
Value-Guided KV Compression for LLMs via
Approximated CUR Decomposition

Ayan Sengupta∗, Siddhant Chaudhary∗ & Tanmoy Chakraborty
Department of Electrical Engineering

Indian Institute of Technology Delhi, India
ayan.sengupta@ee.iitd.ac.in, urssidd@gmail.com, tanchak@iitd.ac.in

Abstract

Key-value (KV) cache compression has emerged as a critical technique for reducing
the memory and latency overhead of autoregressive language models during infer-
ence. Prior approaches predominantly rely on query-key attention scores to rank
and evict cached tokens, assuming that attention intensity correlates with semantic
importance. However, this heuristic overlooks the contribution of value vectors,
which directly influence the attention output. In this paper, we propose CurDKV, a
novel, value-centric KV compression method that selects keys and values based
on leverage scores computed from CUR matrix decomposition. Our approach
approximates the dominant subspace of the attention output softmax(QK⊤)V ,
ensuring that the retained tokens best preserve the model’s predictive behavior.
Theoretically, we show that attention score approximation does not guarantee out-
put preservation, and demonstrate that CUR-based selection minimizes end-to-end
attention reconstruction loss. Empirically, CurDKV achieves up to 9.6% higher ac-
curacy than state-of-the-art methods like SnapKV and ChunkKV under aggressive
compression budgets on LLaMA and Mistral, while maintaining compatibility with
FlashAttention and Grouped Query Attention. In addition to improved accuracy,
CurDKV reduces generation latency by up to 40% at high compression, offering a
practical speed-accuracy tradeoff.

1 Introduction

Transformer-based large language models (LLMs) have achieved remarkable performance across
a wide range of natural language understanding and generation tasks [Yang et al., 2024, Grattafiori
et al., 2024, Jiang et al., 2023]. However, their inference-time memory consumption remains a
significant challenge, particularly for application requiring long-context information. A major source
of this overhead is the Key-Value (KV) cache, which stores the key and value vectors corresponding to
previously generated tokens. These vectors are used to compute attention outputs without recomputing
intermediate states, but their memory footprint grows linearly with sequence length. For instance, as
highlighted by Feng et al. [2025], LLM-8B, which generats a sequence of 2M tokens, can consume
up to 256GB of GPU memory while storing the KV cache.

Typically, KV cache is populated in two stages: during the prefill phase, where a long-context input
is encoded in parallel and all token-level KV vectors are stored; and during the generation phase,
where tokens are produced autoregressively and KV entries are appended one step at a time. In
particular, the prefill phase dominates memory usage, especially when handling large input contexts.

*These authors contributed equally to this work.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

This has motivated extensive research [Li et al., 2024a] into KV compression techniques that reduce
the number of cached entries while preserving output quality. Existing KV compression methods
prioritize tokens based on attention scores. For instance, SnapKV [Li et al., 2024b] and H2O [Zhang
et al., 2023] estimate token importance by accumulating attention weights across heads and layers.
While such heuristics are computationally cheap, they only capture query-key alignment and neglect
the downstream contribution of the value vectors. Moreover, these methods mostly overlook the fact
that tokens with low attention scores can still carry rich semantic information through their value
vectors. Recent work formalizes this mismatch through the concept of eviction loss [Feng et al.,
2025], which quantifies the performance degradation from evicting specific KV entries. Critically,
eviction loss is not always correlated with attention score (c.f. Figure 1), highlighting the need for
value-aware selection strategies.

6 5 4 3
Average attention score of keys (in log10 scale)

0

2

4

6

8

so
ft

m
ax

(Q
K

T)V
 e

vi
ct

io
n

lo
ss

Figure 1: Keys associated with high average at-
tention value do not necessarily have high post-
eviction softmax(QK⊤)V reconstruction (evic-
tion) loss.

In this work, we introduce CurDKV (CUR
Decomposition for KV Compression), a princi-
pled and efficient KV compression method that
circumvents these limitations by leveraging the
structure of the original value and key matrices
rather than relying on attention scores. CurDKV
assigns importance to each key and value based
on its leverage score, computed as the squared
ℓ2 norm of the corresponding left-singular vec-
tor of the matrix in consideration. These scores
reflect each token’s contribution to the atten-
tion output and naturally align with the goal
of minimizing eviction loss. To improve scal-
ability, we also introduce a fast approximation
based on random Gaussian projections, where
the value and key matrices are projected into a
lower-dimensional subspace before computing
leverage scores. This maintains relative impor-
tance across tokens while significantly reducing
computational cost. We further cast the KV se-
lection problem as a CUR decomposition task on the attention matrix product, selecting key and value
vectors that best reconstruct either the attention matrix QK⊤ or the final output softmax(QK⊤)V .
Unlike prior work, our formulation directly targets the fidelity of the attention output, leading to a
more semantically consistent compression strategy. As shown in Figure 2, CurDKV achieves signifi-
cantly lower reconstruction loss on both the QK⊤ matrix and the final softmax(QK⊤)V product,
demonstrating improved preservation of contextual semantics post-compression.

We evaluate CurDKV on two popular long-context benchmarks – LongBench [Bai et al., 2023] and
Ruler [Hsieh et al., 2024], spanning 24 tasks with LLaMA-3.1-8B-Instruct [Grattafiori et al., 2024]
and Mistral-7B-Instruct [Jiang et al., 2023]. Our experiments demonstrate that CurDKV consistently
outperforms existing attention-based KV compression baselines such as SnapKV [Li et al., 2024b],
ChunkKV [Liu et al., 2025], and Streaming LLM [Xiao et al., 2024]. In particular, CurDKV achieves
significantly lower degradation in generation accuracy at aggressive compression ratios (e.g., 90%
cache reduction). With LLaMA, CurDKV surpasses SnapKV by up to 9.6% in average task score,
and achieves higher fidelity (similarity as the full cache model) across all types of long-context-
dependent tasks. Similar gains are observed with Mistral, where CurDKV maintains over 95% average
fidelity even under constrained memory budgets. These results validate that our value-centric, CUR-
based strategy more effectively preserves semantic attention outputs than methods relying solely on
query-key attention scores.1

2 Related Work

KV Cache compression via attention heuristics and top-k eviction. A widely used class of
KV compression methods rank cached tokens by heuristics and retain the top-k scoring entries.
H2O [Zhang et al., 2023] uses observed attention scores from specific query-key interactions to

1We have uploaded the source code and datasets as supplementary; we are committed to release them upon
acceptance of the paper.

2

0 1000 2000 3000 4000
Number of evicted tokens

0.00

0.25

0.50

0.75

1.00

Ev
ict

io
n

lo
ss

 (s
ca

le
d)

 o
f Q

K
T

Key Norm
SnapKV Heuristic
H2O Heuristic
CurDKV (Ours)

(a) Reconstruction of QK⊤

0 1000 2000 3000 4000
Number of evicted tokens

0

10

30

50

70

Ev
ict

io
n

lo
ss

 o
n

so
ft

m
ax

(Q
K

T)V

Key Norm
SnapKV Heuristic
H2O Heuristic
CurDKV (Ours)

(b) Reconstruction of softmax(QK⊤)V

Figure 2: Preservation of the QK⊤ and softmax(QK⊤)V matrices under different KV compression
strategies. CurDKV achieves the lowest eviction loss, indicating more faithful reconstruction of
intermediate attention. We compute the reconstruction loss for LLaMA-3.1-8B-Instruct, averaged
over all layers and attention heads for a sample text obtained from https://en.wikipedia.org/
wiki/Attention_Is_All_You_Need.

estimate per-token importance and prunes less relevant tokens online. However, it requires access to
attention weights, which breaks compatibility with efficient kernels like FlashAttention [Dao et al.,
2022]. SnapKV [Li et al., 2024b] computes cumulative attention scores and selects the highest-ranked
tokens, assuming that frequently attended tokens are most informative. Scissorhands [Liu et al.,
2023c] further introduces temporal windows to detect consistently attended tokens. PyramidKV [Cai
et al., 2024] proposes a hierarchical scoring scheme across layers and heads, combining multi-level
top-k selection with scaling-aware normalization. ChunkKV [Liu et al., 2025] compresses the cache
by segmenting it into chunks and retaining only top-ranked entries per chunk to ensure temporal
coverage. While these approaches are efficient and easy to deploy, they focus on approximating QK⊤

and neglect the downstream contribution of value vectors in softmax(QK⊤)V , the final attention
output propagated to the subsequent layers. Beyond static heuristics, adaptive methods attempt to
allocate compression budgets more intelligently across heads or layers. AdaKV [Feng et al., 2025]
computes attention statistics such as entropy and average weights to estimate the relative importance
of each head and distributes the token retention budget accordingly. While more flexible, these
approaches still rely on attention-derived metrics and do not explicitly account for the downstream
impact of compression on the attention output.

Compatibility with efficient attention implementations. A critical practical consideration is
compatibility with modern inference backends such as FlashAttention [Dao et al., 2022], which
avoids materializing the full attention matrix by fusing softmax and matrix multiplications. Methods
such as H2O [Zhang et al., 2023], which rely on observed attention weights, are incompatible with
FlashAttention and similar kernels that trade explicit attention computation for efficiency. Another
major limitation with the majority of the existing KV compression methods is their inability to work
with Group Query Attention (GQA). GQA [Ainslie et al., 2023] has been widely adopted in recent
LLM architectures such as LLaMA [Grattafiori et al., 2024] and Mistral [Jiang et al., 2023] due
to its ability to reduce the memory footprint of the KV cache by sharing keys and values across
multiple heads. However, most existing KV cache compression techniques, including SnapKV and
PyramidKV, do not support GQA natively. These methods redundantly replicate the compressed
KV cache across heads within a group, thus forfeiting GQA’s inherent efficiency. To address this
limitation, Feng et al. [2025] proposed a GQA-compatible eviction framework that computes average
attention weights within each group to identify important tokens. This enhancement enables state-
of-the-art KV compression methods to function effectively in GQA-enabled models and achieve
significant cache size reductions while preserving generation quality.

3

https://en.wikipedia.org/wiki/Attention_Is_All_You_Need
https://en.wikipedia.org/wiki/Attention_Is_All_You_Need

3 Methodology

3.1 Preliminaries

KV Cache. The generation process of an LLM is autoregressive in nature, i.e., each generation step
relies on the outputs of all previous steps. Suppose X ∈ Rn×d be the matrix containing the hidden
states of a layer in an LLM upto a time step. Further, suppose x ∈ R1×d be the hidden state of the
last generated token, which is used as an input for the current generation step. Suppose, there are h

attention heads. For a head i ∈ [1, h], the query, key and value matrices, WQ
i , WK

i and WV
i (all in

Rd×dh) map hidden states X to query, key and value states; specifically, the following are computed:

Qi = XWQ
i ,Ki = XWK

i , Vi = XWV
i (1)

For the current time step, the states Ki and Vi constitute the KV cache elements for head i. KV
caching refers to caching Ki and Vi in memory to avoid recomputing them at every generation step.
After computing the output for the current time step, the KV cache is updated accordingly:

Ki = Cat[Ki : xW
K
i], Vi = Cat[Vi : xW

V
i] (2)

KV cache compression techniques aim to retain only the most relevant key and value states from
Ki and Vi, without significant loss in generation quality. Particularly, we show that the loss on the
attention output is upper bounded by the Frobenius distance between the original value matrix and
it’s compression:

Lemma 3.1. Let Q,K, V ∈ Rn×d be the query, key and value matrices in the attention computation.
Further, let K ′, V ′ ∈ Rn×d be sub-matrices obtained by zeroing-out a subset of rows of K and V
respectively. Then, 2

∥softmax(QKT)V − softmax(QK ′T)V ′∥F ≤
√
n∥V − V ′∥F + 2

√
n∥V ′∥F (3)

Note that for higher compression levels, the second term (∥V ′∥F) becomes negligible; in that case,
the role of the approximation V ′ to V becomes significant. On the other hand, the contribution
of Q, K and K ′ is absorbed by the softmax operator. This motivates us to design a value-guided
compression technique.

Low-rank decompositions. Let A ∈ Rn×d be a matrix. The problem of low-rank decomposition
of A seeks to factor A as a product of low-rank matrices, and is a well-studied problem with wide
applications in mathematical modeling and data compression [Halko et al., 2010]. The optimal
solution to this problem is the well-known singular value decomposition (SVD), which represents A
in the form A = UΣV ∗, with U and V being semi-unitary matrices, and Σ a square diagonal matrix
of dimension equal to the rank of A. While the SVD is widely adopted in data analysis problems,
when applied to the context of the KV cache compression problem, it presents an inherent challenge;
namely, the column/row vectors of U and V are not representative of the column/row vectors of A
itself. Another suboptimal low-rank decomposition, called the CUR decomposition, resolves this
limitation: it is an approximation of the form A ≈ CUR, where C is a subset of columns of A, R is a
subset of rows of A and U is a low-rank matrix. Here, while the matrices C and R are representative
of the underlying data, the matrix U optimizes the approximation to A. The CUR decomposition is
known to be a good low-rank approximation to the original matrix [Woodruff, 2014, Halko et al.,
2010, Mahoney and Drineas, 2009].

