
Under review as a conference paper at ICLR 2021

DISTRIBUTED ADVERSARIAL TRAINING TO ROBUS-
TIFY DEEP NEURAL NETWORKS AT SCALE

Anonymous authors
Paper under double-blind review

ABSTRACT

Current deep neural networks are vulnerable to adversarial attacks, where adversar-
ial perturbations to the inputs can change or manipulate classification. To defend
against such attacks, an effective and popular approach, known as adversarial
training, has been shown to mitigate the negative impact of adversarial attacks
by virtue of a min-max robust training method. While effective, this approach is
difficult to scale well to large models on large datasets (e.g., ImageNet) in general.
To address this challenge, we propose distributed adversarial training (DAT), a
large-batch adversarial training framework implemented over multiple machines.
DAT supports one-shot and iterative attack generation methods, gradient quanti-
zation, and training over labeled and unlabeled data. Theoretically, we provide,
under standard conditions in the optimization theory, the convergence rate of DAT
to the first-order stationary points in general non-convex settings. Empirically,
on ResNet-18 and -50 under CIFAR-10 and ImageNet, we demonstrate that DAT
either matches or outperforms state-of-the-art robust accuracies and achieves a
graceful training speedup.

1 INTRODUCTION

The rapid increase of research in deep neural networks (DNNs) and their adoption in practice is, in
part, owed to the significant breakthroughs made with DNNs in computer vision (Alom et al., 2018).
Yet, with the apparent power of DNNs, there remains a serious weakness of robustness. That is,
DNNs can easily be manipulated (by an adversary) to output drastically different classifications and
can be done so in a controlled and directed way. This process is known as an adversarial attack and
considered as one of the major hurdles in using DNNs in security critical and real-world applications
(Goodfellow et al., 2015; Szegedy et al., 2013; Carlini & Wagner, 2017; Papernot et al., 2016; Kurakin
et al., 2016; Eykholt et al., 2018; Xu et al., 2019b).

Methods to train DNNs being robust against adversarial attacks are now a major focus in research
(Xu et al., 2019a). But most are far from satisfactory (Athalye et al., 2018) with the exception of the
adversarial training (AT) approach (Madry et al., 2017b). AT is a min-max robust training method that
minimizes the worst-case training loss at adversarially perturbed examples. AT has inspired a wide
range of state-of-the-art defenses (Kannan et al., 2018; Ross & Doshi-Velez, 2018; Moosavi-Dezfooli
et al., 2019; Zhang et al., 2019b; Wang et al., 2019b; Sinha et al., 2018; Chen et al., 2019; Boopathy
et al., 2020; Wong & Kolter, 2017; Dvijotham et al., 2018; Stanforth et al., 2019; Carmon et al., 2019;
Shafahi et al., 2019; Zhang et al., 2019a; Wong et al., 2020), which ultimately resort to min-max
optimization. However, these methods, together with AT, are generally difficult to scale well to large
networks on large datasets.

While scaling AT is important, doing so effectively is non-trivial. We find that scaling AT with the
direct solution of distributing the data batch across multiple machines may not work and leaves
many unanswered questions. First, if the direct solution does not allow for scaling batch size with
machines, then it does not speed the process up and leads to a significant amount of communication
costs (considering that the number of training iterations is not reduced over a fixed number of epochs).
Second, without proper design, the direct application of a large batch size to distributed adversarial
training introduces a significant loss in both normal accuracy and adversarial robustness (e.g., more
than 10% performance drops for ResNet-18 on CIFAR-10 shown by our experiments). Third, the

1

Under review as a conference paper at ICLR 2021

direct approach does not confer a general algorithmic framework, which is needed in order to support
different variants of AT, large-batch optimization, and efficient communication.

Taking all factors into consideration, a question that naturally arises is: Can we speed up AT by
leveraging distributed learning with full utility of multiple computing nodes (machines), even when
each only has access to limited GPU resources? Although a few works made empirical efforts to
scale AT up by simply using multiple computing nodes (Xie et al., 2019; Kang et al., 2019; Qin
et al., 2019), they were limited to specific use cases and lacked a thorough study on when and how
distributed learning helps, either in theory or in practice. By contrast, we propose a principled and
theoretically-grounded distributed (large-batch) adversarial training (DAT) framework by making
full use of the computing capability of multiple data-locality (distributed) machines, and show that
DAT expands the capacity of data storage and the computational scalability. We summarize our main
contributions as below.

Contributions (i) We provide a general problem formulation of DAT, which supports multiple
distributed variants of AT, e.g., supervised AT and semi-supervised AT. (ii) We propose a principled
algorithmic framework for DAT, which, different from conventional AT, supports large-batch DNN
training (without losing performance over a fixed number of epochs) and allows the transmission of
compressed gradients for efficient communication. (iii) We theoretically quantify the convergence
speed of DAT to the first-order stationary points in general non-convex settings at a rate of O(1/

√
T),

where T is the total number of iterations. This result matches the standard convergence rate of classic
training algorithms, e.g., stochastic gradient descent (SGD), for only the minimization problems. (iv)
We make a comprehensive empirical study on DAT, showing that it not only speeds up in training
large models on large datasets but also matches (and even exceeds) state-of-the-art robust accuracies
in different attacking and learning scenarios. For example, DAT on ImageNet with 6× 6 (machines
× GPUs per machine) yields 38.45% robust accuracy (comparable to 40.38% from AT) but only
requires 16.3 hours training time (6 times larger batch size allowed in DAT), exhibiting 3.1 times
faster than AT on a single machine of 6 GPUs. We also make a significant effort to evaluate the
empirical performance of DAT across different computing configurations at different learning regimes,
e.g., semi-supervised learning and transfer learning.

2 RELATED WORK

Training robust classifiers The lack of robustness of DNNs has promoted a rapid expansion of
defenses against adversarial attacks, ranging from heuristic defenses to robust (min-max) optimization
based approaches. However, many heuristic strategies are easily bypassed by stronger adversaries due
to the presence of obfuscated gradients (Athalye et al., 2018). By contrast, the min-max optimization-
based training methods are generally able to offer significant gains in robustness. AT (Madry et al.,
2017b), the first known min-max optimization-based defense, has inspired a wide range of other
effective defenses. Examples include adversarial logit pairing (Kannan et al., 2018), input gradient
or curvature regularization (Ross & Doshi-Velez, 2018; Moosavi-Dezfooli et al., 2019), trade-off
between robustness and accuracy (TRADES) (Zhang et al., 2019b), distributionally robust training
(Sinha et al., 2018), dynamic adversarial training (Wang et al., 2019b), robust input attribution
regularization (Chen et al., 2019; Boopathy et al., 2020), certifiably robust training (Wong & Kolter,
2017; Dvijotham et al., 2018), and semi-supervised robust training (Stanforth et al., 2019; Carmon
et al., 2019).

In particular, some recent works proposed fast but approximate AT algorithms, such as ‘free’ AT
(Shafahi et al., 2019), you only propagate once (YOPO) (Zhang et al., 2019a), and fast gradient
sign method (FGSM) based AT (Wong et al., 2020). These algorithms achieve speedup in training
by simplifying the inner maximization step of AT. Although there is vast literature on min-max
optimization based robust training, it is designed for centralized model training and without care
about the scalability issue in AT. In (Xie et al., 2019), although a distributed version of vanilla AT
was implemented via the large-batch SGD algorithm (Goyal et al., 2017), it is significantly different
from our proposal. Compared to (Xie et al., 2019), we adopt a different distributed training recipe
(layer-wise adaptive learning rate method vs. SGD), and make in-depth theoretical analysis of
quantifying the convergence rate of DAT.
Distributed model training Distributed optimization has been found to be effective for the standard
training of machine learning models (Dean et al., 2012; Goyal et al., 2017; You et al., 2019; Chen
et al., 2020). In contrast to centralized optimization, distributed learning enables increasing the batch
size proportional to the number of computing nodes/machines. However, it is challenging to train a

2

Under review as a conference paper at ICLR 2021

model via large-batch optimization without incurring accuracy loss compared to the standard training
with same number of epochs (Krizhevsky, 2014; Keskar et al., 2016). To tackle this challenge, it
was shown in (You et al., 2017; 2018; 2019) that adaptation of learning rates to the increase of the
batch size is an essential mean to boost the performance of large-batch optimization. A layer-wise
adaptive learning rate strategy was then proposed to speed up the training as well as preserve the
accuracy. Although these works have witnessed several successful applications of distributed learning
in training standard image classifiers, they leave the question of how to build robust DNNs with DAT
open. In this paper, we show that the power of layer-wise adaptive learning rate also applies to DAT.
Since distributed learning introduces machine-machine communication overhead, another line of
work (Alistarh et al., 2017; Yu et al., 2019; Bernstein et al., 2018; Wangni et al., 2018; Stich et al.,
2018; Wang et al., 2019a) focused on the design of communication-efficient distributed optimization
algorithms.

The study on distributed learning is extensive, but the problem of distributed min-max optimization
is less explored, with some exceptions (Srivastava et al., 2011; Notarnicola et al., 2018; Hanada
et al., 2017; Tsaknakis et al., 2020; Liu et al., 2019a;b). A key difference to our work is that none
of the aforementioned literature studied the large-batch min-max optimization with its applications
to training robust DNNs, neither theoretically nor empirically. While there are recent proposed
algorithms for training Generative Adversarial Nets (GANs) (Liu et al., 2019a;b), training robust
DNNs against adversarial examples is intrinsically different from GAN training. In particular, training
robust DNNs requires inner maximization with respect to each training data rather than empirical
maximization with respect to model parameters. Such an essential difference leads to different
optimization goals, algorithms, convergence analyses and implementations.

3 PROBLEM FORMULATION

In this section, we first review the standard setup of adversarial training (AT) (Madry et al., 2017b).
We then motivate the need of distributed AT (DAT) and propose a general min-max setup for DAT.

Adversarial training AT (Madry et al., 2017b) is a min-max optimization method for training
robust ML/DL models against adversarial examples (Goodfellow et al., 2015). Formally, AT solves
the problem

minimize
θ

E(x,y)∈D

[
maximize
‖δ‖∞≤ε

`(θ,x + δ; y)

]
, (1)

where θ ∈ Rd denotes the vector of model parameters, δ ∈ Rn is the vector of input perturbations
within an `∞ ball of the given radius ε, namely, ‖δ‖∞ ≤ ε, (x, y) ∈ D corresponds to the training
example x with label y in the dataset D, and ` represents a pre-defined training loss, e.g., the cross-
entropy loss. The rationale behind problem (1) is that the model θ is robustly trained against the
worst-case loss induced by the adversarially perturbed samples. It is worth noting that the AT problem
(1) is different from conventional stochastic min-max optimization problems (e.g., GANs training
(Goodfellow et al., 2014)). Note that in (1), the stochastic sampling corresponding to the expectation
over (x,y) ∈ D is conducted prior to the inner maximization operation. Such a difference leads to
the sample-specific adversarial perturbation δ(x) := maximize‖δ‖∞≤ε `(θ,x + δ; y).

Distributed AT (DAT) The need of AT in a distributed setting arises from at least the following two
aspects: 1) Training data are distributed, provided by multiple parties, which expands the individual
capability of data storage or data privacy. 2) Computing units are often distributed, provided by
distributed machines, which enables large-batch optimization and thus improves the AT’s scalability.

Let us consider a popular parameter-server model of distributed learning (Dean et al., 2012). Formally,
there exist M workers each of which has access to a local dataset D(i), and thus D = ∪Mi=1D(i).
There also exists a server/master node (e.g., one of workers could perform as server), which collects
local information (e.g., individual gradients) from the other workers to update the model parameters
θ. Spurred by (1), DAT solves problems of the following generic form,

minimize
θ

1

M

M∑
i=1

{
λE(x,y)∈D(i) [`(θ;x, y)] + E(x,y)∈D(i)

[
maximize
‖δ‖∞≤ε

φ(θ, δ;x, y)

]}
︸ ︷︷ ︸

=: fi(θ;D(i))

, (2)

3

Under review as a conference paper at ICLR 2021

where fi denotes the local cost function at the ith worker, φ is a robustness regularizer against the
input perturbation δ, and λ ≥ 0 is a regularization parameter that strikes a balance between the
training loss and the worst-case robustness regularization. In (2), if M = 1, D(1) = D, λ = 0 and
φ = `, then the DAT problem reduces to the AT problem (1). We cover two categories of (2):

• DAT with labeled data: In (2), we consider φ(θ, δ;x, y) = `(θ,x+ δ; y) with labeled training data
(x, y) ∈ D(i) for i ∈ [M]. Here [M] denotes the integer set {1, 2, . . . ,M}.

