
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

FROM MARKOV TO LAPLACE: HOW MAMBA
IN-CONTEXT LEARNS MARKOV CHAINS

Anonymous authors
Paper under double-blind review

ABSTRACT

While transformer-based language models have driven the AI revolution thus
far, their computational complexity has spurred growing interest in viable al-
ternatives, such as structured state space sequence models (SSMs) and Selec-
tive SSMs. Among these, Mamba (S6) and its variant Mamba-2 have shown
remarkable inference speed-ups over transformers while achieving comparable
or superior performance on complex language modeling tasks. However, despite
these architectural innovations and empirical successes, the fundamental learn-
ing capabilities of Mamba remain poorly understood. In this paper, we address
this gap by studying in-context learning (ICL) on Markov chains and uncover-
ing an interesting phenomenon: even a single-layer Mamba efficiently learns the
in-context Laplacian smoothing estimator, which is both Bayes and minimax op-
timal. To explain this, we theoretically characterize the representation capacity
of Mamba and reveal the fundamental role of convolution in enabling it to repre-
sent the optimal Laplacian smoothing. These theoretical insights align strongly
with empirical results and, to the best of our knowledge, represent the first formal
connection between Mamba and optimal statistical estimators. Finally, we outline
promising research directions inspired by these findings. Code is available at
https://anonymous.4open.science/r/Markov-Mamba-39C5.

1 INTRODUCTION

Transformers have been at the forefront of recent breakthroughs in language modeling, driving the AI
revolution (Vaswani et al., 2017; Radford & Narasimhan, 2018; Devlin et al., 2018). Despite their
empirical success, transformers suffer from high computational complexity, such as quadratic scaling
in sequence length during training and linear cache size at inference (Gu & Dao, 2023a). To address
these limitations, there is a growing interest in designing alternative efficient architectures among
which structured state space models (SSMs) are the most prominent. In particular, Selective SSMs
such as Mamba and Mamba-2, have achieved state-of-the-art results in various language modeling
tasks, while greatly improving the inference throughput (Cirone et al., 2025).

Motivated by this success, there is tremendous interest in understanding the sequential modeling
abilities of SSMs, especially that of Mamba. In particular, mirroring a theme that has been successful
in unraveling fundamental mechanisms (e.g. induction heads) behind transformers (Makkuva et al.,
2025; 2024; Rajaraman et al., 2024; Nichani et al., 2024; Edelman et al., 2024), a growing body
of research explores Mamba through its in-context learning (ICL) capabilities (Grazzi et al., 2024;
Halloran et al., 2024; Akyürek et al., 2024; Park et al., 2024). While these works reveal interesting
insights about Mamba’s ICL abilities vis-a-vis transformers, they are largely empirical in nature, and
we currently lack a fundamental theoretical understanding of Mamba and its underlying learning
mechanisms. We are thus motivated to ask:

Can we systematically characterize the ICL capabilities of Mamba?

In this paper, we approach this question from the point of view of representation power, and char-
acterize Mamba’s ICL capabilities on Markov processes, building upon the Markov-ICL framework
originally introduced for transformers (Edelman et al., 2024). As opposed to a Mamba vs. Trans-
formers comparison, here we leverage this framework for a detailed study of Mamba, and uncover
an interesting phenomenon: even a single-layer Mamba efficiently learns the in-context Laplacian

1

https://anonymous.4open.science/r/Markov-Mamba-39C5

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

0 10 20 30 40 50 60 70

0.3

0.4

0.5

0.6

0.7

0.8

0.9

t : xt = 0

Pr
ed

ic
te

d
pr

ob
ab

ili
ty

P θ
(x

t
+

1
=

1
|x

t 1

)
1-layer Mamba
1-layer Transformer
2-layer Transformer
Optimal estimator

(a) Next-token probability estimation

1 2 3 4
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Markov order

L
1

di
st

an
ce

1-layer Mamba
1-layer Transformer
2-layer Transformer

(b) L1 distance of model estimation from optimal

Figure 1: Single-layer Mamba learns the optimal Laplacian estimator when trained on random
Markov chains, exhibiting ICL. (a) shows the predicted probability distribution on a fixed test
sequence for models trained on binary first-order Markov sources. (b) quantifies the L1 deviation
from the optimal estimator for random sequences and various Markov orders. The error intervals show
the standard deviation across 5 runs. Sec. 4.3 and Fig. 7 further discuss Mamba vs. Transformers.

smoothing estimator, which is both Bayes and minimax optimal, for all Markov orders (Figs. 1 and
7a). Towards explaining this, we theoretically characterize the representation capacity of Mamba and
demonstrate that the convolution mechanism, together with selectivity and recurrence, plays a fun-
damental role in realizing the Laplacian smoothing. Importantly, we showcase that these theoretical
insights align strongly with empirical results, even outside the realm of Markovian data. To the best of
our knowledge, this is the first result of its kind connecting Mamba and optimal statistical estimators.

In summary, we make the following contributions:

• Leveraging the Markov-ICL framework, we uncover the surprising fact that even a
single-layer Mamba learns the optimal in-context estimator for all Markov orders (Fig. 1).
Intriguingly, convolution plays a pivotal role, more so than gating and non-linear activation,
in this learning ability (Sec. 3).

• Towards explaining this phenomenon, we characterize the representational capacity of
single-layer Mamba and show, both theoretically and empirically, how it represents the
optimal in-context estimator for any finite-state first-order processes, through an intricate
interplay of convolution, selectivity and recurrence. Further, we provide fundamental limits
for higher-order processes (Sec. 4).

• We demonstrate the generality of our findings on non-Markovian data and illustrate the
fundamental role of convolution even on complex language-modeling tasks (Sec. 5).

1.1 RELATED WORK

SSMs (Gu et al., 2020; 2021) have been recently introduced as an alternative recurrent architecture
aimed at rivaling the well established transformer backbone (Vaswani et al., 2017). The model was
originally introduced as a discretized linear dynamical system (Gu et al., 2021). Recent works tried to
re-frame the architecture from a linear recurrent perspective (Orvieto et al., 2023b). However, there
are still many gaps in understanding this family of models (Team et al., 2024), such as questions
around expressivity (Orvieto et al., 2023a). This is particularly important given the proliferation of
Mamba-inspired architectures that have emerged since its introduction (Qin & Liu, 2024; Csordás
et al., 2024; Zhu et al., 2024; Gu & Dao, 2023b; De et al., 2024; Beck et al., 2024).

To this end, our work squarely focuses on understanding the representation power of Mamba, and
in particular its ICL capability, which, while extensively studied for transformers (Xie et al., 2021;
Hendel et al., 2023; Bai et al., 2023), remains largely unexplored for SSMs. In this space, recent
studies such as Sushma et al. (2024), have shown that SSMs can perform gradient-based learning

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

for in-context adaptation similar to transformers. There is conflicting evidence whether Mamba’s ICL
abilities are better (Grazzi et al., 2024) or worse (Halloran et al., 2024; Akyürek et al., 2024) compared
to transformers. Nonetheless, SSMs have demonstrated promising results in in-context reinforcement
learning tasks (Lu et al., 2024), as well as in next-state prediction for dynamical models (Joseph
et al., 2024), highlighting the potential of SSMs as efficient alternatives to transformers for ICL tasks.
Motivated by this, as opposed to an architectural comparison Jelassi et al. (2024); Bhattamishra et al.
(2024); Merrill et al. (2024); Sarrof et al. (2024), here we solely focus on Mamba’s ICL capabilities,
specifically, through the lens of random Markov processes. This framework has been successfully
applied to transformers (Edelman et al., 2024; Makkuva et al., 2025; 2024; Rajaraman et al., 2024;
Nichani et al., 2024), where it helped unveil fundamental learning mechanisms of transformers such
as induction heads. Ours is the first work that employs this framework for Mamba and SSMs.

2 PROBLEM SETUP

We formally define the problem setting and provide necessary background. We use the
following notation: scalars are denoted by such italic lower case letters as x, y, Euclidean
vectors by bold x,y, and matrices by upper case X,Y , etc. 1 refers to the all-one vector. For
T ∈ N, [T] ≜ {1, . . . , T}, and for a sequence (xt)t≥1, define xt

k ≜ (xk, . . . , xt). For z ∈ R,
sigmoid(z) ≜ 1/(1 + e−z),ReLU(z) ≜ max(0, z), and softplus(z) ≜ log(1 + ez). Unif(S)
denotes the uniform distribution over a set S and Dir(β) denotes the Dirichlet distribution with
parameter β > 0. DKL (P∥Q) denotes the KL divergence between distributions P and Q.

