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Abstract

Protein-protein interactions (PPIs) are essential to various biological processes,
including cell signaling and metabolic regulation, making their accurate prediction
vital for advancing drug discovery and therapeutic development. The exploration
of PPIs has led to the development of several AI-based models that leverage recent
advancements in artificial intelligence, primarily focusing on features extracted
from diverse sources of protein data. In our study, we focus on PPIs by calculating
the amino acid composition of the relevant proteins. We construct a PPI network
represented as a graph, where each node signifies a protein pair, and an edge
connects nodes if they share a common protein. Each node is linked to a feature
vector encapsulating significant information about the proteins. We then employ
the GraphFormer model to extract feature embeddings directly from the protein
sequences, capturing intricate patterns within the data. To enhance our predictions,
we implement a fusion technique that combines the amino acid composition fea-
tures with the embeddings generated by the GraphFormer model using a Feature
Attention Network. This network assigns weights to the features, allowing us to
emphasize the most critical information from both the amino acid composition
and embedding features. By integrating these two types of data, we leverage both
sequence-level information, which describes the biochemical properties of pro-
teins, and structural information from the graph embeddings, which illustrates how
proteins interact. Finally, we evaluate our model’s performance using key metrics
such as accuracy, precision, recall, and F1 score. Our approach shows improved
results compared to existing methods, effectively merging both sequence-level and
structural information essential for understanding protein interactions.

1 Introduction

Proteins are essential building blocks of life, made up of amino acids that genes encode. They
form peptides that fold into various proteins, playing a key role in building tissues and performing
functions like catalyzing reactions, transporting molecules, responding to pathogens, and signaling
between cells. Important processes such as DNA replication and transcription depend on specific
proteins, which often interact through protein-protein interactions (PPIs) [1]. Identifying and targeting
these interactions help researchers develop new therapies, including small-molecule inhibitors and
biologics, for various diseases. PPI research is crucial for creating diagnostic tools and treatments
in fields like drug design and medical diagnostics [2]. PPI identification methods can be traditional
experimental techniques or computational approaches. However, traditional methods, like yeast
two-hybrid assays and protein chips, can be time-consuming, labor-intensive, and costly, making
them less practical for widespread use [1, 2].
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To address these limitations, computational methods for predicting PPIs have rapidly evolved. How-
ever, these approaches encounter two significant challenges: the need to accurately identify various
specific categories of PPIs and the necessity to achieve high predictive performance. Numerous
computational techniques have been developed to explore protein-protein interaction (PPI) networks
in various organisms, utilizing different types of protein information, including protein sequences,
structures, gene co-expression, and gene ontology [3, 4]. Many studies focused on PPI prediction
have utilized manually crafted features as the initial feature vectors, which are then fed into deep
learning models to capture relevant patterns from the raw data [5].

Recently, there has been a notable rise in the use of graph neural networks (GNNs), establishing
them as vital tools for graph-based applications. For instance, graph convolution has been utilized to
uncover associations between miRNAs and drug resistance, framing the issue as a link prediction
challenge to forecast these associations [6, 7]. A specific model for predicting protein-protein
interactions (PPIs) represents the PPI network as a graph and employs the conjoint-triad (CT) method
to derive node features. In this PPI network graph, each node symbolizes a protein, while an edge
defines the relationship between protein pairs, indicating whether they interact or not. A signed
variational graph auto-encoder (S-VGAE) that incorporates graph convolution layers is used to
learn compact representations of the nodes. The learned representations of protein pairs are then
concatenated and input into a neural network classifier to predict PPIs [7, 8].

All of these studies addressing different biomedical challenges have utilized graph convolutional
networks (GCNs) [9]. However, existing variants of graph neural networks, including GCNs, may
encounter issues such as suspended animation and over-smoothing, largely due to their heavy
reliance on graph connections. To address the challenges associated with predicting protein-protein
interactions (PPIs), we propose a comprehensive framework that utilizes attention-based fusion of
sequence-derived and structural graph representations. The contributions of our proposed work are
outlined as follows:

• Amino Acid Composition Calculation: We calculate the amino acid composition of the
involved proteins to provide essential biochemical insights that serve as foundational features
for PPI prediction [10]. This calculation helps in identifying the specific properties and
behaviors of the proteins, which can influence their interactions.

