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ABSTRACT

In real-world operations with combinatorial structures like vehicle routing prob-
lems, similar optimization problems have to be solved repeatedly with slight pa-
rameter variations. A key challenge in such scenarios is achieving both high so-
lution quality and fast computation time, while traditional methods like heuris-
tics or branch-and-bound struggle to achieve both simultaneously. In contrast,
problem-specific solvers can effectively balance solution quality and computa-
tion speed for specific problems. However, since real-world problems have more
complex structures, they can handle only subproblems. To enhance the appli-
cability of the problem-specific solvers, we propose a framework that integrates
a problem-specific solver and a neural solver. Our framework decomposes the
optimization problem into subproblems so that some of which can be solved by
problem-specific solvers, such as the traveling salesperson problem. For the re-
maining portions of the problem, we utilize the similarities of the problems and
design a neural solver. By integrating two solvers, we can utilize the strengths
of the problem-specific solver in balancing solution accuracy and computation
speed, as well as the neural solver’s ability to infer a solution from the similarity
of optimization problems. Based on the case study with the min-max capacitated
vehicle routing problem, we demonstrate that it outperforms the state-of-the-art
solver regarding both high solution quality and short computation time.

1 INTRODUCTION

When solving combinatorial optimization problems for real-world operations, optimization prob-
lems often need to be solved repeatedly, with similar structures and slightly varying parameters. For
example, in the delivery of liquefied petroleum gas cylinders, the problem needs to be solved per
day for the same area (Yoshida et al., 2024), the waste collecting problem is solved per day (Han
et al., 2024), and in food delivery, the problem of assigning each order to each driver needs to
be solved every few minutes (Simoni & Winkenbach, 2023). In such frequently occurring tasks,
quickly obtaining high-quality solutions is crucial to ensure operational efficiency.

Although various studies have been conducted to solve combinatorial optimization problems, ex-
isting methods do not fully balance the solution accuracy and the computation time for real-world
problems. (see Figure 1) As exact methods, branch-and-bound or branch-and-cut (Achterberg, 2007)
can be used to obtain the optimal solutions, while it is challenging to incorporate such algorithms
into real-world operations because the computation time exponentially increases along with the
problem size. On the other hand, heuristics such as genetic algorithms have been studied. While
better solutions can be obtained with appropriate algorithm selection and hyperparameter settings, it
is difficult to obtain high-quality solutions quickly for large-scale problems with many constraints.
For specific problems, algorithms capable of both speed and accuracy have been developed, such as
those for the traveling salesperson problem (Applegate, 2006) and the capacitated vehicle routing
problem (Helsgaun, 2017).

We observed that the combinatorial optimization problems in real-world operations often contain
subproblems, such as the traveling salesperson problem (TSP) and knapsack problem, for which
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Figure 1: Comparison of the proposed framework with heuristics and branch-and-bound in terms of
computation time and objective function value. While exact methods guarantee optimal solutions,
they require considerable computation time. Heuristics can quickly find moderately good solutions
but struggle to reach high-quality solutions. The proposed framework balances computation speed
and solution quality by learning similar problems in the training dataset.

problem-specific solvers have been developed. For example, in a multi-day delivery planning prob-
lem, once the customers for each vehicle are determined for a given day, the problem of finding the
delivery route can be decomposed to solve the TSP per vehicle independently. Considering this fact,
we can effectively solve the large-scale combinatorial problem with a problem-specific solver for
subproblem computation if we can solve the remaining problem without a problem-specific solver.
The field that deals with optimizing through subproblems solutions is known as bilevel optimiza-
tion. Bilevel optimization refers to problems where decision-making occurs in two stages, with
decisions in the first stage affecting those in the second stage. The optimization problems in the first
and second stages are called the upper- and lower-level problems, respectively. A typical bilevel
optimization method is the nested approach, in which the lower-level problem corresponding to the
upper-level problem’s solution is solved, and based on the result, the solution to the upper-level
problem is sequentially updated (Mathieu et al., 1994; Yin, 2000; Sinha et al., 2017; Calvete et al.,
2008; Liang & Miikkulainen, 2015; Daniel Handoko et al., 2015). To solve real-world problems,
the bottleneck in the nested approach is the number of updates of the upper-level solution. Thus, re-
ducing the number of updates is a key challenge to achieving high-quality solutions using the nested
approach with the problem-specific solver.

