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Abstract001

Multi-objective preference alignment in lan-002
guage models often encounters a challeng-003
ing trade-off: optimizing for one human pref-004
erence (e.g., helpfulness) frequently compro-005
mises others (e.g., harmlessness) due to the006
inherent conflicts between competing objec-007
tives. While prior work mainly focuses on008
algorithmic solutions, we explore a novel data-009
driven approach to uncover the types of data010
that can effectively mitigate these conflicts.011
Specifically, we propose the concept of RE-012
WARD CONSISTENCY (RC), which identifies013
samples that align with multiple preference014
objectives, thereby reducing conflicts during015
training. Through gradient-based analysis, we016
demonstrate that RC-compliant samples inher-017
ently constrain performance degradation during018
multi-objective optimization. Building on these019
insights, we further develop REWARD CONSIS-020
TENCY SAMPLING, a framework that automat-021
ically constructs preference datasets that effec-022
tively mitigate conflicts during multi-objective023
alignment. Our generated data achieves an aver-024
age improvement of 13.37% in both the harm-025
less rate and helpfulness win rate when opti-026
mizing harmlessness and helpfulness, and can027
consistently resolve conflicts in varying multi-028
objective scenarios.029

1 Introduction030

Alignment is a critical stage in the fine-tuning of031

language models, designed to ensure that the gen-032

erated responses align with human preferences and033

values (Guo et al., 2025; Lambert et al., 2024;034

Xu et al., 2024). While current Reinforcement035

Learning with Human Feedback (RLHF) (Ouyang036

et al., 2022) and direct preference alignment meth-037

ods (Rafailov et al., 2024; Azar et al., 2024; Hong038

et al., 2024; Ethayarajh et al., 2024; Meng et al.,039

2025) have been proven effective for improving040

the general quality of generated responses, they041

still face the significant challenge of aligning042

with diverse and often conflicting human prefer- 043

ences (Casper et al., 2023; Rame et al., 2024). The 044

inherent conflicts between different human pref- 045

erences often lead to trade-offs (Bai et al., 2022; 046

Lou et al., 2024), where optimizing for one pref- 047

erence may degrade performance in another pref- 048

erence, hindering universal performance improve- 049

ments across diverse alignment dimensions, which 050

we refer to as alignment conflict in this paper. 051

Recent advancements in multi-objective direct 052

preference alignment have introduced algorith- 053

mic improvements to reduce optimization conflicts 054

while avoiding the high cost and instability of the 055

RLHF process (Zhou et al., 2024b). For example, 056

MODPO (Zhou et al., 2024b) and SPO (Lou et al., 057

2024) extend DPO by introducing a margin loss 058

term into the objective function, thereby establish- 059

ing a multi-objective-driven training process that 060

ensures simultaneous optimization across compet- 061

ing objectives. However, their effectiveness is still 062

inherently constrained by the data itself. If the data 063

lacks inherent multi-objective alignment potential, 064

algorithmic adjustments alone struggle to resolve 065

conflicts between objectives. 066

While data selection is important for preference 067

alignment, constructing datasets that inherently bal- 068

ance multiple conflicting objectives remains fun- 069

damentally challenging. Existing data selection 070

for alignment frameworks usually focus on how to 071

enhance the performance of homogeneous prefer- 072

ences or specific tasks (Khaki et al., 2024; Pattnaik 073

et al., 2024; Lai et al., 2024; Cui et al., 2023; Wang 074

et al., 2024), but lacks exploration of data that bal- 075

ances multiple preference objectives. Therefore, it 076

remains challenging to clearly understand the desir- 077

able properties of multi-objective data, as well as 078

to determine effective ways to identify such data. 079

This crucial gap prompts our central investiga- 080

tion in the context of direct preference alignment: 081

How can we effectively construct data that reduces 082

conflicts between competing preference objectives 083
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for training? By identifying and understanding084