• DAT with unlabeled data: In (2), different from DAT with labeled data, we have D(i) with an
unlabeled dataset U (i) (namely, U (i) ⊆ D(i)), and define the robust regularizer φ as (Stanforth et al.,
2019; Zhang et al., 2019b):

φ(θ, δ;x) = CE(z(x + δ;θ), z(x;θ)). (3)

Here z(x;θ) represents the probability distribution over class labels predicted by the model θ, and
CE denotes the cross-entropy function.

4 A UNIFIED ALGORITHMIC FRAMEWORK FOR DAT

In this section, we will introduce the algorithmic framework of DAT, where we address three main
challenges of algorithm design in DAT: a) inner maximization; b) gradient quantization/compression;
and c) outer large-batch training by leveraging state-of-the-art adversarial defense and distributed
optimization techniques. We also achieve the first theoretical convergence rate result of min-max
optimization based robust training in a distributed large-batch setting.

We first discuss the key components of DAT and their respective roles in performing scalable training;
see the meta-form of DAT in Algorithm 1 (or detailed Algorithm A1). The proposed DAT contains
three algorithmic blocks. In the first block (Steps 3-8 of Algorithm A1), every distributed worker calls
for a maximization oracle to obtain the adversarial perturbation for each sample within a data batch,
then computes the gradient of the local cost function fi in (2) with respect to (w.r.t.) model parameters
θ. And every worker is allowed to quantize/compress the local gradient prior to transmission to a
server. In the second block (Steps 9-10 of Algorithm A1), the server aggregates the local gradients,
and transmits the aggregated gradient (or the quantized gradient) to the other workers. In the third
block (Steps 11-13 of Algorithm A1), the model parameters are eventually updated by a minimization
oracle at each worker based on the received gradient information from the server.

Algorithm 1 Meta-form of DAT Algorithm A1
1: for Iteration t = 1, 2, . . . , T
2: for Worker i = 1, 2, . . . ,M . Block 1
3: Sample-wise attack generation (A1)
4: Local gradient computation (A2)
5: Worker-server communication (optional)
6: end for
7: Gradient aggregation at server (A3) . Block 2
8: Server-worker communication (optional)
9: for Worker i = 1, 2, . . . ,M . Block 3

10: Model parameter update (A4)
11: end for

In contrast to standard AT, DAT allows for using
a M times larger batch size to update the model
parameters θ. Thus, given the same number of
epochs, DAT takes M fewer gradient updates
than AT. In addition, distributed learning intro-
duces communication overhead. To address this
issue, it is optional to perform gradient quantiza-
tion at both worker and server sides when a very
large model is possibly trained. We elaborate on
DAT in what follows.

Inner maximization: Iterative and one-shot
solutions In DAT, each worker calls for an
inner maximization oracle to generate adversarial perturbations (Step 1 of Algorithm 1). We consider
two solvers of perturbation generation: iterative projected gradient descent (PGD) method used in
standard AT (Madry et al., 2017a) and one-shot fast gradient sign method (FGSM) (Goodfellow et al.,
2015). We specify attack generation in the unified form

δ
(i)
t (x) = zK , zk = Π[−ε,ε]d [zk−1 + α · sign(∇δφ(θt, zk−1;x))], k ∈ [K], (4)

where K is the total number of iterations in the inner loop, the cases of K = 1 and K > 1 correspond
to iterative PGD attack and FGSM attack respectively, zk denotes the PGD update of δ at the kth
iteration, z0 is a given intial point, Π[−ε,ε]d(·) denotes the projection onto the box constraint [−ε, ε]d,
α > 0 is a given step size, and sign(·) denotes the element-wise sign operation. The recent work
(Wong et al., 2020) showed that if FGSM is conducted with random initialization z0 and a proper step

4

Under review as a conference paper at ICLR 2021

size, e.g., α = 1.25ε, then FGSM can be as effective as iterative PGD in robust training. Indeed, we
will show in Sec. 5 that the effectiveness of our proposed DAT-FGSM algorithm echoes the finding
in Wong et al. (2020). We remark that other techniques (Shafahi et al., 2019; Zhang et al., 2019a)
can also be used to simplify inner maximization, however, we focus on FGSM since it is the most
computationally-light.

Gradient quantization In contrast to standard AT, DAT requires worker-server communications
(Steps 5 and 8 of Algorithm 1). That is, if a single-precision floating-point data type is used, then
DAT needs to transmit 32d bits per worker-server communication at each iteration. Here recall that d
is the dimension of θ. In order to reduce the communication cost, DAT has the option to quantize the
transmitted gradients using a fixed number of bits fewer than 32. We specify the gradient quantization
operation as the randomized quantizer (Alistarh et al., 2017; Yu et al., 2019). In Sec. 5 we will
show that DAT, combined with gradient quantization, still leads to a competitive performance. For
example, the robust accuracy of ResNet-50 trained by a 8-bit DAT (performing quantization at Step 5
of Algorithm 1) for ImageNet is just 0.55% lower than the robust accuracy achieved by the 32-bit
DAT. It is also worth mentioning that the All-reduce communication protocol can be regarded as a
special case of the parameter-server setting considered in Algorithm 1 when every worker performs
as a server. In this case, the communication network becomes fully connected and the server-worker
quantization (Step 8 of Algorithm 1) can be mitigated.

Outer minimization by layerwise adaptive learning rate (LALR) In DAT, the aggregated gra-
dient (Step 7 in Algorithm 1) used for updating model parameters (Step 10 in Algorithm 1) is built on
the data batch that is M times larger than standard AT. The recent works (You et al., 2019; 2017)
showed that the use of LALR is the key to succeed in training standard DNNs with large data batch.
Spurred by that, we incorporate LALR in DAT. Specifically, the parameter updating operation A in
Eq. (A4) is given by

θt+1,i = θt,i −
τ(‖θt,i‖2) · ηt
‖ut,i‖2

· ut,i, ∀i ∈ [h], (5)

where θt,i denotes the ith-layer parameters, h is the number of layers, ut is a descent direction
computed based on the first-order information Q(ĝt), τ(‖θt,i‖2) = min{max{‖θt,i‖2, cl}, cu} is
a layerwise scaling factor of the adaptive learning rate ηt

‖ut,i‖2 , cl = 0 and cu = 10 are set in our
experiments (see Appendix 4.2 for results on tuning cu), and θt = [θ>t,1, . . . ,θ

>
t,h]>. In (5), the

specific form of the descent direction ut is determined by the optimizer employed. For example, if
the adaptive momentum (Adam) method is used, then ut is given by the exponential moving average
of past gradients scaled by square root of exponential moving averages of squared past gradients
(Reddi et al., 2018; Chen et al., 2018). Such a variant of (5) that uses Adam as the base algorithm is
also known as LAMB (You et al., 2019) in standard training. However, it was elusive if the advantage
of LALR is preserved in large-batch min-max optimization. We show in both theory and practice that
the use of LALR can significantly boost the performance of DAT with large data batch.

CONVERGENCE ANALYSIS OF DAT

To the best of our knowledge, none of existing work tackled the convergence of DAT and took into
account LALR and gradient quantization even in standard AT, although AT has been proved with
convergence guarantees (Wang et al., 2019b; Gao et al., 2019). DAT needs to quantify the descent
errors from multiple sources (namely, gradient estimation, quantization, adaptive learning rate, and
inner maximization oracle). In particular, the incorporation of LALR makes our analysis of DAT
highly non-trivial. The fundamental challenge lies in the nonlinear coupling between the biased
gradient estimate resulted from LALR and the additional error generated from alternating update
in AT. In our theoretical results, we show that even in the case where the gradient estimate is a
function of the AT variables, the estimate bias resulted from the layer-wise normalization can still
be compensated by increasing the batch-size so that the convergence rate of DAT achieves a linear
speedup of reducing gradient estimate error w.r.t. the increasing number of computing nodes.

Upon defining Ψ(θ) := 1
M

∑M
i=1 fi(θ;D(i)) in (2), we measure the convergence of DAT by the

first-order stationarity of Ψ. Prior to convergence analysis, we impose the following assumptions:
(A1) Ψ(θ) is with layer-wise Lipschitz continuous gradients; (A2) φ(θ, δ;x) in Eq. (A1) is strongly
concave with respect to δ and with Lipschitz continuous gradients; (A3) Stochastic gradient estimate

5

Under review as a conference paper at ICLR 2021

in Eq. (A2) is unbiased and has bounded variance for each worker denoted by σ2. Note that the
validity of (A2) could be justified from distributional robust optimization (Sinha et al., 2018; Wang
et al., 2019b). It is also needed for tractability of analysis. We refer readers to Appendix 2.1 for more
justifications on our assumptions (A1)-(A3). In Theorem 1, we present the sub-linear rate of DAT.
Theorem 1. Suppose that assumptions A1-A3 hold, the inner maximizer Eq. (A1) provides a ε-
approximate solution (i.e., the `2-norm of inner gradient is upper bounded by ε), and the learning
rate is set by ηt ∼ O(1/

√
T), then {θt}Tt=1 generated by DAT yields the following convergence rate

1

T

T∑
t=1

E‖∇θΨ(θt)‖22 = O

(
1√
T

+
σ√
MB

+ min

{
d

4b
,

√
d

2b

}
+ ε

)
, (6)

where b denotes the number of quantization bits, and B = min{|B(i)
t |,∀t, i} stands for the smallest

batch size per worker.
Proof: Please see Appendix 3. �

The error rate given by (6) involves four terms. The term O(1/
√
MB) characterizes the benefit

of using the large per-worker batch size B and M computing nodes in DAT. It is introduced since
the variance of adaptive gradients (i.e., σ2) is reduced by a factor 1/MB, where 1/M corresponds
to the linear speedup by M machines. In (6), the term min{ d

4b ,
√
d

2b } arises due to the variance of
compressed gradients, and the other two terms imply the dependence on the number of iterations
T as well as the ε-accuracy of the inner maximization oracle. We highlight that our convergence
analysis (Theorem 1) is not barely a combination of LALR-enabled standard training analysis (You
et al., 2019; 2017) and adversarial training convergence analysis (Wang et al., 2019b; Gao et al.,
2019). Different from the previous work, we address the fundamental challenges in (a) quantifying
the descent property of the objective value at the presence of multi-source errors during alternating
min-max optimization, and (b) deriving the theoretical relationship between large data batch (across
distributed machines) and the eventual convergence error of DAT.

5 EXPERIMENTS: DAT FOR ROBUST IMAGE CLASSIFICATION

In this section, we empirically evaluate DAT and show its success in training robust deep neural
networks (DNNs) over CIFAR and ImageNet datasets. We measure the performance of DAT in
the following four aspects: a) accuracies against clean and adversarial test inputs, b) scalability to
multiple computing nodes, c) incorporation of unlabeled data, and d) transferability of pre-trained
model by DAT.

DNN models and Datasets We use the DNN models Pre-act ResNet-18 (He et al., 2016b) and
ResNet-50 (He et al., 2016a) for image classification, where the former is shortened as ResNet-18.
We train these models under datasets CIFAR-10 and ImageNet, but preserve ResNet-18 for CIFAR-
10 only. We also acquire unlabeled data from 80 Million Tiny Images following (Carmon et al.,
2019). When studying pre-trained model’s transferability, CIFAR-100 is used as a target dataset for
down-stream classification.