To reduce the number of updates, obtaining a good initial solution for the upper-level problem is
important. When the upper-level problem is solved repeatedly, solutions obtained by past computa-
tions can be utilized to obtain a better initial solution. When the upper-level problems are repeatedly
solved, constraints change little, and the optimization problem solved repeatedly only involves slight
changes in parameters. Generally, under slight changes in coefficients, the optimal solution to one
problem often serves as a near-optimal solution for another. Under this assumption, we can train a
neural network to learn the characteristics of the problem and rapidly acquire good heuristic solu-
tions. In fact, when the upper problem has no constraints, a machine learning method is proposed to
infer a solution to the upper-level problem (Guo et al., 2024).

Regarding the use of machine learning models quickly to obtain better solutions to optimization
problems, there are challenges in obtaining solutions that satisfy the constraints. An example of
post-processing to satisfy simple constraints is using an autoregressive model that repeatedly selects
one node at a time when solving the TSP with neural networks, as widely studied (Kwon et al.,
2020). In this model, masking is applied to already visited nodes, allowing for selecting the next
node from unvisited nodes, thus obtaining a path that does not visit the same node twice. Similarly,
Hou et al. (2023) proposed a method that considers capacity constraints using a mask matrix, but this
is limited to vehicle routing problems. Another well-known example is using the softmax function
at the output of the final layer in classification problems to ensure that all elements are non-negative
and sum to one. The LinSatNet was proposed (Wang et al., 2023), which improves the differentiable
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optimal transport, Sinkhorn algorithm (Cuturi, 2013). It extended the types of constraints it can
handle to linear constraints composed of non-negative coefficients. However, it cannot be applied to
constraints like flow conservation involving non-negative coefficients.

We summarize these considerations; (i) bilevel strategy incorporating a neural-solver and problem-
specific solver is a promising method to achieve both high solution quality and short computation
time for target problems (see Figure 1), (ii) constraint-enforcing for the neural network output can be
achieved by the differentiable optimal transport for non-negative linear constraints. Based on them,
we propose a framework that integrates machine learning, optimal transport, and a problem-specific
solver to obtain high-quality solutions quickly for large-scale combinatorial optimization problems.
Our framework adopts a self-supervised learning method for upper-level problems, whereas special-
ized methods can be utilized for lower-level problems. For the upper-level problem, we train a neural
network to learn problem characteristics with satisfying the constraints by utilizing the differentiable
optimal transport module as the output layer. This makes it possible to construct a solution while
ensuring feasibility, including the lower-level problem, by satisfying multiple linear constraints com-
posed of non-negative coefficients. Moreover, since the proposed framework separates the neural
solver that learns problem characteristics and the optimal transport module that projects the solution
onto the constraints, it is a method that can adapt to adding new constraints during inference. After
constructing a sufficiently trained model, we can acquire a high-quality solution quickly compared
to existing methods such as heuristics and exact methods.

To verify our proposed framework’s effectiveness, case studies were conducted with the min-max
capacitated vehicle routing problem (min-max CVRP). It contains the TSP for which the problem-
specific solver has been developed after obtaining the assignment locations for vehicles. Compared
to LKH-3*, our framework obtained high-quality solutions by comparing quickly. This tendency is
much more obvious as the problem size increases.

Our contributions are summarized as follows,

• We propose the self-supervised learning framework integrating the neural solver and the
problem-specific solver by reformulating an optimization problem as a bilevel one. (Sec-
tion 3)

• Based on the case study with min-max CVRP, we show that our framework can obtain better
solutions than state-of-the-art-solver LKH-3 in a short time computation. (Section 4) Also,
an appropriate data selection method for training the neural solver is discussed. (Section 5)

2 PRELIMINARIES

This section provides the preliminaries about bilevel optimization and constraint-encoding for neural
networks, which need understanding our framework. Then, we denote the min-max capacitated
vehicle routing problem, which is utilized as the case study.

2.1 BILEVEL OPTIMIZATION

Bilevel optimization is a method in which parameters influencing the solution of one optimization
problem are determined by solving another optimization problem. The former and latter problems
are called upper- and lower-level problems, respectively. The general formulation is as follows:

minimize
x∈X

F (x, y∗(x))

subject to y∗(x) = argmin
y∈Y (x)

f(x, y)

Here, x and y are the decision variables of the upper-level and lower-level problems, respectively.
F (x, y) is the objective function of the upper-level problem, while f(x, y) represents the objective
function of the lower-level problem. y∗(x) is the solution to the lower-level problem for a given x.

