules identical to the baseline.

JUMP-CP
Acc Attn. Complexity Attn. GFLOPs # of Act. Param.

ViT 56.24 O(N2d) 0.29G 22.28M
ChAda-ViT 68.16 O(N2C2d) 5.65G 21.60M
DiChaViT 68.49 O(N2C2d) 5.65G 21.60M
MoE-ViT (Top-k=1) 64.06 O(N2Ckd) 2.33G 21.62M
MoE-ViT (Top-k=2) 66.44 O(N2Ckd) 2.81G 25.18M
MoE-ViT (Top-k=C) 70.16 O(N2C2d) 5.65G 46.47M

4.1 Primary Results

Tables 1 and 2 summarize the performance and efficiency trade-offs of MoE-ViT compared to existing
baselines. We make the following key observations:

(1) Balancing accuracy and efficiency. On both datasets, the vanilla ViT achieves the lowest
attention cost (0.29G GFLOPs in JUMP-CP and 0.02G GFLOPs in So2Sat) but also the lowest top-1
classification accuracy (56.24% and 58.93%, respectively), reflecting the limitations of embedding
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Table 2: Performance comparison in So2Sat dataset (ViT-S/8 as the backbone). Attn. denotes
attention, and # of Act. Param. denotes the number of activated parameters in the entire model.
Complexity and GFLOPs are measured during inference. For MoE-ViT, calculations include the
channel router and channel-specific key/value projections in cross-attention, while keeping all other
Transformer encoder modules identical to the baseline.

So2Sat
Acc Attn. Complexity Attn. GFLOPs # of Act. Param.

ViT 58.93 O(N2d) 0.02G 21.76M
ChAda-ViT 63.94 O(N2C2d) 0.47G 21.35M
DiChaViT 63.80 O(N2C2d) 0.47G 21.35M
MoE-ViT (Top-k=1) 63.12 O(N2Ckd) 0.35G 21.43M
MoE-ViT (Top-k=2) 64.66 O(N2Ckd) 0.36G 24.98M

all channels jointly without explicitly modeling cross-channel interactions. In contrast, channel-wise
ViTs such as ChAda-ViT and DiChaViT substantially improve accuracy (+12.25% on JUMP-CP and
+5.01% on So2Sat) but incur a significant increase in attention cost (5.65G GFLOPs in JUMP-CP
and 0.47G GFLOPs in So2Sat). Our proposed MoE-ViT strikes a favorable balance between these
extremes: with Top-k = 2, it reduces attention cost by roughly 50% (2.81G GFLOPs in JUMP-CP)
compared to ChAda-ViT while sacrificing only 2.05% accuracy; notably, on So2Sat, it even improves
accuracy by +0.72% while using 23% fewer GFLOPs, demonstrating competitive performance at
markedly lower computational cost.

(2) Full-channel MoE-ViT (Top-k = C). When the number of active experts is set equal to the
total number of channels, MoE-ViT matches the attention cost of cross-channel attention baselines
(5.65G GFLOPs in JUMP-CP and 0.47G GFLOPs in So2Sat) but achieves higher accuracy—a gain
of +1.67% on JUMP-CP and +0.72% on So2Sat over the best baseline. This improvement is likely
due to the use of channel-specific key and value projections in MoE-ViT. By assigning each channel
its own expert, the model effectively increases its representational capacity. Despite this increase in
parameters, the theoretical computational complexity is not elevated, since the MoE formulation only
activates a subset of experts per forward pass.

(3) Extreme sparsity (Top-k = 1). Under the most restrictive configuration, MoE-ViT achieves
the lowest attention cost among all non-trivial methods (2.33G GFLOPs in JUMP-CP and 0.35G
GFLOPs in So2Sat) while still outperforming vanilla ViT, demonstrating robustness to high sparsity
in expert activation.

(4) Dataset dependency. The relative efficiency gains of MoE-ViT are more pronounced in JUMP-
CP, which contains larger images (224×224), than in So2Sat (32×32). This suggests that the
computational savings from sparse expert routing scale with the number of spatial tokens, and
datasets with larger spatial resolutions stand to benefit more from the proposed method.