Computing resources We train a DNN using p computing nodes, each of which contains q GPUs
(Nvidia V100 or P100). Nodes are connected with 1Gbps ethernet. A configuration of computing
resources is noted by p× q. If p > 1, then the training is conducted in a distributed manner. And
we split training data into p subsets, each of which is stored at a local node. Based on our resources,
in the CIFAR experiments, we consider p ∈ {1, 6, 18, 24} machines, each of which has 1 GPU. In
the ImageNet experiments, we consider p ∈ {1, 6} machines, each of which has 6 GPUs. Based on
our computing resource budget, we are not able to use as many GPUs as (Xie et al., 2019; Kannan
et al., 2018). However, as will be evident later, our results clearly demonstrate the advantages of
our proposal in applicability and scalability across various computing configurations and adversarial
scenarios. In particular, our used batch size 6 × 512 = 3072 on ImageNet has only access to 36
GPUs. By contrast, Xie et al. (2019) used the batch size 4096 across 128 GPUs.

Training setting We consider 2 variants of DAT: 1) DAT-PGD, namely, Algorithm A1 with apply-
ing (iterative) PGD as the inner maximization oracle; and 2) DAT-FGSM, namely, Algorithm A1 with

6

Under review as a conference paper at ICLR 2021

use of FGSM as the inner maximization oracle. Additionally, we consider 4 training baselines: 1) AT
(Madry et al., 2017b); 2) Fast AT (Wong et al., 2020); 3) DAT w/o LALR, namely, a direct distributed
implementation of AT, which is in the form of DAT-PGD or DAT-FGSM but without considering
LALR; and 4) DAT-LSGD (Xie et al., 2019), namely, a distributed implementation of large-batch
SGD (LSGD) for standard AT. We remark that both AT and Fast AT are centralized training methods.
In our setup, the number of GPUs is limited to 6 at a single machine, and thus the largest batch size
that the centralized method can use is around 2048 for CIFAR-10 and 85 for ImageNet in our case.
We also find that the direct implementation of Fast-AT in a distributed way leads to a quite poor
scalability versus the growth of batch size, and thus a worse distributed baseline than DAT-FGSM w/o
LALR. Lastly, we remark that the work (Xie et al., 2019) proposed modifying a model architecture
by incorporating feature denoising. In contrast, DAT does not call for architecture modification. Thus,
to enable a fair comparison, we use the same training recipe LSGD as (Xie et al., 2019) in the DAT
setting, leading to the considered distributed training baseline DAT-LSGD.

Unless specified otherwise, we choose the training perturbation size ε = 8/255 and 2/255 for CIFAR
and ImageNet respectively, where recall that ε was defined in (1). We also choose 10 steps and 4 steps
for PGD attack generation in DAT (and its variants) under CIFAR and ImageNet, respectively. Such
training settings are consistent with previous state-of-the-art (Zhang et al., 2019a; Wong et al., 2020).
The number of training epochs is given by 100 for CIFAR-10 and 30 for ImageNet. Note that the
adversarially robust deep learning could be sensitive to the step size (learning rate) choice (Rice et al.,
2020). For example, the use of a cyclic learning rate trick can further accelerate the Fast AT algorithm
(Wong et al., 2020). However, such a trick becomes less effective when the batch size becomes
larger (namely, the number of iterations gets smaller); see Appendix 4.1. Meanwhile, the sensitivity
of adversarially model training to step size can be mitigated by using early-stop remedy due to the
existence of robust overfitting (Rice et al., 2020). Spurred by that, we use the standard piecewise
decay step size and an early-stop strategy during robust training. We refer readers to Appendix 4.2
for more implementation details.

Table 1: Overall performance of DAT (in gray color), compared with
baselines, in TA (%), RA (%), communication time per epoch (seconds), and
total training time (including communication time) per epoch (seconds). For
brevity, ‘p×q’ represents ‘# nodes× # GPUs per node’, ‘Comm.’ represents
communication cost, and ‘Tr. Time’ represents training time.

Method CIFAR-10, ResNet-18
p× q Batch size TA (%) RA (%) Comm. Tr. time

AT 1× 1 2048 82.94 38.54 NA 218
Fast AT 1× 1 2048 81.58 38.34 NA 52

DAT-PGD w/o LALR 18× 1 18× 2048 55.59 26.83 3.4 22
DAT-FGSM w/o LALR 18× 1 18× 2048 52.35 28.90 3.1 8

DAT-LSGD 18× 1 18× 2048 64.15 34.12 3.2 22
DAT-PGD 18× 1 18× 2048 80.28 38.44 3.4 22

DAT-FGSM 18× 1 18× 2048 73.42 38.55 3.1 8
DAT-FGSM 24× 1 24× 2048 72.76 39.82 2.0 5

ImageNet, ResNet-50
AT 1× 6 512 62.70 40.38 NA 6022

Fast AT 1× 6 512 58.99 40.78 NA 1544
DAT-PGD w/o LALR 6× 6 6× 512 57.09 34.02 865 1932

DAT-FGSM w/o LALR 6× 6 6× 512 55.04 35.03 863 1080
DAT-PGD 6× 6 6× 512 63.75 38.45 898 1960

DAT-FGSM 6× 6 6× 512 58.32 41.48 859 1109

Evaluation setting For ad-
versarial evaluation, we report
robust test accuracy (RA) of
a learned model against PGD
attacks (Madry et al., 2017b)
and C&W attack (Carlini &
Wagner, 2017). Unless speci-
fied otherwise, we choose the
perturbation size same as the
training ε in evaluation, and
the number of PGD steps is
selected as 20 and 10 for CI-
FAR and ImageNet, respec-
tively. In addition to RA,
we also measure the standard
test accuracy (TA) of a model
against normal examples. All
experiments are run 3 times
with different random seeds, and the mean metrics are reported1. In our experiments, we consider three
different communication protocols, Ring-AllReduce (with one-sided quantization), parameter-server
(with double quantization), and high performance computing (HPC) setting (without quantization).
To measure the communication time, We use TORCH.DISTRIBUTED package with gloo and nccl as
communication backend2. We then measure the time of required worker-server communications per
epoch. We use a time module to measure communication time with TORCH.DISTRIBUTED.BARRIER
to synchronize all processes on each node.

1Code will be released
2https://pytorch.org/docs/stable/distributed.html

7

https://pytorch.org/docs/stable/distributed.html

Under review as a conference paper at ICLR 2021

Overall performance of DAT In Table 1, we evaluate our proposals and baselines in TA, RA,
communication and computation efficiency. Note that AT and Fast AT are centralized training
methods in single node under the same number of epochs as distributed training.

6x1 12x1 18x1 24x1
Number of Nodes

30

40

50

60

70

80

Ac
cu

ra
cy TA: DAT-LSGD

RA: DAT-LSGD
TA: DAT-FGSM
RA: DAT-FGSM

1x6 3x6 6x6
Number of Nodes x GPUs

40

45

50

55

60

Ac
cu

ra
cy TA: DAT-LSGD

RA: DAT-LSGD
TA: DAT-FGSM
RA: DAT-FGSM

Figure 1: TA/RA comparison between DAT-FGSM and DAT-
LSGD vs. node-GPU configurations. Left: (CIFAR-10, ResNet-
18). Right: (ImageNet, ResNet-50).

We observe that the direct extension
from AT to DAT (namely, DAT-PGD w/o
LALR) leads to significantly poor TA
and RA. As the 18 times larger batch
size is used, DAT-PGD w/o LALR yields
more than 25% drop in TA and 10% drop
in RA compared to the best AT case. We
find that the performance of DAT-PGD
w/o LALR rapidly degrades as the num-
ber of computing nodes increases. The
similar conclusion holds for DAT-FGSM
w/o LALR vs. Fast AT. Furthermore, we
observe that DAT-PGD outperforms DAT-LSGD (Xie et al., 2019) with 16.13% and 4.32% im-
provement in TA and RA, respectively. In Figure 1, we further compare our proposed DAT with
the DAT-LSGD baseline in terms of TA/RA versus the number of computing nodes. Clearly, our
approach scales more gracefully than the baseline (without losing much performance as the batch
sizes increases along the number of computing nodes).

Moreover, we consistently observe that DAT-PGD (or DAT-FGSM) is able to achieve competitive
performance to AT (or Fast AT) and enables a graceful training speedup, e.g., by 3 times using 6
machines for ImageNet. In practice, DAT is not able to achieve linear speed-up mainly because of the
communication cost. For example, when comparing the computation time of DAT-PGD (batch size
6×512) with that of AT (batch size 512) under ImageNet, the computation speed-up (by excluding the
communication cost) is given by (6022)/(1960− 898) = 5.67, consistent with the ideal computation
gain using 6× larger batch size in DAT-PGD. Furthermore, we observe that when the largest batch
size (24× 2048) is used, DAT-FGSM takes only (500 seconds) to obtain satisfactory robustness.

0 2 4 6 8 10
Perturbation Size

0

10

20

30

40

50

60

Ro
bu

st
 A

cc
ur

ac
y

AT
DAT-PGD
DAT-FGSM

0 5 10 15 20 25 30
Attack Steps

40

45

50

55

60

Ro
bu

st
 A

cc
ur

ac
y

AT
DAT-PGD
DAT-FGSM

Figure 2: RA against PGD attacks for model trained by DAT-
PGD, DAT-FGSM, and AT following (ImageNet, ResNet-50)
in Table 1. (Left) RA versus different perturbation sizes (over
the divisor 255). (Right) RA versus different steps.

When comparing DAT-FGSM with DAT-
PGD, we consistently observe that the
former is capable of offering satisfactory
(and even better) RA, but inevitably intro-
duces a TA loss. This phenomenon also
holds for Fast AT versus AT, e.g., 0.4%
RA improvement vs. 3.71% TA degrada-
tion for ImageNet. We also note that the
per-epoch communication time decreases
when the more GPU machines (24) are
used, since a larger batch size allows a
smaller number of iterations per epoch,
leading to less frequent communications among machines. In Appendix 4.3, we present additional
results on CIFAR-10 using ResNet-50.

Robustness against different PGD attacks In Figure 2, we evaluate the adversarial robustness
of ResNet-50 at ImageNet learned by DAT-PGD and DAT-FGSM against PGD attacks of different
steps and perturbation sizes (i.e., values of ε). We observe that DAT matches robust accuracies of
standard AT even against PGD attacks at different values of ε and steps. We also note that although
DAT-FGSM has the worst TA (ε = 0), it yields slightly better robustness as attack steps increase. The
similar results can be found in Appendix 4.4 for (CIFAR-10, ResNet-18) against PGD (and C&W)
attacks. Table 2: DAT in semi-supervised learning with unlabeled data,

where the computing resource configuration and batch size are
set the same as the 8th and 10th rows of (CIFAR-10, ResNet-18)
in Table 1. The relative improvement over RA or TA obtained in
supervised learning (CIFAR-10 only) is marked by red color.

Method CIFAR-10 + 500K unlabeled Tiny Images, ResNet-18
TA (%) RA (%) Comm. Tr. time

DAT-PGD 87.00 (↑ 7.62) 47.34 (↑ 8.40) 86 451
DAT-FGSM 88.00 (↑ 12.42) 45.84 (↑ 4.92) 86 124

DAT under unlabeled data In Ta-
ble 2, we report TA and RA of DAT in the
semi-supervised setting (Carmon et al.,
2019) with the use of 500K unlabeled im-
ages mined from Tiny Images (Carmon
et al., 2019). Compared to the DAT su-
pervised learning results at (CIFAR-10,

8

Under review as a conference paper at ICLR 2021

ResNet-18) in Table 1, we observe that although the communication and computation costs increase
due to the use of additional unlabeled images, both TA and RA are significantly improved. In
particular, the performance of DAT-FGSM matches that of DAT-PGD. This suggests that unlabeled
data might provide a solution to compensate the TA loss induced by FGSM-based robust training
algorithms.

5 10 15
Fine-tuning epochs

0

20

40

60

80

100

Ac
cu

ra
cy

 (T
A

or
 R

A)

TA: Pre-training on ImageNet
RA: Pre-training on ImageNet
TA: No Pre-training
RA: No Pre-training

Figure 3: Fine-tuning ResNet-50 (pre-trained
on ImageNet) under CIFAR-100. Here DAT-
PGD is used for both pre-training and fine-
tuning at 6 nodes with batch size 6× 128.