*http://webhotel4.ruc.dk/˜keld/research/LKH-3/
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2.2 CONSTRAINT-ENCODING FOR NEURAL NETWORKS

In general, there is no guarantee that the output of a neural network satisfies specific constraints.
Some recent research has been done on the differentiable optimal transport that can be inserted into
the intermediate or last layer. One approach to impose constraints on intermediate neural network
outputs is the differentiable optimal transport method known as the Sinkhorn algorithm (Cuturi,
2013). Wang et al. (2023) proposed the LinSatNet to handle the more general problem with the
multiple linear constraints with non-negative coefficients. This paper applies LinSatNet to ensure
the solution satisfies linear constraints in the upper-level problem, detailed in Sections 3 and 4.

2.3 MIN-MAX CAPACITATED VEHICLE ROUTING PROBLEM

In this paper, we used the min-max Capacitated Vehicle Routing Problem (min-max CVRP) as
the case study to verify the proposed framework’s effectiveness. In order to apply our proposed
framework to min-max CVRP, we formulate it as a bilevel optimization problem (Problem 2.1)
where n,K,Q, dij denote the total number of locations, the total number of vehicles, the capacity
of the vehicles, and the distance between locations i and j, respectively. For simplicity, we assume
that each vehicle has the same capacity Q, and the amount of cargo transported to each location
is one. The upper-level problem is assigning customers to vehicles, and the lower-level problem
is solving a TSP for each vehicle. The upper-level problem contains capacity constraints and the
need to ensure that vehicles visit each location exactly once, and the coefficients of these constraints
are non-negative; hence, LinSatNet can handle both constraints. Note that the index 1 of location
represents the depot. The formulation of min-max CVRP is as follows,

Problem 2.1 Min-Max Capacitated Vehicle Routing Problem (min-max CVRP) formulated as the
bilevel optimization

minimize
x∈X

F (x, y∗(x)) = max
k

∑
i

∑
j

di,jy
∗
(i,j),k


subject to y∗(x) = argmin

y∈Y (x)

f(x, y) = argmin
y∈Y (x)

∑
i

∑
j

di,jy(i,j),k

where X =

{
x

∣∣∣∣∣∑
k

xk
i = 1 (∀i),

∑
i

xk
i ≤ Q (∀k)

}
,

Y (x) =

y

∣∣∣∣∣∑
j

y(i,j),k = xk
i (∀i, k),

∑
j

y(1,j),k = 1 (∀j, k),
∑
i

y(i,1),k = 1 (∀i, k),

xk
i − xk

j + (n− 1)y∗(i,j),k ≤ n− 2 (∀i, j ∈ {2, 3, · · · , n}, k)
}
.

• xk
i : Variable that is assigned 1 when the vehicle k visits location i otherwise it is assigned

0

• y(i,j),k: Variable that is assigned 1 when the vehicle k travels from location i to location j
otherwise it is assigned 0

The additional examples for applying the proposed framework to other use cases are discussed in
Section 5.3.

3 PROPOSED FRAMEWORK

In this section, we propose a framework for obtaining a high-quality solution to combinatorial opti-
mization problems quickly through a bilevel approach. When we solve similar problems repeatedly,
high-quality solutions share a similar structure (e.g., assigning vehicles to locations in a vehicle
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routing problem) while the local structure is different (e.g., visiting the order of locations in a ve-
hicle routing problem). Based on the assumption, we treat the problem as bilevel optimization,
where the problem-specific solver can effectively solve the lower-level problem to deal with the
local characteristics per problem. In fact, the combinatorial optimization problem often contains
the subproblem for which the problem-specific solvers have been developed, such as Concorde for
TSP, LKH-3 for vehicle routing problems, and CP-SAT solver † for scheduling problems. Note that
a general mathematical optimization solver, such as Gurobi Optimizer, can be used as an alterna-
tive to a problem-specific solver when it can efficiently solve the lower-level problem. Given that
similar problems are repeatedly solved, we can use a dataset of these solutions to train a neural net-
work for the upper-level problem. In our framework, we utilize self-supervised learning to train the
neural network, allowing the training without high-quality solutions for the dataset. There are four
following components and the workflow is shown in Figure 2.