Computation of CUR and Leverage Scores. We utilize leverage scores, a popular technique
used to compute CUR factorizations based on identifying key elements of the singular vectors of a
matrix [Mahoney and Drineas, 2009]. As before, let A = UΣV ∗ be the SVD of A ∈ Rn×d, where
U ∈ Rn×r, Σ ∈ Rr×r and V ∈ Rd×r with r = rank(A). The idea of leverage scores is to compute
importance scores for each row and column of A, which are then used to sample the rows and columns
that then constitute the matrices R and C of the CUR decomposition respectively. Particularly, to
rank the importance of rows of A, we define the row leverage scores lr,j (for the jth row of A) as

lr,j := ∥U(j, :)∥2 (4)

2See section A of the Appendix for a proof.

4

Similarly, to rank the importance of columns of A, the column leverage scores lc,j (for the jth column
of A) are defined analogously by

lc,j := ∥V ∗(:, j)∥2 = ∥V (j, :)∥2 (5)

Since U and V contain the left and right singular vectors of A, it easily follows that
∑n

j=1 l
2
r,j = n

and
∑d

j=1 l
2
c,j = d. In turn, these scores lead to the distributions { l

2
r,j

n } and { l
2
c,j

d } from which the
matrices R and C can be sampled. Alternatively, static methods use the top-k scores from either
distribution to sample the corresponding matrices.

3.2 CurDKV: Algorithm Design

We now introduce CurDKV, our proposed KV cache compression method, which uses combined
leverage scores of key and value matrices to compress the KV matrix. CurDKV can be applied during
the pre-filling as well as the token generation phase, is easy to implement, and seamlessly integrates
with inference acceleration methods such as FlashAttention [Dao et al., 2022] and GQA [Ainslie et al.,
2023]. Algorithm 1 provides the pseudocode of CurDKV. In the following discussion, we assume the
attention setup as in GQA [Ainslie et al., 2023], wherein a group of attention heads uses a common
key and value matrix. Particularly, we assume that there are g groups, with the key and value matrices
of group i, denoted by Ki ∈ Rn×d and Vi ∈ Rn×d, respectively. As usual, n represents the number
of keys (or values) in consideration, and d is the dimension of the space of vectors. The combined
key and value matrices across all groups is denoted by K ∈ Rg×n×d and V ∈ Rg×n×d.

As shown in Algorithm 1, CurDKV takes as input the key matrix K ∈ Rg×n×d across all attention
groups, the corresponding value matrix V ∈ Rg×n×d, the group budget k ∈ [n] representing the level
of compression, a projection dimension r and the number of initial attention sinks s to be preserved.
It outputs compressed key and value matrices K ′ ∈ Rg×k×d and V ′ ∈ Rg×k×d, which are then
used to compute the output of the attention module. At a high-level, CurDKV computes approximate
leverage scores for each row of the key and value matrices Ki ∈ Rn×d and Vi ∈ Rn×d within a
single group i (lines 3-5). The leverage scores for corresponding keys and values are then combined,
followed by normalization (lines 6-7). Finally, the computed leverage scores are then used to retrieve
the top-k keys and values from Ki and Vi (lines 9-11). In addition, CurDKV also preserves the initial
s tokens (lines 8, 10) due to the prevalence of attention sinks [Xiao et al., 2024].

Approximate leverage scores and Gaussian projections. The computation of exact leverage
scores as in Equations 4 and 5 requires the computation of the SVD of the matrices in consideration,
which turns out to be a bottleneck for the KV compression problem. To that end, CurDKV projects Ki

and Vi to matrices KiG and ViG, respectively, where G ∈ Rd×r is a random matrix, each of whose
entries are sampled from a normal N (0, 1

r) distribution; in our implementation, we use r = 20 3.
After this projection step, the norms of the rows of KiG and ViG are used as proxies for the actual
leverage scores (lines 3-5 of Algorithm 1).

Adaptive budget allocation for CurDKV. Along with CurDKV, we also implement AdaCurDKV,
an adaptive variation of CurDKV. AdaCurDKV adaptively achieves head-specific compression by
choosing the top-k key and value vectors across all heads in a layer, where the selection is based
on the computed leverage scores. As in the standard adaptive implementation introduced by Feng
et al. [2025], a safeguard parameter α is used to ensure a minimum fraction of key/value vectors are
preserved for each head (a default value of α = 0.20 is used in our implementation).4

4 Experiments and Results

4.1 Experimental Settings

For the empirical analyses, following the contemporary studies, we use two instruction-tuned LLMs –
LLaMA-3.1-8B-Instruct [Grattafiori et al., 2024] and Mistral-7B-Instruct-v0.3 [Jiang et al., 2023].

3The Gaussian projection is motivated by the construction in Theorem 19 of Woodruff [2014].
4Refer to https://github.com/NVIDIA/kvpress/blob/main/kvpress/presses/adakv_press.py

for an implementation of the adaptive compression logic.

5

https://github.com/NVIDIA/kvpress/blob/main/kvpress/presses/adakv_press.py

Algorithm 1: CurDKV: CUR-based KV Compression with GQA Support

Input: Key matrix K ∈ Rg×n×d, Value matrix V ∈ Rg×n×d, group budget k, Gaussian
projection dim r, num_sink s

Output: Compressed keys K ′ ∈ Rg×k×d, values V ′ ∈ Rg×k×d

1 for each group gi in 1, . . . , g do
2 Sample Gaussian matrix G ∈ Rd×r with Gij ∼ N (0, 1/r) ;
3 Project Ki ← KiG, Vi ← ViG ;
4 Compute key leverage scores: ℓ(K)

j = ∥Ki[j]∥22, value leverage: ℓ(V)
j = ∥Vi[j]∥22 ;

5 Combine scores: ℓ(KV)
j = ℓ

(K)
j · ℓ(V)

j ;

6 Normalize: ℓ̃j = ℓ
(KV)
j /

∑
j ℓ

(KV)
j ;

7 Preserve first s tokens as sink indices: Ssink = {0, . . . , s−1} ;
8 Select top-(k − s) indices from ℓ̃[s :]: Stop = TopK(ℓ̃[s :], k − s) + s ;
9 Combine: Si = Ssink ∪ Stop ;

10 K ′
i ← Ki[Si], V ′

i ← Vi[Si] ;
11 return K ′, V ′

All the evaluations are done on two widely popular long-context benchmarks – LongBench [Bai
et al., 2023] and Ruler [Hsieh et al., 2024]. LongBench benchmark contains a total 16 tasks, covering
various task domains including single-document QA, multiple-document QA, summarization, few-
shot learning, synthetic tasks and code completion. From Ruler benchmark, we consider a total eight
needle-in-a-haystack tasks with a maximum context length of 16K. Details of the LongBench and
Ruler tasks and the prompt templates can be found in the appendix. For all these 24 tasks, we evaluate
only on the more challenging question-agnostic setting [NVIDIA, 2024], where the questions are
omitted during compression and only the context is compressed. As argued by Feng et al. [2025], this
setup mimics more challenging scenarios, where the compression method is unaware of the questions
being passed to the model during inference.

Table 1: Results of LLaMA-8B and Mistral-7B with full KV
cache (0% compression) on LongBench.

Task Type Task LLaMA-8B Mistral-7B

Single-Doc QA
NrtvQA 30.7 28.4
Qasper 47.2 40.3
MF-en 55.6 51.9

Multi-Doc QA
HotpotQA 59.5 48.9
2WikiMQA 51.8 37.4
Musique 32.6 28.0

Summarization
Gov Report 35.0 34.7
QMSum 25.1 25.5
Multi News 26.8 26.8

Few-shot Learning
TREC 29.5 55.8
TriviaQA 85.7 85.0
SAMSum 38.7 20.8

Synthetic Pcount 10.7 5.1
Pre 100.0 98.0

Code Lcc 53.9 49.8
RB-P 47.6 56.1
Average 45.7 43.3

We compare CurDKV with various
competitive KV compression base-
lines, including SnapKV [Li et al.,
2024b], ChunkKV [Liu et al., 2025],
LLM Streamline [Xiao et al., 2024]
and Ada-SnapKV [Feng et al., 2025].
We consider an additional baseline,
KNorm [NVIDIA, 2024] that uses key
norm as a proxy to determine which
keys to evict during compression.
H2O [Zhang et al., 2023] is purpose-
fully omitted from the evaluation as
it throws out-of-memory error when
run on a single NVIDIA A100-80GB
GPU card (as it does not naively sup-
port flashattention, therefore requiring
4× more cache memory on long se-
quences). All these baselines were run
for different compression (eviction)
ratios {30%, 50%, 70%, 90%}. Fol-
lowing Xiao et al. [2024], we use attention sinks of size s = 4 for all the baselines (all the
baseline numbers are produced in-house).

4.2 Results on LongBench

We report the results obtained with full cache (0% compression) for LLaMA-8B and Mistral-7B in
Table 1. Table 2 summarizes the results obtained with LLaMA-8B and Mistral-7B with KV cache
compressed at 30% and 90% with different baselines.

6

Table 2: KV compression methods on LongBench with LLaMA-3.1-8B-Instruct and Mistral-7B-
Instruct (�: compression ratio). Compression ratio is the complement of the cache budget, e.g., for a
cache budget of 30% the corresponding compression ratio is 70%. Friedman statistics of 45.2/35.7
(for 30% compression) and 21.1/8.5 (90% compression) with p-values 0 indicate the statistical
significance of the result obtained by CurDKV over the baselines. Bold highlights the best adaptive
and non-adaptive baselines for each model and task, with blue highlighting the cases where CurDKV
or AdaCurDKV are the best baselines. Results with other compression ratios are reported in Tables 14
and 15 in Appendix C. Each result cell “x/y” indicate accuracies with LLaMA/Mistral.
� Task ChunkKV Knorm Streaming LLM SnapKV CurDKV AdaSnapKV AdaCurDKV

Non-Adaptive Methods Adaptive Methods

30%

NrtvQA 30.3 / 25.7 30.6 / 23.8 26.8 / 24.4 30.2 / 26.4 31.7 / 28.8 29.7 / 25.4 31.9 / 27.6
Qasper 45.7 / 36.3 44.4 / 35.3 43.4 / 36.1 46.5 / 35.5 48.2 / 39.4 45.8 / 35.7 48.6 / 41.4
MF-en 50.2 / 48.7 55.2 / 48.7 36.0 / 34.4 53.8 / 49.0 56.3 / 52.9 55.3 / 48.4 56.9 / 51.0
HotpotQA 58.0 / 49.0 57.2 / 48.7 52.1 / 43.9 58.4 / 48.8 57.8 / 49.2 59.9 / 47.3 59.7 / 46.6
2WikiMQA 49.6 / 37.3 49.4 / 36.6 42.5 / 31.6 49.3 / 37.2 51.3 / 41.5 50.1 / 37.2 52.5 / 39.6
Musique 30.0 / 25.4 33.6 / 24.5 28.9 / 20.7 31.0 / 25.4 33.7 / 29.4 32.5 / 28.1 32.9 / 28.9
Gov Report 33.9 / 34.1 34.0 / 34.0 31.7 / 32.9 33.6 / 33.6 34.5 / 35.9 34.1 / 34.1 35.0 / 34.7
QMSum 24.0 / 24.6 24.7 / 24.2 23.5 / 23.8 23.9 / 24.2 25.0 / 25.1 24.6 / 24.8 25.2 / 25.3
Multi News 26.8 / 26.2 26.5 / 26.3 26.3 / 26.3 26.6 / 26.0 27.2 / 26.9 26.7 / 26.2 27.1 / 27.3
TREC 25.0 / 50.9 66.0 / 49.3 32.5 / 59.5 31.0 / 51.5 67.0 / 60.0 30.5 / 52.0 63.5 / 73.0
TriviaQA 85.5 / 84.8 87.8 / 85.6 91.7 / 76.2 86.4 / 85.4 92.2 / 89.0 86.4 / 88.1 92.6 / 89.3
SAMSum 39.6 / 20.8 36.5 / 33.9 38.7 / 19.1 40.1 / 21.0 41.3 / 41.1 40.0 / 22.4 41.5 / 46.6
Pcount 11.1 / 5.6 13.1 / 4.1 8.3 / 2.2 12.2 / 5.2 13.7 / 5.7 12.2 / 5.1 12.1 / 4.5
Pre 99.5 / 97.5 98.0 / 80.8 68.5 / 68.0 100.0 / 97.0 100.0 / 96.5 100.0 / 98.0 99.5 / 97.0
Lcc 52.5 / 51.6 36.7 / 37.2 47.1 / 51.1 54.0 / 51.5 52.1 / 51.1 52.7 / 50.7 52.8 / 51.5
RB-P 48.3 / 56.2 48.3 / 54.7 47.4 / 54.9 48.1 / 56.6 50.0 / 57.1 47.4 / 57.0 50.1 / 58.2
Average 44.4 / 42.2 46.4 / 40.5 40.3 / 37.8 45.3 / 42.1 48.9 / 45.6 45.5 / 41.6 48.9 / 46.4