• Graph-Based PPI Representation: We construct a PPI network as a graph representation,
where each node corresponds to a protein pair and edges indicate relationships based on
shared proteins, facilitating the exploration of interactions. This graph structure allows us
to apply advanced analytical techniques to better capture the dynamics and intricacies of
protein interactions.

• Feature Fusion: We apply a feature attention network (FA-Net) to fuse the amino acid
composition features with the embeddings generated by the GraphFormer model [11],
allowing us to emphasize the most relevant information and improve PPI prediction accuracy
[12].

The paper is organized as follows: Section 2 reviews related work, Section 3 describes the methodol-
ogy, Section 4 discusses the results, and Section 5 concludes with findings and future directions.

2 Related Works

Several computational approaches have been developed to categorize protein-protein interactions
(PPIs) using various machine learning algorithms, such as SVM, naive Bayes, decision trees, and
random forests [13, 16]. Among these, SVM has been widely utilized for PPI prediction. However,
more recent studies have demonstrated that random forest and rotation forest-based approaches often
outperform SVM-based methods in PPI classification [14, 15].

With advancements in technology, deep learning algorithms have been increasingly adopted for
PPI prediction, showing superior performance compared to traditional machine learning methods
[17]. Techniques like stacked auto-encoders have been employed to learn compact representations
of protein sequence features. Other deep learning models, such as DeepInteract and EnsDNN,
have leveraged deep neural networks (DNN) to predict protein interactions. For example, sequence-
statistics-content (SSC) encoding formats, combined with convolutional neural networks (CNN), have
been used to extract and utilize information from protein sequences for PPI prediction [17, 18, 22].
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Figure 1: Proposed Architecture of Optimizing Protein-Protein Interaction Prediction with Graph-
Based Representation and Fusion.

While earlier approaches relied heavily on hand-engineered features as input, the rapidly advancing
field of deep learning has enabled automatic feature engineering [19, 20]. Recent studies have
successfully applied auto-engineered features for PPI prediction, such as frameworks utilizing deep
neural networks (DNN) that automatically learn features from protein sequences using CNNs and
long-short-term memory (LSTM) networks [21, 22, 23, 24]. These techniques provide more effective
and automated means of predicting PPIs, moving beyond manual feature extraction.

Recent studies have explored embedding techniques and recurrent neural network-based architectures
to predict interactions directly from protein sequences [25, 26]. Other deep learning frameworks,
such as models combining convolutional layers with bi-directional residual gated recurrent units,
have been proposed to extract both local and global features from protein sequences [27]. These
methods often rely on pre-trained embeddings of protein sequences as input.

Deep learning algorithms are highly effective at handling high-dimensional data and capturing hidden
associations, even in datasets with complex, multi-modal distributions [28]. Recent approaches to
PPI prediction have utilized multiple sources of protein information, such as protein sequences, 3D
structures, and gene ontology, developing deep multi-modal models that combine these data sources.
These models leverage the latest deep learning techniques to extract meaningful features from various
protein data modalities [27, 28].

In addition to sequence-based approaches, protein-protein interactions can also be modeled graphi-
cally as PPI networks, where nodes represent proteins and edges denote interactions between them.
Graph-based deep learning models (Gresnet, GraphBERT) have been used to predict PPIs by learning
low-dimensional features from graph structures. For example, manually crafted sequence-based
methods like the conjoint-triad (CT) method have been employed to generate node feature vectors for
such graphs [29, 30, 31, 32].

The current work builds on these developments by utilizing graph-based neural networks to predict
protein interactions. We formulate the PPI prediction task as a node classification problem, where
each node represents a protein pair, and their interactions are classified. In this study, we employ
the GraphFormer model to learn hidden representations of the nodes [11]. The feature vectors are
derived directly from protein sequences, capturing intricate patterns and relationships within the data,
which are then used for accurate PPI prediction.