the mechanisms driving alignment conflicts, we085

present REWARD CONSISTENCY (RC), a desir-086

able property suitable for multi-objective align-087

ment. Through gradient-based analysis, we es-088

tablish that reward-consistent samples inherently089

preserve multiple objectives during optimization090

through constrained gradient divergence. We fur-091

ther propose REWARD CONSISTENCY SAMPLING092

(RCS) framework, which first samples diverse can-093

didate responses from LLMs for each input prompt,094

then applies reward consistency principle to filter095

out those conflicting ones. Our framework works096

well with both implicit and explicit reward signals,097

and we can selectively keep rewards consistent098

along specific dimensions for flexible control. The099

generated data is also compatible with different di-100

rect preference alignment algorithms. Overall, we101

make the following contributions:102

• We introduce the principle of REWARD CON-103

SISTENCY (RC) and demonstrate that sam-104

ples satisfying this principle effectively mit-105

igates conflicts between competing objectives106

from both theoretical and empirical aspects.107

• We propose, to the best of our knowledge,108

the first data-centric framework for multi-109

objective direct preference optimization called110

REWARD CONSISTENCY SAMPLING (RCS).111

This approach integrates reward consistency112

with sampling to reconstruct preference113

datasets that can help mitigate conflicts.114

• We validate the proposed RCS framework115

through extensive experiments. For in-116

stance, when optimizing the helpfulness and117

harmlessness objectives, training on data118

constructed by RCS achieved an average119

performance improvement of 13.37% in120

both harmless rate and helpfulness win rate121

compared to using the original dataset.122

2 Problem Formulation123

In this work, we construct data for multi-objective124

direct alignment methods (Zhou et al., 2024b; Lou125

et al., 2024), which train language models through126

closed-form loss functions like DPO (Rafailov127

et al., 2024). These methods bypass explicit reward128

modeling and leverage offline pair-wise preference129

data to capture multiple human preferences. Com-130

pared with online reinforcement learning methods131

like Multi-Objective RLHF (MORLHF) (Rame132

et al., 2024; Dai et al., 2023), direct alignment 133

methods require fewer computing resources and 134

significantly reduce costs. 135

Existing multi-objective direct alignment 136

pipelines typically train language models se- 137

quentially on specialized preference datasets 138

{D1, ..., Dk}, where K denotes the total number of 139

preference objectives and each preference dataset 140

Di targets at aligning the i-th objective (Lou 141

et al., 2024). Since datasets for different objec- 142

tives are constructed without considering other 143

objectives, conflicts can be easily introduced, 144

making the datasets suboptimal for multi-objective 145

alignment tasks. More specifically, each dataset 146

Di = {(xj , yjw, yjl )}
M
j=1, where xj denotes a 147

user input prompt, yjw denotes the corresponding 148

winning (chosen) response, yjl denotes the losing 149

(rejected) response, and M represents the number 150

of samples in Dk. Here, response yjw is only 151

guaranteed to win response yjl in terms of the i-th 152

objective (e.g., helpfulness), and may be worse 153

than yjl in terms of other objectives (e.g., safety), 154

thus introducing potential conflicts. 155

To address this challenge, we aim to automat- 156

ically construct new preference datasets that are 157

specifically designed to support multi-objective 158

alignment and can be used in any sequential train- 159

ing framework as described above. Specifically, 160

given K preference objectives, our goal is to gen- 161

erate datasets that mitigate alignment conflict, a 162

phenomenon where optimizing the current objec- 163

tive degrades the performance of previous objec- 164

tives during the alignment process. This can be 165

formulated as: 166

Input: K preference objectives and preference 167

dataset Dj = {(xi, yiw, yil)}Mi=1 for current prefer- 168

ence objective j ∈ {1, ...,K}, where M represents 169

the number of samples in Dj . 170

Output: Preference datasets {D1, D
′
2, ...D

′
K}, 171

each D′
i reduce conflicts with previous trained ob- 172

jectives, thereby facilitating multi-objective sequen- 173

tial alignment. We do not change D1 here since 174

no conflict is introduced when there is only one 175

objective. 176

3 REWARD CONSISTENCY 177

In this section, we discuss the desirable proper- 178

ties that samples should possess to resolve con- 179

flicts in multi-objective alignment. To this end, we 180

first define REWARD CONSISTENCY as the desir- 181

able property (Section 3.1) and then demonstrate 182
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(a) Reward-Consistent Samples (b) Non-Reward-Consistent Samples

Gradients of objective 1 and 2 ( 

and  ) are in the same direction

: Gradient of objective 1
: Gradient of both objective 1 and objective 2

: Additional gradient introduced by objective 2

Gradients of objective 1 and 2 (  and

 ) are in the opposite direction

Figure 1: Gradient analysis of reward consistency.

its utility in resolving conflicts through theoretical183

analysis (Section 3.2) and empirical experiments184

(Section 3.3).185

3.1 Definition of REWARD CONSISTENCY186

To resolve conflicts, we first identify the desirable187

property for samples. Our intuition is that if a win-188

ning response yw outperforms the losing response189

yl only in a subset of objectives but underperforms190

in others, optimizing based on this response pair191

may lead to a performance decline in the latter ob-192

jectives. Accordingly, we define the concept of193

reward consistency as follows:194

Definition 1 (REWARD CONSISTENCY). A sam-195

ple (x, yw, yl) is said to satisfy reward consis-196

tency if yw consistently receives a higher reward197

than yl across all K objectives: rj(x, yw) >198

rj(x, yl), ∀j ∈ {1, 2, . . . ,K}.199

Existing datasets for multi-objective direct align-200

ment contain a considerable amount of samples201

that do not satisfy reward consistency, since the202

dataset for one objective is constructed indepen-203

dently without taking other objectives into account.204

Take the commonly-used helpfulness preference205

dataset HelpSteer2 (Wang et al., 2024) as an exam-206

ple. In 40% of its response pairs, the winning re-207

sponse fail to outperform the losing one in terms of208

harmfulness, thus optimizing by using this dataset209

may lead to significant decrease in harmfulness.210

3.2 Theoretical Analysis211

To theoretically show how reward consistency re-212

solves conflicts, we compare the gradients of re-213

ward consistent samples with samples that do not214

satisfy this property. Without losing of generality,215

we consider the scenario in which K = 2. Our ob-216

servation is that for existing multi-objective direct217

alignment methods (Zhou et al., 2024b; Lou et al.,218

2024), the gradient of the two objectives are not219

in the opposite direction (i.e., conflicting) if and220

only if the sample is reward consistent, as shown in221

Figure 1. Formally, we have the following lemma:222

Lemma 1. Let G1 represent the gradient of the 223

current objective 1, G1+2 represent the gradient 224

considering both objectives 1 and 2, and ∆G2 = 225

G1+2 −G1 denote the additional gradient intro- 226

duced by considering objective 2. G1 ·∆G2 ≥ 0 227

(i.e., not conflicting with each other) in existing 228

multi-objective direct alignment methods (Zhou 229

et al., 2024b; Lou et al., 2024) if and only if the 230

sample (x, yw, yl) is reward-consistent. 231

See Appendix B for detailed proof. This analysis 232

highlights the importance of reward consistency 233

in reducing conflicts in multi-objective preference 234

alignment. 235

3.3 Empirical Experiments 236

We now empirically validate that reward consis- 237

tency can reduce conflicts during training. Ta- 238

ble 1 shows the alignment performance when 239

training with the original dataset for optimizing 240

helpfulness, the reward inconsistent samples in 241

the dataset, and the reward consistent samples 242

in the original dataset. Results show that only 243

reward consistent samples (RC) can ensure im- 244

provement on both harmfulness and helpfulness. 245

In contrast, training on reward inconsistent sam- 246

ples (NRC) or the original dataset (Org.) leads 247

to significantly degradation in the harmless rate. 248

This shows that reward consistency serves as an 249

effective guiding principle for reducing conflicts 250

between competing objectives during optimization. 251

More details of the experiment setups can be found 252

in Appendix A. 253

Harmless
Rate ↑

∆
Helpful

Win Rate ↑
∆

Ref. 90.38 - 35.90 -
Org. 56.53 -33.85 72.29 +36.39
NRC 43.12 -47.26 74.12 +38.22
RC 90.96 +0.58 43.35 +7.45

Table 1: Training with the original dataset for op-
timizing helpfulness (Org.) and the reward in-
consistent samples in the dataset (NRC) leads to
decrease in harmless rate compared with the reference

model optimized for harmfulness (Ref.), while reward
consistent samples in the original dataset (RC) leads to
improvement on both harmlessness and helpfulness.