(5) Activated parameters and model capacity. Interestingly, vanilla ViT has a higher number of
activated parameters than MoE-ViT with Top-k = 1 (22.28M vs. 21.62M in JUMP-CP), despite its
lower attention complexity and inferior accuracy. This is because it concatenates all channels into a
single vector, resulting in a higher-dimensional representation that is projected into the embedding
space. Moreover, MoE-ViT with larger Top-k values can involve significantly more parameters during
inference (e.g., 46.47M at Top-k = C in JUMP-CP) without incurring a quadratic increase in FLOPs.
This ability to leverage substantially greater model capacity while maintaining modest computational
cost is a key advantage—and arguably the most compelling aspect—of the MoE design.

Overall, these results demonstrate that MoE-ViT not only matches or surpasses the accuracy of
cross-channel attention baselines, but also offers fine-grained control over the efficiency–accuracy
trade-off via the Top-k parameter, making it adaptable to diverse computational budgets and dataset
characteristics.

4.2 Ablation Study

To better understand the efficiency gains from the top-k design in MoE-ViT, we conducted an ablation
study varying both the patch size and the number of activated experts (top-k). Figure 3 illustrates the
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Figure 3: Ablation study comparing the Baseline (ChAda-ViT) and Ours (MoE-ViT) for varying
top-k values (i.e., channels) with patch sizes of 8 and 16 on both the JUMP-CP and So2Sat datasets.

GFLOPs of the attention mechanism under these configurations for both the JUMP-CP and So2Sat
datasets. We make the following observations: (1) Across both datasets, decreasing the patch size
from 16 to 8 drastically increases the computational cost of attention—from 2.81 to 22.61 GFLOPs
(8×) in JUMP-CP and from 0.085 to 0.359 GFLOPs (4×) in So2Sat at top-k = 2—as reducing the
patch dimension (P ) naturally increases the number of tokens (N = HW

P 2 ). (2) With a fixed patch
size, increasing top-k from 1 to 4 gradually increases GFLOPs (e.g., from 15.02 to 22.61, 30.19,
and 37.77 in JUMP-CP), since more experts are involved in interactions per patch. (3) Despite this
increase, MoE-ViT’s GFLOPs remain well below those of the baseline (ChAda-ViT), which exceeds
65 GFLOPs due to attending to all available channels. This highlights the effectiveness of adopting a
top-k design to control sparsity.

5 Future Directions

In this work, we presented a proof-of-concept demonstrating how a sparse mixture-of-experts (MoE)
formulation can substantially reduce the FLOPs of channel-wise ViT architectures without sacrificing
accuracy. Building on this work, we outline three main directions for future research.

Training and Inference Time Optimization. While FLOPs provide a proxy for efficiency, actual
training and inference time also depends on hardware utilization. To fully realize the benefits of MoE
architectures, future work could explore tighter co-optimization between architecture and hardware.
Leveraging specialized MoE libraries such as DeepSeek-MoE [4] or FastMoE [8]—which provide
optimized kernels and routing strategies for modern accelerators—could yield further gains.

Increasing Sparsity in the Target Matrix. Our current formulation reduces computation by
assigning channel-specific experts, but the framework can be generalized further. For example, one
could incorporate a patch-specific router that dynamically allocates experts across spatial regions,
thereby further sparsifying the target matrix and reducing computational cost. Patch allocation could
be made even sparser by combining our approach with batch-prioritized routing strategies, such as
those proposed by Riquelme et al. [13], which prioritizes patches by their routing scores.

Expanding to More Biological Datasets. Finally, there exists a rich set of multi-channel, large 2D
(digital pathology), and 3D datasets both within biology and beyond where the proposed MoE-ViT
framework could be applied.

6 Conclusion

In this work, we addressed a key limitation of channel-wise ViTs—their prohibitive computational
cost in multi-channel imaging domains. By reinterpreting channels as experts and introducing a
lightweight channel router, we proposed MoE-ViT, a sparse mixture-of-experts formulation that
selectively activates only the most relevant cross-channel interactions per patch. This design reduces
the quadratic complexity (O(N2C2)) of cross-channel attention to O(N2Ck)—linear in C for
fixed k—while preserving classification accuracy. Experiments on two distinct datasets, JUMP-CP
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microscopy and So2Sat satellite imagery, show that MoE-ViT consistently achieves substantial
FLOPs reductions while outperforming strong baselines such as ChAda-ViT and DiChaViT. Ablation
studies further reveal that patch size has the largest impact on computational cost, while Top-k
provides a tunable trade-off between capacity and efficiency at relatively low additional cost. Overall,
these results demonstrate that sparse expert routing offers a principled approach to scaling ViTs to
high-channel regimes without incurring prohibitive computation.
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