2.1 INPUT DATA: RANDOM MARKOV CHAINS

To investigate the ICL capabilities of Mamba, we build upon the Markov-ICL framework of Edelman
et al. (2024). In particular, we let the input tokens to be stochastic and drawn from a random Markov
chain of order k . That is, the token sequence x = (xt)

T
t=1 ∈ X T on the state space (vocabulary) X

follows the transition dynamics:

P
(
xt+1 = · | xt

1

)
= P

(
xt+1 = · | xt

t−k+1

)
, (1)

almost surely for all t ∈ [T], and the kth-order Markov kernels, P
(
xt+1 = · | xt

t−k+1 = itt−k+1

)
,

are sampled independently for each tuple (it−k+1, · · · , it) from the Dirichlet prior Dir(β · 1), with
β > 0. When β = 1, this corresponds to the uniform distribution on the S-dimensional simplex
∆S

1 , where size S = |X |.
The transition matrix P = (Pik1

)ik1∈Xk , Pik1
∈ [0, 1]S , encapsulates the set of all Sk conditional

probabilities of the chain, each row corresponding to one of them. While this transition matrix
governs the generation of each token xt for t > k, the first k-tokens x1, . . . , xk are drawn i.i.d. from
Unif(X). This constitutes the joint law of the random variables (P, x), termed random Markov
distribution henceforth. More succinctly,

Data generation (Random Markov sequences).

1. Draw P with each row sampled i.i.d. from Dir(β · 1).
2. For t = 1, . . . , k, sample xt ∼ Unif(X).
3. For t = k, . . . , T , sample xt+1 ∼ Pxt

t−k+1
.

4. Return the input x = (xt)
T
t=1.

5. Repeat the above steps to generate a batch {x(b)}b∈[B].

Why Random Markov is a good testbed for ICL. As a consequence of the generation process, every
sequence follows a different Markov distribution. Therefore, at inference, a model trained on this
random Markovian data has to estimate the next-token distribution in-context for every test sequence.
Hence, this data class serves as a good sandbox to gauge the ICL capabilities of Mamba, which was
also used in a similar context for transformers (Nichani et al., 2024; Rajaraman et al., 2024).

2.2 MAMBA ARCHITECTURE

Selective SSMs such as Mamba and Mamba-2 are a class of sequence-to-sequence mod-
els that are closely related to RNNs and classical state space models (Gu & Dao, 2023b).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

x1 . . . xt . . . xT ∈ {0, 1}

Embedding Embedding Embedding

Mamba Mamba Mamba

x1 xt xT.

MLP

u1

MLP

ut

MLP

uT.

Linear

v1

Linear

vt

Linear

vT.

σ(·)

logit1

σ(·)

logitt

σ(·)

logitT.

fθ(x
1
1) fθ(x

t
1) fθ(x

T
1).

Figure 2: Mamba-based language model.

A key feature underpinning these models is
the selectivity mechanism, enabling them to
selectively choose inputs at every timestep,
as opposed to linear time-invariant (LTI) sys-
tems. While we believe our work cap-
tures the behavior of all selective SSMs, we
will specifically focus on the state-of-the-art
Mamba-2 model to simplify exposition. By
slight abuse of terminology, henceforth we will
also refer to this model simply as Mamba.
Mathematically speaking, Mamba implements
the sequence-to-sequence mapping Mamba :
Rd×T 7→ Rd×T , where given a sequence of
input embeddings x = (xt)

T
t=1 ∈ Rd×T

of dimension d, it outputs the correspond-
ing output embeddings o = (ot)

T
t=1 ∈

Rd×T of the same dimension with o =
Mamba(x). More precisely, fix t ∈ [T].
Then the output ot at time t is computed
as ot = Mamba(xt

1) using the follow-
ing recurrence equations (Dao & Gu, 2024):

Ht = at Ht−1 + x̃t b
⊤
t ∈ Red×N ,

yt = Ht ct ∈ Red,

zt = yt ⊙ ReLU(Wz xt) ∈ Red,

ot = Wo zt ∈ Rd,

(Mamba)

at ≜ exp(−a ·∆t) ∈ (0, 1),

∆t ≜ softplus(⟨w∆,xt⟩+ δ) ∈ R,

x̃t ≜ ReLU(convX(WX xt
t−w+1)) ·∆t,

bt ≜ ReLU(convB(WB xt
t−w+1)),

ct ≜ ReLU(convC(WC xt
t−w+1)),

(Input selectivity)

where the initial state H0 = 0, Wz ∈ Red×d,Wo ∈ Rd×ed, a ≥ 0,w∆ ∈ Rd, δ ∈ R,WX ∈
Red×d,WB ∈ RN×d and WC ∈ RN×d are all learnable parameters, and conv(zt

t−w+1) is a
time-wise convolution of window w ∈ N with distinct kernels per dimension. Here e ∈ N is the
feature expansion factor, typically 2. Let θMamba denote the set of all these parameters.

Intuition behind Mamba. The underlying intuition behind the update equations in Mamba is simple:
given a sequence of input embeddings (xt), we first capture their local temporal information using
separate convolutions to compute x̃t, bt, and ct (Input selectivity). Equipped with this local memory,
we perform a linear state update to compute the current state Ht from the past Ht−1, weighed by an
input-dependent decay factor at ∈ (0, 1), and (x̃t, bt). Subsequently, we compute the state projection
yt, modulate it with an input-selective term to yield zt, and finally project it down to get the output
embedding ot, which is a function of the entire input sequence until then, xt

1, i.e., ot = Mamba(xt
1).

Mamba-based language model. Mamba block is then incorporated into a full-fledged language
model as follows:

xt ∈ {0, 1} Embedding−−−−−−→ xt
Mamba−−−−→ ut

MLP−−−→ vt
Linear−−−→ logitt

Prediction−−−−−→ fθ(x
t
1), (2)

where fθ(x
t
1) ≜ Pθ (xt+1 = · | xt

1) = softmax(logitt) ∈ [0, 1]S is the probability estimation for
the next symbol xt+1 conditioned on the past xt

1. We omit the layer norm here for simplicity. We
compactly denote the set of all model parameters as θ ∈ RD. We refer to § B for more details.

2.3 LEARNING TASK: NEXT-TOKEN PREDICTION

With the objective of auto-regressively estimating the next token, we train the model parameters
θ to minimize the cross-entropy loss between the next-token predicted probability fθ(x

t
1) and the

corresponding ground-truth symbol xt+1 across all the positions t ∈ [T]:

L(θ) ≜ − 1

T

∑
t∈[T]

EPExt+1
1 ∼P

[
log f

(xt+1)
θ (xt

1)
]
, (3)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

where f
(j)
θ (xt

1) ≜ Pθ (xt+1 = j | xt
1) for j ∈ X , and the expectation is both over the transition

kernels P and the Markov sequences x = (xt)
T
t=1 sampled from P . In practice, it is replaced by

empirical average across a finite set of batches, sampled according to the random Markov distribution
in Sec. 2.1. For our experiments we use the AdamW optimizer (Kingma & Ba, 2015).

2.4 OPTIMAL ESTIMATOR: LAPLACIAN SMOOTHING

Given the Bayesian prediction loss in Eq. (3), it is natural to ask: what is the optimal θ minimizing it?
It follows from a classical result in statistics (Rissanen (1984), § A) that this minimum is achieved
when the corresponding model prediction matches the (average) ground-truth predictive distribution,
i.e. Pθ (xt+1 = j | xt

1) = EP |xt
1
[P (xt+1 = j | xt

1)], for all t. Given the joint distribution of the pair
(P, xt+1

1) in Sec. 2.1, where the kernel P ∼ Dir(β · 1), it can be shown (§ A) that the conditional
expectation above simplifies to the well-known Laplacian smoothing, also known as the add-β
estimator (see e.g. Merhav & Feder (1998)):

P(k)
β

(
xt+1 = j | xt

1

)
≜ EP |xt

1

[
P
(
xt+1 = j | xt

1

)]
=

nj + β

n+ 2β
, (Laplacian smoothing)

where nj is the number of times token j follows the current kth-order context xt
t−k+1 in the sequence

xt
1, i.e. nj = |{i : (xi−1

i−k, xi) = (xt
t−k+1, j)}| and n is the frequency of this context, i.e. n = |{i :

xi−1
i−k = xt

t−k+1}|. Adjusting these counts by β plays the role of additive smoothing, which avoids
assigning zero probabilities to unseen events, an idea dating back to Laplace (Laplace, 1814). It is
also known that the add-β estimator is asymptotically minimax optimal, as T → ∞ (Xie & Barron,
1997; Hao et al., 2018).

How Laplacian smoothing implies ICL. If Mamba realizes this smoothing estimator, i.e. Pθ = P(k)
β ,

it automatically implies its ICL abilities: given a fresh test sequence at inference, in order to optimally
predict the next token, it has to process the input tokens in-context to compute the relevant counts, as
in the Laplacian smoothing. But does Mamba realize this optimal counting estimator in practice?

3 DOES MAMBA LEARN IN-CONTEXT ESTIMATORS?

To investigate the ICL capabilities of Mamba, we consider the problem setup described above and
train Mamba and transformer models using AdamW on the next-token prediction loss in Eq. (3) on
random Markov chains (we refer to § F for more experimental details). These experiments reveal
interesting and rather surprising insights about Mamba:

1. Mamba learns the optimal Laplacian smoothing estimator on the Markov prediction task,
even with a single layer (Fig. 1a).

2. Convolution mechanism plays a fundamental role in Mamba, more so than gating and
non-linear activations, in aiding its learning abilities (Fig. 3a).