90%

NrtvQA 23.1 / 18.7 21.9 / 13.0 21.6 / 18.4 24.3 / 17.7 27.7 / 14.2 25.3 / 18.3 27.0 / 12.1
Qasper 20.0 / 12.7 15.9 / 6.0 18.4 / 13.1 21.1 / 13.6 28.5 / 26.2 21.6 / 15.2 28.6 / 26.8
MF-en 23.6 / 26.2 29.2 / 25.0 23.0 / 23.1 23.4 / 30.3 32.6 / 35.0 26.2 / 32.0 30.2 / 35.2
HotpotQA 43.1 / 37.3 40.1 / 30.9 37.2 / 31.2 44.5 / 33.5 47.4 / 30.7 46.9 / 38.1 46.1 / 34.8
2WikiMQA 22.4 / 21.9 20.1 / 27.8 22.4 / 20.1 24.6 / 23.1 31.8 / 25.4 27.2 / 24.0 33.6 / 31.7
Musique 16.9 / 16.9 12.8 / 13.2 14.0 / 13.9 20.0 / 18.3 20.7 / 13.4 18.1 / 17.3 22.3 / 18.9
Gov Report 25.0 / 25.5 26.0 / 26.0 24.8 / 25.2 25.3 / 25.4 26.9 / 23.3 25.3 / 25.3 26.9 / 26.2
QMSum 19.5 / 19.8 21.0 / 18.9 19.1 / 19.8 19.7 / 20.2 22.6 / 21.8 20.9 / 20.4 22.2 / 21.3
Multi News 17.1 / 17.9 20.7 / 19.8 20.1 / 20.1 20.8 / 20.8 23.2 / 21.6 20.6 / 20.7 23.0 / 21.5
TREC 11.0 / 15.8 47.5 / 26.5 28.0 / 35.0 33.5 / 37.8 22.5 / 27.3 33.0 / 44.0 19.5 / 33.0
TriviaQA 84.8 / 87.0 68.4 / 85.4 90.7 / 52.4 82.9 / 87.9 91.5 / 73.5 82.4 / 87.6 92.3 / 76.3
SAMSum 31.6 / 29.7 28.7 / 38.9 34.4 / 31.8 38.5 / 28.8 37.5 / 40.9 39.3 / 30.4 33.7 / 38.7
Pcount 5.0 / 3.6 12.0 / 2.6 4.0 / 4.0 6.0 / 3.5 5.5 / 3.3 8.0 / 3.9 7.9 / 2.4
Pre 49.5 / 42.0 24.0 / 10.0 16.0 / 15.5 55.0 / 53.0 61.5 / 15.5 56.5 / 67.5 55.5 / 23.0
Lcc 50.6 / 51.6 23.1 / 22.2 52.3 / 50.6 51.0 / 52.6 39.4 / 39.7 49.2 / 53.0 39.0 / 41.1
RB-P 49.3 / 54.9 49.7 / 55.1 52.9 / 53.3 49.2 / 54.8 52.2 / 53.6 47.3 / 55.0 54.2 / 54.6
Average 30.8 / 30.1 28.8 / 26.3 29.9 / 26.7 33.7 / 32.6 35.7 / 29.1 34.2 / 33.2 35.1 / 31.1

On LLaMA-8B, CurDKV outperforms SnapKV by +3.6% at 30% compression (48.9% vs. 45.3%) and
by +2.0% points at 90% (35.7% vs. 33.7%). On Mistral-7B, CurDKV shows a similar trend, surpassing
SnapKV by +2.9% at 30% (45.6% vs. 42.7%) and by +0.5% at 90% (33.2% vs. 32.7%). These
gains are robust across task types, including multi-hop QA, summarization, and code completion.
Norm-based heuristics such as Knorm and ChunkKV fail to consistently preserve semantic fidelity,
often underperforming even under moderate compression. This is most evident in Mistral-7B’s
few-shot learning tasks (e.g., TriviaQA, SAMSum), where CurDKV maintains over 89% performance,
other baselines trail by 5–10%.

We compare AdaCurDKV, our adaptive compression strategy with its static variant (CurDKV) and the
attention-based adaptive baseline, AdaSnapKV. Across models and retention levels, AdaCurDKV con-
sistently outperforms AdaSnapKV, while performing competitively with CurDKV. With LLaMA-8B
under 30% KV compression, AdaCurDKV achieves the highest average score (49.1%), outperforming
AdaSnapKV (45.5%) by +3.6% and CurDKV (48.9%) by +0.02%. At 90% retention, AdaCurDKV main-
tains a strong average score of 35.1%, closely trailing CurDKV (35.7%) and surpassing AdaSnapKV
(34.2%). For Mistral-7B, AdaCurDKV achieves 45.2% performance at 30% retention, outperforming
AdaSnapKV (42.1%), and remaining close to CurDKV (45.6%). Although AdaCurDKV’s average score
drops to 29.1% at 90% retention, it remains competitive and stable across all task types. While
CurDKV typically attains the best or second-best overall score, AdaCurDKV provides additional ro-
bustness by allocating head-wise budgets proportional to leverage score mass, leading to improved
performance on head-sensitive tasks, especially in summarization and multi-hop QA.

7

We conduct ablations (c.f. Figure 3) to assess two core design choices in CurDKV: the source of
leverage scores and the use of random projections. At 30% compression, different leverage modules
(key, value, key-value product) perform similarly, but at 90%, value-centric and combined variants
show better robustness than key-only. Random projections offer marginal gains overall, with slightly
improved stability at high compression (more elaborated discussion in Appendix C).

Table 3: LongBench evaluation results for Qwen models
at 30% and 90% compression.

(a) Qwen-14B

� Task Chunk KNorm Snap Streaming CurDKV

30%

2WikiMQA 28.71 28.76 28.45 25.06 27.97
HotpotQA 33.53 31.44 34.56 26.67 31.58
MF-en 30.41 29.27 32.11 23.33 31.58
Qasper 24.84 21.89 25.38 22.08 27.04
Average 29.37 27.34 30.12 22.91 29.63

90%

2WikiMQA 12.39 10.04 13.37 9.56 20.88
HotpotQA 21.09 9.73 21.34 14.51 21.54
MF-en 17.03 7.20 18.25 14.66 22.08
Qasper 9.25 7.20 9.56 10.22 16.23
Average 14.94 10.00 15.63 12.24 20.18

(b) Qwen-32B

� Task Chunk KNorm Snap Streaming CurDKV

30%

2WikiMQA 51.64 40.14 53.85 34.10 58.07
HotpotQA 58.64 46.94 57.52 47.15 62.60
MF-en 45.41 43.39 48.56 32.61 50.42
Qasper 42.46 37.73 41.86 43.11 47.75
Average 49.54 42.05 50.45 39.24 54.71

90%

2WikiMQA 24.24 6.14 9.84 18.54 40.59
HotpotQA 37.85 3.80 36.29 30.38 43.51
MF-en 24.31 13.12 23.04 22.03 31.24
Qasper 13.62 7.02 14.29 14.56 16.10
Average 25.00 7.52 24.10 21.38 32.86

As shown in Table 3a–3b, CurDKV con-
sistently demonstrates superior robustness
across compression levels and model scales.
For the Qwen-14B model [Yang et al.,
2024], it performs competitively with
SnapKV at 30% compression and achieves
a clear margin at 90% compression, out-
performing all baselines by over 4–6% on
average. The trend becomes more pro-
nounced in the larger Qwen-32B model,
where CurDKV surpasses other adaptive and
non-adaptive methods by a significant mar-
gin under both 30% and 90% compres-
sion. These results highlight that value-
aware KV compression scales favorably
with model size and remains effective even
under extreme memory constraints.

4.3 Results on Ruler

We further evaluate CurDKV and
AdaCurDKV on the Ruler benchmark,
focusing on needle-in-a-haystack (NIAH)
subtasks, which measure a model’s ability to recover rare, high-salience facts embedded in long
distractor contexts. These tasks are particularly sensitive to the retention of semantically critical
key-value tokens. Full cache results are highlighted in Table 4.

As shown in Table 5, CurDKV and AdaCurDKV achieve the highest average score (98.7% and 97.7%)
under 30% compression, outperforming all baselines. CurDKV substantially outperform norm-based
(ChunkKV: 87.0%, Knorm: 71.8%) and attention-based approaches (SnapKV: 80.4%, StreamingLLM:
68.2%). On particularly hard retrieval subtasks like MK-3 and MQ, AdaCurDKV scores 93.6% and
100.0% respectively, indicating its strong capacity to retain tokens that encode key factual content. In
S-3 – a shallow, multi-hop setting, AdaCurDKV scores 88.2% compared to 82.4% (AdaSnapKV) and
94.1% (CurDKV), reflecting robustness in both adaptive and static modes.

Table 4: Results of LLaMA-8B and
Mistral-7B with full KV cache on Ruler
(Needle-in-a-haystack subtasks).

SubTask LLaMA-8B Mistral-7B
S-1 100.0 95.2
S-2 100.0 98.3
S-3 100.0 100.0
MK-1 100.0 97.9
MK-2 100.0 97.8
MK-3 97.9 80.9
MQ 99.5 85.6
MV 100.0 88.8
Average 99.6 92.8

At 90% compression, performance drops sharply for most
baselines, with norm-based methods like Knorm (13.9%)
and StreamingLLM (10.1%) failing to preserve fidelity. In
contrast, CurDKV (34.7%) and AdaCurDKV (39.1%) main-
tain significantly higher performance, with AdaCurDKV
again achieving the best overall average. Notably, on
MQ and MV, AdaCurDKV reaches 56.7% and 52.0% re-
spectively, far ahead of all other methods, highlighting its
advantage on tasks requiring deeper contextual aggrega-
tion. On S-2, AdaCurDKV outperforms both AdaSnapKV
and CurDKV (63.2% vs. 36.8% and 57.9%), showcasing
the benefit of adaptive head-wise allocation in early-token
regimes. Albeit the strong performance across different
subtasks, we observe marginal underperformance on a sub-
set of NIAH tasks with Mistral at 90% compression ratio.

This can be attributed to Mistral’s use of sliding-window attention which reduces head specialization
and makes head-local token selection less effective. In such cases, heuristics like ChunkKV, which
retain tokens based on uniform position or locality, can incidentally preserve critical information.
Nonetheless, CurDKV continues to show superior performance on more challenging retrieval subtasks,
indicating its robustness under complex attention patterns.

8

Table 5: KV compression methods on needle-in-a-haystack tasks for Llama-3.1-8B-Instruct and
Mistral-7B-Instruct (�: compression ratio). Friedman statistic of 25.6/21.7 (for 30% compression)
and 12.3 (for 90% compression) with p-values < 0.05 indicate the statistical significance of the result
obtained by CurDKV over the baselines. Full results for other compression ratios are highlighted in
Tables 16 and 17 of Appendix C. Each result cell “x/y” indicate accuracies with LLaMA/Mistral.

� Task ChunkKV Knorm Streaming LLM SnapKV CurDKV AdaSnapKV AdaCurDKV

Non-Adaptive Methods Adaptive Methods

30%

S-1 100.0 / 93.6 100.0 / 96.8 62.9 / 61.3 100.0 / 54.8 100.0 / 74.2 100.0 / 64.5 100.0 / 85.5
S-2 100.0 / 91.2 100.0 / 12.3 64.9 / 64.9 100.0 / 63.2 100.0 / 91.2 100.0 / 80.7 100.0 / 96.5
S-3 96.1 / 56.9 51.0 / 0.0 78.4 / 78.4 25.5 / 2.0 94.1 / 72.6 82.4 / 13.7 88.2 / 60.8
MK-1 100.0 / 89.6 91.7 / 0.0 70.8 / 64.6 100.0 / 41.7 100.0 / 91.7 100.0 / 77.1 100.0 / 93.8
MK-2 57.8 / 57.8 20.0 / 0.0 71.1 / 68.9 71.1 / 44.4 100.0 / 93.3 97.8 / 84.4 100.0 / 84.4
MK-3 44.7 / 46.8 17.0 / 2.1 55.3 / 31.9 53.2 / 29.8 95.7 / 23.4 89.4 / 68.1 93.6 / 44.7
MQ 100.0 / 85.1 95.7 / 1.9 74.0 / 70.7 99.5 / 31.7 99.5 / 82.2 100.0 / 58.7 100.0 / 83.7
MV 97.4 / 88.8 98.7 / 1.3 68.4 / 68.4 94.1 / 31.6 100.0 / 93.4 100.0 / 64.5 100.0 / 95.4
Average 87.0 / 76.2 71.8 / 14.3 68.2 / 63.6 80.4 / 37.4 98.7 / 77.8 96.2 / 64.0 97.7 / 80.6