DAT from pre-training to fine-tuning In Figure 3, we
investigate if a DAT pre-trained model (ResNet-50) over
a source dataset (ImageNet) can offer a fast fine-tuning
to a down-stream target dataset (CIFAR-100). Here we
up-sample a CIFAR image to the same dimension of an
ImageNet image before feeding it into the pre-trained
model (Shafahi et al., 2020). Compared with the direct
application of DAT to the target dataset (without pre-
training), the pre-training enables a fast adaption to the
down-stream CIFAR task in both TA and RA within just 3
epochs. Thus, the scalability of DAT to large datasets and
multiple nodes offers a great potential in the pre-training
+ fine-tuning paradigm. The similar results can be found
in Appendix 4.5 on CIFAR-10.

Quantization effect In Appendix 4.6, we also study how the performance of DAT is affected by
gradient quantization. We find that when the number of bits is reduced from 32 to 8, the resulting
TA and RA becomes worse than the best 32-bit case. For example, in the worst case (8-bit 2-sided
quantization) of CIFAR-10, TA drops 1.52% and 6.32% for DAT-PGD and DAT-FGSM, respectively.
And RA drops 4.74% and 5.58%, respectively. Note that our main communication configuration is
given by Ring-AllReduce that calls for 1-sided (rather than 2-sided) quantization. We also observe
that DAT-FGSM is more sensitive to effect of gradient quantization than DAT-PGD. Even in the
centralized setting, the use of 8-bit quantization can lead to a non-trivial drop in TA (see Table A5).
However, the use of quantization reduces the amount of data transmission per iteration. We also show
that if a high performance computing cluster of nodes (with NVLink high-speed GPU interconnect
(Foley & Danskin, 2017)) is used, the communication cost can be further reduced.

Table 3: Effect of LALR on centralized and distributed
training under CIAR-10 with same batch size (2048).

Method # machines × batch
size per machine TA (%) RA (%)

DAT-PGD (w/ LALR) 6× 341 83.48 39.76
AT w/ LALR 1× 2048 83.56 39.84

DAT w/o LALR 6× 341 82.42 38.41
AT (w/o LALR) 1× 2048 82.94 38.54

LALR vs. centralized and distributed solu-
tions We examine the effect of LALR on both
centralized and distributed robust training meth-
ods given a batch size that is affordable to a
single machine. We consider a variant of AT by
incorporating LALR, termed as AT w/ LALR.
As presented in Table 3, when the batch size is
not large, both centralized and distributed meth-
ods lead to very similar performance although the former is slightly better as it is free of machine
synchronization and communication. And the performance is not sensitive to LALR. By contrast, if
the batch size is large (inapplicable to centralized cases as Table 1), then DAT + LALR outperforms
DAT (namely, LALR matters).

6 CONCLUSIONS

We proposed distributed adversarial training (DAT) to scale up the training of adversarially robust
DNNs over multiple machines. We showed that DAT is general in that it enables large-batch min-max
optimization and supports gradient compression and different learning regimes. We proved that under
mild conditions, DAT is guaranteed to converge to a first-order stationary point with a sub-linear rate.
Empirically, we provided comprehensive experiment results to demonstrate the effectiveness and the
usefulness of DAT in training robust DNNs with large datasets and multiple machines. In the future,
it will be worthwhile to examine the speedup achieved by DAT in the extreme training cases, e.g.,
using a significantly large number of PGD attack steps and/or computing nodes during training.

9

Under review as a conference paper at ICLR 2021

REFERENCES

Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. QSGD: Communication-
efficient SGD via gradient quantization and encoding. In Advances in Neural Information Process-
ing Systems, pp. 1709–1720, 2017.

Md Zahangir Alom, Tarek M Taha, Christopher Yakopcic, Stefan Westberg, Paheding Sidike,
Mst Shamima Nasrin, Brian C Van Esesn, Abdul A S Awwal, and Vijayan K Asari. The his-
tory began from alexnet: A comprehensive survey on deep learning approaches. arXiv preprint
arXiv:1803.01164, 2018.

Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give a false sense of
security: Circumventing defenses to adversarial examples. arXiv preprint arXiv:1802.00420, 2018.

J. Bernstein, Y.-X. Wang, K. Azizzadenesheli, and A. Anandkumar. signSGD: compressed optimisa-
tion for non-convex problems. arXiv preprint arXiv:1802.04434, 2018.

Akhilan Boopathy, Sijia Liu, Gaoyuan Zhang, Pin-Yu Chen, Shiyu Chang, and Luca Daniel. Visual
interpretability alone helps adversarial robustness, 2020. URL https://openreview.net/
forum?id=Hyes70EYDB.

Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In IEEE
Symposium on Security and Privacy (SP), pp. 39–57. IEEE, 2017.

Yair Carmon, Aditi Raghunathan, Ludwig Schmidt, John C Duchi, and Percy S Liang. Unlabeled
data improves adversarial robustness. In Advances in Neural Information Processing Systems, pp.
11190–11201, 2019.

Chia-Yu Chen, Jiamin Ni, Songtao Lu, Xiaodong Cui, Pin-Yu Chen, Xiao Sun, Naigang Wang,
Swagath Venkataramani, Vijayalakshmi Srinivasan, Wei Zhang, and Kailash Gopalakrishnan.
Scalecom: Scalable sparsified gradient compression for communication-efficient distributed train-
ing. In Advances in Neural Information Processing Systems, 2020.

Jiefeng Chen, Xi Wu, Vaibhav Rastogi, Yingyu Liang, and Somesh Jha. Robust attribution regular-
ization. In Advances in Neural Information Processing Systems, pp. 14300–14310, 2019.

Xiangyi Chen, Sijia Liu, Ruoyu Sun, and Mingyi Hong. On the convergence of a class of adam-type
algorithms for non-convex optimization. In International Conference on Learning Representations,
2018.

Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao, Marc’aurelio
Ranzato, Andrew Senior, Paul Tucker, Ke Yang, et al. Large scale distributed deep networks. In
Advances in Neural Information Processing Systems, pp. 1223–1231, 2012.

Krishnamurthy Dvijotham, Sven Gowal, Robert Stanforth, Relja Arandjelovic, Brendan O’Donoghue,
Jonathan Uesato, and Pushmeet Kohli. Training verified learners with learned verifiers. arXiv
preprint arXiv:1805.10265, 2018.

Kevin Eykholt, Ivan Evtimov, Earlence Fernandes, Bo Li, Amir Rahmati, Florian Tramer, Atul
Prakash, Tadayoshi Kohno, and Dawn Song. Physical adversarial examples for object detectors. In
Prof. of the 12th USENIX Workshop on Offensive Technologies (WOOT 18), 2018.

Denis Foley and John Danskin. Ultra-performance pascal GPU and NVLink interconnect. IEEE
Micro, 37(2):7–17, 2017.

Ruiqi Gao, Tianle Cai, Haochuan Li, Cho-Jui Hsieh, Liwei Wang, and Jason D Lee. Convergence
of adversarial training in overparametrized neural networks. In Advances in Neural Information
Processing Systems, pp. 13029–13040, 2019.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in Neural
Information Processing Systems, pp. 2672–2680, 2014.

10

https://openreview.net/forum?id=Hyes70EYDB
https://openreview.net/forum?id=Hyes70EYDB

Under review as a conference paper at ICLR 2021

Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. 2015 ICLR, arXiv preprint arXiv:1412.6572, 2015.

Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola,
Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch sgd: Training imagenet
in 1 hour. arXiv preprint arXiv:1706.02677, 2017.

Kenta Hanada, Ryosuke Morita, Takayuki Wada, and Yasumasa Fujisaki. Simple synchronous
and asynchronous algorithms for distributed minimax optimization. SICE Journal of Control,
Measurement, and System Integration, 10(6):557–562, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 770–778, 2016a.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual
networks. In European Conference on Computer Vision, pp. 630–645. Springer, 2016b.

Daniel Kang, Yi Sun, Dan Hendrycks, Tom Brown, and Jacob Steinhardt. Testing robustness against
unforeseen adversaries. arXiv preprint arXiv:1908.08016, 2019.

Harini Kannan, Alexey Kurakin, and Ian Goodfellow. Adversarial logit pairing, 2018.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Peter
Tang. On large-batch training for deep learning: Generalization gap and sharp minima. arXiv
preprint arXiv:1609.04836, 2016.

Alex Krizhevsky. One weird trick for parallelizing convolutional neural networks. arXiv preprint
arXiv:1404.5997, 2014.

Alexey Kurakin, Ian Goodfellow, and Samy Bengio. Adversarial examples in the physical world.
arXiv preprint arXiv:1607.02533, 2016.

Mingrui Liu, Youssef Mroueh, Wei Zhang, Xiaodong Cui, Tianbao Yang, and Payel Das. Decentral-
ized parallel algorithm for training generative adversarial nets. arXiv preprint arXiv:1910.12999,
2019a.

Weijie Liu, Aryan Mokhtari, Asuman Ozdaglar, Sarath Pattathil, Zebang Shen, and Nenggan
Zheng. A decentralized proximal point-type method for saddle point problems. arXiv preprint
arXiv:1910.14380, 2019b.

Songtao Lu, Meisam Razaviyayn, Bo Yang, Kejun Huang, and Mingyi Hong. Finding second-order
stationary points efficiently in smooth nonconvex linearly constrained optimization problems. In
Advances in Neural Information Processing Systems, 2020.

A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu. Towards deep learning models resistant
to adversarial attacks. arXiv preprint arXiv:1706.06083, 2017a.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083,
2017b.

Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, Jonathan Uesato, and Pascal Frossard. Ro-
bustness via curvature regularization, and vice versa. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 9078–9086, 2019.

Ivano Notarnicola, Mauro Franceschelli, and Giuseppe Notarstefano. A duality-based approach for
distributed min–max optimization. IEEE Transactions on Automatic Control, 64(6):2559–2566,
2018.

Nicolas Papernot, Ian Goodfellow, Ryan Sheatsley, Reuben Feinman, and Patrick McDaniel. clever-
hans v1.0.0: an adversarial machine learning library. arXiv preprint arXiv:1610.00768, 2016.

11

Under review as a conference paper at ICLR 2021

Chongli Qin, James Martens, Sven Gowal, Dilip Krishnan, Krishnamurthy Dvijotham, Alhussein
Fawzi, Soham De, Robert Stanforth, and Pushmeet Kohli. Adversarial robustness through local
linearization. In Advances in Neural Information Processing Systems, pp. 13847–13856, 2019.

Sashank J. Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond. In
International Conference on Learning Representations, 2018.

Leslie Rice, Eric Wong, and J Zico Kolter. Overfitting in adversarially robust deep learning. arXiv
preprint arXiv:2002.11569, 2020.

Andrew Slavin Ross and Finale Doshi-Velez. Improving the adversarial robustness and interpretability
of deep neural networks by regularizing their input gradients. In Thirty-Second AAAI Conference
on Artificial Intelligence, 2018.

Ali Shafahi, Mahyar Najibi, Mohammad Amin Ghiasi, Zheng Xu, John Dickerson, Christoph Studer,
Larry S Davis, Gavin Taylor, and Tom Goldstein. Adversarial training for free! In Advances in
Neural Information Processing Systems, pp. 3353–3364, 2019.

Ali Shafahi, Parsa Saadatpanah, Chen Zhu, Amin Ghiasi, Christoph Studer, David Jacobs, and
Tom Goldstein. Adversarially robust transfer learning. In International Conference on Learning
Representations, 2020. URL https://openreview.net/forum?id=ryebG04YvB.

Aman Sinha, Hongseok Namkoong, and John Duchi. Certifiable distributional robustness with
principled adversarial training. In International Conference on Learning Representations, 2018.
URL https://openreview.net/forum?id=Hk6kPgZA-.

Kunal Srivastava, Angelia Nedić, and Dušan Stipanović. Distributed min-max optimization in
networks. In Proc. of the 17th International Conference on Digital Signal Processing (DSP), pp.
1–8, 2011.