In the sequel, we expand upon these observations in detail.

1) Mamba learns the Laplacian smoothing. After training, we evaluate Mamba and transformers
on the same test sequence fixed beforehand and compare their performance to that of the optimal
Laplacian smoothing estimator. Specifically, we compare their next-token prediction probabilities
with those of the add-β estimator. Fig. 1 illustrates these results for various Markov orders, which
uncovers a surprising phenomenon: even a single-layer Mamba sharply matches the optimal
estimator on the whole sequence. The same conclusion holds for larger state spaces and deeper
models (Fig. 7a), and even when part of the dataset is held out (see § E). For transformers, we observe
that a two-layer model also matches the predictor, albeit less sharply, whereas a single layer fails
to solve the task. This aligns with recent theoretical results (Sanford et al., 2024; Ekbote et al., 2025),
that show that two layers are required for transformers to implement an induction head (realizing
the counting estimator) efficiently (Sec. 4.3 further discusses Mamba vs. Transformers).

2) Convolution is the key. To decipher the key architectural component behind Mamba’s success
in Markov prediction task, we do an ablation study on its three main features: (i) convolution in Input
selectivity, (ii) ReLU non-linearity in Input selectivity, and (iii) the gating mechanism in Mamba and

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

0 5 10 15 20 25 30 35
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Iteration (×200)

Te
st

lo
ss

Mamba

MambaZero

Mamba without convolution

(a) Importance of convolution

2 3 4 5 6
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Convolution window of Mamba

Te
st

lo
ss

Order 1
Order 2
Order 3
Order 4

(b) Relation between window size and Markov order

Figure 3: (a) illustrates the fundamental role of convolution, without which the model fails to
learn the task. In contrast, a simplified variant with just the convolution (MambaZero) matches the
performance of the full model. (b) highlights the relation between the Markov order k and the window
size w of Mamba. It is required that w ≥ k + 1 for the model to learn the order-k prediction task.

MLP. Amongst them, interestingly, convolution plays a fundamental role in the model’s performance,
as illustrated in Fig. 3a. Here we compare the full Mamba architecture from Sec. 2.2, Mamba with
just the convolution in Input selectivity removed, and a simplified Mamba architecture with only
convolution (MambaZero in Sec. 4.1). Further experiments on adding/removing convolution to
Mamba and transformers, as well as experiments with varying width, are shown in § E.4, while
experiments on natural language are deferred to Sec. 5.2. As a metric of comparison, we use the
closeness of each of these models’ losses L(θ) to that of the optimal add-β estimator Lβ , i.e. i.e.
|L(θ)− Lβ |. The closer this metric is to zero, the better the model’s performance is. Remarkably,
the simplified Mamba with just the convolution succeeds on the Markov prediction task, while the
full model without convolution fails, highlighting its fundamental importance. This raises a natural
question: how does convolution help Mamba to implement the optimal Laplacian estimator?

4 HOW MAMBA IMPLEMENTS THE LAPLACIAN ESTIMATOR

Motivated by its success in learning the optimal estimator, here we study how Mamba represents
Laplacian smoothing. Specifically, we provide a concrete theoretical construction backed by
empirical results, that illustrates the mechanism Mamba uses to implement the estimator in practice.

4.1 MAMBAZERO: SIMPLIFIED MODEL

Building upon the insight that Mamba with just the convolution achieves the same performance
as that of the full model (Fig. 3a), we consider its simplified version: MambaZero. MambaZero
retains only the essential elements of the full model in Sec. 2.2: the Embedding layer, the convolution
inside the Mamba block in Input selectivity, and the Linear layer. More formally, it is given by:

xt = ext ∈ Rd, (Embedding)

ut = xt +MambaZero(xt
1), (MambaZero)

logitt = Wℓ ut ∈ RS , (Linear)

fθ(x
t
1) = (logitt/∥logitt∥1) , (Prediction)

Ht = atHt−1 + x̃t b
⊤
t ∈ Red×N ,

yt = Ht ct ∈ Red,

ot = Wo yt ∈ Rd,

(MambaZero)

where ex is the token embedding for x ∈ X , and the input-selective terms at, x̃t, bt and ct are
computed as in Input selectivity without ReLU and just the convolution. Here we use the L1

normalization instead of the softmax in the Prediction layer to ease theoretical analysis, similar to
Nichani et al. (2024); Rajaraman et al. (2024). Let θ = ({ei}i∈X ,θMambaZero,Wℓ) ∈ RD denote
the full set of parameters for appropriate D ≥ 1.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

4.2 MAIN THEOREM: MAMBA REPRESENTS THE LAPLACIAN ESTIMATOR

We now present our main theorem that MambaZero can represent Laplacian smoothing for any
finite-state first-order Markov process. A key defining feature of our constructive proof is that it aligns
with the structures empirically learned by the model, shedding light on the fundamental learning
mechanisms of Mamba.
Theorem 1. For a state space X = {1, 2, . . . , S} of size |X | = S, there is a choice of parameters
for the canonical MambaZero model, with dimensions N = S, d = 2S, e = 1 and convolution
window w = 2, such that its output prediction is exactly matches that of the Laplacian estimator, for
first-order Markov chains on X . More formally, for any β > 0, there exists a set of parameters θ
such that, for all sequences (xt)t≥1 and all t ≥ 1,

DKL

(
P(1)
β (· | xt

1)∥Pθ

(
· | xt

1

))
= 0.

Remark. The KL divergence above is precisely the penalty paid in the cross-entropy loss in Eq. (3)
at time t when using the predictor Pθ instead of the optimal P(1)

β . In other words, the result implies
that the loss of MambaZero can be made exactly equal to the optimal.

4.2.1 KEY MECHANISM AND PROOF SKETCH

Main idea. To build our intuition towards how MambaZero can realize the add-β counting estimator
for first-order Markov sequences, let’s focus on the core MambaZero block. The key observation
here is the following: if the state Ht−1 can capture all the transition counts i → j till xt−1

1 , the new
state Ht can be updated to account for the current transition xt−1 → xt on top of the existing counts,
by a suitable choice of at, x̃t, and bt. Then the relevant count information corresponding to the
current prefix xt could be read off from the state projection yt = Htct, and be modified to account
for β-smoothing via the Linear and Prediction layers. Buttressing this idea are two key empirical
facts, which in fact hold for any k ≥ 1, underpinning our construction:

(i) State-to-state transition factor at ≈ 1 for all t ≥ 1. We empirically observe that when the
MambaZero model is trained on random first-order Markov data, at convergence we have at ≈ 1 for
all t ≥ 1 (Fig. 4). Since at modulates how much past information flows into the present, at = 1 is
required for the state Ht to store all previous transition counts. Note that this can be easily achieved
by setting either a or ∆t to be zero in Input selectivity, which we empirically observe as well.

(ii) Convolution window w ≥ k + 1. Recalling that k is the Markov order, we empirically observe
that the window size w = k + 1 is sufficient for the full Mamba to learn the Laplacian smoothing
on kth-order Markov chains (Fig. 3b). To understand why, note that in the MambaZero architecture
above, apart from the MambaZero block, all remaining equations operate on the current token at time
t. In the MambaZero block, the dependency of the output yt on the previous tokens is due to that of
the state Ht on (x̃t, bt) in the update equation, and of ct in the state projection. Since (x̃t, bt, ct)
depend on the past through the convolutions, a window of size k + 1 enables them to keep track of
the current token as well as its length-k prefix, which is necessary to compute the counts needed in
Laplacian smoothing. On the other hand, if wX , wB ≤ k, then one can find confusable sequences,
i.e. sequences that share the same number of occurrences of all length-k prefixes, but whose counts
of the tokens following each prefix is different, resulting in the model’s estimate to deviate from
that of the optimal add-β. We refer to § C.1 for more details. While having all the window sizes
wX , wB , wc ≥ k + 1 is sufficient, it can be further strengthened to wc = k (§ C.1).

We now detail our construction for the first-order case, capitalizing on these insights.

Construction. Let us fix w = k + 1 = 2. Then, x̃t and bt only depend on the current token xt and
the previous one xt−1, while ct only depends on xt. Thus, x̃t and bt can only take S2 possible values
depending on the last transition in the sequence, whereas ct only S. To ease the notation, we will
denote these values by x̃(ij), b(ij), and c(i) respectively, for i, j ∈ X . Additionally, at t = 1, these
terms depend only on the current symbol, taking two additional values each, denoted by x̃(i), b(i).
Let nij denote the number of transitions i → j in the input sequence xt

1. Then, unfolding the state
update recursion in MambaZero, we get that the output of the MambaZero block is

ot = Wo x̃0b
⊤
0 ct +

∑
ij

nij Wo x̃
(ij)b(ij)⊤ct. (4)

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

While the output in Eq. (4) depends on all the transition counts, in view of Laplacian smoothing, we
ideally want only those counts pertaining to relevant transitions, i.e. if xt = 0, the counts n0j , for
j ∈ X , and smilarly for other values of xt. To this end, we empirically observe that at convergence,
the model’s parameters are such that b(ij)⊤ct ≈ 0 whether i ̸= xt. Due to this property, only the
counts that are involved in the computation of the Laplacian estimator for the current token xt appear
in the output ot. Stitching these facts, the final logits in the Linear layer depend on the first and
current token via

logitt = Wℓ xt +WℓWo x̃0b
⊤
0 ct +

∑
j

nxt,jWℓWo x̃
(xt,j)b(xt,j)⊤ct. (5)

The final step is to then show that for properly chosen parameters, one can make the two vectors
associated with the counts to be orthogonal, and the other vectors, independent of the counts, to sum
up to the vector β1. Subsequently, the L1 normalization in Prediction layer will give a next-token
probability estimate, matching that of the add-β estimator. We defer the full proof and additional
details to § C.