90%

S-1 100.0 / 88.7 100.0 / 46.8 6.5 / 6.5 72.6 / 35.5 91.9 / 30.7 85.5 / 46.8 96.8 / 16.1
S-2 38.6 / 3.5 1.8 / 0.0 14.0 / 12.3 38.6 / 3.5 57.9 / 5.3 36.8 / 3.5 63.2 / 5.3
S-3 17.7 / 2.0 0.0 / 0.0 11.8 / 11.8 2.0 / 2.0 0.0 / 0.0 2.0 / 2.0 0.0 / 0.0
MK-1 29.2 / 12.5 0.0 / 0.0 10.4 / 8.3 14.6 / 4.2 39.6 / 8.3 20.8 / 6.3 39.6 / 6.3
MK-2 8.9 / 6.7 0.0 / 0.0 8.9 / 8.9 8.9 / 0.0 4.4 / 0.0 11.1 / 2.2 4.4 / 0.0
MK-3 8.5 / 8.5 2.1 / 0.0 12.8 / 0.0 2.1 / 0.0 0.0 / 0.0 4.3 / 2.1 0.0 / 0.0
MQ 28.4 / 13.9 4.3 / 0.0 9.6 / 6.7 15.4 / 11.5 38.5 / 11.1 14.9 / 11.5 56.7 / 1.4
MV 30.9 / 17.8 3.3 / 0.0 7.2 / 7.2 21.7 / 15.8 45.4 / 12.5 19.7 / 15.8 52.0 / 9.9
Average 32.8 / 19.2 13.9 / 5.8 10.1 / 7.7 22.0 / 9.1 34.7 / 7.8 24.4 / 11.3 39.1 / 3.9

30 90
Compression ratio (in %)

0

20

40

60

80

Ac
cu

ra
cy

 o
n

Lo
ng

Be
nc

h
ta

sk
s Key

Key-Value Product
Value

(a) Leverage computation type

30 90
Compression ratio (in %)

20

40

60

80

Ac
cu

ra
cy

 o
n

Lo
ng

Be
nc

h
ta

sk
s W/o Random Projection

W Random Projection

(b) Ablation with and without random projection

Figure 3: Accuracy of LLaMA-3.1-8B-Instruct on LongBench tasks for different ablations of CurDKV.
Full results reported in Table 18 in Appendix C.

4.4 Computational Efficiency of CurDKV

To evaluate the practical benefits of KV compression beyond accuracy, we analyze CurDKV in
terms of memory usage, prefill latency, and generation latency across varying sequence lengths and
compression ratios. As expected, CurDKV yields (c.f. Figure 4a) a near-linear reduction in KV cache
size with increasing compression ratio. For example, at 80% compression, memory usage drops from
15.6 GB to under 3 GB for a 128K-token context. This linear trend holds consistently across all
tested sequence lengths. Since CurDKV compresses the cache on a per-layer and per-head basis, these

0 20 40 60 80
Compression ratio (in %)

0

5

10

15

20

25

Ca
ch

e
siz

e
(G

B)

(a)
1K tokens
4K tokens
16K tokens

64K tokens
128K tokens

0 20 40 60 80
Compression ratio (in %)

0
5

10
15
20
25
30

Pr
ef

illi
ng

 ti
m

e
(s

ec
on

ds
) (b)

1K tokens
4K tokens
16K tokens

64K tokens
128K tokens

0 20 40 60 80
Compression ratio (in %)

0

5

10

15

20

Ge
ne

ra
tio

n
tim

e
(s

ec
on

ds
) (c)

1K tokens
4K tokens
16K tokens

64K tokens
128K tokens

Figure 4: Prefilling and generation statistics of CurDKV for different text lengths with LLaMA-8B.

9

30% 90%
Compression Ratio

0

10

20

30

40

50

Ru
nt

im
e

(s
ec

on
ds

)

Exact CurDKV
Random CurDKV
SnapKV
ChunkKV

Prefill
Generation

(a) Breakdown analysis of runtime of LLaMA-8B
model with generation length of 100.

30% 90%
Compression Ratio

0

100

200

300

400

500

600

700

Ge
ne

ra
tio

n
Ti

m
e

(s
ec

on
ds

)

Exact CurDKV
Random CurDKV
SnapKV
ChunkKV

(b) Comparative analysis of generation runtime with
4K generation length.

Figure 5: Comparative analysis of different compression methods with 128K context length.

reductions are directly proportional to the retained key-value tokens, enabling predictable memory
scaling in long-context scenarios. Figure 4(b) shows a slight upward trend in prefill latency at higher
compression ratios, especially for longer sequences. This is because CurDKV computes leverage
scores and performs token selection during the prefill phase, introducing modest computational
overhead. For instance, with 128K tokens, prefill time increases from approximately 10 seconds (no
compression) to around 14–15 seconds at high compression levels. However, the added cost remains
constant beyond 40–60% compression, indicating amortization of overhead due to batch-efficient
scoring. Interestingly, generation latency (Figure 4(c)) decreases with compression for all sequence
lengths, particularly for longer inputs. This is attributed to the smaller number of cached tokens
being read during autoregressive decoding. With 128K-token contexts, generation time reduces from
10 seconds (no compression) to under 6 seconds at 80% compression. The effect is more muted
for shorter sequences, but consistently observable. These properties make CurDKV a practical and
scalable solution for deployment-time KV cache optimization in LLMs.

As shown in the runtime and generation analyses in Figure 5, CurDKV achieves a favorable balance
between latency and accuracy across compression levels. At 30% compression, CurDKV with random
projection yields the lowest overall runtime due to reduced prefill cost, while maintaining comparable
generation latency to other baselines. Under 90% compression, it continues to outperform in
total inference time, benefiting from efficient subspace projection of key–value pairs. The longer-
sequence generation study further confirms these trends, where CurDKV consistently achieves faster
decoding than SnapKV and ChunkKV, with up to 15% reduction in generation time. At higher
compression, exact CurDKV (without random projection) yields higher generation time, due to
iterative CUR decomposition; however, CurDKVwith random projection achieves the least generation
time, highlighting the trade-offs between exact and randomized CurDKV.

5 Conclusion

In this paper we proposed CurDKV, a value-centric KV cache compression method based on CUR
decomposition, and AdaCurDKV, its adaptive variant. Unlike prior approaches that rely on attention
scores, our method selects key-value tokens using leverage scores derived from the value matrix, with
efficient approximations via random projections. Experiments on LongBench and Ruler benchmarks
showed that CurDKV consistently outperformed existing methods across tasks and compression ratios,
while remaining compatible with FlashAttention and Grouped Query Attention.

Limitations and future work. While CurDKV offers a principled and effective approach to KV
cache compression, it relies on static token selection during the prefill phase, which may limit
its responsiveness to dynamically emerging information needs during generation. Future work
could explore query-aware token selection, hybrid token-chunk strategies, or lightweight learned
components to improve performance in semantically sparse settings. Extending CurDKV to support
dynamic compression during generation is another promising direction to better adapt to evolving
query demands.

10

Acknowledgments

T. Chakraborty acknowledges the support of the IBM-IITD AI Horizons network and Rajiv Khemani
Young Faculty Chair Professorship in Artificial Intelligence. He acknowledges the support of Google
GCP Grant for providing the necessary computational resources.

References

J. Ainslie, J. Lee-Thorp, M. De Jong, Y. Zemlyanskiy, F. Lebrón, and S. Sanghai. Gqa: Train-
ing generalized multi-query transformer models from multi-head checkpoints. arXiv preprint
arXiv:2305.13245, 2023.

Y. Bai, X. Lv, J. Zhang, H. Lyu, J. Tang, Z. Huang, Z. Du, X. Liu, A. Zeng, L. Hou, et al. Longbench:
A bilingual, multitask benchmark for long context understanding. arXiv preprint arXiv:2308.14508,
2023.

Z. Cai, Y. Zhang, B. Gao, Y. Liu, T. Liu, K. Lu, W. Xiong, Y. Dong, B. Chang, J. Hu, and W. Xiao.
PyramidKV: Dynamic KV Cache Compression based on Pyramidal Information Funneling, Oct.
2024. URL http://arxiv.org/abs/2406.02069. arXiv:2406.02069 [cs].

T. Dao, D. Y. Fu, S. Ermon, A. Rudra, and C. Ré. FlashAttention: Fast and Memory-Efficient
Exact Attention with IO-Awareness, June 2022. URL http://arxiv.org/abs/2205.14135.
arXiv:2205.14135 [cs].

P. Dasigi, K. Lo, I. Beltagy, A. Cohan, N. A. Smith, and M. Gardner. A dataset of information-seeking
questions and answers anchored in research papers, 2021. URL https://arxiv.org/abs/2105.
03011.

Y. Feng, J. Lv, Y. Cao, X. Xie, and S. K. Zhou. Ada-KV: Optimizing KV Cache Eviction by Adaptive
Budget Allocation for Efficient LLM Inference, Jan. 2025. URL http://arxiv.org/abs/2407.
11550. arXiv:2407.11550 [cs].

B. Gliwa, I. Mochol, M. Biesek, and A. Wawer. SAMSum corpus: A human-annotated dialogue
dataset for abstractive summarization. In Proceedings of the 2nd Workshop on New Frontiers in
Summarization, pages 70–79, Hong Kong, China, Nov. 2019. Association for Computational Lin-
guistics. doi: 10.18653/v1/D19-5409. URL https://www.aclweb.org/anthology/D19-5409.

A. Grattafiori, A. Dubey, A. Jauhri, A. Pandey, A. Kadian, A. Al-Dahle, A. Letman, A. Mathur,
A. Schelten, A. Vaughan, A. Yang, A. Fan, A. Goyal, A. Hartshorn, A. Yang, A. Mitra, A. Sra-
vankumar, A. Korenev, A. Hinsvark, A. Rao, A. Zhang, A. Rodriguez, A. Gregerson, A. Spataru,
B. Roziere, B. Biron, B. Tang, B. Chern, C. Caucheteux, C. Nayak, C. Bi, C. Marra, C. McConnell,
C. Keller, C. Touret, C. Wu, C. Wong, C. C. Ferrer, C. Nikolaidis, D. Allonsius, D. Song, D. Pintz,
D. Livshits, D. Wyatt, D. Esiobu, D. Choudhary, D. Mahajan, D. Garcia-Olano, D. Perino, D. Hup-
kes, E. Lakomkin, E. AlBadawy, E. Lobanova, E. Dinan, E. M. Smith, F. Radenovic, F. Guzmán,
F. Zhang, G. Synnaeve, G. Lee, G. L. Anderson, G. Thattai, G. Nail, G. Mialon, G. Pang, G. Cu-
curell, H. Nguyen, H. Korevaar, H. Xu, H. Touvron, I. Zarov, I. A. Ibarra, I. Kloumann, I. Misra,
I. Evtimov, J. Zhang, J. Copet, J. Lee, J. Geffert, J. Vranes, J. Park, J. Mahadeokar, J. Shah,
J. v. d. Linde, J. Billock, J. Hong, J. Lee, J. Fu, J. Chi, J. Huang, J. Liu, J. Wang, J. Yu, J. Bitton,
J. Spisak, J. Park, J. Rocca, J. Johnstun, J. Saxe, J. Jia, K. V. Alwala, K. Prasad, K. Upasani,
K. Plawiak, K. Li, K. Heafield, K. Stone, K. El-Arini, K. Iyer, K. Malik, K. Chiu, K. Bhalla,
K. Lakhotia, L. Rantala-Yeary, L. v. d. Maaten, L. Chen, L. Tan, L. Jenkins, L. Martin, L. Madaan,
L. Malo, L. Blecher, L. Landzaat, L. d. Oliveira, M. Muzzi, M. Pasupuleti, M. Singh, M. Paluri,
M. Kardas, M. Tsimpoukelli, M. Oldham, M. Rita, M. Pavlova, M. Kambadur, M. Lewis, M. Si,
M. K. Singh, M. Hassan, N. Goyal, N. Torabi, N. Bashlykov, N. Bogoychev, N. Chatterji, N. Zhang,
O. Duchenne, O. Çelebi, P. Alrassy, P. Zhang, P. Li, P. Vasic, P. Weng, P. Bhargava, P. Dubal, P. Kr-
ishnan, P. S. Koura, P. Xu, Q. He, Q. Dong, R. Srinivasan, R. Ganapathy, R. Calderer, R. S. Cabral,
R. Stojnic, R. Raileanu, R. Maheswari, R. Girdhar, R. Patel, R. Sauvestre, R. Polidoro, R. Sumbaly,
R. Taylor, R. Silva, R. Hou, R. Wang, S. Hosseini, S. Chennabasappa, S. Singh, S. Bell, S. S. Kim,
S. Edunov, S. Nie, S. Narang, S. Raparthy, S. Shen, S. Wan, S. Bhosale, S. Zhang, S. Vandenhende,
S. Batra, S. Whitman, S. Sootla, S. Collot, S. Gururangan, S. Borodinsky, T. Herman, T. Fowler,

11

http://arxiv.org/abs/2406.02069
http://arxiv.org/abs/2205.14135
https://arxiv.org/abs/2105.03011
https://arxiv.org/abs/2105.03011
http://arxiv.org/abs/2407.11550
http://arxiv.org/abs/2407.11550
https://www.aclweb.org/anthology/D19-5409