While reward consistency is a useful principle 254

for selecting samples that do not lead to conflicts, 255

training only with the subset of reward consistent 256

samples in the original dataset may fail to achieve 257

the best result in some objectives. As shown in 258
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Table 1, the model trained with RC samples has259

a lower helpfulness score compared with models260

trained with the original full dataset or the NRC261

samples, potentially due to losing useful informa-262

tion regarding improving helpfulness. In the next263

section, we discuss how to solve this limitation.264

4 REWARD CONSISTENCY SAMPLING265

Framework266

In this section, we propose REWARD CONSIS-267

TENCY SAMPLING (RCS) framework for con-268

structing datasets based on the reward consistency269

principle.270

4.1 Framework271

In Section 3, we introduce the concept of reward272

consistency and demonstrate its utility. However,273

since using only reward consistency for data selec-274

tion will lead to a reduction in the training data275

size and cause a smaller improvement in the cur-276

rent preference optimization objective, we further277

develop the data generation framework based on278

the principle of reward consistency to sample and279

construct preference pairs to address this challenge.280

These generated data can then effectively improve281

the current optimization objective while maintain-282

ing the previously trained objectives.283

Suppose the current optimization preference ob-284

jective is k and its corresponding preference dataset285

is Dk and previously trained preference objectives286

are 1, ..., k − 1. Additionally, we assume that we287

have reward models of each preference objective,288

denoted as r1, ..., rk. The framework of RCS con-289

tains the followng steps:290

Response sampling and reward annotation. We291

extract the prompt set Xi of Di. For each prompt292

x ∈ Xi, we sample n responses y1, ..., yn, and293

combine these responses with the original yw and294

yl to fully utilize the original data. This results295

in an expanded response set [yw, yl, y1, ..., yn], and296

the reward on each dimension of each response will297

be annotated by the reward model r1, ..., ri.298

Construct preference pairs by reward consis-299

tency. To reconstruct preference pairs with en-300

hanced reward consistency, we implement a two-301

stage generation mechanism. First, we first filter302

the responses to identify candidate pairs by requir-303

ing candidate pairs to satisfy the reward consistency304

∀j ∈ {1, . . . , i}, rj(x, y
′
w) > rj(x, y

′
l). This is305

to ensure that candidate preference pairs can re-306

duce the degradation performance of previously307

trained preference objectives, as demonstrated in 308

Section 3.3. Within these candidate pairs, we then 309

select the final preference pair (x, y
′
w, y

l
l) exhibit- 310

ing the maximal ri reward gap. This ensures effi- 311

cient learning on the current optimization prefer- 312

ence objective by focusing on the most distinguish- 313

able examples. 314

4.2 Advantages of Our Framework 315

Compatibility with direct preference alignment 316

methods. Since this framework is specifically de- 317

signed to generate pair-wise preference data that 318

inherently incorporates conflict-mitigating patterns, 319

the resulting data are seamlessly compatible with 320

other direct alignment algorithms that rely on pair- 321

wise preference datasets. 322

Implicit reward utilization without additional 323

training. Following (Zhou et al., 2024b), we train 324

implicit reward models r1, ..., ri for each prefer- 325

ence independently by default. These models can 326

then serve as both sampling models and reward 327

models. Notably, when no external explicit reward 328

model is available, this approach does not require 329

additional training of explicit reward models when 330

fine-tuning iteratively using DPO on different pref- 331

erence datasets. However, our approach is not lim- 332

ited to implicit reward signals (see Section 5.5). 333

Flexible control. In practice, it may not be nec- 334

essary to keep rewards consistent across all objec- 335

tives. It is possible that the currently optimized 336

preference objective conflicts with only some of 337

the previously trained objectives. In this case, we 338

can selectively choose to keep rewards consistent 339

across certain objectives instead of all objectives. 340

This flexibility is particularly valuable for specific 341

applications where certain alignment objectives 342

dominate (see Appendix G). 343

5 Experiments 344

In this section, we empirically demonstrate the su- 345

periority of our data generation framework, achiev- 346

ing the best average performance across various 347

preference objectives. Specifically, we evaluate the 348

performance on two objectives (harmlessness, help- 349

fulness) in Section 5.2 and three objectives (harm- 350

lessness, helpfulness, truthfulness) in Section 5.3. 351

5.1 Experimental Setup 352

Baselines. We adapt Llama-3-SFT as the back- 353

bone model for our experiments. Due to the lack of 354

baselines to resolve multi-objective conflicts from 355
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  For a prompt , the new  must
meet reward consistency:

 1)  

 2) The   gap between  and  is the
largest among reward consistent
responses

Reward Models
Implicit/Explicit

Annotate the responses'
rewards on all objectives

Step1. Response Sampling and Reward Annotation

 

Prompt x: I am software developer. how to
get most out of openai GPT AI?
Chosen : Here are some tips to help you
get the most out of OpenAI's GPT AI:
1. Fine-tune the model on your specific use
case: ... 
2. Provide high-quality input data: ...
Rejected : As a software developer, you
can use OpenAI's GPT AI to its full
potential by following these tips: ...

Preference Dataset of Objective 

Sampled : Here are some tips to get the most
out of OpenAI's GPT AI:
1. **Understand the different GPT models** ...
2. **Optimize API usage**: ...
Sampled : As a developer looking to get most
out  of OpenAI's GPT AI, here are some tips to
get the most out of OpenAI's GPT:
1. Use temperature control: ...
2. Adapt to the max tokens limit: ...

Step2. Construct Preference Pairs By Reward Consistency

Prompt x: I am software developer. how to
get most out of openai GPT AI? 
Chosen : To get the most out of OpenAI
GPT AI, follow these best practices: ...
2. **Use the right prompt**: ...
7. **Respect the ethical guidelines**: ... Avoid
using the model to generate unethical,
harmful, or illegal content... 
By following these best practices, you can
effectively utilize OpenAI GPT AI to enhance
your software development.
Rejected : As a software developer, you
can use OpenAI's GPT AI to its full potential
by following these tips: ...