Robert Stanforth, Alhussein Fawzi, Pushmeet Kohli, et al. Are labels required for improving
adversarial robustness? arXiv preprint arXiv:1905.13725, 2019.

Sebastian U Stich, Jean-Baptiste Cordonnier, and Martin Jaggi. Sparsified sgd with memory. In
Advances in Neural Information Processing Systems, pp. 4447–4458, 2018.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
and Rob Fergus. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199, 2013.

Ioannis Tsaknakis, Mingyi Hong, and Sijia Liu. Decentralized min-max optimization: Formulations,
algorithms and applications in network poisoning attack. In Proc. of IEEE International Conference
on Acoustics, Speech and Signal Processing, pp. 5755–5759, 2020.

Jianyu Wang, Vinayak Tantia, Nicolas Ballas, and Michael Rabbat. Slowmo: Improving
communication-efficient distributed sgd with slow momentum. arXiv preprint arXiv:1910.00643,
2019a.

Yisen Wang, Xingjun Ma, James Bailey, Jinfeng Yi, Bowen Zhou, and Quanquan Gu. On the
convergence and robustness of adversarial training. In International Conference on Machine
Learning, pp. 6586–6595, 2019b.

Jianqiao Wangni, Jialei Wang, Ji Liu, and Tong Zhang. Gradient sparsification for communication-
efficient distributed optimization. In Advances in Neural Information Processing Systems, pp.
1299–1309, 2018.

Eric Wong and J Zico Kolter. Provable defenses against adversarial examples via the convex outer
adversarial polytope. arXiv preprint arXiv:1711.00851, 2017.

Eric Wong, Leslie Rice, and J. Zico Kolter. Fast is better than free: Revisiting adversarial training. In
International Conference on Learning Representations, 2020. URL https://openreview.
net/forum?id=BJx040EFvH.

Cihang Xie, Yuxin Wu, Laurens van der Maaten, Alan L Yuille, and Kaiming He. Feature denoising
for improving adversarial robustness. In Proc. of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 501–509, 2019.

12

https://openreview.net/forum?id=ryebG04YvB
https://openreview.net/forum?id=Hk6kPgZA-
https://openreview.net/forum?id=BJx040EFvH
https://openreview.net/forum?id=BJx040EFvH

Under review as a conference paper at ICLR 2021

Han Xu, Yao Ma, Haochen Liu, Debayan Deb, Hui Liu, Jiliang Tang, and Anil Jain. Adversarial
attacks and defenses in images, graphs and text: A review. arXiv preprint arXiv:1909.08072,
2019a.

Kaidi Xu, Gaoyuan Zhang, Sijia Liu, Quanfu Fan, Mengshu Sun, Hongge Chen, Pin-Yu Chen, Yanzhi
Wang, and Xue Lin. Evading real-time person detectors by adversarial t-shirt. arXiv preprint
arXiv:1910.11099, 2019b.

Yang You, Igor Gitman, and Boris Ginsburg. Scaling SGD batch size to 32k for imagenet training.
arXiv preprint arXiv:1708.03888, 6, 2017.

Yang You, Zhao Zhang, Cho-Jui Hsieh, James Demmel, and Kurt Keutzer. Imagenet training in
minutes. In Proc. of the 47th International Conference on Parallel Processing, pp. 1. ACM, 2018.

Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli, Xiaodan
Song, James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. Large batch optimization for deep
learning: Training bert in 76 minutes. In International Conference on Learning Representations,
2019.

Yue Yu, Jiaxiang Wu, and Longbo Huang. Double quantization for communication-efficient dis-
tributed optimization. In Advances in Neural Information Processing Systems, pp. 4440–4451,
2019.

Dinghuai Zhang, Tianyuan Zhang, Yiping Lu, Zhanxing Zhu, and Bin Dong. You only propagate
once: Accelerating adversarial training via maximal principle. arXiv preprint arXiv:1905.00877,
2019a.

Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric P Xing, Laurent El Ghaoui, and Michael I Jordan.
Theoretically principled trade-off between robustness and accuracy. International Conference on
Machine Learning, 2019b.

13

Under review as a conference paper at ICLR 2021

APPENDIX

1 DAT ALGORITHM FRAMEWORK

Algorithm A1 Distributed adversarial training (DAT) for solving problem (2)

1: Input: Initial θ1, dataset D(i) for each of M workers, and T iterations
2: for Iteration t = 1, 2, . . . , T

3: for Worker i = 1, 2, . . . ,M . Worker
4: Draw a finite-size data batch Bit ⊆ D(i)

5: For each data sample x ∈ Bit, call for an inner maximization oracle:

δ
(i)
t (x) := argmax

‖δ‖∞≤ε
φ(θt, δ;x), (A1)

where we omit the label or possible pseudo-label y of x for brevity
6: Computing local gradient of fi in (2) with respect to θ given perturbed samples:

g
(i)
t = λE

x∈B(i)
t

[∇θ`(θt;x)] + E
x∈B(i)

t
[∇θφ(θt;x+ δ

(i)
t (x))] (A2)

7: (Optional) Call for gradient quantizer Q(·) and transmit Q(g
(i)
t) to server

8: end for
9: Gradient aggregation at server: . Server

ĝt =
1
M

∑M
i=1Q(g

(i)
t) (A3)

10: (Optional) Call for gradient quantizer ĝt ← Q(ĝt), and transmit ĝt to workers:

11: for Worker i = 1, 2, . . . ,M . Worker
12: Call for an outer minimization oracle A(·) to update θ:

θt+1 = A(θtĝt, ηt), ηt is learning rate (A4)

13: end for
14: end for

Additional details on gradient quantization Let b denote the number of bits (b ≤ 32), and thus
there exists s = 2b quantization levels. We specify the gradient quantization operation Q(·) in
Algorithm A1 as the randomized quantizer (Alistarh et al., 2017; Yu et al., 2019). Formally, the
quantization operation at the ith coordinate of a vector g is given by (Alistarh et al., 2017)

Q(gi) = ‖g‖2 · sign(gi) · ξi(gi, s), ∀i ∈ {1, 2, . . . , d}. (A5)

In (A5), ξi(gi, s) is a random number drawn as follows. Given |gi|/‖g‖2 ∈ [l/s, (l + 1)/s] for some
l ∈ N+ and 0 ≤ l < s, we then have

ξi(gi, s) =

{
l/s with probability 1− (s|gi|/‖g‖2 − l)
(l + 1)/s with probability (s|gi|/‖g‖2 − l), (A6)

where |a| denotes the absolute value of a scalar a, and ‖a‖2 denotes the `2 norm of a vector a. The
rationale behind using (A5) is that Q(gi) is an unbiased estimate of gi, namely, Eξi(gi,s)[Q(gi)] = gi,
with bounded variance. Moreover, we at most need (32 + d + bd) bits to transmit the quantized
Q(g), where 32 bits for ‖g‖2, 1 bit for sign of gi and b bits for ξi(gi, s), whereas it needs 32d bits
for a single-precision g. Clearly, a small b saves the communication cost. We note that if every
worker performs as a server in DAT, then the quantization operation at Step 10 of Algorithm A1 is no
longer needed. In this case, the communication network becomes fully connected. With synchronized
communication, this is favored for training DNNs under the All-reduce operation.

14

Under review as a conference paper at ICLR 2021

2 THEORETICAL RESULTS

In this section, we will quantify the convergence behaviour of the proposed DAT algorithm. First, we
define the following notations:

Φi(θ,x) = max
‖δ(i)‖∞≤ε

φ(θ, δ(i);x), and Φi(θ) = Ex∈D(i)Φi(θ;x). (A7)

We also define
li(θ) = Ex∈D(i) l(θ;x), (A8)

where the label y of x is omitted for labeled data. Then, the objective function of problem (2) can be
expressed in the compact way

Ψ(θ) =
1

M

M∑
i=1

λli(θ) + Φi(θ) (A9)

and the optimization problem is then given by minθ Ψ(θ).

Therefore, it is clear that if a point θ? satisfies

‖∇θΨ(θ?)‖ ≤ ξ, (A10)

then we say θ? is a ξ approximate first-order stationary point (FOSP) of problem (2).

Prior to delving into the convergence analysis of DAT, we make the following assumptions.

2.1 ASSUMPTIONS

A1. Assume objective function has layer-wise Lipschitz continuous gradients with constant Li for
each layer

‖∇iΨ(θ·,i)−∇iΨ(θ′·,i)‖ ≤ Li‖θ·,i − θ′·,i‖,∀i ∈ [h]. (A11)

where ∇iΨ(θ·,i) denotes the gradient w.r.t. the variables at the ith layer. Also, we assume that Ψ(θ)

is lower bounded, i.e., Ψ? := minθ Ψ(θ) > −∞ and bounded gradient estimate, i.e., ‖∇ĝ(i)
t ‖ ≤ G.

A2. Assume that φ(θ, δ;x) is strongly concave with respect to δ with parameter µ and has the
following gradient Lipschitz continuity with constant Lφ:

‖∇θφ(θ, δ;x)−∇θφ(θ, δ′;x)‖ ≤ Lφ‖δ − δ′‖. (A12)

A3. Assume that the gradient estimate is unbiased and has bounded variance, i.e.,

Ex∈B(i) [∇θl(θ;x)] =∇θl(θ),∀i, (A13)
Ex∈B(i) [∇θΦ(θ;x)] =∇θΦ(θ),∀i, (A14)

where recall that B(i) denotes a data batch used at worker i, ∇θl(θ) := 1
M

∑M
i=1∇θli(θ) and

∇θΦ(θ) := 1
M

∑M
i=1∇θΦi(θ); and

Ex∈B(i)‖∇θl(θ;x)−∇θl(θ)‖2 ≤ σ2,∀i (A15)

Ex∈B(i)‖∇θΦ(θ;x)−∇θΦ(θ)‖2 ≤ σ2,∀i. (A16)

Further, we define a component-wise bounded variance of the gradient estimate

Ex∈B(i)‖[∇θl(θ;x)]jk − [∇θl(θ)]jk‖2 ≤ σ2
jk,∀i, (A17)

Ex∈B(i)‖[∇θΦ(θ;x)]jk − [∇θΦ(θ)]jk‖2 ≤ σ′2jk,∀i, (A18)

where j denotes the index of the layer, and k denotes the index of entry at each layer. Under A3, we
have

∑h
j=1

∑dj
k=1 max{σ2

jk, σ
′2
jk} ≤ σ2

A4. Assume that the component wise compression error has bounded variance

E[(Q([g(i)(θ)]jk)− [g(i)(θ)]jk)2] ≤ δ2
jk,∀i. (A19)

The assumption A4 is satisfied as the randomized quantization is used (Alistarh et al., 2017,
Lemma 3.1).

15

Under review as a conference paper at ICLR 2021

2.2 ORACLE OF MAXIMIZATION

In practice, Φi(θ;x),∀i may not be obtained, since the inner loop needs to iterate by the infinite
number of iterations to achieve the exact maximum point. Therefore, we allow some numerical error
term resulted in the maximization step at (A1). This consideration makes the convergence analysis
more realistic.

First, we have the following criterion to measure the closeness of the approximate maximizer to the
optimal one.
Definition 1. Under A2, if point δ(x) satisfies

max
δ≤‖ε‖

〈δ − δ∗(x),∇δφ(θ, δ∗(x);x)〉 ≤ ε (A20)

then, it is a ε approximate solution to δ∗(x), where

δ∗(x) := arg max
δ

φ(θ, δ;x). (A21)

and x denotes the sampled data.

Condition (A20) is standard for defining approximate solutions of an optimization problem over a
compact feasible set and has been widely studied in (Wang et al., 2019b; Lu et al., 2020).

In the following, we can show that when the inner maximization problem is solved accurately enough,
the gradients of function φ(θ, δ(x);x) at δ(x) and δ∗(x) are also close. A similar claim of this fact
has been shown in (Wang et al., 2019b, Lemma 2). For completeness of the analysis, we provide the
specific statement for our problem here and give the detailed proof as well.