Figure 2: Proposed self-supervised learning framework through bilevel approach

1. Cost estimation network (for upper-level problem)

2. Optimal transport module (for upper-level problem)

3. Problem-specific solver (for lower-level problem)

4. Surrogate network (for lower-level problem)

To solve the combinatorial optimization problem through bilevel approach, it is necessary to ob-
tain both the solution to the upper-level problem and the corresponding solution to the lower-level
problem. The framework incorporates a cost estimation network and an optimal transport module to
obtain the solution to the upper-level problem while satisfying the constraints. The optimal transport
module ensures that the output satisfies linear constraints in the upper-level problem. To evaluate
the solution of the upper-level problem, the lower-level problem must be solved to obtain the ob-
jective value of the original problem. The output of the optimal transport module does not ensure
the integrality of discrete variables; we can acquire the feasible solutions to the upper-level problem
by executing the postprocessing like LinSatNet (Wang et al., 2023). For example, we can use sam-
pling from the feature matrix as the postprocessing. After determining each lower-level problem
by sampling the output of the optimal transport module, a problem-specific solver is executed to
obtain the solution of the lower-level problem. Due to the necessity of sampling during this process,
backpropagation cannot be performed directly for updating the parameter of the cost estimation net-
work. To address this problem, a surrogate network is prepared to approximate the output of the
problem-specific solver, enabling the learning of the cost estimation network.

The training process is executed as follows: a) The cost estimation network performs a forward
pass, followed by calculating the optimal transport module to obtain the solution to the upper-level
problem. b-1) Sampling is performed from the output of step a), and the problem-specific solver
is executed for each lower-level problem. b-2) Alternatively, a forward pass is performed through
the surrogate network using the output of step a) and problem information. c) Loss functions are
computed to backpropagate through the surrogate and cost estimation networks. During inference,
only step b-1) is performed after step a).

†For example, the solver is provided by a part of Google OR-tools: https://developers.google.
com/optimization/cp/cp_solver
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We explain the loss functions which should satisfy the following three properties:

L1. The output of the surrogate network approximates the solution obtained by the problem-
specific solver.

L2. The solution of the upper-level problem minimizes the objective function value of the
problem-specific solver.

L3. The output of the cost estimation network avoids the similar output for different inputs,
which is the regularization term.

4 CASE STUDY : MIN-MAX CAPACITATED VEHICLE ROUTING PROBLEM

This section provides the case study using the proposed framework to solve the min-max capacitated
vehicle routing problem.

4.1 PROBLEM SETTING

We conducted experiments on the min-max capacitated vehicle routing problem (min-max CVRP),
whose formulation is shown in Section 2.3. It is an example of a problem that can be decomposed
into several steps, and problem-specific solvers have been developed for the lower-level problem.

We denote the n and K as the number of locations and vehicles, respectively, as shown in Sec-
tion 2.3. Let Z be the problem containing the coordinates of each location. The cost estimation
network, surrogate network, and optimal transport module are denoted as f, g, s, respectively. The
output of the cost estimation network is denoted as P := f(Z), where each element Pi,k indicates
that the probability of location i is assigned to vehicle k. By utilizing the matrix P and the vehicle
capacity Q, we obtain π by executing the optimal transport module. g(π, Z) is the output of the
surrogate network. T : 2{1,2,··· ,n} → R is the function to obtain the shortest traveling path given lo-
cations by utilizing the problem-specific solver. ak ⊂ {1, 2, · · · , n} is the set of locations assigned
to the vehicle k. For min-max CVRP, the loss function design based on the proposed framework
outlined in Section 3 is concretely defined as follows:

L1.
∑

k(T (ak) − g(π, Z)k)
2 : The surrogate network accurately approximate the maximum

route length.

L2. max
k

(g(π, Z))k × (− log
∏

Pi,k∗
i
), where k∗i := argmax

k
πi,k : The upper-level problem’s

solution make the maximum route lengths smaller.

L3. −
∑

Pi,k logPi,k : The each column ofthe cost estimation network’s output is close to one-
hot representations through regularizing the entropy, preventing ambiguous assignments of
locations to vehicles.

We set the loss function as the summation of the above three terms. This formulation ensures that the
framework effectively handles the min-max CVRP while optimizing for both upper- and lower-level
problem solutions.