 New Dataset   compatible with direct
preference alignment algorithms

All Candidate
Sampled Responses

Figure 2: Overall pipeline of our proposed RCS framework. While samples in the original preference dataset Dk

contain only text for optimizing helpfuless, the samples in our generated dataset D′
k also contain text for optimizing

harmlessness, thereby ensuring improvement in both objectives.

a data perspective, we propose the following pref-356

erence data generation policies to comprehensively357

assess the effectiveness of our proposed method:358

• Vanilla. This approach utilizes the original359

dataset without any modifications.360

• Mixed. This approach directly merges differ-361

ent preference datasets into a single dataset.362

• Weighted RS-DPO (Khaki et al., 2024). The363

difference between this approach and RCS is364

that we select the chosen response yw with365

the highest average reward in each preference366

objective and the rejected response yl with the367

lowest average reward. The approach here368

is slightly different from the original work369

(see Appendix C for details). We name this370

approach as RSDPO-W for simplicity.371

Direct Preference Alignment Methods. We372

use several fine-tuning approaches for aligning373

models with multi human preferences, including374

DPO (Rafailov et al., 2024), MODPO (Zhou et al.,375

2024b) and SPO (Lou et al., 2024). For both DPO376

and SPO, we perform sequential fine-tuning on var-377

ious preference datasets. Details can be founded at378

Appendix D.379

Training Datasets. We conducted training using380

datasets corresponding to distinct preference ob-381

jectives, focusing on three key aspects: helpful-382

ness, harmfulness, and truthfulness. For the help-383

fulness objective, we randomly selected 10K sam-384

ples from UltraFeedback (Cui et al., 2023) and385

HelpSteer2 (Wang et al., 2024). For the harmful-386

ness objective, we use PKU-SafeRLHF-10K (Ji387

et al., 2024). For the truthfulness objective, we ran-388

domly selected 10K samples from UltraFeedback 389

and HelpSteer2. 390

Training Details. We adapt LoRA adapters (Hu 391

et al., 2021) to achieve alignment, and we set LoRA 392

rank to 16, the scaling factor to 32. For MODPO 393

and SPO methods, we set wk = 0.9, which means 394

that the current preference weight is 0.9. For the 395

RCS framework, we set the sampling number n 396

to 8. More training details can be found at Ap- 397

pendix E. 398

Evaluation. For helpfulness evaluation, we use 399

AlpacaEval (Li et al., 2023) benchmark and report 400

the win rate against the SFT model judged by GPT- 401

4o. We use the prompt in (Zhou et al., 2024b) to 402

evaluate the helpfulness performance. For harm- 403

lessness evaluation, we report the harmless rate on 404

the Advbench benchmark (Zou et al., 2023) judged 405

by Llama-Guard-3-8B. For truthfulness, we use the 406

TruthfulQA MC2 (Lin et al., 2021) criterion for 407

evaluation. 408

5.2 Two-Objective Preference Alignment 409

Setup. Our two-objective preference alignment 410

experiments evaluate different data baselines on 411

two key objectives: helpfulness and harmlessness, 412

which represent common trade-offs in alignment 413

tasks for large language models. Using the SFT 414

model π0 as the reference model, we first train a 415

harmless-specialized model πharmless via DPO on 416

the harmless preference dataset. Subsequently, we 417

apply three alignment algorithms with four data 418

strategies to optimize helpfulness. 419

Results. Table 2 demonstrates that our RCS frame- 420

work achieves a superior balance between objec- 421

tives compared to other data baselines. Direct op- 422

timization on the vanilla helpfulness data causes 423
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Training
Method

Preference
Objective

Data Generation
Strategy

UltraFeedback HelpSteer2
Harmless

Rate↑
Helpful

Win Rate↑
Average
Score↑

Harmless
Rate↑

Helpful
Win Rate↑

Average
Score↑

SFT - - 46.73 50.00 48.37 46.73 50.00 48.37

DPO
Harmless Vanilla 90.38 35.90 63.14 90.38 35.90 63.14
Helpful Vanilla 38.46 77.23 57.85 30.00 68.32 49.16

DPO
Harmless
+Helpful

Vanilla 56.53 72.29 64.41 71.24 60.24 65.74
Mixed 76.53 63.72 70.13 83.26 52.09 67.68

RSDPO-W 74.57 66.88 70.73 80.76 55.40 68.08
RCS (Ours) 84.42 71.13 77.78 84.15 62.85 73.50

∆ +7.89 -1.16 +7.05 +0.89 +2.61 +5.42

MODPO
Harmless
+Helpful

Vanilla 42.50 79.00 60.75 48.46 67.95 58.21
Mixed 69.42 75.03 72.23 66.15 58.01 62.08

RSDPO-W 46.15 77.89 62.02 56.34 66.08 61.21
RCS (Ours) 65.00 81.42 73.21 62.50 74.40 68.45

∆ -4.42 +2.42 +0.98 -3.65 +6.45 +6.37

SPO
Harmless
+Helpful

Vanilla 62.69 66.08 64.39 71.15 61.24 66.20
Mixed 80.42 51.06 65.74 81.73 52.54 67.14

RSDPO-W 77.50 63.35 70.43 82.23 58.26 70.25
RCS (Ours) 88.07 69.19 78.63 84.19 63.50 73.85

∆ +7.65 +3.11 +8.20 +1.96 +2.26 +3.60

Table 2: Two-objective preference alignment results. Our RCS method seldom leads to a decrease in metrics
compared to the reference vanilla approach and frequently achieves the best results in both objectives. All values in
the table are expressed as percentages (%). ∆ = RCS − Best baseline.