Lemma 1. Let δ(k)
t be the (µε)/L2

φ approximate solution of the inner maximization problem for
worker k, i.e., maxδ(k) φ(θ, δ(k);xt), where xt denotes the sampled data at the tth iteration of DAT.
Under A2, we have∥∥∥∇θφ

(
θt, δ

(k)
t (xt);xt

)
−∇θφ

(
θt, (δ

∗)
(k)
t (xt);xt

)∥∥∥2

≤ ε. (A22)

Throughout the convergence analysis, we assume that δ(k)
t (xt),∀k, t are all the (µε)/L2

φ approximate
solutions of the inner maximization problem. Let us define∥∥∥[∇φ(θt, δ

(k)
t (xt);xt)]ij − [∇φ(θt, (δ

∗)
(k)
t (xt);xt]ij

∥∥∥2

= εij . (A23)

From Lemma 1, we know that when δ
(k)
t (xt) is a (µε)/L2

φ approximate solution, then

h∑
i=1

di∑
j=1

εij =
h∑
i=1

di∑
j=1

∥∥∥[∇φ(θt, δ
(k)
t (xt);xt)]ij − [∇φ(θt, (δ

∗)
(k)
t (xt);xt]ij

∥∥∥2

≤ ε. (A24)

2.3 FORMAL STATEMENTS OF CONVERGENCE RATE GUARANTEES

In what follows, we provide the formal statement of convergence rate of DAT. In our analysis, we
focus on the 1-sided quantization, namely, Step 10 of Algorithm A1 is omitted, and specify the outer
minimization oracle by LAMB (You et al., 2019), see Algorithm A2. The addition and multiplication
operations in LAMB are component-wise.
Theorem 2. Under A1-A4, suppose that {θt} is generated by DAT for a total number of T iterations,
and let the problem dimension at each layer be di = d/h. Then the convergence rate of DAT is given
by

1

T

T∑
t=1

E‖∇θΨ(θt)‖2 ≤
∆Ψ

ηtclCT
+ 2

(
ε+

(1 + λ)σ2

MB

)
+ 4δ2 +

κ
√

3

C
‖χ‖1 +

ηtcuκ‖L‖1
2C

.

(A25)

where ∆Ψ := E[Ψ(θ1)] − Ψ?], ηt is the learning rate, κ = cu/cl, cl and cu are constants used

in LALR (5), χ is an error term with the (ih + j)th entry being
√

(1+λ)σ2
ij

MB + εij + δ2
ij , ε and

16

Under review as a conference paper at ICLR 2021

εij were given in (A24), L = [L1, . . . , Lh]T , C = 1
4

√
h(1−β2)
G2d , 0 < β2 < 1 is given in LAMB,

B = min{|B(i)|,∀i}, and G is given in A1.

Remark 1. When the batch size is large, i.e., B ∼
√
T , then the gradient estimate error will

be O(σ2/
√
T). Further, it is worth noting that different from the convergence results of LAMB,

there is a linear speedup of deceasing the gradient estimate error in DAT with respect to M , i.e.,
O(σ2/(M

√
T)), which is the advantage of using multiple computing nodes.

Remark 2. Note that A4 implies E[(Q([g(k)(θ)]ij)− [g(k)(θ)]ij‖2] ≤
∑h
i=1

∑di
j=1 δ

2
ij := δ2. From

(Alistarh et al., 2017, Lemma 3.1), we know that δ2 ≤ min{d/s2,
√
d/s}G2. Recall that s = 2b,

where b is the number of quantization bits.

Therefore, with a proper choice of the parameters, we can have the following convergence result that
has been shown in Theorem 1.

Corollary 1. Under the same conditions of Theorem 2, if we choose

ηt ∼ O(1/
√
T), ε ∼ O(ξ2), (A26)

we then have

1

T

T∑
t=1

E‖∇θΨ(θt)‖2 ≤
∆Ψ

clC
√
T

+
(1 + λ)σ2

MB
+
cuκ‖L‖1
2C
√
T

+O

(
ξ,

σ√
MT

,min

{
d

4b
,

√
d

2b

})
.

(A27)

In summary, when the batch size is large enough, DAT converges to a first-order stationary point of
problem (2) and there is a linear speed-up in terms of M with respect to σ2. Next, we provide the
details of the proof.

3 DETAILED PROOFS OF CONVERGENCE ANALYSIS

3.1 PRELIMINARIES

In the proof, we use the following inequality and notations.

1. Young’s inequality with parameter ε is

〈x,y〉 ≤ 1

2ε
‖x‖2 +

ε

2
‖y‖2, (A28)

where x,y are two vectors.

2. Define the historical trajectory of the iterates as Ft = {θt−1, . . . ,θ1}.
3. We denote vector [x]i as the parameters at the ith layer of the neural net and [x]ij represents the
jth entry of the parameter at the ith layer.

4. We define

gt :=
1

M

M∑
i=1

Ext∈B(i)

(
λ∇l(θt;xt) +∇θφ(θt, δ

(i)
t (xt);xt)

)
=

1

M

M∑
i=1

g
(i)
t . (A29)

17

Under review as a conference paper at ICLR 2021

3.2 DETAILS OF LAMB ALGORITHM

Algorithm A2 LAMB (You et al., 2019)
Input: learning rate ηt, 0 < β1, β2 < 1, scaling function τ(·), ζ > 0
for t = 1, . . . do

mt = β1mt−1 + (1− β1)ĝt, where ĝt is given by (A3)
vt = β2vt−1 + (1− β2)ĝ2

t
mt = mt/(1− βt1)
vt = vt/(1− βt2)
Compute ratio ut = mt√

vt+ζ

end for
Update

θt+1,i = θt,i −
ηtτ(‖θt,i‖)
‖ut,i‖

ut,i. (A30)

3.3 PROOF OF LEMMA 1

Proof. From A2, we have∥∥∥∇φ(θt, δ(i)
t (xt);xt

)
−∇φ

(
θt, (δ

∗)
(i)
t (xt);xt

)∥∥∥ ≤ Lφ‖δ(i)
t (xt)− (δ∗)

(i)
t (xt)‖. (A31)

Also, we know that function φ(θ, δ,x) is strongly concave with respect to δ, so we have

µ‖δ(i)
t (xt)− (δ∗)

(i)
t (xt)‖

≤
〈
∇δφ(θt, (δ

∗)
(i)
t (xt);xt)−∇δφ(θt, δ

(i)
t (xt);xt), δ

(i)
t (xt)− (δ∗)

(i)
t (xt)

〉
. (A32)

Next, we have two conditions about the qualities of solutions δ
(i)
t (xt) and (δ∗)

(i)
t (xt). First, we

know that δ(i)
t (xt) is a-ε approximate solution to (δ∗)

(i)
t (xt), so we have〈

(δ∗)
(i)
t (xt)− δ

(i)
t (xt),∇δφ(θt, δ

(i)
t (xt);xt)

〉
≤ ε. (A33)

Second, since (δ∗)
(i)
t (xt) is the optimal solution, it satisfies〈

(δ
(i)
t (xt)− (δ∗)

(i)
t (xt),∇δφ(θt, (δ

∗)
(i)
t (xt);xt)

〉
≤ 0. (A34)

Adding them together, we can obtain〈
δ

(i)
t (xt)− (δ∗)

(i)
t (xt),∇δφ(θt, (δ

∗)
(i)
t (xt);xt)−∇δφ(θt, δ

(i)
t (xt);xt)

〉
≤ ε. (A35)

Substituting (A35) into (A32), we can get

µ‖δ(i)
t (xt)− (δ∗)

(i)
t (xt)‖2 ≤ ε. (A36)

Combining (A31), we have∥∥∥∇φ(θt, δ
(i)
t (xt);xt)−∇φ(θt, (δ

∗)
(i)
t (xt);xt)

∥∥∥2

≤ L2
φ

ε

µ
. (A37)

3.4 DESCENT OF QUANTIZED LAMB

First, we provide the following lemma as a stepping stone for the subsequent analysis.
Lemma 2. Under A1–A3, suppose that sequence {θt} is generated by DAT. Then, we have

E[−〈∇Ψ(θt), ĝt〉] ≤ −
E‖∇Ψ(θt)‖2

2
+ ε+

(1 + λ)σ2

MB
. (A38)

18

Under review as a conference paper at ICLR 2021

Proof. From (A21), (A7) and A2, we know that

∇θΦi(θ,x) = ∇θφ(θ, (δ∗)(i)(x);x), (A39)

so we can get

∇θΨ(θ) =
1

M

M∑
i=1

λ∇θli(θ) +∇θΦi(θ) (A40)

=λ∇θl(θ) +
1

M

M∑
i=1

Ex∈D(i)∇θφ(θ, (δ∗)(i)(x);x) (A41)

:=ḡ(θ). (A42)

Then, we have

E〈∇Ψ(θt),gt〉 =E〈∇Ψ(θt), ḡt〉+ E〈∇Ψ(θt),gt − ḡt〉 (A43)
=EFt

Ext|Ft
〈∇Ψ(θt), ḡt〉+ E〈∇Ψ(θt),gt − ḡt〉 (A44)

(A42)
= E‖∇Ψ(θt)‖2 + E〈∇Ψ(θt),gt − ḡt〉 (A45)

=E‖∇Ψ(θt)‖2 + E〈∇Ψ(θt),gt − g∗t 〉+ E〈∇Ψ(θt),g
∗
t − ḡt〉 (A46)

where

ḡt :=
1

M

M∑
i=1

Ext∈D(i)

(
λ∇l(θt,xt) +∇θφ(θt, (δ

∗)
(i)
t (xt);xt)

)
= λ∇l(θt) +∇Φ(θt), (A47)

and

g∗t :=
1

M

M∑
i=1

Ext∈B(i)

(
λ∇l(θt,xt) +∇θφ(θt, (δ

∗)
(i)
t (xt);xt)

)
. (A48)

Next, we can quantify the different between gt and g∗t by gradient Lipschitz continuity of function
τ(·) as the following

E‖gt − g∗t ‖2
(a)

≤ 1

M

M∑
i=1

EFt
Ext|Ft

[
‖∇θφ(θt, (δ

∗)(i)(xt);xt)−∇θφ(θt, δ
(i)(xt);xt)‖2

] (A24)

≤ ε

(A49)
where in (a) we use Jensen’s inequality.

And the difference between ḡt and g∗t can be upper bounded by

E‖ḡt − g∗t ‖2 =EFt

∥∥∥∥∥ 1

M

M∑
i=1

Ext|Ft
∇θφ(θt, (δ

∗)(i)(xt);xt)−∇θφ(θt)

∥∥∥∥∥
2

+ λEFt

∥∥∥∥∥ 1

M

M∑
i=1

Ext|Ft
∇l(θt;xt)−∇l(θt)

∥∥∥∥∥
2

(A50)

A3
=

(1 + λ)σ2

MB
. (A51)

Applying Young’s inequality with parameter 2, we have

E[−〈∇Ψ(θt),gt〉] ≤− E‖∇Ψ(θt)‖2 +
E‖∇Ψ(θt)‖2

2
+ E‖ḡt − g∗t ‖2 + E‖g∗t − gt‖2 (A52)

(A49)

≤ − E‖∇Ψ(θt)‖2

2
+ ε+

(1 + λ)σ2

MB
. (A53)

19

Under review as a conference paper at ICLR 2021

3.5 PROOF OF THEOREM 2

Proof. We set β1 = 0 in LAMB for simplicity. From gradient Lipschitz continuity, we have

Ψ(θt+1)
A1
≤Ψ(θt) +

h∑
i=1

〈[∇θΨ(θt)]i,θt+1,i − θt,i〉+

h∑
i=1

Li
2
‖θt+1,i − θt,i‖2 (A54)

(a)

≤Ψ(θt)−ηt
h∑
i=1

di∑
j=1

τ(‖θt,i‖)
〈

[∇Ψ(θt)]ij ,
[ut]ij
‖ut,i‖

〉
︸ ︷︷ ︸

:=R

+

h∑
i=1

η2
t c

2
uLi
2

, (A55)

where in (a) we use (A30), and the upper bound of τ(‖θt,i‖).