Dimension reduction for binary state space. Interestingly, for the binary case X = {0, 1}, it is
possible to further reduce the hidden dimension d = 2S in Thm. 1 to d = S = 2 by leveraging the
relationship between the transition counts. The key theoretical insight is that the transition counts in
binary sequences are strongly correlated. Specifically, n01 and n10 are at most one apart: every time
a transition 0 → 1 occurs, either the sequence is followed by only 1’s until the end, or a subsequent
transition 1 → 0 also occurs. Therefore, the dependency of the output on n01 is in fact a dependency
on n10. One can leverage this property to help MambaZero realize Laplacian smoothing with just
two-dimensional embeddings, with arbitrarily small error. We refer to Thm. 4 in § C.3 for full details.

4.3 LOWER BOUND: FUNDAMENTAL LIMIT ON THE REPRESENTATION POWER OF MAMBA

We now provide a fundamental limit on the representation power of recurrent architectures like
Mamba, in the form of a lower bound on the hidden dimension that is required to represent the
optimal estimator. In particular, our result establishes that with finite bit precision, irrespective of
depth, for any recurrent architecture to implement the Laplacian estimator, the hidden dimension
has to at least scale as Ω(2k).
Theorem 2. Consider a recurrent model of the form

Ht = ht(Ht−1, xt),

yt = Pθ

(
· | xt

1

)
= gt(Ht),

with transformations (ht, gt), where Ht ∈ Rd and the model has a bit precision of p. Suppose that
the kth-order Markov kernel P is sampled from the Dirichlet prior with β = 1, P ∼ Dir(1 · 1).
Suppose also that the recurrent architecture satisfies the following point-wise guarantee: for any
sufficiently large t, almost surely over P and xt

1 ∼ P ,∥∥∥Pθ

(
· | xt

1

)
− P(k)

1 (· | xt
1)
∥∥∥
∞

≤ ε, (6)

where P(k)
1 (· | xt

1) is the Laplacian estimator for β = 1. Then, the recurrent architecture must satisfy

d · p ≥ 2k(1− 3ε) log(1/ε).

We defer the full proof and additional details to App. D.

Depth. We note that Thm. 2 does not assume depth one, and holds for recurrent models of any depth.

Mamba vs. Transformers. As Thm. 2 demonstrates, to capture a kth-order Markov process,
Mamba requires the hidden dimension to scale exponentially in k, whereas the best known result for
transformers needs a three layer model with the hidden dimension growing linearly in k (Rajaraman
et al., 2024). On the other hand, for first-order sources we empirically observe from Fig. 1a that
1-layer Mamba tracks the optimal estimator more sharply than a transformer (see § E for additional
comparative results). While these comparisons are meant to provide a more detailed context for
Mamba, we would like to emphasize that the main focus of our paper is not a comparative study
but rather a fundamental understanding of Mamba’s ICL abilities.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Higher orders and learning dynamics. While Thm. 1 demonstrates that Mamba can represent
the optimal estimator for finite-state first-order processes, our empirical results in Fig. 1b strongly
suggest that a similar conclusion holds for higher-order sources. In a similar vein, analyzing Mamba’s
learning dynamics in its convergence to this smoothing estimator is an interesting topic of future
research, but outside the scope of this paper, whose focus is on representation power.

5 BEYOND MARKOV

5.1 SWITCHING MARKOV MODEL

A key component of Mamba enabling selectivity is the state-transition factor at, that controls the flow
of information from the past state Ht−1 to the current Ht: if at = 1, the past information is fully
utilized in computing the current state, and hence the output, whereas at = 0 completely ignores the
past. In the Markovian setting considered so far, the role of at has largely been dormant: at ≈ 1 for
all t ≥ 1, as the optimal Laplacian predictor requires counts of all transitions, demanding the use
of full past (Sec. 4.2). To better highlight this selectivity mechanism, we consider a non-Markovian
process, where the role of at becomes fundamental.

Specifically, we focus on the switching Markov process, where we add a switch token to the binary
alphabet, i.e. we consider X = {0, 1,S}. The key difference here compared to the random Markov
generation in Sec. 2.1 is that until we hit switch token, we follow the same binary Markov sequence
generation as the former, but once the switch state is reached, we sample a new Markov kernel
and then generate a new Markov sequence. The switch tokens are sampled according to a parallel
i.i.d. Bernoulli process with probability pswitch (0.01 in our experiments). The sampling process is
described in detail in § E.5. With this data model, the optimal prediction strategy is to use the add-β
estimator in between two switch tokens, and reset the transition counts every time a switch occurs.
We provide empirical evidence in § E.5. Indeed, Fig. 10 illustrates that Mamba implements precisely
this strategy, closely tracking the switching events via the transition factor at: it sets at to be zero
whenever xt = S and to one otherwise.

5.2 NATURAL LANGUAGE MODELING

Table 1: Perplexity results on the WikiText-103 dataset.

Model Params. Perplexity
Mamba-2 (w/o conv) 14.53 M 30.68
Mamba-2 (w/ conv) 14.54 M 27.55

Transformer (w/o conv) 14.46 M 29.28
Transformer (w/ conv) 14.46 M 28.67

To test the generality of our finding that
convolution plays a key role on Markovian
data (Fig. 3), we conduct experiments on
language modeling using the WikiText-
103 dataset. Details on the experimental
setup can be found in § F. By adding or re-
moving convolution in both these models,
we obtain the results in Table 1. The re-
sults illustrate that convolution enhances
the performance of the two architectures,
in particular for Mamba (11% vs. 2%),
highlighting its saliency. Further ablation studies on this task show that together with convolution,
gating also plays a central role (17% change, cf. § E.6).

6 CONCLUSION

Structured state space sequence models (SSMs) and Selective SSMs such as Mamba have shown re-
markable inference speed-ups over transformers while achieving comparable or superior performance
on complex language modeling tasks. In this paper, we studied in-context learning (ICL) capabilities
of Mamba on random Markov chains and show that, unlike transformers, even a single-layer Mamba
efficiently learns the in-context Laplacian smoothing estimator. To explain this, we theoretically and
empirically characterized the representation capacity of Mamba, which revealed the fundamental
role of convolution, together with selectivity and recurrence, in enabling it. We further provided
additional empirical results on non-Markovian data, showing the generality of our insights. Extending
our results to deeper Mamba models, as well as investigating Mamba’s learning dynamics, are some
interesting future directions.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Ekin Akyürek, Bailin Wang, Yoon Kim, and Jacob Andreas. In-context language learning: Arhitec-
tures and algorithms. arXiv preprint arXiv:2401.12973, 2024.

Yu Bai, Fan Chen, Huan Wang, Caiming Xiong, and Song Mei. Transformers as statisticians:
Provable in-context learning with in-context algorithm selection. In Workshop on Efficient Systems
for Foundation Models @ ICML2023, 2023.

Maximilian Beck, Korbinian Pöppel, Markus Spanring, Andreas Auer, Oleksandra Prudnikova,
Michael Kopp, Günter Klambauer, Johannes Brandstetter, and Sepp Hochreiter. xlstm: Extended
long short-term memory. arXiv preprint arXiv:2405.04517, 2024.

Satwik Bhattamishra, Michael Hahn, Phil Blunsom, and Varun Kanade. Separations in the represen-
tational capabilities of transformers and recurrent architectures. Advances in Neural Information
Processing Systems, 37:36002–36045, 2024.

Marco Bondaschi and Michael Gastpar. Batch universal prediction. In 2024 IEEE International
Symposium on Information Theory (ISIT), pp. 3552–3557, 2024. doi: 10.1109/ISIT57864.2024.
10619270.

Marco Bondaschi and Michael Gastpar. Alpha-NML universal predictors. IEEE Transactions on
Information Theory, 71(2):1171–1183, 2025. doi: 10.1109/TIT.2024.3521221.

N. Cesa-Bianchi and G. Lugosi. Prediction, Learning, and Games. Cambridge University Press,
2006.

Nicola Muca Cirone, Antonio Orvieto, Benjamin Walker, Cristopher Salvi, and Terry Lyons. Theo-
retical foundations of deep selective state-space models, 2025. URL https://arxiv.org/
abs/2402.19047.

Róbert Csordás, Kazuki Irie, Jürgen Schmidhuber, Christopher Potts, and Christopher D Manning.
Moeut: Mixture-of-experts universal transformers. arXiv preprint arXiv:2405.16039, 2024.