4.2 EXPERIMENTAL SETTING

Following Goh et al. (2024), we utilized the realistic approach of random sampling from the base
map, not utilizing randomly generated instances. As sample data, we acquired the map in Munich,
Paris, and Barcelona by utilizing OSMnx‡, each of which has different characteristics. The feature
and visualization of each map are shown in Table 1 and Figure 3, respectively. The coordinate is
originally normalized to [0, 1]2. We sampled 100 locations per problem, and we regarded them
as nodes. Then, we acquired the problem as the completed graph. The depot was also randomly
sampled from one node per problem. The cost of traveling between two locations is defined as the
Euclidean distance.

‡https://osmnx.readthedocs.io/en/stable/
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City Number of locations Feature
Munich 14,046 There are many small-sized clusters.

Paris 9,484 Locations are not aggregated.
Barcelona 8,914 Locations are aggregated with different densities.

Table 1: Description of input data

100,000 instances, 128 instances, and 100 instances were extracted from each map as training,
validation, and test data, respectively. As a preprocessing step, the position of the depot was trans-
lated to the origin. Subsequently, data augmentation was applied by flipping the coordinates along
the x-axis and y-axis, each with a probability of 0.5. LKH-3 was used as a comparative method,
and the time limits for each experiment were set to 30 seconds, 60 seconds, and 120 seconds.

Figure 3: Scatter plot of three cities: Munich, Paris, and Barcelona.

The computational en-
vironment used was one
NVIDIA RTX A6000.
The optimizer of the cost
estimation and surrogate
networks is RMSprop,
where the learning rate is
set to 1e-5. We set the
batch size to 128. We
trained 300 epochs and
calculated the objective
values for validation data
every ten epochs to save
the pretraiend model. The
number of vehicles K is
set to 5. The capacity of vehicle Q is set to

⌊
n
4

⌋
, so there is a gap between the total number of

locations and the sum of vehicles’ capacity. Therefore, we can allow the gap between the number
of locations to visit per vehicle.

We prepared the components of the proposed framework for min-max CVRP shown as follows;

• 1. Cost estimation network: three-layered Graph Isomorphism Network (Xu et al., 2019)
• 2. Optimal transport module : LinSatNet (Wang et al., 2023) described in Section 2.2
• 3. Surrogate network: three-layered attention network (Vaswani, 2017)
• 4. Problem specific-solver: Google OR-tools. Note that it is not an exact solver.

Additionally, the output of each method is used as an initial solution, and an evaluation is performed
on the solution after conducting a local search. At the test phase, each location’s assignment to the
vehicle is sampled from the feature matrix per column. However, the assignment can be infeasible
because the feature matrix does not consider the integrality of the variables. Therefore, we imple-
mented the postprocessing to obtain the discrete solution, detailed in Appendix A. Note that we can
obtain a feasible solution for many (but not all) instances by the sampling, detailed in Appendix B.

4.3 RESULT

As a quantitative evaluation, we show Figure 4 by utilizing the map of Paris, Munich, and Barcelona,
respectively. Our framework succeeded in obtaining a better solution than LKH-3. Table 2 shows the
evaluation metric with different methods for 300 locations per problem. The proposed framework
outperformed the LKH-3 with a time limit of at most 120s. Moreover, the proposed framework is
much faster than LKH-3. Regarding the “Best Results” column, when multiple methods achieved
the best objective function value, both were included in the count. As a result, the total count
can exceed 100, which is the total number of test problems. Figure 5 shows the relative objective
value normalized by the output of LKH-3 with a limit of 120s with different problem sizes. The gap
between the solution quality of our framework and that of LKH-3 becomes larger as the problem size
increases, which shows that the proposed framework learns the characteristics of similar problems.
As a qualitative evaluation, Figure 6 shows each vehicle’s path output from our framework to LKH-3

7
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with different timelimit settings. While LKH-3 contains redundant routes due to an imbalance of
workload, our framework has almost the same workload among vehicles.

Figure 4: Average objective values with different problem sizes and inputs: Each row and column
indicate the result of the same problem size and input data, respectively.