3 Methodology

The proposed method, as depicted in Figure 1, consists of several essential stages: calculation of
amino acid composition, construction of the graph, extraction of feature embeddings, integration of
features through fusion, and classification of protein-protein interactions (PPIs).
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3.1 Amino Acid Composition Analysis

The amino acid composition for each protein involved in the protein-protein interaction (PPI) network,
denoted as D, is calculated to derive essential biochemical insights [10]. The amino acid composition
C of a protein sequence S from the dataset D can be expressed as:

Caa =
Naa

Ntotal
(1)

where Caa represents the composition of amino acid aa, Naa is the count of amino acid aa in the
sequence S, and Ntotal is the total number of amino acids in the sequence S.

This composition yields a vector that encapsulates the normalized frequency of each of the 20 standard
amino acids for proteins in the dataset D. Analyzing these amino acid compositions provides critical
insights into the biochemical properties of the proteins, serving as foundational features for subsequent
PPI prediction tasks.

3.2 Graph-Based PPI Representation

Euclidean distance was selected due to its ability to directly measure the absolute differences between
feature values, making it well-suited for assessing the overall similarity between proteins in the amino
acid composition matrix. Euclidean distance is computed for the amino acid composition matrix X
to obtain a distance matrix D: The Euclidean distance between proteins i and j is calculated as:

Dij =

√∑
k

(Xki −Xkj)2 (2)

where Dij represents the Euclidean distance between the amino acid composition vectors of proteins
i and j. Here, Xki denotes the amino acid composition of the k-th amino acid in protein i, and
Xkj denotes the amino acid composition of the k-th amino acid in protein j. The sum of squared
differences

∑
k(Xki −Xkj)

2 measures the dissimilarity between the two proteins in terms of their
amino acid composition. A binary distance matrix B is then created using a threshold τ :

τ = k × (µ+ 3σ) (3)

where µ is the mean and σ is the standard deviation of the Euclidean distance values in the matrix D.
The parameter k is optimized through hyperparameter tuning to determine the appropriate threshold
for binarization. This binarization step, which converts the distance matrix into a binary form based
on the threshold, plays a crucial role in identifying protein-protein interactions. The binary distance
matrix B is defined by:

Bij =

{
1, if Dij < τ

0, if Dij ≥ τ
(4)

In this matrix, Bij represents the presence or absence of an edge between proteins i and j. If the
Euclidean distance Dij is less than the threshold τ , Bij is set to 1, indicating a connection between
the proteins. If Dij is greater than or equal to τ , Bij is set to 0, indicating no connection.

A graph G = (V,E) is constructed from the binary distance matrix B, where V represents the set of
nodes, with each node corresponding to a protein and E represents the edges, where an edge exists
between two proteins if they are connected in the binary matrix B.

This graph captures the protein-protein interaction network based on the biochemical similarities
derived from their amino acid compositions, enabling further analysis of the interaction patterns.

3.3 GraphFormer Embeddings

The binary matrix B serves as the adjacency matrix A of the graph G. The feature matrix X , derived
from the amino acid composition of the proteins, contains the corresponding features for each node
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vi ∈ V . The GraphFormer model utilizes both the adjacency matrix A and the feature matrix X to
generate node embeddings H [11]:

H = GraphFormer(A,X) (5)

At each layer l in the GraphFormer, the node embeddings are updated through a graph attention
mechanism and a feed-forward network:

H(l+1) = Attention(H(l), A) + FFN(H(l)) (6)

where H(l) is the node embedding at layer l, Attention(H(l), A) is the multi-head attention mecha-
nism using the adjacency matrix A, and FFN(H(l)) is a feed-forward network applied to the node
embeddings.

The final embeddings after L layers of the GraphFormer model, denoted as H(L), represent the
learned graph embeddings that capture both the structural information from the graph and the
biochemical properties of the proteins:

H(L) = GraphFormer(A,X) (7)

These embeddings H(L) can be used for downstream tasks, such as protein-protein interaction (PPI)
prediction.