T. Sheasha, T. Georgiou, T. Scialom, T. Speckbacher, T. Mihaylov, T. Xiao, U. Karn, V. Goswami,
V. Gupta, V. Ramanathan, V. Kerkez, V. Gonguet, V. Do, V. Vogeti, V. Albiero, V. Petrovic, W. Chu,
W. Xiong, W. Fu, W. Meers, X. Martinet, X. Wang, X. Wang, X. E. Tan, X. Xia, X. Xie, X. Jia,
X. Wang, Y. Goldschlag, Y. Gaur, Y. Babaei, Y. Wen, Y. Song, Y. Zhang, Y. Li, Y. Mao, Z. D.
Coudert, Z. Yan, Z. Chen, Z. Papakipos, A. Singh, A. Srivastava, A. Jain, A. Kelsey, A. Shajnfeld,
A. Gangidi, A. Victoria, A. Goldstand, A. Menon, A. Sharma, A. Boesenberg, A. Baevski, A. Fein-
stein, A. Kallet, A. Sangani, A. Teo, A. Yunus, A. Lupu, A. Alvarado, A. Caples, A. Gu, A. Ho,
A. Poulton, A. Ryan, A. Ramchandani, A. Dong, A. Franco, A. Goyal, A. Saraf, A. Chowdhury,
A. Gabriel, A. Bharambe, A. Eisenman, A. Yazdan, B. James, B. Maurer, B. Leonhardi, B. Huang,
B. Loyd, B. D. Paola, B. Paranjape, B. Liu, B. Wu, B. Ni, B. Hancock, B. Wasti, B. Spence,
B. Stojkovic, B. Gamido, B. Montalvo, C. Parker, C. Burton, C. Mejia, C. Liu, C. Wang, C. Kim,
C. Zhou, C. Hu, C.-H. Chu, C. Cai, C. Tindal, C. Feichtenhofer, C. Gao, D. Civin, D. Beaty,
D. Kreymer, D. Li, D. Adkins, D. Xu, D. Testuggine, D. David, D. Parikh, D. Liskovich, D. Foss,
D. Wang, D. Le, D. Holland, E. Dowling, E. Jamil, E. Montgomery, E. Presani, E. Hahn, E. Wood,
E.-T. Le, E. Brinkman, E. Arcaute, E. Dunbar, E. Smothers, F. Sun, F. Kreuk, F. Tian, F. Kokkinos,
F. Ozgenel, F. Caggioni, F. Kanayet, F. Seide, G. M. Florez, G. Schwarz, G. Badeer, G. Swee,
G. Halpern, G. Herman, G. Sizov, Guangyi, Zhang, G. Lakshminarayanan, H. Inan, H. Shojanazeri,
H. Zou, H. Wang, H. Zha, H. Habeeb, H. Rudolph, H. Suk, H. Aspegren, H. Goldman, H. Zhan,
I. Damlaj, I. Molybog, I. Tufanov, I. Leontiadis, I.-E. Veliche, I. Gat, J. Weissman, J. Geboski,
J. Kohli, J. Lam, J. Asher, J.-B. Gaya, J. Marcus, J. Tang, J. Chan, J. Zhen, J. Reizenstein, J. Teboul,
J. Zhong, J. Jin, J. Yang, J. Cummings, J. Carvill, J. Shepard, J. McPhie, J. Torres, J. Ginsburg,
J. Wang, K. Wu, K. H. U, K. Saxena, K. Khandelwal, K. Zand, K. Matosich, K. Veeraraghavan,
K. Michelena, K. Li, K. Jagadeesh, K. Huang, K. Chawla, K. Huang, L. Chen, L. Garg, L. A,
L. Silva, L. Bell, L. Zhang, L. Guo, L. Yu, L. Moshkovich, L. Wehrstedt, M. Khabsa, M. Avalani,
M. Bhatt, M. Mankus, M. Hasson, M. Lennie, M. Reso, M. Groshev, M. Naumov, M. Lathi,
M. Keneally, M. Liu, M. L. Seltzer, M. Valko, M. Restrepo, M. Patel, M. Vyatskov, M. Samvelyan,
M. Clark, M. Macey, M. Wang, M. J. Hermoso, M. Metanat, M. Rastegari, M. Bansal, N. San-
thanam, N. Parks, N. White, N. Bawa, N. Singhal, N. Egebo, N. Usunier, N. Mehta, N. P. Laptev,
N. Dong, N. Cheng, O. Chernoguz, O. Hart, O. Salpekar, O. Kalinli, P. Kent, P. Parekh, P. Saab,
P. Balaji, P. Rittner, P. Bontrager, P. Roux, P. Dollar, P. Zvyagina, P. Ratanchandani, P. Yuvraj,
Q. Liang, R. Alao, R. Rodriguez, R. Ayub, R. Murthy, R. Nayani, R. Mitra, R. Parthasarathy,
R. Li, R. Hogan, R. Battey, R. Wang, R. Howes, R. Rinott, S. Mehta, S. Siby, S. J. Bondu,
S. Datta, S. Chugh, S. Hunt, S. Dhillon, S. Sidorov, S. Pan, S. Mahajan, S. Verma, S. Yamamoto,
S. Ramaswamy, S. Lindsay, S. Lindsay, S. Feng, S. Lin, S. C. Zha, S. Patil, S. Shankar, S. Zhang,
S. Zhang, S. Wang, S. Agarwal, S. Sajuyigbe, S. Chintala, S. Max, S. Chen, S. Kehoe, S. Satterfield,
S. Govindaprasad, S. Gupta, S. Deng, S. Cho, S. Virk, S. Subramanian, S. Choudhury, S. Goldman,
T. Remez, T. Glaser, T. Best, T. Koehler, T. Robinson, T. Li, T. Zhang, T. Matthews, T. Chou,
T. Shaked, V. Vontimitta, V. Ajayi, V. Montanez, V. Mohan, V. S. Kumar, V. Mangla, V. Ionescu,
V. Poenaru, V. T. Mihailescu, V. Ivanov, W. Li, W. Wang, W. Jiang, W. Bouaziz, W. Constable,
X. Tang, X. Wu, X. Wang, X. Wu, X. Gao, Y. Kleinman, Y. Chen, Y. Hu, Y. Jia, Y. Qi, Y. Li,
Y. Zhang, Y. Zhang, Y. Adi, Y. Nam, Yu, Wang, Y. Zhao, Y. Hao, Y. Qian, Y. Li, Y. He, Z. Rait,
Z. DeVito, Z. Rosnbrick, Z. Wen, Z. Yang, Z. Zhao, and Z. Ma. The Llama 3 Herd of Models, Nov.
2024. URL http://arxiv.org/abs/2407.21783. arXiv:2407.21783 [cs].

D. Guo, C. Xu, N. Duan, J. Yin, and J. McAuley. Longcoder: A long-range pre-trained language
model for code completion, 2023. URL https://arxiv.org/abs/2306.14893.

N. Halko, P.-G. Martinsson, and J. A. Tropp. Finding structure with randomness: Probabilistic
algorithms for constructing approximate matrix decompositions, 2010. URL https://arxiv.
org/abs/0909.4061.

X. Ho, A.-K. Duong Nguyen, S. Sugawara, and A. Aizawa. Constructing a multi-hop QA dataset for
comprehensive evaluation of reasoning steps. In Proceedings of the 28th International Conference
on Computational Linguistics, pages 6609–6625, Barcelona, Spain (Online), Dec. 2020. Interna-
tional Committee on Computational Linguistics. URL https://www.aclweb.org/anthology/
2020.coling-main.580.

C.-P. Hsieh, S. Sun, S. Kriman, S. Acharya, D. Rekesh, F. Jia, Y. Zhang, and B. Ginsburg.
Ruler: What’s the real context size of your long-context language models? arXiv preprint
arXiv:2404.06654, 2024.

12

http://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2306.14893
https://arxiv.org/abs/0909.4061
https://arxiv.org/abs/0909.4061
https://www.aclweb.org/anthology/2020.coling-main.580
https://www.aclweb.org/anthology/2020.coling-main.580

L. Huang, S. Cao, N. Parulian, H. Ji, and L. Wang. Efficient attentions for long document summariza-
tion. In Proceedings of the 2021 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, pages 1419–1436, Online, June
2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.naacl-main.112. URL
https://aclanthology.org/2021.naacl-main.112.

A. Q. Jiang, A. Sablayrolles, A. Mensch, C. Bamford, D. S. Chaplot, D. d. l. Casas, F. Bressand,
G. Lengyel, G. Lample, L. Saulnier, L. R. Lavaud, M.-A. Lachaux, P. Stock, T. L. Scao, T. Lavril,
T. Wang, T. Lacroix, and W. E. Sayed. Mistral 7B, Oct. 2023. URL http://arxiv.org/abs/
2310.06825. arXiv:2310.06825 [cs].

M. Joshi, E. Choi, D. Weld, and L. Zettlemoyer. triviaqa: A Large Scale Distantly Supervised
Challenge Dataset for Reading Comprehension. arXiv e-prints, art. arXiv:1705.03551, 2017.

T. Kočiský, J. Schwarz, P. Blunsom, C. Dyer, K. M. Hermann, G. Melis, and E. Grefenstette.
The narrativeqa reading comprehension challenge, 2017. URL https://arxiv.org/abs/1712.
07040.

H. Li, Y. Li, A. Tian, T. Tang, Z. Xu, X. Chen, N. Hu, W. Dong, Q. Li, and L. Chen. A survey on large
language model acceleration based on kv cache management. arXiv preprint arXiv:2412.19442,
2024a.

X. Li and D. Roth. Learning question classifiers. In COLING 2002: The 19th International Conference
on Computational Linguistics, 2002. URL https://www.aclweb.org/anthology/C02-1150.

Y. Li, Y. Huang, B. Yang, B. Venkitesh, A. Locatelli, H. Ye, T. Cai, P. Lewis, and D. Chen. SnapKV:
LLM Knows What You are Looking for Before Generation, June 2024b. URL http://arxiv.
org/abs/2404.14469. arXiv:2404.14469 [cs].

N. F. Liu, K. Lin, J. Hewitt, A. Paranjape, M. Bevilacqua, F. Petroni, and P. Liang. Lost in the middle:
How language models use long contexts, 2023a. URL https://arxiv.org/abs/2307.03172.

T. Liu, C. Xu, and J. McAuley. Repobench: Benchmarking repository-level code auto-completion
systems, 2023b. URL https://arxiv.org/abs/2306.03091.

X. Liu, Z. Tang, P. Dong, Z. Li, B. Li, X. Hu, and X. Chu. Chunkkv: Semantic-preserving kv cache
compression for efficient long-context llm inference. arXiv preprint arXiv:2502.00299, 2025.

Z. Liu, A. Desai, F. Liao, W. Wang, V. Xie, Z. Xu, A. Kyrillidis, and A. Shrivastava. Scissorhands:
Exploiting the persistence of importance hypothesis for llm kv cache compression at test time.
Advances in Neural Information Processing Systems, 36:52342–52364, 2023c.

M. W. Mahoney and P. Drineas. Cur matrix decompositions for improved data analysis. Proceedings of
the National Academy of Sciences, 106:697 – 702, 2009. URL https://api.semanticscholar.
org/CorpusID:2502987.

NVIDIA. LLM KV Cache Compression Made Easy. https://github.com/NVIDIA/kvpress,
2024. Accessed: 2025-05-06.

H. Trivedi, N. Balasubramanian, T. Khot, and A. Sabharwal. Musique: Multihop questions via
single-hop question composition, 2022. URL https://arxiv.org/abs/2108.00573.

D. P. Woodruff. Computational advertising: Techniques for targeting relevant ads. Foundations
and Trends® in Theoretical Computer Science, 10(1–2):1–157, 2014. ISSN 1551-3068. doi:
10.1561/0400000060. URL http://dx.doi.org/10.1561/0400000060.

G. Xiao, Y. Tian, B. Chen, S. Han, and M. Lewis. Efficient Streaming Language Models with
Attention Sinks, Apr. 2024. URL http://arxiv.org/abs/2309.17453. arXiv:2309.17453 [cs].

A. Yang, B. Yang, B. Zhang, B. Hui, B. Zheng, B. Yu, C. Li, D. Liu, F. Huang, H. Wei, et al. Qwen2.
5 technical report. arXiv preprint arXiv:2412.15115, 2024.

Z. Yang, P. Qi, S. Zhang, Y. Bengio, W. W. Cohen, R. Salakhutdinov, and C. D. Manning. Hotpotqa:
A dataset for diverse, explainable multi-hop question answering, 2018. URL https://arxiv.
org/abs/1809.09600.