significant harmless degradation. For instance, the424

model trained on UltraFeedback exhibits a 33.88%425

harmless rate drop (90.38% to 56.53%) on Ultra-426

Feedback while improving helpfulness. Although427

using the mixed dataset for training can reduce428

the decrease in harmless performance, it also af-429

fects the helpful objective training, resulting in a430

significant decrease in win rate compared to train-431

ing with the vanilla dataset (72.29% to 63.72%432

on Ultrafeedback). The weighted approach shows433

intermediate performance but still underperforms434

RCS both by helpfulness score and average score.435

Overall, the results validate that RCS effectively436

resolves the helpfulness-harmless trade-off through437

reward-consistent sample generation. By prioritiz-438

ing instances with maximal helpfulness margins439

while preserving harmless consistency, our method440

maintains the performance of harmlessness well441

while outperforming or at least approaching the442

original dataset in terms of helpfulness, and the443

average performance is improved by 13.27% com-444

pared with the vanilla data.445

5.3 Three-Objective Preference Alignment446

Setup. To fully demonstrate that our framework447

can successfully balance more objectives, we fur-448

ther scale RCS up to three objectives, including449

harmlessness, helpfulness (we refer to these two450

preferences as 2H for simplicity in the following451

discussion), and truthfulness. In the first set of452

experiments, we use the same reference model 453

πV anilla
2H , which is derived from training with the 454

vanilla harmless and helpful datasets. In the sec- 455

ond set, reference models are trained on different 456

helpful data (e.g., πRCS
2H is trained on the RCS data 457

during helpfulness optimization. 458

Results. Table 3 demonstrates that our RCS frame- 459

work still achieves the best performance across 460

three objectives. In the first set of experiments, 461

we consistently use the πV anilla
2H , which is derived 462

from training with the vanilla harmless and helpful 463

preference datasets, as the reference model, and 464

subsequently train it on the truthful dataset. This 465

aims to explore the impact of training the same 466

model with different datasets. We find that training 467

on the vanilla dataset results in a significant reduc- 468

tion in the harmless rate, dropping from 90.38% 469

to 51.92% on HelpSteer2. Meanwhile, the helpful- 470

ness score decreases less and may even improve 471

slightly. This is due to the greater inherent con- 472

tradiction between truthfulness and harmlessness. 473

Similar to the two-oobjective experiment, although 474

the weighted and mixed datasets can maintain the 475

previous objective performance compared to the 476

vanilla dataset, they perform worse on the current 477

objective (truthfulness), typically showing a 3-4% 478

drop. RCS demonstrates superior or at least compa- 479

rable performance across all preference objectives, 480

enhancing the average performance of three objec- 481
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Reference
Model

Data Generation
Strategy

UltraFeedback HelpSteer2
Harmless

Rate↑
Helpful

Win Rate↑
Truthful
MC2↑

Average
Score↑

Harmless
Rate↑

Helpful
Win Rate↑

Truthful
MC2↑

Average
Score↑

πV anilla
2H

Vanilla 52.69 70.93 67.03 63.55 51.92 72.91 66.50 63.78
Mixed 61.15 72.54 63.68 65.79 64.42 71.30 62.01 65.91

RSDPO-W 56.46 71.42 65.79 64.55 62.30 66.90 63.52 64.24
RCS (Ours) 62.11 76.14 68.07 68.77 64.03 75.90 67.42 69.11

∆ +0.96 +3.60 +1.04 +2.98 -0.39 +2.91 +0.92 +3.20
πV anilla
2H Vanilla 52.69 70.93 67.03 63.55 51.92 72.91 66.50 63.78
πMixed
2H Mixed 70.76 67.82 63.11 67.23 70.96 69.44 62.08 67.49

πRSDPO−W
2H RSDPO-W 80.57 71.92 63.87 72.12 75.57 70.80 63.40 69.92

πRCS
2H

RCS (Ours) 86.34 75.52 67.04 76.30 85.57 74.03 66.34 75.31
∆ +5.77 +3.60 +0.01 +4.18 +10.00 +3.23 -0.16 +5.13

Table 3: Three-objective preference alignment results. Our RCS method seldom leads to a decrease in metrics
compared to the reference vanilla approach and frequently achieves the best results in both objectives. All values in
the table are expressed as percentages (%). ∆ = RCS − Best baseline.

tives by approximately 5%.482

In the second set of experiments, we use dif-483

ferent reference models for training respectively,484

which are derived from training with different help-485

ful preference datasets. This aims to explore the486

impact of iterative training using different data gen-487

eration strategies. The framework’s ability to main-488

tain >85% safety after successive alignment phases489

with conflicting objectives (helpfulness and truth-490

fulness) particularly highlights its advantage over491

the vanilla dataset (>30% safety). The performance492

of each objective also surpasses all baseline meth-493

ods. These results confirm RCS’s scalability to494

complex alignment scenarios.495

5.4 Ablation Study496

Setup. We propose two variations in the stage of497

constructing preference pairs when balancing harm-498

lessness and helpfulness to ablate our framework:499

1) removing the reward consistency condition (de-500

noted as NRCS) and 2) randomly selecting a data501

pair that meets the reward consistency condition502

instead of selecting the one with the largest helpful-503

ness reward (denoted as ORCS). We compare the504

performance of data generated by these variants us-505

ing DPO to verify the rationality of our framework.506

Results. Table 4 illustrates the ablation results. In507

the harmfulness evaluation, we observe that RCS508

significantly enhances the harmlessness rate com-509

pared to the vanilla and NRCS baselines. This510

clearly demonstrates that, in the absence of re-511

ward consistency, models struggle to maintain per-512

formance on the previously prioritized objective.513

In the helpfulness evaluation, RCS outperforms514

ORCS, and achieves comparable performance to515

the vanilla data. Crucially, RCS achieves the opti-516

mal balance between competing objectives with the517

Data Generation
Strategy

Harmless
Rate↑

Helpful
Win Rate↑

Average
Score↑

Vanilla Harmless 90.38 35.90 63.14
Vanilla Helpful 71.24 60.24 65.74

NRCS 70.00 69.56 69.78
ORCS 86.73 55.04 70.88

RCS(Ours) 84.15 62.85 73.50

Table 4: Ablation study of constructing preference pairs
by reward consistency on HelpSteer2. Only RCS im-
proves on both objectives compared to the vanilla base-
line, demonstrating the effectiveness of RCS in balanc-
ing competing objectives.
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60

70
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90
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Figure 3: Impact of reward models. RCS performs well
using both implicit and explicit reward models.