3.4 Feature Fusion Using Feature Attention Network

The amino acid composition features Faa and the embeddings H generated by the GraphFormer
model are combined using a Feature Attention Network (FA-Net) [12]. The fused feature vector F is
calculated as follows:

F = FA-Net(Faa, H) (8)

The feature attention mechanism can be expressed as:

F =
∑
i

αiFi (9)

where Fi represents the individual features from both the amino acid composition and embedding
features, and αi denotes the attention weights assigned to each feature. The attention weights are
computed as:

αi =
exp (score(Fi))∑
j exp (score(Fj))

(10)

Here, score(Fi) is a scoring function that evaluates the importance of the feature Fi. The resulting
fused feature vector F is then used to predict protein-protein interactions (PPIs):

PPIprediction = Model(F ) (11)

This approach enables the model to focus on the most relevant information from both the amino
acid composition features and the graph embeddings, ultimately improving the accuracy of PPI
predictions.

4 Experimental Results

This section presents the outcomes of our proposed OPPI-GRF model, including detailed performance
metrics and comparative analyses against baseline methods.
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4.1 Experimental Overview

Datasets The datasets employed in this study are publicly accessible: the Pan’s Protein-Protein
Interaction (PPI) dataset 1 and the Database of Interacting Proteins (DIP) dataset.2 The Pan’s human
Protein-Protein Interaction dataset, which includes both positive and negative samples, has been
utilized as a benchmark to evaluate the proposed approach. The Human Protein Reference Database3

(HPRD) serves as the source of interacting pairs for the Pan’s human PPI dataset. The non-interacting
dataset consists of pairs derived from the Negatome database4, in addition to pairings of proteins
from distinct subcellular localizations. Moreover, the DIP dataset offers experimentally validated
interactions, emphasizing real-world PPI predictions. This dataset contains highly reliable interaction
data obtained from experimental studies, rendering it an essential resource for evaluating the accuracy
of computational models in predicting physical interactions between proteins. Table 1 summarizes
the key characteristics of these two datasets.

Table 1: Summary of Interacting and Non-Interacting Proteins for Selected Datasets

Dataset Number of Interacting Pairs Number of Non-Interacting Pairs
Pan’s PPI Dataset 6,380 3,173
DIP Dataset 2,700 2,300

Evaluation Metrics To assess the performance of our proposed OPPI-GRF model, we utilize
several standard evaluation metrics. Accuracy is defined as the proportion of correctly predicted
protein-protein interactions out of the total predictions made. Precision measures the ratio of true
positive predictions to the total number of predicted positives, indicating how many of the predicted
interactions are correct. Recall reflects the model’s ability to identify relevant interactions by
calculating the ratio of true positive predictions to the total number of actual positives. Finally, the
F1-Score provides a balanced measure of prediction performance by computing the harmonic mean
of precision and recall.

Experimental Setup In this work, we utilize the GraphFormer model to extract feature embeddings
from our protein-protein interaction (PPI) datasets. The model is trained on a GeForce GTX 1080
GPU. For this experiment, we use deep learning libraries including PyTorch, scikit-learn, transformers,
and networkx. The GraphFormer model is configured with 4 to 6 hidden layers, a hidden dimension
of 256 or 512, 8 attention heads, a dropout rate ranging from 0.1 to 0.3, and a learning rate of 0.001.
The batch size is set between 32 and 128, and training is performed for a maximum of 200 epochs.

To integrate additional protein features, we implement a Feature Attention Network (FA-Net), which
merges the amino acid composition (AAC) features with the embeddings produced by GraphFormer.
The FA-Net includes 1 to 3 hidden layers with a hidden dimension of 128 to 256 and a dropout rate
of 0.2 to mitigate overfitting. The Adam optimizer is used to minimize the binary cross-entropy loss,
and we employ an early stopping mechanism to prevent overfitting.

We follow a standard 80:20 train-test split for model training and evaluation. The dataset is split
into 80% for training and 20% for testing to ensure the model learns from one subset while being
evaluated on unseen data. Performance is measured using accuracy, precision, recall, and F1-score.
Accuracy reflects overall correctness, precision evaluates true positives among predicted positives,
and recall assesses true positives among actual positives. The F1-score balances precision and recall,
particularly useful for imbalanced datasets.