Next, we split term R as two parts by leveraging sign([∇Ψ(θt)]ij) and sign([ut]ij) as follows.

R =− ηt
h∑
i=1

di∑
j=1

τ(‖θt,i‖)[∇Ψ(θt)]ij
[ut]ij
‖ut,i‖

1 (sign([∇Ψ(θt)]ij) = sign([ut]ij))

− ηt
h∑
i=1

di∑
j=1

τ(‖θt,i‖)[∇Ψ(θt)]ij
[ut]ij
‖ut,i‖

1 (sign([∇Ψ(θt)]ij) 6= sign([ut]ij)) (A56)

(a)

≤ − ηtcl
h∑
i=1

di∑
j=1

√
1− β2

G2di
[∇Ψ(θt)]ij [ĝt]ij1 (sign([∇[Ψ(θt)]ij) = sign([ĝt]ij))

− ηt
h∑
i=1

di∑
j=1

τ(‖θt,i‖)[∇Ψ(θt)]ij
[ut]ij
‖ut,i‖

1 (sign([∇Ψ(θt)]ij) 6= sign([ut]ij)) (A57)

(b)

≤ − ηtcl
h∑
i=1

di∑
j=1

√
1− β2

G2di
[∇Ψ(θt)]ij [ĝt]ij

− ηt
h∑
i=1

di∑
j=1

τ(‖θt,i‖)[∇Ψ(θt)]ij
[ut]ij
‖ut,i‖

1 (sign([∇Ψ(θt)]ij) 6= sign([ut]ij)) . (A58)

where in (a) we use the fact that ‖ut,i‖ ≤
√

di
1−β2

and
√
vt ≤ G, and in (b) we add

−ηtcl
h∑
i=1

di∑
j=1

√
1− β2

G2di
[∇Ψ(θt)]ij [ĝt]ij1 (sign([∇Ψ(θt)]ij) 6= sign([ĝt]ij)) ≥ 0. (A59)

Taking expectation on both sides of (A58), we have the following:

E[R] ≤−ηtcl

√
h(1− β2)

G2d

h∑
i=1

di∑
j=1

E[[∇Ψ(θt)]ij [ĝt]ij︸ ︷︷ ︸
:=U

+ ηtcu

h∑
i=1

di∑
j=1

E [[∇Ψ(θt)]ij1 (sign([∇Ψ(θt)]ij) 6= sign([ut]ij))]︸ ︷︷ ︸
:=V

. (A60)

20

Under review as a conference paper at ICLR 2021

Next, we will get the upper bounds of U and V separably as follows. First, we write the inner product
between [∇Ψ(θ)]ij and [ĝt]ij more compactly,

U ≤− ηtcl

√
h(1− β2)

G2d

h∑
i=1

E 〈[∇Ψ(θ)]i, [ĝt]i〉 (A61)

≤− ηtcl

√
h(1− β2)

G2d

h∑
i=1

E 〈[∇Ψ(θt)]i, [ĝt]i − [gt]i + [gt]i〉 (A62)

≤− ηtcl

√
h(1− β2)

G2d

(
E 〈∇Ψ(θ),gt〉+

h∑
i=1

E 〈[∇Ψ(θt)]i, [ĝt]i − [gt]i〉

)
. (A63)

Applying Lemma 2, we can get

U
(A38)

≤ − ηtcl

√
h(1− β2)

G2d

1

2
E‖∇Ψ(θt)‖2 + ηtcl

√
h(1− β2)

G2d

(
ε+

(1 + λ)σ2

MB

)
− ηtcl

√
h(1− β2)

G2d

h∑
i=1

E 〈[∇Ψ(θt)]i, [ĝt]i − [gt]i〉 (A64)

(a)

≤ − ηtcl

√
h(1− β2)

G2d

1

2
E‖∇Ψ(θt)‖2 + ηtcl

√
h(1− β2)

G2d

(
ε+

(1 + λ)σ2

MB

)
+
ηtcl
4

√
h(1− β2)

G2d
E‖∇Ψ(θt)‖2 + clηt

√
h(1− β2)

G2d
E‖ĝt − gt‖2 (A65)

(b)

≤ − ηtcl
4

√
h(1− β2)

G2d

1

2
E‖∇Ψ(θt)‖2 + ηtcl

√
h(1− β2)

G2d

(
ε+

(1 + λ)σ2

MB

)
+ ηtcl

√
h(1− β2)

G2d
δ2 (A66)

where we use the in (a) we use Young’s inequality (with parameter 2), and in (b) we have

E‖ĝt − gt‖2 = E

∥∥∥∥∥ 1

M

M∑
i=1

Q(g
(i)
t)− g

(i)
t

∥∥∥∥∥
2
A4
≤ δ2. (A67)

Second, we give the upper of V :

V ≤ηtcu
h∑
i=1

di∑
j=1

[∇Ψ(θt)]ij P (sign([∇Ψ(θt)]ij) 6= sign([ĝt]ij))︸ ︷︷ ︸
:=W

(A68)

where the upper bound of W can be quantified by using Markov’s inequality followed by Jensen’s
inequality as the following:

W =P (sign([∇Ψ(θt)]ij) 6= sign([ĝt]ij))

≤P[|[∇Ψ(θt)]ij − [ĝt]ij | > [∇Ψ(θt)]ij] (A69)

≤E[[∇Ψ(θt)]ij − [ĝt]ij]

|[∇Ψ(θt)]ij |
(A70)

≤
√
E[([∇Ψ(θt)]ij − [ĝt]ij)2]

|[∇Ψ(θt)]ij |
(A71)

(A42)

≤
√
E[([ḡt]ij − [g∗t]ij + [g∗t]ij − [gt]ij + [gt]ij − [ĝt]ij)2]

|[∇Ψ(θt)]ij |
(A72)

(a)

≤
√

3

√
(1+λ)σ2

ij

M |B| + εij + δ2
ij

|[∇Ψ(θt)]ij |
(A73)

21

Under review as a conference paper at ICLR 2021

where (a) is true due to the following relations: i) from (A51), we have

E[([ḡt]ij − [g∗t]ij)
2] ≤

(1 + λ)σ2
ij

MB
; (A74)

ii) from (A49), we can get
E[([gt]ij − [g∗t]ij)

2] ≤ εij ; (A75)
and iii) from (A67), we know

E[([ĝt]ij − [gt]ij)
2] ≤ δ2

ij . (A76)

Therefore, combining (A55) with the upper bound of U shown in (A66) and V shown in (A68)(A73),
we have

E[Ψ(θt+1)] ≤E[Ψ(θt)]− ηtcl

√
h(1− β2)

G2d

1

4
E‖∇Ψ(θt)‖2 + ηtcl

√
h(1− β2)

G2d

(
ε+

(1 + λ)σ2

MB

)

+ ηtcl

√
h(1− β2)

G2d
δ2 + ηtcu

√
3

h∑
i=1

di∑
j=1

√
(1 + λ)σ2

ij

MB
+ εij + δ2

ij +
η2
t c

2
u

∑h
i=1 Li

2
.

(A77)

Note that the error vector χ is defined as the following

χ =



√
(1+λ)σ2

11

M |B| + ε11 + δ2
11

...√
(1+λ)σ2

ij

M |B| + εij + δ2
ij

...√
(1+λ)σ2

hdh

M |B| + εhdh + δ2
hdh


∈ Rd, (A78)

and we have

L =

L1

...
Lh

 ∈ Rh. (A79)

Recall
κ =

cu
cl
. (A80)

Rearranging the terms, we can arrive at√
h(1− β2)

G2d

1

4︸ ︷︷ ︸
:=C

(
‖∇Ψ(θt)‖2

)
≤E[Ψ(θt)]− E[Ψ(θt+1)]

ηtcl
+ 4Cδ2 + 2C

(
ε+

(1 + λ)σ2

MB

)

+
√

3κ‖χ‖1 +
ηtcuκ‖L‖1

2
. (A81)

Applying the telescoping sum over t = 1, . . . , T , we have

1

T

>∑
t=1

E‖∇θΨ(θt)‖2 ≤
E[Ψ(θ1)]− E[Ψ(θT+1)]

ηtclCT
+ 2

(
ε+

(1 + λ)σ2

MB

)
+ 4δ2

+
κ
√

3

C
‖χ‖1 +

ηtcuκ‖L‖1
2C

. (A82)

22

Under review as a conference paper at ICLR 2021

4 ADDITIONAL EXPERIMENTS

4.1 DISCUSSION ON CYCLIC LEARNING RATE

It was shown in (Wong et al., 2020) that the use of a cyclic learning rate (CLR) trick can further
accelerate the Fast AT algorithm in the small-batch setting (Wong et al., 2020). In Figure A1, we
present the performance of Fast AT with CLR versus batch sizes. We observe that when CLR meets
the large-batch setting, it becomes significantly worse than its performance in the small-batch setting.
The reason is that CLR requires a certain number of iterations to proceed with the cyclic schedule.
However, the use of large data batch only results in a small amount of iterations by fixing the number
of epochs.

128 1024 6144 12288
Batch Size for Cyclic LR

30

40

50

60

70

80

Ac
cu

ra
cy

TA
RA

Figure A1: TA/RA of Fast AT with CLR versus batch sizes.

4.2 TRAINING DETAILS

CIFAR-10 AT and Fast AT experiments are conducted at a single computing node with 16-core CPU,
128GB RAM and 1 Nvidia P100 GPU. The training epoch is 100 by calling for the momentum
SGD optimizer. The weight decay and momentum parameters are set to 0.0005 and 0.9. The initial
learning rate is set with 0.05 (tuned over {0.005, 0.01, 0.05, 0.1}), which is decayed by ×1/10 at the
training epoch 70, 85 and 95, respectively.

CIFAR-10 DAT experiments are conducted at {1, 6, 12, 18} computing nodes with 16-core CPU,
128GB RAM and 1 Nvidia P100 GPU. The training epoch is 100 by calling for the LAMB optimizer.
The weight decay is set to 0.0005. β1 and β2 are set to 0.9 and 0.999. The initial learning rate is
tuned over {0.01, 0.05, 0.1, 0.2}, which is decayed by ×1/10 at the training epoch 70, 85 and 95,
respectively. To execute algorithms with the initial learning rate η1 greater than 0.1, we choose the
model weights after 10-epoch warm-up as its initialization for DAT, where each warm-up epoch k
uses the linearly increased learning rate (k/10)η1.

ImageNet AT and Fast AT experiments are conducted at a single computing node with dual 22-core
CPU, 512GB RAM and 6 Nvidia V100 GPUs. The training epoch is 30 by calling for the momentum
SGD optimizer. The weight decay and momentum parameters are set to 0.0001 and 0.9. The initial
learning rate is set to 0.1 (tuned over {0.01, 0.05, 0.1, 0.2}), which is decayed by ×1/10 at the
training epoch 20, 25, 28, respectively.

ImageNet DAT experiments are conducted at {1, 3, 6} computing nodes with dual 22-core CPU,
512GB RAM and 6 Nvidia V100 GPUs. The training epoch is 30 by calling for the LAMB optimizer.
The weight decay is set to 0.0001. β1 and β2 are set to 0.9 and 0.999. The initial learning rate is
tuned over {0.01, 0.05, 0.1, 0.2, 0.4}, which is decayed by ×1/10 at the training epoch 20, 25, 28,
respectively. To execute algorithms with the initial learning rate η1 greater than 0.2, we choose the
model weights after 5-epoch warm-up as its initialization for DAT, where each warm-up epoch k uses
the linearly increased learning rate (k/5)η1.