Figure 5: Absolute objective values with different problem sizes normalized by the objective value
of the experiment in LKH-3 with a limit of 120s

Figure 6: Visualization of output route for 300 nodes’ problem obtained by proposed framework
and LKH-3 with different timelimit settings

8
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Average objective
value (↓) Best results (↑) computation

time[s] (↓)

Munich

Proposed 3.47 (89.6%) 26/100 2.7
Proposed + LKH-3

(total 60s) 3.31 (85.5%) 40/100 60.0

LKH-3 (30s) 3.88 (100.0%) 20/100 30.0
LKH-3 (60s) 3.80 (98.0%) 23/100 60.0

LKH-3 (120s) 3.66 (94.5%) 26/100 120.0

Paris

Proposed 3.83 (88.3%) 20/100 2.5
Proposed + LKH-3

(total 60s) 3.59 (82.6%) 53/100 60.0

LKH-3 (30s) 4.34 (100.0%) 14/100 30.0
LKH-3 (60s) 4.27 (98.4%) 17/100 60.0

LKH-3 (120s) 4.05 (93.3%) 25/100 120.0

Barcelona

Proposed 2.97 (82.7%) 32/100 2.2
Proposed + LKH-3

(total 60s) 2.86 (79.8%) 48/100 60.0

LKH-3 (30s) 3.59 (100.0%) 8/100 30.0
LKH-3 (60s) 3.50 (97.5%) 7/100 60.0

LKH-3 (120s) 3.24 (90.2%) 18/100 120.0

Table 2: Average objective value in case 300 node for different test data; For the “Best Results”
column, when multiple methods achieved the best objective function value, both were included in
the count. As a result, the total count can exceed 100, which is the number of test instances.

5 DISCUSSION

Training data
Munich Paris Barcelona

Test data
Munich 2.44 2.42 2.21

Paris 2.70 2.69 2.52
Barcelona 2.31 2.32 2.12

Table 3: Average objective value when the training data is
different from the testing data for problems with 100 nodes

This section discusses the additional
topics about the proposed framework.

5.1 GENERALITY
FOR OTHER AREA’S DATA

We executed the inference where the
training data is different from the in-
ference data to discuss the generaliza-
tion of the trained model. We show
the result in Table 3. The pretrained model with Barcelona data achieved the best results also Mu-
nich and Paris data than pretrained model with their own training data, respectively. Figure 7 shows
the histograms of the distances of every pair of locations for maps utilized in the experiments and
randomly generated data. Based on the figure, there are small clusters in Barcelona map and we
assume that the key to enhance neural solver’s generality for vehicle routing problem in real-world’s
data. In addition, since randomly generated data has no cluster, the characteristics of the distribution
of histograms are different from those of other data. It can be assumed that the randomly generated
is not suitable for training with real-world data.

Figure 7: The histograms of the distances calculated by every pair of locations in test dataset

9
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5.2 APPLICABILITY TO ADDITIONAL CONSTRAINT AT TEST PHASE

One advantage of the proposed framework is that it can handle constraints that were not given at
the training phase. This is because the optimal transport module can handle the input constraint
regardless of the constraints during training. We experimentally add the constraint that half of the
nodes cannot be assigned to the first truck plotted with blue color in Figure 8. Figure 8 shows
the visualization when the constraint is not added or added. One node plotted by a red star in the
left figure was originally assigned to the first truck, whose path is shown in blue. After adding the
additional constraint to prohibit the node from assigning the first truck, it can naturally be reassigned
to another truck plotted in green. It is one example of how the cost estimation network and the
optimal transport module are robust when adding the constraint.

5.3 OTHER APPLICATIONS TO UTILIZE THE PROPOSED FRAMEWORK

Figure 8: The left figure shows the output of a
test problem, while the right figure shows the out-
put after adding an additional constraint. The ad-
ditional constraint is that the first vehicle cannot
visit the former locations, and the second vehicle
cannot visit the latter locations.

As a case study, we utilized min-max CVRP to
verify the proposed framework. Note that the
condition of utilizing the proposed framework
is that it can decompose the problem that ex-
ists in the problem-specific solver. For exam-
ple, in a flexible job shop scheduling problem,
when we extract the upper-level problem as
the determining assignment between tasks and
machines. We can formulate the lower-level
problem as the job shop scheduling, which can
be solved efficiently with the CP-SAT solver.
Therefore, we can apply a proposed framework
to solve the flexible job shop scheduling prob-
lem.