Tri Dao and Albert Gu. Transformers are SSMs: Generalized Models and Efficient Algorithms
Through Structured State Space Duality. arXiv preprint arXiv:2405.21060, 2024.

Soham De, Samuel L Smith, Anushan Fernando, Aleksandar Botev, George Cristian-Muraru, Albert
Gu, Ruba Haroun, Leonard Berrada, Yutian Chen, Srivatsan Srinivasan, et al. Griffin: Mixing
Gated Linear Recurrences with Local Attention for Efficient Language Models. arXiv preprint
arXiv:2402.19427, 2024.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding, 2018. URL https://arxiv.org/
abs/1810.04805.

Benjamin L. Edelman, Ezra Edelman, Surbhi Goel, Eran Malach, and Nikolaos Tsilivis. The
Evolution of Statistical Induction Heads: In-Context Learning Markov Chains, 2024.

Chanakya Ekbote, Marco Bondaschi, Nived Rajaraman, Jason D. Lee, Michael Gastpar, Ashok Vard-
han Makkuva, and Paul Pu Liang. What one cannot, two can: Two-layer transformers provably
represent induction heads on any-order markov chains, 2025. URL https://arxiv.org/
abs/2508.07208.

Riccardo Grazzi, Julien Siems, Simon Schrodi, Thomas Brox, and Frank Hutter. Is mamba capable
of in-context learning? arXiv preprint arXiv:2402.03170, 2024.

Albert Gu and Tri Dao. Mamba: Linear-Time Sequence Modeling with Selective State Spaces. arXiv
preprint arXiv: 2312.00752, 2023a.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023b.

10

https://arxiv.org/abs/2402.19047
https://arxiv.org/abs/2402.19047
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/2508.07208
https://arxiv.org/abs/2508.07208

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Albert Gu, Tri Dao, Stefano Ermon, Atri Rudra, and Christopher Ré. Hippo: Recurrent memory
with optimal polynomial projections. In Advances in Neural Information Processing Systems,
volume 33, pp. 1474–1487, 2020.

Albert Gu, Isys Johnson, Karan Goel, Khaled Saab, Tri Dao, Atri Rudra, and Christopher Ré.
Combining recurrent, convolutional, and continuous-time models with linear state space layers. In
Advances in Neural Information Processing Systems, volume 34, pp. 572–585, 2021.

John T Halloran, Manbir Gulati, and Paul F Roysdon. Mamba state-space models can be strong
downstream learners. arXiv preprint arXiv:2406.00209, 2024.

Yi Hao, Alon Orlitsky, and Venkatadheeraj Pichapati. On learning markov chains. In Advances in
Neural Information Processing Systems, volume 31, pp. 646–655, 2018.

Roee Hendel, Mor Geva, and Amir Globerson. In-context learning creates task vectors. arXiv preprint
arXiv:2310.15916, 2023.

Samy Jelassi, David Brandfonbrener, Sham M Kakade, and Eran Malach. Repeat after me: Trans-
formers are better than state space models at copying. arXiv preprint arXiv:2402.01032, 2024.

Federico Arangath Joseph, Kilian Konstantin Haefeli, Noah Liniger, and Caglar Gulcehre. Hippo-
prophecy: State-space models can provably learn dynamical systems in context. arXiv preprint
arXiv:2407.09375, 2024.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations (ICLR), 2015.

Pierre Simon Laplace. Essai philosophique sur les probabilités. Courcier, Paris, France, 1814.
Reprinted by Cambridge University Press, 2009. In the reprint, the estimator appears on page 23.

Chris Lu, Yannick Schroecker, Albert Gu, Emilio Parisotto, Jakob Foerster, Satinder Singh, and
Feryal Behbahani. Structured state space models for in-context reinforcement learning. Advances
in Neural Information Processing Systems, 36, 2024.

Ashok Vardhan Makkuva, Marco Bondaschi, Adway Girish, Alliot Nagle, Hyeji Kim, Michael
Gastpar, and Chanakya Ekbote. Local to Global: Learning Dynamics and Effect of Initialization
for Transformers. In The Thirty-eighth Annual Conference on Neural Information Processing
Systems, 2024.

Ashok Vardhan Makkuva, Marco Bondaschi, Alliot Nagle, Adway Girish, Hyeji Kim, Martin Jaggi,
and Michael Gastpar. Attention with Markov: A curious case of single-layer transformers. In The
Thirteenth International Conference on Learning Representations, 2025.

N. Merhav and M. Feder. Universal prediction. IEEE Transactions on Information Theory, 44(6):
2124–2147, 1998. doi: 10.1109/18.720534.

William Merrill, Jackson Petty, and Ashish Sabharwal. The illusion of state in state-space models.
arXiv preprint arXiv:2404.08819, 2024.

Eshaan Nichani, Alex Damian, and Jason D Lee. How Transformers Learn Causal Structure with
Gradient Descent. arXiv preprint arXiv:2402.14735, 2024.

Antonio Orvieto, Soham De, Caglar Gulcehre, Razvan Pascanu, and Samuel L Smith. On the univer-
sality of linear recurrences followed by nonlinear projections. arXiv preprint arXiv:2307.11888,
2023a.

Antonio Orvieto, Samuel L Smith, Albert Gu, Anushan Fernando, Caglar Gulcehre, Razvan Pascanu,
and Soham De. Resurrecting recurrent neural networks for long sequences. arXiv preprint
arXiv:2303.06349, 2023b.

Matteo Pagliardini. GPT-2 modular codebase implementation. https://github.com/epfml/
llm-baselines. Accessed: Jan. 2025.

11

https://github.com/epfml/llm-baselines
https://github.com/epfml/llm-baselines

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Jongho Park, Jaeseung Park, Zheyang Xiong, Nayoung Lee, Jaewoong Cho, Samet Oymak, Kang-
wook Lee, and Dimitris Papailiopoulos. Can mamba learn how to learn? a comparative study
on in-context learning tasks. In Proceedings of the 41st International Conference on Machine
Learning, 2024.

Jiahao Qin and Feng Liu. Mamba-spike: Enhancing the mamba architecture with a spiking front-end
for efficient temporal data processing. arXiv preprint arXiv:2408.11823, 2024.

Alec Radford and Karthik Narasimhan. Improving language understanding by generative pre-training.
2018. URL https://api.semanticscholar.org/CorpusID:49313245.

Nived Rajaraman, Marco Bondaschi, Ashok Vardhan Makkuva, Kannan Ramchandran, and Michael
Gastpar. Transformers on Markov data: Constant depth suffices. In The Thirty-eighth Annual
Conference on Neural Information Processing Systems, 2024.

J. Rissanen. Universal coding, information, prediction, and estimation. IEEE Transactions on
Information Theory, 30(4):629–636, 1984. doi: 10.1109/TIT.1984.1056936.

Clayton Sanford, Daniel Hsu, and Matus Telgarsky. One-layer transformers fail to solve the induction
heads task, 2024. URL https://arxiv.org/abs/2408.14332.

Yash Sarrof, Yana Veitsman, and Michael Hahn. The Expressive Capacity of State Space Models: A
Formal Language Perspective. arXiv preprint arXiv: 2405.17394, 2024.

Neeraj Mohan Sushma, Yudou Tian, Harshvardhan Mestha, Nicolo Colombo, David Kappel, and
Anand Subramoney. State-space models can learn in-context by gradient descent. arXiv preprint
arXiv:2410.11687, 2024.

Jamba Team, Barak Lenz, Alan Arazi, Amir Bergman, Avshalom Manevich, Barak Peleg, Ben
Aviram, Chen Almagor, Clara Fridman, Dan Padnos, et al. Jamba-1.5: Hybrid transformer-mamba
models at scale. arXiv preprint arXiv:2408.12570, 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information
Processing Systems, pp. 5998–6008, 2017.

Qun Xie and A.R. Barron. Minimax redundancy for the class of memoryless sources. IEEE
Transactions on Information Theory, 43(2):646–657, 1997.

Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. An explanation of in-context
learning as implicit bayesian inference. arXiv preprint arXiv:2111.02080, 2021.

L Zhu, B Liao, Q Zhang, X Wang, W Liu, and X Wang. Vision Mamba: Efficient visual representation
learning with bidirectional state space model. arXiv preprint arXiv:2401.09417, 2024.

12

https://api.semanticscholar.org/CorpusID:49313245
https://arxiv.org/abs/2408.14332

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A PRELIMINARIES ON LAPLACIAN SMOOTHING

Laplacian smoothing is a mature and well understood topic. An account can be found, e.g., in Merhav
& Feder (1998); Cesa-Bianchi & Lugosi (2006), with some recent updates in Bondaschi & Gastpar
(2024; 2025). For the sake of completeness, we provide a brief outline of how it applies to our
context. For k-th order Markov data, at every time instant t, the Laplacian add-β estimator applied
to the subsequence of tokens with the same context ik1 ∈ X k as the current one is the predictor that
minimizes the Bayesian cross-entropy loss in Eq. (3), when the Markov kernel is sampled according
to the product Dirichlet distribution Dir(β · 1). We first give an intuition of why this is the case, and
we provide a full proof at the end of the section. We consider the binary case X = {0, 1}, but the
results can be extended to arbitrary finite alphabets.