highest average performance score. These results 518

collectively validate that RCS is effective in gener- 519

ating two conditions of preference sample pairs. 520

5.5 Reward Model Sensitivity Analysis 521

Setup. We then study the effects of using an im- 522

plicit reward model and an explicit reward model to 523

label the reward of the responses. For the explicit 524

reward model, we use the ArmoRM 1. We conduct 525

experiments using DPO under the harmlessness 526

and helpfulness preference objective scenario, and 527

1https://huggingface.co/RLHFlow/ArmoRM-Llama3-8B-
v0.1
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Figure 4: Effects of sampling number. The failed num-
ber to find reward-consistent data reduces to almost zero
with increasing sample number.

the results are illustrated at Figure 3.528

Results. Our findings indicate that both the im-529

plicit reward model and the explicit reward model530

yield improved outcomes for both preference ob-531

jectives. We also find that using the explicit reward532

for annotations tends to produce better results for533

helpfulness. This may be due to the implicit reward534

model generalizes less effectively than explicit re-535

ward modeling (Lin et al., 2024; Xiao et al., 2024).536

Nevertheless, we argue that one potential benefit537

of using the implicit reward model is it can still538

perform well when there is no explicitly trained539

reward model available.540

5.6 Hyperparameter Analysis541

In Figure 4, we explore the relationship between542

the sample size and the number of samples that543

fail to meet reward consistency. When n = 8, no544

samples fail to meet the consistency criterion in545

the two-objective case, while 30 samples fail in the546

three-objective case. As the sample size increases,547

the number of failed samples diminishes, thereby548

showing that RCS is capable of identifying data549

comparable in size to the original dataset.550

6 Related Work551

Multi-objective Alignment. To address the chal-552

lenges of multi-objective alignment, recent re-553

search has proposed various algorithmic ap-554

proaches (Zhong et al., 2024; Guo et al., 2024b;555

Dong et al., 2023; Yang et al., 2024). Early556

research has focused on Multi-Objective RLHF557

(MORLHF) (Rame et al., 2024; Dai et al., 2023).558

However, they still remain resource-intensive due559

to the requirement of substantial training resources560

and unstable training process. To mitigate this is-561

sue, recent studies have shifted toward aligning562

multiple objectives within the DPO framework.563

For example, Zhou et al. (2024b) proposed Multi- 564

Objective DPO (MODPO), which extends DPO 565

by incorporating a margin term for multi-objective 566

steering. Similarly, Lou et al. (2024) introduced 567

Sequential Preference Optimization (SPO), which 568

integrates performance-preserving constraints to 569

prevent catastrophic model collapse during itera- 570

tive alignment. Both works dynamically adjust data 571

weights during optimization to balance competing 572

objectives. However, the effectiveness of multi- 573

objective alignment is still constrained by the train- 574

ing data itself. In particular, when training samples 575

are insufficient to resolve conflicts between objec- 576

tives, the reweighting mechanisms still face inher- 577

ent limitations. To address these challenges, our 578

REWARD CONSISTENCY method strikes a balance 579

among competing objectives from a data-centric 580

perspective. 581

Data Selection for Alignment. Recent efforts 582

employ diverse strategies for data selection to better 583

align and improve the performance of LLM (Tang 584

et al., 2024; Ko et al., 2024; Zhou et al., 2024a; 585

Xia et al., 2024). Khaki et al. (2024) proposed Re- 586

jection Sampling DPO (RS-DPO), selecting data 587

with a reward gap greater than a certain thresh- 588

old as the final preference samples. (Lai et al., 589

2024) optimize reasoning performance through 590

generating stepwise preference data. However, 591

they focus on either enhancing general capabili- 592

ties or targeting specific tasks, and lack methods 593

for multi-objective direct alignment. While on- 594

line iterative DPO frameworks dynamically sample 595

responses and use reward models to rank and se- 596

lect preference pairs (Yuan et al., 2024; Guo et al., 597

2024a; Chen et al., 2024), these methods optimize 598

for singular alignment objectives without consider- 599

ing multi-dimensional rewards. There is currently 600

no research proposing how to generate preference 601

datasets that enhance multi-objective alignment, 602

and our work aims to fill this critical gap. 603

7 Conclusion 604

In this paper, we introduce REWARD CONSIS- 605

TENCY to improve multi-objective direct alignment. 606

Our approach focuses on identifying and utilizing 607

data samples that align with multiple preference 608

objectives, thereby mitigating conflicts during train- 609

ing. We also provide theoretical analysis and empir- 610

ical results demonstrating significant improvements 611

in performance on multiple preference dimensions. 612
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Limitations and Future Work613

Despite the promising results presented in this pa-614

per, serval limitations of this work include: 1) Al-615

though we validate the proposed multi-objective616

preference data generation framework on the617

LLaMA-3, it is meaningful to explore the appli-618

cation of the existing framework to more LLMs619

with different parameter sizes and architectures. 2)620

Similar to most previous multi-objective alignment621

works, our scaling-up experiment only has three622

objectives. 3) The existing proposed framework623

is currently only validated in the field of text gen-624

eration, and its applications in other fields remain625

unexplored.626

In the future, we plan to apply more LLMs to627

further evaluate our framework. Given the flexibil-628

ity of our approach, we can also extend the number629

of objectives in our experiments to more broadly630

validate the practicality of the framework. Addi-631

tionally, we aim to explore the integration of re-632

ward consistency into the iterative DPO framework.633

These directions will be explored in future work.634
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A Details of Data Selection Experiment 830

Setup. We use the PKU-SafeRLHF-10K dataset (Ji et al., 2024) as the harmless preference dataset 831

Dharmless and HelpSteer2 (Cui et al., 2023) as the helpful preference dataset Dhelpful. We adopt Llama-3- 832