13

https://aclanthology.org/2021.naacl-main.112
http://arxiv.org/abs/2310.06825
http://arxiv.org/abs/2310.06825
https://arxiv.org/abs/1712.07040
https://arxiv.org/abs/1712.07040
https://www.aclweb.org/anthology/C02-1150
http://arxiv.org/abs/2404.14469
http://arxiv.org/abs/2404.14469
https://arxiv.org/abs/2307.03172
https://arxiv.org/abs/2306.03091
https://api.semanticscholar.org/CorpusID:2502987
https://api.semanticscholar.org/CorpusID:2502987
https://github.com/NVIDIA/kvpress
https://arxiv.org/abs/2108.00573
http://dx.doi.org/10.1561/0400000060
http://arxiv.org/abs/2309.17453
https://arxiv.org/abs/1809.09600
https://arxiv.org/abs/1809.09600

Z. Zhang, Y. Sheng, T. Zhou, T. Chen, L. Zheng, R. Cai, Z. Song, Y. Tian, C. Ré, C. Barrett, Z. Wang,
and B. Chen. H$_2$O: Heavy-Hitter Oracle for Efficient Generative Inference of Large Language
Models, Dec. 2023. URL http://arxiv.org/abs/2306.14048. arXiv:2306.14048 [cs].

M. Zhong, D. Yin, T. Yu, A. Zaidi, M. Mutuma, R. Jha, A. H. Awadallah, A. Celikyilmaz, Y. Liu,
X. Qiu, and D. Radev. Qmsum: A new benchmark for query-based multi-domain meeting
summarization, 2021. URL https://arxiv.org/abs/2104.05938.

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: All the claims made in the abstract and introduction are empirically validated
in Section 4.

Guidelines:
• The answer NA means that the abstract and introduction do not include the claims

made in the paper.
• The abstract and/or introduction should clearly state the claims made, including the

contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We have highlighted the limitations of our work in conclusion.

Guidelines:
• The answer NA means that the paper has no limitation while the answer No means that

the paper has limitations, but those are not discussed in the paper.
• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best

14

http://arxiv.org/abs/2306.14048
https://arxiv.org/abs/2104.05938

judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: Theoretical results are described in Section 3 with proofs being provided in
the Appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: All the experimental details are provided in Section 4.1 for reproducibility.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.

15

In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The source code used in the study will be provided in the supplementary
material.

Guidelines:
• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All the experimental details are provided in Section 4.1 for reproducibility.

Guidelines:
• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The statistical significance results of the experiments are provided in Section
4.

Guidelines:
• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

16

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The experimental settings are described in Section 4.1.

Guidelines:
• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: There is no societal impact of the work performed. The work conforms all the
aspects of NeurIPS Code of Ethics.

Guidelines:
• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: There is no societal impact of the work performed.

Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

17

https://neurips.cc/public/EthicsGuidelines

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All the assets used in the paper are properly credited.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

18

paperswithcode.com/datasets

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:
• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

19

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for
what should or should not be described.

20

https://neurips.cc/Conferences/2025/LLM

A Proof of Lemma 3.1

Proof. Let A = softmax(QKT)V , and let A′ = softmax(QK ′T)V ′. In this proof, we will upper
bound ∥A−A′∥F . Throughout the proof, we also assume that K and K ′ have the same dimensions,
which is achieved by adding zero rows to K ′ as necessary (and the same holds for V and V ′).

First, we have

A−A′ = softmax(QKT)V − softmax(QKT)V ′ + softmax(QKT)V ′ − softmax(QK ′T)V ′

= softmax(QKT)(V − V ′) + (softmax(QKT)− softmax(QK ′T))V ′

and hence using the triangle inequality for norms, we get

∥A−A′∥F ≤ ∥softmax(QKT)(V − V ′)∥F + ∥(softmax(QKT)− softmax(QK ′T))V ′∥F
Next, if ∥·∥op is the operator norm, then we have that ∥AB∥F ≤ ∥A∥op∥B∥F . Applying this to the
two terms on the RHS above, we get

∥A−A′∥F ≤ ∥softmax(QKT)∥op∥V − V ′∥F + ∥softmax(QKT)− softmax(QK ′T)∥op∥V ′∥F
≤ ∥softmax(QKT)∥op∥V − V ′∥F + (∥softmax(QKT)∥op + ∥softmax(QK ′T)∥op)∥V ′∥F

where in the second step above, we have again used the triangle inequality for norms. Now, we know
that both softmax(QKT) and softmax(QK ′T) are row-stochastic matrices; hence, the ∥·∥op norm of
both these matrices is exactly

√
n. So, we get that

∥A−A′∥F ≤
√
n∥V − V ′∥F + 2

√
n∥V ′∥F

completing the proof of the claim.

B Datasets, Task Descriptions and Task Templates

B.1 The LongBench benchmark

LongBench [Bai et al., 2023] is a set of multitasks designed to assess the ability of LLMs to handle
long-context problems requiring deep understanding and reasoning. Tasks include single-document
question-answering, mutli-document question answering, summarization, few-shot learning, synthetic
tasks and code generation. Below we present a detailed overview of all tasks:

• Single-Doc QA: Models are required to obtain the answer from a single source document.
Test samples are derived from a variety of datasets, including NarrativeQA [Kočiský et al.,
2017], Qasper [Dasigi et al., 2021], and MultiFieldQA [Liu et al., 2023a]. Templates for
these tasks can be found in Table 6.

• Multi-Doc QA: Models are required to extract and combine information from multiple
source documents to obtain the answer. Data samples are derived from three multi-hop QA
datasets: HotpotQA [Yang et al., 2018], 2WikiMultihopQA [Ho et al., 2020] and MuSiQue
[Trivedi et al., 2022]. Templates for these tasks can be found in Table 7.

• Summarization: These tasks require a comprehensive understanding of the context. The
data samples are obtained from the GovReport [Huang et al., 2021] and QMSum [Zhong
et al., 2021] datasets. Templates for these tasks can be found in Table 8.

• Few-shot Learning: These tasks have classification, summarization and reading-
comprehension tasks integrated within them to maintain task diversity. The TREC dataset
[Li and Roth, 2002] is used for classification problems. The SAMSum dataset [Gliwa et al.,
2019] is used for summarization tasks. Finally, TriviaQA [Joshi et al., 2017] is utilized for
comprehension tasks. Templates for these tasks can be found in Table 9.

• Synthetic Tasks: These tasks assess a model’s ability to handle specific scenarios and
patterns. In LongBench, the PassageRetrieval-en and PassageCount datasets are used.
Templates for these tasks can be found in Table 10.

• Code Completion Tasks: These tasks are meant to assist users by completing code based
on a user’s input and context. The LCC dataset from the original Long Code Completion
dataset [Guo et al., 2023] as well as the RepoBench-P dataset [Liu et al., 2023b] is used.
Templates for these tasks can be found in Table 11.

21

Table 6: LongBench templates for Single-Doc QA tasks.

NarrativeQA

Task Template:
You are given a story, which can be either a novel or a movie script, and a
question. Answer the question as concisely as you can, using a single phrase
if possible. Do not provide any explanation.

Story: {context}

Now, answer the question based on the story as concisely as you can,
using a single phrase if possible. Do not provide any explanation.

Question: {question}

Qasper

Task Template:
You are given a scientific article and a question. Answer the question as
concisely as you can, using a single phrase or sentence if possible. If the
question cannot be answered based on the information in the article, write
"unanswerable". If the question is a yes/no question, answer "yes", "no" or
"unanswerable". Do not provide any explanation.

Article: {context}

Answer the question based on the above article as concisely as you
can, using a single phrase or sentence if possible. If the question cannot be
answered based on the information in the article, write "unanswerable". If the
question is a yes/no question, answer "yes", "no" or "unanswerable". Do not
provide any explanation

Question: {question}

MultifieldQA EN

Task Template: Read the following text and answer briefly.

{context}

Now, answer the following question based on the above text, only
give me the answer and do not output any other words.

Question: {question}

B.2 The Ruler benchmark

Ruler [Hsieh et al., 2024] is a collection of synthetic examples to evaluate long-context language
models, containing four task categories to test behaviours beyond simple retrieval from context. Here
is a detailed description of each task category:

• Singe Needle-In-A-Haystack (S-): In these tasks, a keyword sentence, called the "needle",
is embedded within a lengthy text, called the "haystack". The objective of the task is to
retrieve the needle from the context.

• Multi-keys NIAH (MK-): These tasks are similar to S- tasks, with the difference being the
presence of multiple "needles" inserted into the "haystack". However, the task is to retrieve
only one of them.

• Multi-values NIAH (MV-): Here, multiple "needles" in the form of key-value pairs are
hidden in the "haystack". The task is to retrieve all values associated to a single key.

• Multi-queries NIAH (MQ-): Here, multiple "needles" in the form of key-value pairs are
inserted into the "haystack". All "needles" corresponding to the keys specified in the queries
are to be retrieved.

Templates for these tasks can be found in Tables 12 and 13 respectively.

22

Table 7: LongBench templates for Multi-Doc QA tasks.

HotpotQA

Task Template:
Answer the question based on the given passages. Only give me the answer
and do not output any other words.

The following are given passages.
{context}

Answer the question based on the given passages. Only give me the
answer and do not output any other words.

Question: {question}

2WikimQA

Task Template:
Answer the question based on the given passages. Only give me the answer
and do not output any other words.

The following are given passages.
{context}

Answer the question based on the given passages. Only give me the
answer and do not output any other words.

Question: {question}

Musique

Task Template:
Answer the question based on the given passages. Only give me the answer
and do not output any other words.

The following are given passages.
{context}

Answer the question based on the given passages. Only give me the
answer and do not output any other words.

Question: {question}

C Additional Results

C.1 Results on LongBench

We evaluate the performance of CurDKV and AdaCurDKV against baseline compression methods at
intermediate compression ratios of 50% and 70%, using both the LLaMA-3.1-8B and Mistral-7B in
Table 14 and Table 15, respectively.

On LLaMA, CurDKV achieves the highest average accuracy (48.3), outperforming all non-adaptive
baselines such as SnapKV (44.3) and Knorm (43.1), as well as Streaming LLM (37.7). The adaptive
variant AdaCurDKV also performs competitively, with an average score of 47.9, surpassing AdaS-
napKV (44.7). At 70% compression, CUR-based approaches continue to perform favorably. On
LLaMA, CurDKV again achieves the highest average (45.4), ahead of SnapKV (41.9) and Knorm
(36.4), confirming its robustness across moderate compression levels. AdaCurDKV further improves
upon AdaSnapKV (42.4) with an average of 46.1, marking consistent gains across adaptive strategies.

On Mistral, CurDKV again delivers the best average score (43.8), outperforming SnapKV (41.2) and
ChunkKV (41.0). AdaCurDKV (43.7) also surpasses AdaSnapKV (41.9), particularly benefiting from
adaptive budget reallocation on heterogeneous tasks such as TREC (72.0) and SAMSum (45.4).
Across both models, CUR-based methods show superior stability, particularly under structured
reasoning and information-dense settings.

23

Table 8: LongBench templates for Summarization tasks.

Gov Report

Task Template:
You are given a report by a government agency. Write a one-page summary of
the report.

Report:
{context}

Now, write a one-page summary of the report.

QMSum

Task Template:
You are given a meeting transcript and a query containing a question or
instruction. Answer the query in one or more sentences.

Transcript
{context}

Now, answer the query based on the above meeting transcript in one
or more sentences.

Query: {question}

Multi News

Task Template:
You are given several news passages. Write a one-page summary of all news.

News
{context}

Now, write a one-page summary of all the news.

Table 9: LongBench templates for Few-shot learning tasks.

TREC

Task Template:
Please determine the type of the question below. Here are some examples of
questions.

{context}
{question}

TriviaQA

Task Template:
Answer the question based on the given passage. Only give me the answer
and do not output any other words. The following are some examples.

{context}
{question}

SAMSum

Task Template:
Summarize the dialogue into a few short sentences. The following are some
examples.

{context}
{question}

24

Table 10: LongBench templates for Synthetic tasks.

Passage Count

Task Template:
There are some paragraphs below sourced from Wikipedia. Some of them
may be duplicates. Please carefully read these paragraphs and determine how
many unique paragraphs there are after removing duplicates. In other words,
how many non-repeating paragraphs are there in total?

{context}

Please enter the final count of unique paragraphs after removing du-
plicates. The output format should only contain the number, such as 1, 2, 3,
and so on.

Passage Retrieval EN

Task Template:
Here are 30 paragraphs from Wikipedia, along with an abstract. Please
determine which paragraph the abstract is from.

{context}

The following is an abstract.

{question}

Please enter the number of the paragraph that the abstract is from.
The answer format must be like ”Paragraph 1”, ”Paragraph 2”, etc.

Table 11: LongBench templates for Code tasks.

Lcc

Task Template:
Please complete the code given below.
{context}
Next line of code:

Repobench-P

Task Template:
Please complete the code given below.
{context}
{question}
Next line of code:

C.2 Results on Ruler

Table 16 and 17 report the results of different KV compression models with LLaMA and Mistral
models, respectively, at 50% and 70% compression ratios.