Consider a given sequence (xt)
T
t=1. For every length-k context ik1 ∈ X k, let (xt)|ik1 be the subse-

quence of tokens preceded by ik1 . Note that, since each sequence (xt) is generated by a k-th order
Markov chain, all the tokens in the sequence with the same length-k prefix share the same conditional
probability distribution. Furthermore, since each of the conditional distributions of the chain is
randomly chosen independently from the others, the subsequence (xt)|ik1 is a sufficient statistic to
estimate the probability distribution of all the tokens with the same prefix ik1 . Therefore, the optimal
prediction for a sequence (xt)

T
t=1 is given by employing the optimal predictor for each i.i.d. subse-

quence (xt)|ik1 , for every ik1 ∈ X k. Since each conditional distribution is sampled from a Dirichlet
distribution with parameter β, it is well known that the optimal predictor for such subsequences is the
add-constant estimator, with constant equal to β. More specifically, if xt−1

t−k = ik1 , then the optimal
estimation for xt is

P(k)
β

(
xt+1 = j | xt

1

)
=

nj + β

n+ 2β
, (7)

where nj is the number of times token j appears in the subsequence xt
1|ik1 = (xℓ ∈ xt

1 : xℓ−1
ℓ−k = ik1),

and n is the length of the subsequence.

We now provide a formal proof of this fact.
Theorem 3. Consider the class of all k-th order Markov kernels P = (Pik1

)ik1∈Xk , where each Pik1
=

P(· | ik1) is a probability distribution on X = {0, 1}. Let each Pik1
be sampled i.i.d. from Dir(β · 1),

and let xk
1 ∼ Unif(X k) and xt+1|xt

1 ∼ Pxt
t−k+1

. Then, the predictor f (j)(xt
1) = P̂(xt+1 = j | xt

1),
for j ∈ {0, 1}, that minimizes the loss

L ≜ − 1

T

∑
t∈[T]

EPExt+1
1 ∼P

[
xt+1 · log f (1)(xt

1) + (1− xt+1) · log f (0)(xt
1)
]

(8)

is the add-β estimator in Eq. (7), i.e. the minimizer f (j)
∗ (xt

1) = P(k)
β (xt+1 = j | xt

1), for all t ≥ k.

Proof. First note that

L = − 1

T

∑
t

EPExt+1
1 ∼P

[
xt+1 · log f (1)(xt

1) + (1− xt+1) · log f (0)(xt
1)
]

= − 1

T

∑
t

Ext
1
Ext+1|xt

1

[
xt+1 · log f (1)(xt

1) + (1− xt+1) · log f (0)(xt
1)
]

= − 1

T

∑
t

Ext
1

[
Ext+1|xt

1
[xt+1] · log f (1)(xt

1) + (1− Ext+1|xt
1
[xt+1]) · log f (0)(xt

1)
]
.

Let us define the distribution f
(1)
∗ (xt

1) ≜ Ext+1|xt
1
[xt+1] and f

(0)
∗ (xt

1) ≜ 1− f
(1)
∗ (xt

1). Then, we can
rewrite the loss as

L =
1

T

∑
t

Ext
1

[
− f

(1)
∗ (xt

1) · log f (1)(xt
1)− f

(0)
∗ (xt

1) · log f (0)(xt
1)
]
.

For every t ∈ [T] and every xt
1 ∈ X t, the term inside the expectation is minimized by picking

f (1)(xt
1) = f

(1)
∗ (xt

1). In fact, note that it can be rewritten as

−f
(1)
∗ (xt

1) · log f (1)(xt
1)− f

(0)
∗ (xt

1) · log f (0)(xt
1)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

= f
(1)
∗ (xt

1) · log
f
(1)
∗ (xt

1)

f (1)(xt
1)

+ f
(0)
∗ (xt

1) · log
f
(0)
∗ (xt

1)

f (0)(xt
1)

− f
(1)
∗ (xt

1) log f
(1)
∗ (xt

1)

− f
(0)
∗ (xt

1) log f
(0)
∗ (xt

1)

= DKL

(
f∗(x

t
1)∥f(xt

1)
)
+H(f∗(x

t
1)),

which is minimized when DKL (f∗(x
t
1)∥f(xt

1)) = 0, i.e., when f(xt
1) = f∗(x

t
1). We will now show

that f∗(xt
1) is precisely the add-β estimator. Consider any context ik1 and any sequence xt

1 such that
xt
t−k+1 = ik1 . Let also p ≜ Pik1

(1) = P(1 | ik1). Then,

f
(1)
∗ (xt

1) ≜ Ext+1|xt
1
[xt+1]

= EP
ik1

|xt
1
Ext+1|xt

1,Pik1

[xt+1]

= EP
ik1

|xt
1
[Pik1

(1)]

= EP
ik1

|xt
1|ik1

[Pik1
(1)],

where in the last equation we used the fact that, when xk
1 ∼ Unif(X k), the subsequence xt

1|ik1 is a
sufficient statistic for Pik1

. Hence,

f
(1)
∗ (xt

1) = EP
ik1

|xt
1|ik1

[Pik1
(1)]

=

∫ 1

0

pβ−1(1− p)β−1pn1(1− p)n0∫ 1

0
qβ−1(1− q)β−1qn1(1− q)n0 dq

· p dp

=

∫ 1

0
pn1+β(1− p)n0+β−1 dp∫ 1

0
qn1+β−1(1− q)n0+β−1 dq

=
Γ(n1 + β + 1)Γ(n0 + β)

Γ(n+ 2β + 1)
· Γ(n+ 2β)

Γ(n1 + β)Γ(n0 + β)

=
n1 + β

n+ 2β
,

where we used the fact that Pik1
∼ Dir(β · 1), that

∫ 1

0
qz1−1(1− q)z0−1 = Γ(z1)Γ(z0)/Γ(z1 + z0),

and that Γ(z + 1) = zΓ(z).

Remark. The proof above is for xk
1 ∼ Unif(X k). However, note that the same proof would also

work for xk
1 distributed according to any distribution that is independent of the Markov kernel P . If

instead the distribution depends on P (e.g., the stationary distribution of the Markov chain), then the
proof would fail in the step where xt

1|ik1 is a sufficient statistic for Pik1
.

Remark. It is important to note that, to be able to implement such a predictor requires in-context
capabilities: at inference, in order to optimally predict the next token, the model must be able to look
into the previous tokens of the test sequence, and count the tokens with the correct prefix.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

B MAMBA-BASED LANGUAGE MODELING ARCHITECTURE

Mamba block can be incorporated into a full-fledged language model as follows: let x =
(x1, x2, · · · , xT) ∈ X T be an input token-sequence over the alphabet X ; here X = {0, 1} as
explained in Sec. 2.1. Then, at every t ∈ [T], the output of the language model θ is given by the
following sequence of equations (Dao & Gu, 2024):

xt = ext ∈ Rd, (Embedding)

ut = xt +Mamba(xt
1) ∈ Rd, (Mamba)

vt = ut +W2[ReLU(W1ut)⊙W3ut] ∈ Rd, (MLP)

logitt = Wℓ vt ∈ RS , (Linear)

fθ(x
t
1) ≜ Pθ

(
xt+1 = · | xt

1

)
= softmax(logitt) ∈ [0, 1]S , (Prediction)

where the parameters ei ∈ Rd,W1 ∈ R4d×d,W2 ∈ Rd×4d and Wℓ ∈ RS×d are learnable, and
fθ(x

t
1) is the probability law for the next symbol xt+1 conditioned on the past xt

1. We omit the
layer norm here for simplicity. We compactly denote the set of all model parameters as θ, i.e.
θ = ({ei}i∈X ,θMamba,W1,2,3,Wℓ) ∈ RD.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

C PRELIMINARIES AND PROOF OF THM. 1 AND THM. 4

C.1 EMPIRICAL INSIGHTS

Here we expand upon our empirical observations in 4.2.1, which form the basis of our proof.

State-to-state transition factor at ≈ 1 for all t ≥ 1. We empirical evidence supporting this
observation in Fig. 4.

Position t

a
t

Figure 4: Value of at across positions at convergence.

Convolution window w ≥ k + 1. Recalling that k is the Markov order, we empirically observe
that the window that w = k + 1 is sufficient for the full Mamba to learn the Laplacian smoothing
on kth-order Markov chains. To understand why, note that in the MambaZero architecture above,
apart from the MambaZero block, all remaining equations operate on the current token at time t. In
the MambaZero block, same as the Mamba block except ReLU, the dependency of the output yt on
the previous tokens is due to that of the state Ht on (x̃t, bt) in the update equation, and of ct in the
state projection. Since (x̃t, bt, ct) depend on the past through the convolutions, a window of size
k+1 enables them to keep track of the current token as well as its length-k prefix, which is necessary
to compute the counts needed in Laplacian smoothing. On the other hand, if w ≤ k, then one can
find confusable sequences, i.e. sequences that share the same number of occurrences of all length-k
prefixes, but whose counts of the tokens following each prefix is different.