23

Under review as a conference paper at ICLR 2021

Empirical model convergence. In Figure A2, we present the training accuracy and the loss value
of DAT-PGD. As we can see, our proposal converges well within 100 and 30 epochs in the setting of
(CIFAR-10, ResNet-18) and (ImageNet, ResNet-50), respectively

0 20 40 60 80 100
Training Epochs

20

30

40

50

60

70

80

Tr
ai

ni
ng

 A
cc

ur
ac

y
TA
RA

2.0

2.5

3.0

3.5

4.0

4.5

Tr
ai

ni
ng

 L
os

s

Loss

0 5 10 15 20 25 30
Training Epochs

10

20

30

40

50

60

Tr
ai

ni
ng

 A
cc

ur
ac

y

TA
RA

4

6

8

10

Tr
ai

ni
ng

 L
os

s

Loss

(a) CIFAR-10, ResNet-18 (b) ImageNet, ResNet-50

Figure A2: Training accuracy and objective value (loss) of DAT-PGD against training epochs. (a) DAT-PGD
for (CIFAR-10, ResNet-18) using 6× 1 computing configuration and 6× 2048 batch size. (b) DAT-PGD for
(ImageNet, ResNet-50) using 6× 6 computing configuration and 6× 512 batch size.

Table A1: TA/RA of DAT-FGSM
under (CIFAR-10, ResNet-18) using
18x2048 batch size versus different
choices of LALR hyperparameter cu.

Value of cu TA (%) RA (%)
cu = 8 73.57 38.19
cu = 9 73.72 38.00
cu = 10 73.42 38.55
cu = 11 73.75 38.18
cu = 12 73,63 37.87

Tuning LALR hyperparameter cu. We also evaluate the
sensitivity of the performance of DAT to the choice of the
hyperparameter cu in LALR. In Table A1, we fix cl = 0 (this
is a natural choice) but varies cu ∈ {8, 9, 10, 11, 12} when
DAT-FGSM is executed under CIFAR-10 using 18x2048 batch
size, where cu = 10 is our default choice. As we can see, both
RA and TA are not quite sensitive to cu and the default choice
yields the RA-best model (in spite of minor improvement).

24

Under review as a conference paper at ICLR 2021

4.3 OVERALL PERFORMANCE OF (CIFAR-10, RESNET-50)

In Table A2, we observe that in the large-batch setting, the proposed DAT-PGD and DAT-FGSM
algorithms outperform the baseline algorithm DAT-PGD w/o LALR, and result in competitive
performance to AT and Fast AT, which call for more iterations by using a smaller batch size.

Table A2: Overall performance of DAT (in gray color), compared with baselines, in TA (%), RA (%),
communication time per epoch (seconds), and total training time (including communication time) per epoch (in
seconds). For brevity, ‘p× q’ represents ‘# nodes × # GPUs per node’, ‘Comm.’ represents communication
cost, and ‘Tr. Time’ represents training time.

Method CIFAR-10, ResNet-50

p× q Batch size TA (%) RA (%) Comm.
per epoch (s)

Tr. Time
per epoch (s)

AT 1× 1 256 85.94 43.06 NA 894
Fast AT 1× 1 256 75.28 40.48 NA 288

DAT-PGD w/o LALR 6× 1 6× 256 74.45 33.35 68 236
DAT-PGD 6× 1 6× 256 84.79 42.16 68 236

DAT-FGSM 6× 1 6× 256 75.72 40.09 68 116

25

Under review as a conference paper at ICLR 2021

4.4 ROBUSTNESS AGAINST PGD AND C&W ATTACKS

In Figure A3, we evaluate the adversarial robustness of ResNet-18 at CIFAR-10 learned by DAT-PGD
and DAT-FGSM against PGD attacks of different steps and perturbation sizes (namely, values of ε).
We consistently observe that DAT matches robust accuracies of standard AT even against PGD attacks
at different values of ε and steps. Specifically, DAT has slightly smaller RA than AT when facing
weak PGD attacks with ε less than (5/255) and steps less than 5. Moreover, although DAT-FGSM
has the worst RA against weak PGD attacks (which reduces to TA at ε = 0), it outperforms other
methods when the attacks become stronger in CIFAR-10 experiments. In Figure A4, we present the
additional robust accuracies against C&W attacks (Carlini & Wagner, 2017) of different perturbation
sizes. As we can see, the results are consistent with the aforementioned ones against PGD attacks.

0 5 10 15 20 25 30
Perturbation Size

0

20

40

60

80

Ro
bu

st
 A

cc
ur

ac
y

AT
DAT-PGD
DAT-FGSM

0 10 20 30 40 50
Attack Steps

40

50

60

70

80

Ro
bu

st
 A

cc
ur

ac
y

AT
DAT-PGD
DAT-FGSM

Figure A3: RA against different PGD attacks for the model trained by DAT-PGD, DAT-FGSM, and AT under
(CIFAR-10, ResNet-18). (Left) RA against PGD attacks with different perturbation sizes (over the divisor 255).
(Right) RA against PGD attacks with different steps.

0 5 10 15 20 25 30
CW Attack Perturbation Size

20

40

60

80

Ro
bu

st
 A

cc
ur

ac
y

AT
DAT-PGD
DAT-FGSM

0 2 4 6 8 10
CW Attack Perturbation Size

20

30

40

50

60

Ro
bu

st
 A

cc
ur

ac
y

AT
DAT-PGD
DAT-FGSM

(a) CIFAR-10, ResNet-18 (b) ImageNet, ResNet-50

Figure A4: RA against different C&W attacks for the model trained by DAT-PGD, DAT-FGSM, and AT under
the setting (CIFAR-10, ResNet-18) and (ImageNet, ResNet-50), respectively. Here for ease of C&W attack
generation at ImageNet, we randomly select 1000 test ImageNet images (1 image per class) to generate C&W
attacks.

26

Under review as a conference paper at ICLR 2021

4.5 DAT FROM PRE-TRAINING TO FINE-TUNING

In Figure A5, we investigate if a DAT pre-trained model (ResNet-50) over a source dataset (ImageNet)
can offer a fast fine-tuning to a down-stream target dataset (CIFAR-10). Compared with the direct
application of DAT to the target dataset (without pre-training), the pre-training enables a fast adaption
to the down-stream CIFAR-10 task in both TA and RA within just 5 epochs.

5 10 15
Fine-tuning epochs

0

20

40

60

80

100
Ac

cu
ra

cy
 (T

A
or

 R
A)

TA: Pre-training on ImageNet
RA: Pre-training on ImageNet
TA: No Pre-training
RA: No Pre-training

Figure A5: Fine-tuning ResNet-50 (pre-trained on ImageNet) under CIFAR-10. Here DAT-PGD is used for
both pre-training and fine-tuning at 6 nodes with batch size 6× 128.

4.6 QUANTIZATION

In Table A3, we present the performance of DAT by making use of gradient quantization. Two quanti-
zation scenarios are covered: 1) quantization is conducted at each worker (Step 7 of Algorithm A1),
and 2) quantization is conducted at both worker and server sides (Step 7 and 10 of Algorithm A1). As
we can see, when the number of bits is reduced from 32 to 8, the communication cost and the amount
of transmitted data is saved by 2 and 4 times, respectively. Although the use of gradient quantization
introduces a performance loss to some extent, the resulting TA and RA are still comparable to the
best 32-bit case. In the worst case of CIFAR-10 (8-bit 2-sided quantization), TA drops 0.91% and
6.33% for DAT-PGD and DAT-FGSM, respectively. And RA drops 4.73% and 5.22%, respectively.
However, 8-bit 2-sided quantization transmitted the least amount of data per iteration.

To further reduce communication cost, we also conduct DAT at a HPC cluster. The computing
nodes of the cluster are connected with InfiniBand (IB) and PCIe Gen4 switch. To compare with
results in Table 1, we use 6 of 57 nodes of the cluster. Each node has 6 Nvidia V100s which are
interconnected with NVLink. We use Nvida NCCL as communication backend. In Table A4, we
present the performance of DAT for ImageNet, ResNet-50 with use of HPC compared to standard
(non-HPC) distributed system. As we can see, the communication cost is largely alleviated, and thus
the total training time is further reduced.

In Table A5, we conduct an additional experiment by integrating a centralized method with gradient
quantization operation on CIFAR-10 under the batch size 2048 and 6 × 2048, respectively. We
specify the centralized method as Fast AT with LALR, where LALR is introduced to improve the
scalability of Fast AT under the larger batch size 6× 2048. Due to the centralized implementation,
we only need 1-sided gradient quantization (namely, no server-worker communication is involved).
As we can see, when the batch size 2048 is used, Fast AT w/ LALR performs as well as Fast AT even
at the presence of 8-bit gradient quantization. On the other hand, as the larger batch size 6× 2048 is
used, Fast AT w/ LALR can still preserve the performance at the absence of gradient quantization.
By contrast, Fast AT w/ LALR at the presence of quantization encounters 6.05% TA drop. This
suggests that even in the non-DAT setting, 8-bit gradient quantization hurts the performance as the
batch size becomes large. Thus, in DAT it is not surprising that 8-bit quantized gradients could cause
a non-trivial accuracy drop, particularly for using 2-sided gradient quantization and a much larger
data batch size (≥ 18x2048 on CIFAR-10). One possible reason is that the quantization error cannot
easily be mitigated as the number of iterations decreases (due to increased batch size under a fixed
number of epochs).

27

Under review as a conference paper at ICLR 2021

Table A3: Effect of gradient quantization on the performance of DAT for various numbers of bits. The training
settings of (CIFAR-10, ResNet-18) and (ImageNet, ResNet-50) are consistent with those in Table 1.

Method CIFAR-10, ResNet-18

bits TA (%) RA (%) Comm.
per epoch (s)

Data transmitted
per iteration (MB)

DAT-PGD 32 80.38 38.94 8.5 1278
DAT-PGD 16 79.38 38.32 8.3 639
DAT-PGD 8 78.18 37.34 4.3 320
DAT-PGD 8 (2-sided) 78.86 34.2 5.0 107

DAT-FGSM 32 75.58 40.92 8.5 1278
DAT-FGSM 16 75.74 40.86 8.3 639
DAT-FGSM 8 72.48 38.98 4.3 320
DAT-FGSM 8 (2-sided) 69.26 35.34 5.0 107

Method ImageNet, ResNet-50

bits TA (%) RA (%) Comm.
per epoch (s)

Data transmitted
per iteration (MB)

DAT-PGD 32 63.75 38.45 898 2924
DAT-PGD 16 61.77 38.40 850 1462
DAT-PGD 8 56.53 37.90 592 731
DAT-PGD 8 (2-sided) 53.09 34.59 1091 244

DAT-FGSM 32 58.32 41.48 859 2924
DAT-FGSM 16 54.71 39.29 849 1462
DAT-FGSM 8 50.11 36.38 594 731
DAT-FGSM 8 (2-sided) 48.27 33.20 1013 244

Table A4: Comparison to training over a high performance computing (HPC) cluster of nodes

Method ImageNet, ResNet-50

bits TA (%) RA (%) Comm.
per epoch (s)

Tr. time
per epoch (s)

DAT-PGD 32 63.75 38.45 898 1960
DAT-FGSM 32 58.32 41.48 859 1109

DAT-PGD (HPC) 32 63.43 38.55 15 1074
DAT-FGSM (HPC) 32 57.60 41.70 15 310

Table A5: Effect of 8-bit quantization on centralized robust training Fast AT w/ LALR.

Method CIFAR-10, ResNet-18
8-bit

quantization (s) Batch size TA (%) RA (%)

Fast AT No 2048 81.58 38.34
Fast AT w/ LALR Yes 2048 80.66 38.60
Fast AT w/ LALR No 6 x 2048 80.08 38.51
Fast AT w/ LALR Yes 6 x 2048 75.53 38.45

28

	Introduction
	Related Work
	Problem Formulation
	A Unified Algorithmic Framework for DAT
	Experiments: DAT for Robust Image Classification
	Conclusions
	DAT Algorithm Framework
	Theoretical Results
	Assumptions
	Oracle of maximization
	Formal statements of convergence rate guarantees

	Detailed Proofs of Convergence Analysis
	Preliminaries
	Details of LAMB algorithm
	Proof of Lemma 1
	Descent of quantized LAMB
	Proof of Theorem 2

	Additional Experiments
	Discussion on cyclic learning rate
	Training details
	Overall performance of (CIFAR-10, ResNet-50)
	Robustness against PGD and C&W attacks
	DAT from pre-training to fine-tuning
	Quantization