With LLaMA, at 50% compression, CurDKV achieves a strong average of 83.1, outperforming all non-
adaptive baselines, including ChunkKV (79.2) and SnapKV (67.0). The adaptive variant, AdaCurDKV
further improves performance to 89.6, benefiting from its dynamic budget allocation across heads.
Notably, AdaCurDKVachieves perfect accuracy (100.0) on 6 out of 8 subtasks, demonstrating its ability
to preserve high-salience tokens even at moderate compression. At 70% compression, the relative
advantage of CUR-based methods persists. CurDKV scores an average of 62.0, substantially ahead
of SnapKV (48.0) and Knorm (32.7), however, falling short from the best non-adaptive baseline
ChunkKV (64.1). AdaCurDKV continues to perform best overall with an average of 69.8, highlighting
its robustness in token-starved regimes. These results reinforce the effectiveness of CUR-based
compression for preserving semantically critical tokens required for pinpoint retrieval.

On Mistral at 50% compression, CurDKV achieves an average score of 54.2, considerably higher than
SnapKV (23.9), Knorm (12.0), and Streaming LLM (41.3). AdaCurDKV pushes this further to 56.1,
showing consistent gains across nearly all subtasks.

As shown in Tables 19, even for a longer context length of 128K, CurDKV achieves the strongest overall
performance on the NIAH benchmark, particularly under higher compression. At 30% compression,
it attains the highest average accuracy (79.95%), marginally surpassing SnapKV while maintaining
consistent gains across multi-key and multi-value retrieval tasks. Under 50% compression, the

25

Table 12: Ruler templates for S and MK tasks.

S-1

Task Template:
Some special magic numbers are hidden within the following text. Make sure
to memorize it. I will quiz you about the numbers afterwards.
The grass is green. The sky is blue. The sun is yellow. Here we go. There and
back again.
...... One of the special magic numbers for {word} is: {number}.
What is the special magic number for {word} mentioned in the provided text?

The special magic number for {word} mentioned in the provided text
is

S-2

Task Template:
Some special magic numbers are hidden within the following text. Make sure
to memorize it. I will quiz you about the numbers afterwards.
Paul Graham Essays.
...... One of the special magic numbers for {word} is: {number}.
What is the special magic number for {word} mentioned in the provided text?

The special magic number for {word} mentioned in the provided text
is

S-3

Task Template:
Some special magic numbers are hidden within the following text. Make sure
to memorize it. I will quiz you about the numbers afterwards.
Paul Graham Essays.
...... One of the special magic numbers for {word} is: {number}.
What is the special magic number for {word} mentioned in the provided text?

The special magic number for {word} mentioned in the provided text
is

MK-1

Task Template:
Some special magic numbers are hidden within the following text. Make sure
to memorize it. I will quiz you about the numbers afterwards.
Paul Graham Essays.
...... One of the special magic numbers for {word-1} is: {number-1}.
...... One of the special magic numbers for {word-2} is: {number-2}.
...... One of the special magic numbers for {word-3} is: {number-3}.
...... One of the special magic numbers for {word-4} is: {number-4}.
What is the special magic number for {word-4} mentioned in the provided text?

The special magic number for {word-4} mentioned in the provided
text is

MK-2

Task Template:
Some special magic numbers are hidden within the following text. Make sure
to memorize it. I will quiz you about the numbers afterwards.
Paul Graham Essays.
...... One of the special magic numbers for {word-1} is: {number-1}.
...... One of the special magic numbers for {word-2} is: {number-2}.
...... One of the special magic numbers for {word-x} is: {number-x}.
...... One of the special magic numbers for {word-n-1} is: {number-n-1}.
...... One of the special magic numbers for {word-n} is: {number-n}.
What is the special magic number for {word-x} mentioned in the provided text?

The special magic number for {word-x} mentioned in the provided
text is

MK-3

Task Template:
Some special uuids are hidden within the following text. Make sure to
memorize it. I will quiz you about the uuids afterwards.
Paul Graham Essays.
...... One of the special magic uuids for {uuid-1} is: {uuid-1}.
...... One of the special magic uuid for {uuid-2} is: {uuid-2}.
...... One of the special magic uuid for {uuid-x} is: {uuid-x}.
...... One of the special magic uuid for {uuid-n-1} is: {uuid-n-1}.
...... One of the special magic uuid for {uuid-n} is: {uuid-n}.
What is the special magic number for {uuid-x} mentioned in the provided text?

The special magic number for {uuid-x} mentioned in the provided
text is

26

Table 13: Ruler templates for MV and MQ tasks.

MV

Task Template:
Some special magic numbers are hidden within the following text. Make sure
to memorize it. I will quiz you about the numbers afterwards.
Paul Graham Essays.
...... One of the special magic numbers for {word} is: {number-1}.
...... One of the special magic numbers for {word} is: {number-2}.
...... One of the special magic numbers for {word} is: {number-3}.
...... One of the special magic numbers for {word} is: {number-4}.
What are all the special magic numbers for {word} mentioned in the provided
text?

The special magic numbers for {word} mentioned in the provided
text are

MQ

Task Template:
Some special magic numbers are hidden within the following text. Make sure
to memorize it. I will quiz you about the numbers afterwards.
Paul Graham Essays.
...... One of the special magic numbers for {word=1} is: {number-1}.
...... One of the special magic numbers for {word-2} is: {number-2}.
...... One of the special magic numbers for {word-3} is: {number-3}.
...... One of the special magic numbers for {word-4} is: {number-4}.
What are all the special magic numbers for {word-1}, {word-2}, {word-3},
and {word-4} mentioned in the provided text?

The special magic numbers for {word-1}, {word-2}, {word-3}, and
{word-4} mentioned in the provided text are

advantage becomes more pronounced, where CurDKV yields the top accuracy on most long-context
string-matching tasks and sustains a clear lead in overall average (68.69%). These results indicate
that value-aware KV compression enhances retrieval fidelity even when memory budgets are severely
constrained, preserving precise information access across longer contexts.

Albeit the minor performance drops, these experiments confirm that CUR-based selection, especially
when adaptively guided, provides a robust and effective mechanism for maintaining retrieval fidelity
under tight memory constraints, outperforming both norm- and attention-based KV selection across
two architectures and multiple compression levels.

C.3 Ablation Study

We perform two ablation studies to investigate the key design decisions behind CurDKV : (1) the
module on which leverage scores are computed, and (2) the effect of using randomized projections
for score approximation. While in our algorithm we use combined leverage scores computed using
both key and value vectors (line 5 of Algorithm 1), in our ablations we study the affect of using only
the key or value vectors to compute leverage scores. We also run experiments wherein leverage scores
are computed on the original key/value matrices without the use of the Gaussian projection (i.e., we
drop lines 3-4 of Algorithm 1)

We first ablate the module on which leverage scores are computed. Figure 3 shows the average
performance (task-level scores reported in Table 18) when using key-only, value-only, and the
default key-value product (elementwise product of key and value leverage scores). All three variants
perform similarly at 30% compression. However, at 90% compression, the differences become more
pronounced: key-only scores degrade significantly, while value and key-value product maintain
higher median accuracy and robustness. This confirms that value information is more predictive of
output quality, and that combining key and value structure yields the most reliable token selection
strategy.

Next, we evaluate the role of randomized leverage score approximation. This determines whether
the key and value matrices are projected to a low-rank space via Gaussian random matrices before

27

Table 14: Results of KV compression methods on LongBench tasks with LLaMA-8B at 50% and
70% compression ratios (�: compression ratio).

� Task ChunkKV Knorm Streaming LLM SnapKV CurDKV AdaSnapKV AdaCurDKV

Non-Adaptive Methods Adaptive Methods

50%

NrtvQA 28.8 28.6 25.2 29.2 30.4 29.2 30.6
Qasper 39.6 40.8 37.1 41.1 49.0 43.4 48.1
MF-en 43.7 49.3 32.0 45.4 54.9 51.5 52.4
HotpotQA 55.8 55.3 50.1 57.3 57.2 56.0 55.6
2WikiMQA 49.6 44.7 38.0 50.6 49.1 51.1 49.3
Musique 27.9 26.4 23.7 30.7 34.7 30.0 32.0
Gov Report 32.7 32.0 30.7 31.9 33.4 32.0 32.9
QMSum 23.0 24.3 21.9 23.8 24.7 24.3 25.2
Multi News 25.6 25.4 25.6 25.4 26.5 25.9 26.6
TREC 23.0 60.8 31.0 36.5 68.0 36.0 67.5
TriviaQA 84.9 88.4 92.0 85.5 92.3 86.1 92.9
SAMSum 39.8 34.3 37.5 40.0 40.7 40.5 41.2
Pcount 10.6 10.6 7.5 11.1 12.8 11.1 11.1
Pre 97.0 86.5 54.0 100.0 98.5 100.0 99.0
Lcc 50.9 32.6 48.8 53.3 49.9 51.1 50.4
RB-P 49.2 49.3 48.5 47.7 50.4 47.4 52.3
Average 42.6 43.1 37.7 44.3 48.3 44.7 47.9

70%

NrtvQA 30.9 25.9 24.2 27.3 30.5 29.1 30.4
Qasper 31.6 32.5 27.8 30.8 43.2 34.9 44.2
MF-en 34.6 42.7 26.7 37.0 45.1 41.9 46.5
HotpotQA 53.6 49.1 43.5 54.8 51.7 55.6 54.6
2WikiMQA 38.5 33.3 30.9 46.9 45.2 47.5 45.5
Musique 25.8 19.7 20.8 27.5 29.3 29.9 30.7
Gov Report 30.6 29.4 29.2 29.9 31.2 29.3 30.7
QMSum 22.3 23.5 21.1 22.6 24.4 22.9 24.5
Multi News 23.5 23.8 24.2 23.8 26.0 24.4 25.9
TREC 15.0 54.5 31.5 39.0 58.0 34.0 63.7
TriviaQA 84.0 74.9 91.5 84.5 92.0 85.3 91.9
SAMSum 36.3 27.7 36.3 41.5 41.7 41.8 41.2
Pcount 7.6 9.1 6.3 10.1 10.8 10.1 9.7
Pre 92.5 58.5 36.5 93.0 98.5 96.0 98.5
Lcc 51.0 28.5 50.9 53.2 46.7 50.6 46.4
RB-P 49.4 48.6 49.9 47.8 51.6 45.9 52.8
Average 39.2 36.4 34.4 41.9 45.4 42.4 46.1

computing leverage scores. We observe marginal differences between the two variants. At 30%
compression, both versions perform similarly in median accuracy, though random projection slightly
improves the worst-case performance. At 90% compression, however, random projections result
in modest improvements in median and lower-quartile accuracy. These gains suggest that random
projections can help stabilize leverage score estimation under extreme compression, but their effect is
secondary to the choice of leverage module.

We analyze the robustness of AdaCurDKV with respect to the safeguard parameter α and the Gaus-
sian projection dimension r. As shown in Tables 20a and 20b, performance remains remarkably
stable across α ∈ {0.1, 0.5, 0.9}, indicating that the adaptive safeguard mechanism is largely self-
regularizing. The average scores vary by less than one point even under aggressive 90% compression,
demonstrating strong resilience. Increasing r consistently improves performance, saturating around
r = 100, suggesting that moderate projection ranks suffice for accurate subspace estimation without
incurring high overhead. At the same time, increasing r converges to the exact CUR-decomposition
of key-value matrices.

C.4 Runtime Analysis

We analyze the runtime behavior of CurDKV and SnapKV under varying compression ratios and input
lengths, as illustrated in Figures 4 and 6. We focus on three key metrics: KV cache size, prefill time,
and generation time.

Cache Size. Both methods exhibit nearly linear reduction in KV cache size as compression increases.
For example, with a 128K token input, the cache size reduces from approximately 16 GB at 0%
compression to under 2 GB at 80% compression for both CurDKV and SnapKV (Figures 4a and 6a).

28

Table 15: Results of KV compression methods on LongBench tasks with Mistral-7B at 50% and 70%
compression ratios (�: compression ratio).