For such sequences, the state Ht is the same, and so are the predicted probabilities by the Mamba
model; however, the optimal estimator, depending on the transition counts, would give very different
probability estimates, allowing Mamba’s prediction loss to deviate from that of the optimal. For
example, consider k = 1. If w = 1, then (x̃t, bt, ct) depend only on the current token xt. Then,
consider the two sequences x = (0, 1, 0, 1, 0, 1) and x̃ = (0, 0, 0, 1, 1, 1). At time t = 6, these two
sequences would give the same state Ht and the same output yt, since they share the same number of
tokens 0 and 1. Therefore, the estimated probability given by the model would be the same in both
cases. However, the optimal add-constant estimator (with β = 1) would estimate the probability of
xt+1 = 1 to be 1/4 for x, and 3/4 for x̃.

Further, it is sufficient that the convolution for ct has window wC = k. That is, the convolution convC
involved in the computation of ct can have a window size equal to the Markov order k (i.e., one less
than convX and convB) without affecting the model’s capability of learning the task (or, equivalently,
the left-most kernel coefficients of convC can be taken to be zero). Intuitively, this is because the
role of ct in the state projection is to select the correct transition counts for the computation of the
estimator, distilled into yt. In order to do so, it is sufficient to know the length-k context of the current
symbol xt, which can be encoded by a convolution with window size k.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

C.2 PROOF OF THM. 1

Let β > 0 be the constant of the considered add-constant estimator. Let us fix a = 0 and ∆t = 1, so
that at = 1, for all t ≥ 1. This can be done by picking, e.g., w∆ = 0 and δ such that softplus(δ) = 1.
Note that the application of convolution to a given sequence of vectors zt

1 can be rewritten as a linear
matrix-form operation. For example, for convX , one has that

convX(zt) = D
(0)
X zt−1 +D

(1)
X zt (9)

where D(0)
X and D

(1)
X are diagonal matrices. The same holds for convB and convC , with correspond-

ing diagonal matrices D(0)
B , D

(1)
B , D

(0)
C and D

(1)
C .

Let us take the embedding vectors ei, i ∈ X , to be the one-hot encoding vectors for the alphabet
X , interleaved with zeros, i.e., let ei be such that ei,2i−1 = 1 and 0 otherwise. Furthermore, take
WX to be the 2S × 2S matrix such that WX(i, j) = 1 for i = 2k and j = 2k − 1, for 1 ≤ k ≤ S,
and 0 otherwise. (The role of WX is shift each coordinate of the embedding vectors by one.) Take
now convX to be such that its output is simply equal to the current vector, i.e., take D

(0)
X = 0 and

D
(1)
X = I2S×2S . Take also WB = IS×S and convB so that the output is equal to the second-to-last

vector, i.e., take D
(0)
B = IS×S and D

(1)
X = 0. Finally, take WC = IS×S and convC such that

C(0) = 0 and C(1) = IS×S .

The final logit vector is in general equal to

logitt = Wℓxt +WℓWo x̃
(x1)b(x1)⊤ct +

∑
ij

nij WℓWo x̃
(ij)b(ij)⊤ct. (10)

Using the matrices chosen above, we can simplify the formula as follows. Firstly, note that b(x1) = 0,
as the b vectors only depend on the second-to-last vectors. Furthermore, since the embedding vectors
are orthogonal to each other, we have that b(ij)⊤ct = 1 whether i = xt, and 0 otherwise. (That
is, only the correct counts are kept in the logit computation.) With these simplifications, the logit
formula becomes

logitt = Wℓxt +
∑
j

nxt,j WℓWo x̃
(j). (11)

Finally, take Wo = I2S×2S and take Wℓ such that Wℓ(i) = β1 for all odd i, Wℓ(2i, i) = 1 for
1 ≤ i ≤ S, and 0 otherwise. With this choice, we get, for all t ≥ 1,

logitt = β1+
∑
j

nxt,jei (12)

where ei is the one-hot vector for symbol i ∈ X . After the normalization, we finally get

fθ(x
t
1)j =

nij + β∑
k nik + Sβ

(13)

if xt = i, for i ∈ X . This is precisely the required add-β Laplacian estimator.

C.3 THM. 4: DIMENSIONALITY REDUCTION FOR THE BINARY CASE

Theorem 4. For the canonical MambaZero model with dimensions d = N = 2, e = 1, and
convolution window w = 2, there is a choice of parameters such that the model prediction is
arbitrarily close to the Laplacian estimator for random first-order Markov chains. More formally, for
any β > 0 and ϵ ∈ (0, 1), there exists a set of parameters θ such that, for all sequences (xt)t≥1 and
all t ≥ 1,

DKL

(
P(1)
β (· | xt

1)∥Pθ

(
· | xt

1

))
≤ ϵ.

Proof. Fix ϵ > 0 and let β > 0 be the constant of the considered add-constant estimator. Let us fix
a = 0 and ∆t = 1, so that at = 1, for all t ≥ 1. This can be done by picking, e.g., w∆ = 0 and δ
such that softplus(δ) = 1. Let us compactly denote the convolution kernels as

convX =

(
α00 α01

α10 α11

)
, convB =

(
γ00 γ01
γ10 γ11

)
(14)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

where each row corresponds to the kernel weights applied time-wise to each coordinate of the input
sequence (xt)t≥1. Since the window for convC is wC = 1, we can simply assume w.l.o.g. that
Ct = WCxt.

Let us denote the embedding vectors to be e0 = (e00, e01)
⊤ and e1 = (e10, e11)

⊤, and assume that
the vectors are not collinear. Take also WX = WB such that

WX e0 =

(
1
0

)
, WX e1 =

(
0
1

)
(15)

and take WC such that

WC e0 =

(
c0
0

)
, WC e1 =

(
0
c1

)
. (16)

Let us also take the kernels of convX and convB to be the same across coordinates, i.e.,

convX =

(
α0 α1

α0 α1

)
, convB =

(
γ0 γ1
γ0 γ1

)
(17)

such that the following conditions are satisfied:
α0γ0 + α1γ1 = 0

α0γ1 + α1γ0 > 0

α0 ̸= α1
α0γ1

α0γ1+α1γ0
= −βϵ

(18)

Note that, with such a choice of parameters, we have

X(0) =

(
α1

0

)
, X(1) =

(
0
α1

)
, B(0) =

(
γ1
0

)
, B(1) =

(
0
γ1

)
(19)

C(0) =

(
c0
0

)
, C(1) =

(
0
c1

)
(20)

X(00) =

(
α0 + α1

0

)
, X(01) =

(
α0

α1

)
, X(10) =

(
α1

α0

)
, X(11) =

(
0

α0 + α1

)
(21)

B(00) =

(
γ0 + γ1

0

)
, B(01) =

(
γ0
γ1

)
, B(10) =

(
γ1
γ0

)
, B(11) =

(
0

γ0 + γ1

)
. (22)

(We replaced the vector notation of Sec. 4 with matrix notation, so that X(0) has to be intended as
x̃(0), and so on.) Take also Wo = Wℓ = I . With this choice of parameters, the final logit vector
becomes, using Eq. (5),

logitt = Wℓ

(
xt +WoX

(x1)B(x1)
⊤
C(xt) + 1{x1 ̸=xt}WoX

(x1xt)B(x1xt)⊤C(xt)

+ nxtxt
Wo X

(xtxt)B(xtxt)⊤Ct + nxtx̄t
Wo

(
X(xtx̄t)B(xtx̄t)⊤ +X(x̄txt)B(x̄txt)⊤

)
Ct

)
(23)

=

(
e00 + c0α1γ1

e01

)
+ 1{x1=1} ·

(
0

c0α0γ1

)
+ n00 ·

(
(α0 + α1)(γ0 + γ1)c0

0

)
+ n01 ·

(
(α0γ0 + α1γ1)c0
(α0γ1 + α1γ0)c0

)
(24)

=

(
e00 + c0α1γ1

e01

)
+ 1{x1=1} ·

(
0

c0α0γ1

)
+ n00 ·

(
(α0γ1 + α1γ0)c0

0

)
+ n01 ·

(
0

(α0γ1 + α1γ0)c0

)
(25)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

if xt = 0, and

logitt =

(
e10

e11 + c1α1γ1

)
+ 1{x1=0} ·

(
c1α0γ1

0

)
+ n10 ·

(
(α0γ1 + α1γ0)c1
(α0γ0 + α1γ1)c1

)
+ n11 ·

(
0

(α0 + α1)(γ0 + γ1)c1

)
(26)

=

(
e10

e11 + c1α1γ1

)
+ 1{x1=0} ·

(
c1α0γ1

0

)
+ n10 ·

(
(α0γ1 + α1γ0)c1

0

)
+ n11 ·

(
0

(α0γ1 + α1γ0)c1

)
(27)

if xt = 1. Take now

e00 = e11 = (α0γ1 + α1γ0)βc0 − α1γ1c0 (28)
e01 = e10 = (α0γ1 + α1γ0)βc0 − α0γ1c0 (29)