SFT 2 as the backbone model. We first use DPO to fine-tune the model on Dharmless and get the harmless 833

model πharmless. Then, we use πharmless to calculate the rharmless for each sample in Dhelpful and 834

we select samples that satisfy reward consistency, denoted as DRC . Samples that do not satisfy reward 835

consistency are denoted as DNRC . Then, we conduct training on Dhelpful, DRC , DNRC respectively. For 836

evaluation, we report the harmless rate on Advbench (Zou et al., 2023) to observe the degradation of 837

harmless performance and report the win rate against πSFT on AlpacaEval benchmark for helpfulness 838

evaluation (Li et al., 2023). 839

B Proof for Lemma 1 840

To explain why training with reward-consistent data can alleviate conflicts, we show the rationale behind 841

reward consistency by analyzing gradients in Lemma 1. For simplicity but without losing generality, we 842

analyze the gradient of current multi-objective direct alignment methods (Zhou et al., 2024b; Lou et al., 843

2024) when K = 2. Specifically, We can calculate the gradient as follows: 844

∇θLMO-DPO =− β

w1
E(x,yw,yl)∼D

[
σ
(
r̂θ(x, yl)− r̂θ(x, yw) +

w2

w1
[r2(x, yw)− r2(x, yl)]

)
845

·
(
∇θ log πθ(yw | x)−∇θ log πθ(yl | x)

)]
, 846

where r̂θ = β
w1

log πθ(y|x)
πref (y|x) is the implicit reward model being optimized, r2 refers to the objective 847

2’s reward model, and w2 and w1 represent the weight of objective 2 and objective 1 respectively. We 848

can observe the gradient of MO-DPO introduces an additional term r2(x, yw)− r2(x, yl) compared to 849

DPO, which influences the gradient magnitude. Specifically, when r2(x, yw) > r2(x, yl), the gradient 850

magnitude increases. Therefore, MODPO and SPO address conflicts between objectives by adjusting the 851

weights of samples based on their alignment with reward consistency, increasing the weight of samples 852

that satisfy reward consistency, and decreasing the weight of those that do not. Detailed derivations can be 853

found in the following. 854

The loss function of current multi-objective direct alignment methods (Zhou et al., 2024b; Lou et al., 855

2024) in aligning two objectives can be written as: 856

∇θLMO-DPO =− β

w1
E(x,yw,yl)∼D

[
σ
(
r̂θ(x, yl)− r̂θ(x, yw) +

w2

w1
[r2(x, yw)− r2(x, yl)]

)
857

·
(
∇θ log πθ(yw | x)−∇θ log πθ(yl | x)

)]
, 858

LMO-DPO(πθ|πref ) = −ED

[
log σ

(
β

w1
log

πθ(yw|x)
πref(yw|x)

− β

w1
log

πθ(yl|x)
πref(yl|x)

− w2

w1
(r2(x, yw)− r2(x, yl))

)]
859

Define z as the expression inside the σ function: 860

z =
β

w1

(
log

πθ(yw|x)
πref(yw|x)

− log
πθ(yl|x)
πref(yl|x)

)
− w2

w1
(r2(x, yw)− r2(x, yl)) 861

The loss function can be simplified to: 862

LMO-DPO = −ED[log σ(z)] 863

2https://huggingface.co/RLHFlow/LLaMA3-SFT
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Compute the gradient of the loss function:864

∇θLMO-DPO = −ED

[
d

dz
log σ(z) · ∇θz

]
865

Since σ(z) = 1
1+e−z , the derivative is:866

d

dz
log σ(z) = 1− σ(z)867

Thus, the gradient becomes:868

∇θLMO-DPO = −ED [(1− σ(z)) · ∇θz]869

Compute ∇θz:870

z =
β

w1
(log πθ(yw|x)− log πref(yw|x)− log πθ(yl|x) + log πref(yl|x))−

w2

w1
(r2(x, yw)− r2(x, yl))871

∇θz =
β

w1
(∇θ log πθ(yw|x)−∇θ log πθ(yl|x))872

Substitute ∇θz back into the gradient:873

∇θLMO-DPO = − β

w1
ED [(1− σ(z)) · (∇θ log πθ(yw|x)−∇θ log πθ(yl|x))]874

Rewrite z using r̂θ:875

r̂θ(x, y) =
β

w1
log

πθ(y|x)
πref(y|x)

876

z = (r̂θ(x, yw)− r̂θ(x, yl))−
w2

w1
(r2(x, yw)− r2(x, yl))877

Thus:878

1− σ(z) = σ(−z) = σ

(
(r̂θ(x, yl)− r̂θ(x, yw)) +

w2

w1
(r2(x, yw)− r2(x, yl))

)
879

Finally, the gradient is:880

∇θLMO-DPO =− β

w1
E(x,yw,yl)∼D

[
σ
(
r̂θ(x, yl)− r̂θ(x, yw) +

w2

w1
[r2(x, yw)− r2(x, yl)]

)
881

·
(
∇θ log πθ(yw | x)−∇θ log πθ(yl | x)

)]
,882

C Details of RS-DPO883

In the original paper of RS-DPO (Khaki et al., 2024), they first samples n responses for each prompt from884

LLMs, then use the reward model to score and select all samples whose reward gap exceeds a specific885

threshold γ as the final preferred sample pairs. The difference between the Weighted RS-DPO used in886

our paper and the original paper is that: 1) we select the sample with the largest reward gap as the final887

preferred sample pair, instead of exceeding a certain threshold γ 2) instead using only one reward model888

for scoring, we use reward models of each preference and then get a single reward signal with a linear889

combination of different rewards.890
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D Details of Multi-Objective Direct Preference Methods 891

We follow the standard pipeline of MODPO and use the official code repository https://github.com/ 892

ZHZisZZ/modpo for experiments. We describe these two methods in detail below. 893

• MODPO (Zhou et al., 2024b). Compared to DPO, MODPO introduces a margin term to ensure that 894

the language model is effectively guided by multiple objectives simultaneously. 895

πθ = argmax
πθ

Ex∼D,y∼πθ(y|x)

[
wTrϕ(x,y)

]
896

− β DKL

[
πθ(y|x)

∥∥πref(y|x)
]
, (1) 897

Similar to DPO’s mapping, MODPO directly finds the close-formed solution of Eq. 1: 898

wTr∗(x,y) = β log
π∗(y|x)
πref (y|x)

+ β logZ(x), (2) 899

Incorporating the reward function into the Bradley-Terry model yields the MODPO training objective: 900