� Task ChunkKV Knorm Streaming LLM SnapKV CurDKV AdaSnapKV AdaCurDKV

Non-Adaptive Methods Adaptive Methods

50%

NrtvQA 24.6 20.5 23.5 24.3 25.6 24.4 25.1
Qasper 30.4 29.0 30.8 32.6 39.4 30.3 39.2
MF-en 44.1 42.5 30.8 47.1 51.3 48.5 49.4
HotpotQA 47.0 45.5 40.8 47.2 42.7 48.5 44.8
2WikiMQA 35.0 31.3 30.5 36.5 39.5 36.8 37.7
Musique 25.1 22.5 18.6 23.0 27.7 26.0 26.9
Gov Report 32.4 30.0 31.7 31.6 33.2 31.7 31.4
QMSum 23.5 23.2 22.9 23.7 24.9 24.0 24.9
Multi News 25.2 24.7 25.1 25.2 26.6 25.5 26.7
TREC 48.8 40.7 56.0 50.0 69.0 51.0 72.0
TriviaQA 86.8 86.9 69.9 86.5 87.4 87.7 85.2
SAMSum 22.3 36.6 21.3 21.4 45.7 22.7 45.4
Pcount 7.0 4.2 1.5 4.7 5.9 5.8 6.6
Pre 96.0 67.5 53.5 96.5 78.0 97.5 68.5
Lcc 52.4 32.8 52.4 52.2 47.8 52.1 57.4
RB-P 55.5 54.3 53.9 56.8 55.3 57.3 58.7
Average 41.0 37.0 35.2 41.2 43.8 41.9 43.7

70%

NrtvQA 21.3 16.5 20.4 23.0 21.02 23.2 19.1
Qasper 21.4 19.2 21.6 24.2 35.1 25.1 35.0
MF-en 38.2 34.1 27.8 41.9 46.8 42.1 46.0
HotpotQA 44.1 38.9 38.1 43.9 38.2 45.5 34.3
2WikiMQA 33.6 26.0 26.9 29.2 32.3 31.7 33.9
Musique 20.9 18.9 16.7 21.2 18.0 21.9 15.3
Gov Report 29.9 27.1 29.6 29.7 27.0 29.2 23.3
QMSum 21.9 21.6 22.1 22.2 23.6 22.4 23.1
Multi News 23.5 22.6 23.6 23.7 25.4 24.3 25.1
TREC 38.3 36.0 46.0 46.0 65.5 48.8 66.0
TriviaQA 87.6 86.3 62.8 86.8 59.4 87.0 52.4
SAMSum 25.4 39.6 25.7 22.2 42.4 23.0 42.1
Pcount 5.6 3.3 2.5 5.9 5.1 4.2 5.7
Pre 91.0 38.3 36.0 92.8 25.5 94.5 11.0
Lcc 54.1 29.5 52.2 53.54 43.6 53.0 55.3
RB-P 55.3 55.0 53.1 56.0 52.2 56.5 57.0
Average 38.2 32.0 31.6 38.9 35.1 39.5 34.0

Table 16: Results of all KV compression baselines on needle-in-a-haystack subtasks with LLaMA-8B
at 50% and 70% compression ratios (�: compression ratio).

� SubTask ChunkKV Knorm Streaming LLM SnapKV CurDKV AdaSnapKV AdaCurDKV

Non-Adaptive Methods Adaptive Methods

50%

S-1 100.0 100.0 38.7 100.0 100.0 100.0 100.0
S-2 100.0 96.5 40.4 98.3 100.0 100.0 100.0
S-3 88.2 9.8 51.0 11.8 25.5 60.8 54.9
MK-1 95.8 70.8 56.3 100.0 100.0 100.0 100.0
MK-2 40.0 6.7 48.9 40.0 82.2 93.3 95.6
MK-3 29.8 12.8 36.2 19.2 61.7 46.8 68.1
MQ 95.2 71.6 50.5 85.6 99.0 98.6 98.1
MV 84.2 80.3 48.0 80.9 96.7 100.0 100.0
Average 79.2 56.1 46.2 67.0 83.1 87.4 89.6

70%

S-1 100.0 100.0 16.1 93.6 100.0 100.0 100.0
S-2 89.5 50.9 26.3 86.0 98.3 100.0 98.3
S-3 70.6 2.0 31.4 3.9 9.8 15.7 13.7
MK-1 79.2 33.3 35.4 75.0 87.5 97.9 97.9
MK-2 20.0 0.0 22.2 24.4 44.4 53.3 57.8
MK-3 17.0 8.5 19.2 8.5 23.4 0.0 4.3
MQ 79.8 26.4 33.7 49.5 70.2 94.7 94.7
MV 56.6 40.8 25.0 42.8 62.5 92.8 91.5
Average 64.1 32.7 26.2 48.0 62.0 69.3 69.8

29

Table 17: Results of all KV compression baselines on needle-in-a-haystack subtasks with Mistral-7B
at 50% and 70% compression ratios (�: compression ratio).

� SubTask ChunkKV Knorm Streaming LLM SnapKV CurDKV AdaSnapKV AdaCurDKV

Non-Adaptive Methods Adaptive Methods

50%

S-1 87.1 95.2 37.1 50.0 69.4 69.4 71.0
S-2 86.0 0.0 40.4 45.6 93.0 56.1 89.5
S-3 33.3 0.0 51.0 2.0 21.6 2.0 15.7
MK-1 77.1 0.0 50.0 20.8 79.2 43.8 77.1
MK-2 35.6 0.0 48.9 24.4 15.6 53.3 33.3
MK-3 25.5 0.0 14.9 12.8 2.1 38.3 10.6
MQ 79.8 0.5 40.9 16.4 70.7 33.7 70.2
MV 79.0 0.7 47.4 19.1 82.2 32.9 81.6
Average 62.9 12.0 41.3 23.9 54.2 41.2 56.1

70%

S-1 88.7 80.7 14.5 45.2 19.4 69.4 12.9
S-2 56.1 0.0 26.3 24.6 68.4 40.4 52.6
S-3 11.8 0.0 31.4 2.0 0.0 2.0 0.0
MK-1 35.4 0.0 27.1 18.8 35.4 20.8 37.5
MK-2 13.3 0.0 17.8 4.4 0.0 24.4 2.2
MK-3 17.0 0.0 10.6 8.5 0.0 19.2 0.0
MQ 48.6 0.0 26.0 12.0 64.4 13.9 26.9
MV 44.7 0.0 25.0 15.1 63.8 17.8 43.4
Average 39.5 10.1 22.3 16.3 31.4 26.0 21.9

Table 18: Ablation of CurDKV on LongBench datasets. We calculated leverage score on different
attention modules (key, value and key-value both) with and without random Gaussian projections (�:
compression ratio).

� Task Key Key+random Key-value Key-value+random Value Value+random

30%

NrtvQA 24.0 24.9 31.6 31.9 30.6 30.1
Qasper 24.8 27.5 49.5 48.1 48.4 48.5
MF-en 40.9 43.2 57.1 55.6 56.3 56.9
HotpotQA 51.6 54.5 58.0 56.9 57.0 58.0
2WikiMQA 38.7 44.9 48.6 48.4 50.3 50.7
Musique 23.4 28.3 31.0 34.2 33.2 32.7
Gov Report 30.9 32.0 33.7 33.6 34.6 34.3
QMSum 24.3 24.4 24.8 25.2 25.1 24.7
Multi News 10.6 11.1 26.6 26.8 26.7 26.9
TREC 33.0 25.0 65.5 54.5 66.5 62.5
TriviaQA 91.0 90.9 92.2 92.1 92.4 91.7
SAMSum 36.8 38.8 41.6 39.9 40.2 40.0
Pcount 2.5 7.0 8.0 9.2 11.4 12.1
Pre 81.5 92.5 99.0 98.0 100.0 99.0
Lcc 52.9 53.5 51.1 51.6 50.7 51.4
RB-P 51.7 50.4 50.1 50.0 49.9 49.4
Average 38.7 40.6 48.0 47.2 48.3 48.0

90%

NrtvQA 20.4 21.7 28.5 20.9 27.8 25.4
Qasper 15.3 15.6 28.5 25.8 29.7 24.9
MF-en 26.7 28.4 53.3 53.2 34.7 34.3
HotpotQA 25.1 28.0 38.4 39.7 47.2 46.9
2WikiMQA 20.9 21.7 33.3 30.4 30.7 31.1
Musique 9.5 10.8 20.0 18.7 19.7 21.9
Gov Report 14.7 19.1 24.1 24.0 26.8 25.9
QMSum 18.9 19.9 21.5 21.8 22.3 22.3
Multi News 8.6 15.2 22.1 21.9 23.1 22.8
TREC 1.5 6.5 7.0 15.3 22.5 16.0
TriviaQA 87.0 88.4 89.9 90.6 90.7 91.7
SAMSum 32.5 32.2 30.4 27.9 37.2 33.2
Pcount 0.0 0.0 1.0 1.0 5.7 5.6
Pre 3.5 6.0 25.0 26.0 61.0 49.0
Lcc 33.5 32.0 39.7 38.2 34.9 35.3
RB-P 55.3 55.1 54.0 53.6 49.6 51.9
Average 23.3 25.0 32.3 31.8 35.2 33.7

This confirms that CUR-based token selection inherits the cache sparsity advantages of heuristic
methods like SnapKV.

Prefill Time. SnapKV maintains flat prefill latency regardless of compression. For instance, at
128K tokens, prefill time remains consistently around 10 seconds across all compression levels
(Figure 6b). CurDKV by contrast, incurs higher latency due to leverage score computation, rising
from 10 seconds at 0% compression to about 14-15 seconds at 60–80% compression for 128K tokens

30

Table 19: Results on the needle-in-a-haystack benchmark (128K context length) at 30% and 50%
compression with LLaMA-8B model.

� Task ChunkKV KNorm SnapKV StreamingLLM CurDKV

30%

S-1 100.00 100.00 100.00 55.56 88.89
S-2 87.50 87.50 100.00 62.50 87.50
S-3 90.91 81.82 63.64 54.55 81.82
MK-1 92.31 69.23 100.00 69.23 84.62
MK-2 50.00 0.00 50.00 78.57 92.86
MK-3 20.00 10.00 10.00 20.00 10.00
MQ 95.00 82.50 100.00 70.00 97.50
MV 92.86 82.14 92.86 67.86 96.43
Average 78.57 64.15 77.06 59.78 79.95

50%

S-1 100.00 100.00 100.00 44.44 100.00
S-2 62.50 62.50 100.00 50.00 75.00
S-3 72.73 36.36 9.09 36.36 36.36
MK-1 84.62 23.08 92.31 53.85 84.62
MK-2 35.71 0.00 42.86 50.00 57.14
MK-3 20.00 0.00 10.00 10.00 10.00
MQ 85.00 45.00 95.00 40.00 90.00
MV 82.14 46.43 92.86 39.29 96.43
Average 67.84 39.17 67.77 40.49 68.69

0 20 40 60 80
Compression ratio (in %)

0

5

10

15

20

25

Ca
ch

e
siz

e
(G

B)

(a)
1K tokens
4K tokens
16K tokens

64K tokens
128K tokens

0 20 40 60 80
Compression ratio (in %)

0
5

10
15
20
25
30

Pr
ef

illi
ng

 ti
m

e
(s

ec
on

ds
) (b)

1K tokens
4K tokens
16K tokens

64K tokens
128K tokens

0 20 40 60 80
Compression ratio (in %)

0

5

10

15

20

Ge
ne

ra
tio

n
tim

e
(s

ec
on

ds
) (c)

1K tokens
4K tokens
16K tokens

64K tokens
128K tokens

Figure 6: Prefilling and generation statistics of SnapKV for different sequence lengths with LLaMA-
8B.

(Figure 4b). For shorter sequences like 4K or 16K, the difference is marginal, under 1 second for
both methods.

Generation Time. CurDKV demonstrates a stronger reduction in generation time, particularly
for long sequences. For 128K-token inputs, generation latency drops from ∼12 seconds at 0%
compression to just ∼4.5 seconds at 80% compression (Figure 4c). SnapKV also sees a drop from
∼15 seconds to ∼6 seconds, but exhibits irregular behavior for mid-length sequences (e.g., 64K
shows a flat profile between 40–80% compression in Figure 6c).

While SnapKV is faster to prefill, CurDKV yields larger reductions in generation time, especially for
long sequences (e.g., 128K tokens) and high compression levels. Its additional prefill cost roughly
3–5 seconds at worst is offset by its smoother and more aggressive runtime scaling, making it a more
efficient choice for long-context inference when accuracy and latency matter.

31

Table 20: Sensitivity and ablation analysis for CurDKV on selected LongBench tasks.

(a) Sensitivity to safeguard parameter α

� α 2WikiMQA HotpotQA MF-en Qasper Avg

30%
0.1 49.13 58.74 55.82 48.36 53.01
0.5 49.13 58.74 55.82 48.36 53.01
0.9 48.99 58.67 56.33 48.46 53.11

90%
0.1 34.50 45.91 30.80 28.75 34.99
0.5 32.73 46.61 30.15 29.83 34.83
0.9 32.27 46.44 31.37 28.99 34.77

(b) Ablation on Gaussian projection dimension r

� r 2WikiMQA HotpotQA MF-en Qasper Avg

30%
5 50.99 58.77 55.48 47.97 53.30

10 50.71 59.21 55.71 47.33 53.24
50 49.31 57.85 54.78 47.83 52.44
100 52.07 58.23 56.41 49.52 54.06

90%
5 28.45 41.80 29.29 25.50 31.26

10 35.04 41.98 29.94 26.02 33.24
50 34.25 45.48 32.30 28.64 35.17
100 35.30 46.52 33.15 28.13 35.77

32

	
	Introduction
	Related Work
	Methodology
	Preliminaries
	CurDKV: Algorithm Design

	Experiments and Results
	Experimental Settings
	Results on LongBench
	Results on Ruler
	Computational Efficiency of CurDKV

	Conclusion
	Proof of Lemma 3.1
	Datasets, Task Descriptions and Task Templates
	The LongBench benchmark
	The Ruler benchmark

	Additional Results
	Results on LongBench
	Results on Ruler
	Ablation Study
	Runtime Analysis

