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Abstract

This study explores strategies to enhance the generalizability of WSI classification models
across diverse centers, crucial for clinical adoption. By leveraging optimal transport and
Leave-One-Center-Out training policies, we achieve a 3% increase in the Youden Index,
demonstrating their complementary roles in improving model performance. These ap-
proaches offer promising avenues for mitigating the need for extensive calibration samples,
addressing challenges in external validation and ensuring robustness in clinical settings.
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1. Introduction

Because of the diverse processing steps involved in its generation, digital histopathology
data exhibits significant heterogeneity across various centers. These steps range from sam-
ple preparation procedures such as staining and slicing, to the specifics of digitization like
resolution and scanner type, resulting in notable shifts in data distribution. Consequently,
ensuring the robust performance of AI models across new data distributions has become a
standard practice in the field. This is typically achieved through testing trained models on
what are termed ”external cohorts” — datasets sourced from independent centers distinct
from those used for training. External validation is particularly important when developing
AI tools that will be used in clinical routine. Indeed, such tools should guarantee a mini-
mum level of performance, regardless of any observed distributional shifts among different
centers. Without these “guarantees”, adoption of such tools in routine is impossible as it
can significantly influence patient care

Ideally, achieving robust and generalizable models would be achieved using large and
heterogeneous training datasets, reflective of the various potential data distributions. But
digital pathology data are scarce, difficult to obtain, and often coming from one or few
centers, limiting sources of variability.
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MSIntuit (Saillard et al., 2023), a clinically validated AI algorithm designed for pre-
dicting Microsatellite Instability binary status (MSI or MSS) from H&E slides, proposes
to ensure minimal performance standards across external centers through calibration. This
involves utilizing a set of 30 MSI slides from each external center to calibrate model outputs
and adjust classification thresholds accordingly. Nonetheless, calibration presents certain
limitations. Firstly, gathering the necessary slides from each external cohort may pose chal-
lenges, especially for diseases with low prevalence. Secondly, it remains dependent on the
selection of slides used for calibration, which may not fully capture the broadness of data
distribution.

In this study, we propose an exploration of two strategies to enhance model generaliz-
ability on external data, thereby mitigating the necessity for extensive sets of calibration
slides. Each proposition detailed subsequently, addresses distinct stages of the model and
as such, are complementary.

2. Methods

2.1. Data

We used public and proprietary data to train and test our model. Each slide was associated
with a binary label (MSI or MSS). A total of 2,200 H&E slides from various centers were
used in the training set (18% MSI), and a total of 1,198 slides from 5 external cohorts
were used as testing sets (34% MSI). Each slide was tiled in patches of 224x224 pixels at
a resolution of 0.5 mpp. Features from each tile were extracted with a custom version of
Phikon feature extractor (Filiot et al., 2023), trained on colorectal cancer slides.

2.2. Model and Training

As in (Saillard et al., 2023), Chowder Multiple Instance Learning was used with binary
cross entropy. The training dataset was split into 15 stratified splits and cross validation
was performed on each split. All the resulting trained models were ensembled to obtain
prediction on the external test cohorts.

2.3. Evaluation and Baseline

As baseline, we measure the classification performances on each external cohorts using a
standard calibration technique: 10 MSS and 5 MSI slides were randomly sampled from
each external cohort and used only for calibration on their respective cohort, classification
threshold was determined to reach a minimum of 0.9 sensitivity on the calibration data,
reflecting the actual clinical use case (limiting false negatives).

2.4. Leverage 1: Use Optimal Transport to improve threshold calibration.

Optimal Transport (OT) (Peyré et al., 2019) defines the optimization problem which aims
at minimizing the cost of transportation of a source distribution to match a target one.
We used OT to map classification threshold computed on the training set (defined to reach
Sensitivity>0.9) to calibration sets. To do so, the training set was bootstrapped into N
subsets (N=1000) sampled to ensure a MSI prevalence of 30%. OT was used to map the
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Table 1: Classification performances averaged on 5 external cohorts. 1000 bootstraps on
each cohort and averaged.

Leverage 1
Calibration

Leverage 2
Training Protocol

AUC [95%CI] Youden Score [95%CI] Sensitivity [95%CI] Specificity [95%CI]

baseline random splits
0,929 [0.899-0.971]

0,705 [0.646-0.775] 0,867 [0,858-0,879] 0,837 [0,768- 0,907]
optimal transport random splits 0,712 [0.64-0.808] 0,889 [0.864-0.944] 0,822 [0,762-0,898]

baseline LOCO
0,926 [0.903-0.965]

0,711 [0.643-0.803]] 0,884 [0.836-0.912]] 0,827 [0,733-0,901]
optimal transport LOCO 0,734 [0.658-0.815] 0,911 [0.874-0,934] 0,823 [0,725- 0,903]

N thresholds to the calibration set of each external cohorts respectively. The N mapped
thresholds were then averaged, resulting in final mapped threshold for each cohort to be
used for classification of the test data.

2.5. Leverage 2: Apply a “Leave One Center Out” (LOCO) training policy

The cross validation splits are no longer generated randomly but sampled in a “leave one
center out policy”. The slides from one center are used either in training or in validation
exclusively. The resulting models are then ensembled to obtain predictions on the external
test data. Loss monitoring and Early stopping is used to ensure that the model does not
overfit on the “left out” split.

3. Results

To assess MSI/ MSS classification performances in clinical context, we report Sensitivity
and Specificity (see Table 1). The Youden Index (Sensitivity + Specificity -1) is used to
capture the balance between the two. Using Optimal Transport alone or LOCO policy alone
led to an increase of 0.7% and 0.6% of the Youden Index respectively while combining the
two led to an increase of 3% showing their complementary role.

4. Discussion

In this paper we explored simple and efficient leverages to improve Out-of-Domain gener-
alizability of AI models in the context of WSI classification. Each of the methods tackle
separate portions of the classification pipeline, from the model training policy to the output
calibration. These propositions can easily be customized for specific use cases: for instance,
by using other covariates such as histological subtypes, biopsy/resection or tumor grade
in the LOCO policy. Optimal transport has proven to be efficient to improve calibration,
yet the ultimate goal is to have a ”truly generalizable” model for which less calibration
data or no calibration is needed. Further analysis will give more insight on the benefit of
such methods, especially for indications with very low prevalence where calibration sets are
extremely costly to acquire.
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