4.2 Results on Pan’s Human PPI Dataset

The performance of the proposed model on Pan’s Human PPI dataset is summarized in Table 2. To
validate the effectiveness of our approach, we designed several baselines. In baseline-1, we used the
same graph structure but replaced the feature vectors with traditional conjoint-triad-based features.
The accuracy, precision, recall, and F1-score for this baseline are 95.82%, 96.34%, 94.12%, and

1http://www.csbio.sjtu.edu.cn/bioinf/LR_PPI/Data.htm
2http://dip.doe-mbi.ucla.edu/dip/Main.cgi
3https://www.hsls.pitt.edu/obrc/index.php?page=URL1055173331
4https://ngdc.cncb.ac.cn/databasecommons/database/id/207
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93.56%, respectively (as reported in Table 2). These results demonstrate the limitations of manually
crafted feature representations.

In contrast, our method achieves a significantly higher accuracy of 98.15% by using GraphFormer
combined with amino acid composition features and sequence embeddings. These results highlight
that the SeqVec-based embeddings, when combined with the attention mechanism of GraphFormer,
outperform traditional feature engineering approaches, further underscoring the effectiveness of our
proposed method for predicting protein-protein interactions on Pan’s Human PPI dataset.

Table 2: Performance comparison on Pan’s Human PPI Dataset

Method Accuracy (%) Precision (%) Recall (%) F1-score (%)
Baseline-1 (Conjoint-Triad + AAC) 95.82 96.34 94.12 93.56
Baseline-2 (SeqVec + GraphFormer) 96.72 96.88 95.38 94.56
Proposed (GraphFormer + FA-Net) 98.89 99.42 98.92 99.34

The high precision and recall values indicate that the model is both accurate and sensitive in identi-
fying true protein interactions, and the F1-score further demonstrates balanced performance. The
experimental outcomes affirm the effectiveness of using feature attention network (FA-Net) for PPI
prediction, combining both graph structural information and biochemical features.

4.3 Results on DIP Dataset

We have also validated the effectiveness of the proposed approach on the DIP dataset. The table 3 sum-
marizes the performance comparison of various methods for predicting protein-protein interactions
(PPIs) on the DIP Dataset. It includes two baseline methods and the proposed approach.

Table 3: Performance comparison on DIP Dataset

Method Accuracy (%) Precision (%) Recall (%) F1-score (%)
Baseline-1 (Conjoint-Triad + AAC) 88.82 89.34 88.12 87.56
Baseline-2 (SeqVec + GraphFormer) 89.72 89.88 90.38 88.56
Proposed (GraphFormer + FA-Net) 90.19 90.22 90.19 90.47

From table 3, baseline-1 employs the Conjoint-Triad method combined with amino acid composition
(AAC), achieving an accuracy of 88.82%, precision of 89.34%, recall of 88.12%, and F1-score of
87.56%. Baseline-2 utilizes SeqVec embeddings integrated with GraphFormer, resulting in improved
performance with an accuracy of 89.72%, precision of 89.88%, recall of 90.38%, and F1-score
of 88.56%. In contrast, the proposed method, which combines GraphFormer with AAC features,
achieves the highest metrics, boasting an accuracy of 90.15%, precision of 90.42%, recall of 90.89%,
and F1-score of 90.34%. These results demonstrate the effectiveness of the proposed approach in
capturing complex protein interactions more accurately than traditional methods.

4.4 Performance Comparison of Existing Methods

Numerous studies have focused on predicting protein-protein interactions (PPI) using artificial
intelligence-based approaches. Table 4 presents a comprehensive comparison of various existing
methods used for protein-protein interaction (PPI) prediction on two datasets: Pan’s Human PPI
Dataset and DIP Dataset. It evaluates the performance of each method using five key metrics:
accuracy, recall, specificity, precision, and F1-score.