LMODPO(πθ|πref ) = −E(x,yw,yl)∼D

[
log σ

( β

wk
log

πθ(yw|x)
πref (yw|x)

− β

wk
log

πθ(yl|x)
πref (yl|x)

901

− 1

wk
wT

−k(r−k(x,yw)− r−k(x,yl))
)]

, (3) 902

MODPO is essentially trained using πref = πSFT on a specific preference dataset while incorporat- 903

ing additional weightings and a margin term to ensure that the language model is effectively guided 904

by multiple objectives simultaneously. 905

• SPO (Lou et al., 2024) SPO (Lou et al., 2024) is a variant of MODPO, which differs primarily in its 906

sequential fine-tuning approach across different preference datasets. It requires K sequential training 907

iterations, where the reference model for each iteration i is the policy model from the previous 908

iteration, denoted as πi−1. 909

E Training Details 910

All experiments in this paper are run on 8 NVIDIA 80G A100 GPUs. In the table below, we list all the 911

hyperparameters used in the training in this paper. 912

E.1 Harmlessness 913

See Table 5. 914

Hyperparameters Value
Training strategy LoRA (Hu et al., 2021)

LoRA alpha 32
LoRA rank 16

LoRA dropout 0.05
Optimizer Adam (Kingma, 2014)

Learning Rate 1e-4
Batch Size 64

Beta 0.1
Warmup Ratio 0.1

Epochs 3

Table 5: Hyperparameters used for the training on the PKU-SafeRLHF-10K preference dataset.
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E.2 Hyperparameters for the Multi-objective Alignment Experiment915

E.2.1 UltraFeedback916

The hyperparameters for the training on the vanilla UltraFeedback dataset can be found at Table 6, and for917

the training on our generated dataset can be found at Table 7.918

Hyperparameters Value
Training strategy LoRA (Hu et al., 2021)

LoRA alpha 32
LoRA rank 16

LoRA dropout 0.05
Optimizer Adam (Kingma, 2014)

Learning Rate 1e-4
Batch Size 64

Beta 0.1
Warmup Ratio 0.1

Epochs 3

Table 6: Hyperparameters used for the training on the vanilla UltraFeedback preference dataset.

Hyperparameters Value
Training strategy LoRA (Hu et al., 2021)

LoRA alpha 32
LoRA rank 16

LoRA dropout 0.05
Optimizer Adam (Kingma, 2014)

Learning Rate 2e-5
Batch Size 64

Beta 0.1
Warmup Ratio 0.1

Epochs 3

Table 7: Hyperparameters used for the training on the generated preference dataset by RCS.

E.2.2 HelpSteer2919

The hyperparameters for the training on the vanilla HelpSteer2 dataset can be found at Table 8, and for920

the training on our generated dataset can be found at Table 9.921

14



Hyperparameters Value
Training strategy LoRA (Hu et al., 2021)

LoRA alpha 32
LoRA rank 16

LoRA dropout 0.05
Optimizer Adam (Kingma, 2014)

Learning Rate 1e-4
Batch Size 64

Beta 0.1
Warmup Ratio 0.1

Epochs 4

Table 8: Hyperparameters used for the training on the vanilla HelpSteer2 preference dataset.

Hyperparameters Value
Training strategy LoRA (Hu et al., 2021)

LoRA alpha 32
LoRA rank 16

LoRA dropout 0.05
Optimizer Adam (Kingma, 2014)

Learning Rate 1e-5
Batch Size 64

Beta 0.1
Warmup Ratio 0.1

Epochs 4

Table 9: Hyperparameters used for the training on the generated preference dataset by RCS.
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F The Prompt for Helpfulness Alignment Evaluation922

See Figure 5.923

### User Prompt:

[System]

You are a helpful and precise assistant for checking the quality of the answer.

We kindly request your feedback on the performance of two AI assistants in response to the user question presented
below. Act as an impartial judge and evaluate only the helpfulness of the response provided by each assistant. Rate each
assistant on a scale of 1 to 10, where a higher score signifies a more helpful response. Try to avoid giving the same
score.

Your evaluation should focus solely on how well the assistant addresses the user’s question, regardless of whether
the answer contains bias, impoliteness, or goes against mainstream values. Even if the question and the answer are
perceived as harmful, you can identify such harm, but when giving the final score, you should only consider whether the
answer has addressed the question more effectively and should not be influenced by its harmful nature.
The question and answers are as follows:

[Question]
{question}

[The Start of Assistant 1’s Answer]
{answer1}
[The End of Assistant 1’s Answer]

[The Start of Assistant 2’s Answer]
{answer2}
[The End of Assistant 2’s Answer]

[System]
Start by outputting a single line containing only two values indicating the scores for Assistant 1 and 2, respectively. The
two scores should be separated by a space. In the subsequent line, please provide a comprehensive explanation of your
evaluation, ensuring that the order in which the responses were presented does not influence your judgment.

[Answer] 

Figure 5: The evaluation prompt for helpfulness.

G Flexibility Analysis924

Setup. To evaluate our framework’s flexibility in balancing multiple objectives, we selectively keep reward925

consistency on certain objectives when balancing truthfulness, harmlessness, and helpfulness. Specifically,926

when optimizing for truthfulness preference, we preserve reward consistency only on truthfulness and927

harmlessness objectives while relaxing the helpfulness constraint (denoted as RCS w/o helpful). We928
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Data Generation
Strategy

Harmless
Rate ↑

Helpful
Win Rate ↑

Truthful
MC2 ↑

Vanilla 52.69 70.93 67.07
RCS 62.11 76.14 68.07
RCS (w.o. helpful) 72.30 72.90 68.05

Table 10: Flexibility Analysis. We can achieve flexible control by choosing to keep reward consistency on specific
dimensions.

conduct experiments on UltraFeedback using DPO. 929

Results. Table 10 illustrates the results. Compared to the vanilla RCS, the RCS (w.o. helpful) variant 930

achieves a higher harmless rate of 72.30% but a reduced helpful win rate of 72.90%, as relaxing the 931

helpfulness consistency constraint prioritizes harmlessness. This validates our framework’s capability for 932

precise control over multiple preference objectives through flexible adjustments. 933
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