6 CONCLUSION

This study proposes a self-supervised frame-
work for obtaining high-quality solutions
quickly to large-scale combinatorial optimization problems by integrating neural and problem-
specific solvers. Our framework decomposes the combinatorial optimization problem into subprob-
lems, some of which have problem-specific solvers, such as the TSP. For the remaining problem,
we construct the neural solver with differentiable optimal transport, ensuring feasibility. We vali-
dated the effectiveness of the proposed framework through experiments on the min-max capacitated
vehicle routing problem.

For future work, we show two research directions. The first direction is to validate our framework
with the dataset of real-world problems. Since we did not obtain the real-world problems, we made
problems by random sampling from the map. The other direction is to handle more general con-
straints in the upper-level problem. In our framework, we currently cannot handle linear constraints
with negative coefficients or non-linear constraints; if we can handle such constraints, our frame-
work can be utilized to solve more general problems. By addressing these issues, our framework
will contribute to integrating the neural and mathematical optimization solvers for fast and accurate
optimization.

REPRODUCIBILITY

We attached the source code as the supplementary materials through which we can reproduce our
result. The user also downloads and utilizes the LKH-3, the official site.
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A POSTPROCESSING IN THE CASE STUDY

This section details the postprocessing for the feature matrix in Section 4. As mentioned in Section 4,
the discrete solution after random sampling from feature matrix (Pi,k)i,k can violate the linear con-
straints even the original feature matrix (Pi,k)i,k satisfies the constraints (i.e.,

∑
k Pi,k = 1 for all i

and
∑

i Pi,k ≤ Q for all k). To obtain a feasible solution, we prepare the following two steps as the
postprocessing.

The first step is to determine the number of locations visited per vehicle. We estimate the demand of
vehicle k by summing up each row of feature matrix Pi,k. Based on the information, we formulate
the problem of obtaining the optimal number of locations per vehicle as the minimization of the total
penalty, where the penalty of each vehicle is defined as the gap between the estimated demand and
the optimal number of locations per vehicle. The postprocessing problem is formulated as follows;

minimize
u

K∑
k=1

∥∥∥∥∥vk −
n∑

i=2

Pi,k

∥∥∥∥∥
1

subject to
K∑

k=1

vk = n− 1, vk ≤ Q

vk ∈ Z

• vk : an integer variable that indicates the number of locations assigned to truck

This problem is sufficiently small so that it can be optimized in a short time. By solving the above
optimization problem, we can use vk as the number of locations visited by one vehicle. After fixing
vk, the upper-level constraints

∑
k x

k
i = 1 (∀i),

∑
i x

k
i ≤ Q (∀k) can be rewritten as

∑
k x

k
i = 1

(∀i),
∑

i x
k
i = vk (∀k). Since the vanilla Sinkhorn algorithm can handle these constraints, we use it

to obtain the discrete solution.

B FEASIBILITY CHECK FROM FEATURE MATRIX

This section describes that how much the sampling strategy can obtain the feasible solution experi-
mentally discussed in Section 4. At the test phase, we first obtain the feature matrix by utilizing the
trained cost estimation network and the optimal transport module. We sampled each problem and
terminated with failure if the capacity constraint was satisfied or the maximum number of iterations
was reached. We set the maximum number of iterations as 10,000. Table 4 shows the number of
problems that succeeded in sampling the feasible solution and the average duration for sampling
and checking feasibility per problem. Although we could obtain feasible solutions for almost all
of the test problems by sampling, there are several problems for which we could not find a feasible
solution. This is why we prepare the postprocessing detailed in Appendix A. Note that this sampling
process and the postprocessing can be executed sufficiently quickly.
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Problem Size Munich Paris Barcelona

success computation
time [s] success computation

time [s] success computation
time [s]

100 100 0.0001 100 0.0001 100 0.0001
200 100 0.0004 100 0.0003 100 0.0001
300 93 0.0022 99 0.0005 100 0.0001
400 92 0.0028 97 0.0010 100 0.0001
500 86 0.0041 97 0.0011 100 0.0001
600 85 0.0045 97 0.0013 100 0.0001
700 82 0.0055 96 0.0013 100 0.0001
800 81 0.0057 96 0.0014 100 0.0001
900 81 0.0060 96 0.0014 100 0.0002

Table 4: The ratio to find the feasible solutions at most 10,000 trials for 100 test problems
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