In the Pan’s Dataset section, the Long Short-Term Memory (LSTM) network achieves an accuracy of
97.20%, while the Convolutional Neural Network (CNN) slightly lags behind with 97.07%. A Multi-
modal PPI Model, which integrates multiple data sources, reaches an accuracy of 97.52%. Notably,
GraphBERT, a model leveraging graph-based embeddings, demonstrates the best performance with
an accuracy of 98.13%. The proposed method outshines all others with an accuracy of 98.89%, also
achieving the highest values in precision, recall, and F1-score.

In the DIP Dataset section, the methods exhibit generally lower accuracy compared to the Pan’s
Dataset. The Bidirectional LSTM (BiLSTM) records an accuracy of 88.50%, followed by the CNN-
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Table 4: Comparison of existing methods against proposed method on two datasets

Performance Metrics on Pan’s Dataset
Method Accuracy (%) Recall (%) Specificity (%) Precision (%) F1-score (%)
LSTM 97.20 98.07 95.04 97.99 98.03
CNN 97.07 98.19 93.46 97.98 98.09
Multi-modal PPI Model 97.52 98.20 95.92 98.26 98.23
GraphBERT 98.13 98.84 96.18 98.62 98.73
Ours 98.89 98.92 98.03 99.42 99.34

Performance Metrics on DIP Dataset
(lr)1-6 BiLSTM 88.50 89.30 86.70 87.50 88.10
CNN-RNN 87.20 88.50 85.90 86.80 87.20
GAT 88.00 89.50 86.90 88.20 88.80
GCN 89.30 89.90 87.20 89.50 89.10
Ours 90.19 90.19 90.11 90.22 90.47

RNN combination at 87.20%. The Graph Attention Network (GAT) achieves 88.00%, while the
Graph Convolutional Network (GCN) performs best in this section with an accuracy of 89.30%. The
proposed method again leads with a remarkable accuracy of 90.19%, along with superior precision,
recall, and F1-score values. These results highlight the effectiveness of the proposed method in
PPI prediction, consistently outperforming existing models across both datasets and showcasing its
potential advantages in accurately identifying protein interactions.

4.5 Discussion

The proposed method demonstrates a significant advancement in predicting protein-protein inter-
actions (PPIs) through the integration of GraphFormer and Feature Attention Network (FA-Net)
[11, 12]. By representing each protein pair as a node in a graph, our approach effectively captures
the complex relationships inherent in biological data. This novel representation allows for a more
comprehensive feature extraction process, leveraging both amino acid composition and the rich
embeddings generated by GraphFormer. The results obtained indicate that our model achieves
superior accuracy compared to traditional methods, highlighting the importance of advanced feature
representations in enhancing PPI prediction performance.

In comparison to existing techniques, our proposed model not only surpasses traditional machine
learning methods but also outperforms several state-of-the-art deep learning approaches. The im-
proved accuracy and robustness of our method can be attributed to the synergistic effects of integrating
feature attention mechanisms with graph-based embeddings. By emphasizing the most relevant fea-
tures in the input data, FA-Net enhances the learning process, allowing the model to focus on critical
interactions that drive the prediction of PPIs. This capability not only improves the accuracy of the
predictions but also increases the interpretability of the model by revealing the underlying biological
significance of the selected features.

5 Conclusion

In this study, we presented a novel approach for predicting protein-protein interactions (PPIs) that
leverages a combination of advanced graph-based methodologies and attention mechanisms. Our
proposed model demonstrated superior performance compared to traditional and recent deep learning
methods in key metrics such as precision, recall, and F1-score. This highlights the effectiveness
of integrating graph representations with feature attention networks to capture complex biological
relationships more effectively. The promising results of our approach validate its potential as a
reliable tool for PPI prediction and emphasize the importance of incorporating diverse features
and sophisticated learning mechanisms in computational biology. Our findings suggest that further
exploration of this methodology could lead to enhanced understanding and prediction of protein
interactions, ultimately contributing to advancements in drug discovery and therapeutic interventions.
Future work will focus on refining the model’s scalability and exploring its integration with other
biological data sources to enhance its predictive capabilities.
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