With this choice of parameters, after the layer normalization, the final output probability vector is

fθ(x
t
1) =

(
n00 + β

n00 + n01 + 2β + 1{x1=0} · βϵ
,

n01 + β + 1{x1=0} · βϵ
n00 + n01 + 2β + 1{x1=0} · βϵ

)⊤

(30)

if xt = 0, and

fθ(x
t
1) =

(
n10 + β + 1{x1=1} · βϵ

n10 + n11 + 2β + 1{x1=1} · βϵ
,

n11 + β

n10 + n11 + 2β + 1{x1=1} · βϵ

)⊤

(31)

if xt = 1. Note that the resulting predicted probabilities exactly match the add-β estimator when
x1 ̸= xt, but they are slightly different when x1 = xt due to the additional βϵ factor. We now show
that, when the additional factor is present, the two predictors nevertheless differ by at most ϵ in KL
distance. We show it for the case x1 = xt = 0, the other case follows in the same way. In fact, note
that

n01 + β + βϵ

n00 + n01 + 2β + βϵ
=

n01 + β

n00 + n01 + 2β
·

1 + βϵ
n01+β

1 + βϵ
n00+n01+2β

. (32)

Now, since

1 ≤ 1 +
βϵ

n01 + β
≤ 1 + ϵ (33)

and
1 ≤ 1 +

βϵ

n00 + n01 + 2β
≤ 1 + ϵ (34)

we have that
n01 + β

n00 + n01 + 2β
≤ n01 + β + βϵ

n00 + n01 + 2β + βϵ
· (1 + ϵ) (35)

but we also have
n00 + n01 + 2β + βϵ

n00 + n01 + 2β
≤ 1 +

βϵ

n00 + n01 + 2β
≤ 1 + ϵ, (36)

so that

DKL

(
P(1)
β

(
· | xt

1

)
∥Pθ

(
· | xt

1

))
= P(1)

β

(
xt+1 = 0 | xt

1

)
log

P(1)
β (xt+1 = 0 | xt

1)

Pθ (xt+1 = 0 | xt
1)

+ P(1)
β

(
xt+1 = 1 | xt

1

)
log

P(1)
β (xt+1 = 1 | xt

1)

Pθ (xt+1 = 1 | xt
1)
(37)

=
n00 + β

n00 + n01 + 2β
log

n00+β
n00+n01+2β

n00+β
n00+n01+2β+βϵ

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

+
n01 + β

n00 + n01 + 2β
log

n01+β
n00+n01+2β

n01+β+βϵ
n00+n01+2β+βϵ

(38)

≤ n00 + β

n00 + n01 + 2β
log(1 + ϵ) +

n01 + β

n00 + n01 + 2β
log(1 + ϵ)

(39)
≤ log(1 + ϵ) (40)
≤ ϵ (41)

concluding the proof.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

D PROOF OF THM. 2

Consider a recurrent model of the form Ht = h(Ht−1, xt) and yt = g(Ht) for each t ≥ 1 where
Ht ∈ Rd and the model has a bit precision of p. In this proof, we will assume that the state space of
the underlying Markov chain is {0, 1}. By the recurrent architecture, the predicted distribution over
the next token xt+k+1 is of the form,

yt+k = Pθ

(
xt+k+1 = z | xt+k

1

)
= g(z,Ht+k). (42)

Recall that the add-1 estimator is defined as,

n(z, xt+k
t+1) + 1

n(xt+k
t+1) + 2

, (43)

where n(zk1) =
∑t+1

i=1 I(x
i+k−1
i = zk1) indicates the number of times zk1 appears in the sequence.

This is the optimal estimator for sequences drawn from the product-Dirichlet prior: for every ik1 ,
P (· | ik1) ∼ Dir(1 · 1), which is the distribution we will assume for this proof. Fixing xt

1, we can
write the add-1 estimator more explicitly as a function of xt+k

t+1 as,

P(k)
1

(
xt+k+1 = z | xt

1, x
t+k
t+1 = zk1

)
=

n(zk1 , z) + 1

n(zk1) + 2
. (44)

Now, fixing xt
1, correctness of the recurrent model means that, almost surely over P drawn from the

prior, and xt
1 ∼ P and zk1 ∼ P (·|xt

1),

g(xt+k+1 = 0, Ht+k) ∈ P(k)
1

(
xt+k+1 = 0 | xt

1, x
t+k
t+1 = zk1

)
+ [−ε, ε]. (45)

where Ht+k is a function of xt
1 and zk1 . As t → ∞, under the randomness of the draw of xt

1 ∼ P , by
the strong law of large numbers RHS converges almost surely to the conditional distribution under P ,
almost surely over the choice of P from the product-Dirichlet prior. Here we use the fact that for P
drawn from the product-Dirichlet prior, P (z|zk1) > 0 almost surely, and so the resulting distributions
are exponentially mixing and ergodic. Namely, for each zk1 ∈ {0, 1}k, almost surely over P drawn
from the product-Dirichlet prior,

Pr

(
lim sup
t→∞

∣∣∣P(k)
1

(
xt+k+1 = 0 | xt

1, x
t+k
t+1 = zk1

)
− P (0|zk1)

∣∣∣ > γ)

)
= 0 (46)

for any γ > 0. Therefore, a necessary condition to satisfy Equation (45) is, for each zk1 ∈ X k,

g(xt+k+1 = 0, Ht+k) ∈ P (0|zk1) + [−ε− ηP (t), ε+ ηP (t)]. (47)

for some ηP (t), which is a function of P satisfying lim supt→∞ ηP (t) = 0 almost surely over P
drawn from the prior; note that Ht+k is implicitly a function of xt

1 and zk1 . Divide the interval [0, 1]
into 1/ε disjoint intervals of size ε each. Recall that P (·|zk1) ∼ ρ = Dir(1 · 1), which implies that
the random variable P (0|zk1) for each fixed zk1 (randomness is over P) is distributed as,

Pr
ρ

[
P (0|zk1) = ·

∣∣zk1] = Unif([0, 1]). (48)

Consider the buckets Bε = {[0, ε), [ε, 2ε), · · · , [1− ε, 1]}. Define the function round(p) : [0, 1] →
{0, · · · , |Bε| − 1} to return the index of the bucket in Bε such that p falls in that bucket.

Lemma 1. Consider any function f(zk1) : X k → {0, · · · , |Bε| − 1} such that, pointwise,

|round(P (0|zk1))− f(zk1)| ≤ r. (49)

Then, when P (0|zk1)
i.i.d.∼ Dir(1 · 1),

HShannon({f(zk1) : zk1 ∈ {0, 1}k}) ≥ 2k ((1− 3ε) log(1/ε)− log(2r + 1)) (50)

where the randomness is over the draw of P and HShannon is the discrete Shannon entropy.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Proof. Recall that P (0|zk1)
i.i.d.∼ Unif([0, 1]) across zk1 ∈ X k. Then,

Pr(round(P (0|zk1)) = j) = Pr(P (0|zk1) ∈ [ε(j − 1/2), ε(j + 1/2))) (51)

=

{
ε if 1 ≤ j ≤ |Bε| − 2,

3ε/2 if j = 0 or j = |Bε| − 1.
(52)

This implies that, by independence of the P (0|zk1)’s across zk1 ∈ X k,

HShannon
({

P (0|zk1) : zk1 ∈ X k
})

≥ |X |k(1− 3ε) log(1/ε). (53)

Let e(zk1) be the random variable P (0|zk1)− f(zk1). P (0|zk1) is a measurable function of f(zk1) and
e(zk1), and therefore,

HShannon
({

f(zk1) : z
k
1 ∈ X k

}
∪
{
e(zk1) : z

k
1 ∈ X k

})
≥ HShannon

({
P (0|zk1) : zk1 ∈ X k

})
(54)

Note that e(zk1) is bounded in the rate {−r, · · · , r} and can take at most 2r + 1 values. Therefore,
H

({
e(zk1) : z

k
1 ∈ X k

})
≤ |X |k log(2r + 1). Since H(A,B) ≤ H(A) +H(B), we have that,

HShannon
({

f(zk1) : z
k
1 ∈ X k

})
≥ HShannon

({
P (0|zk1) : zk1 ∈ X k

})
−H

({
e(zk1) : z

k
1 ∈ X k

})
(55)

≥ |X |k ((1− 3ε) log(1/ε)− log(2r + 1)) . (56)

Recall that we are guaranteed that g(xt+k+1 = 0, Ht+k) ∈ P (0|zk1) + [−ε − ηP (t), ε + ηP (t)].
This implies that the recurrent model is able to recover round(p) for p = P (0|zk1) up to an error
of r = ⌈η(t)/ε⌉ for each zk1 ∈ X k by computing round(p̂) where p̂ = g(xt+k+1 = 0, Ht+k).
Informally, this just means that p̂ is likely to fall in a bucket close to p. In combination with Lemma 1,
for f(zk1) = g(xt+k+1 = 0, Ht+k) we have that,

HShannon({g(xt+k+1 = 0, Ht+k) : z
k
1 ∈ {0, 1}k}) ≥ 2k ((1− 3ε) log(1/ε)− log(2⌈ηP (t)/ε⌉+ 1))

(57)

Note however, that g(xt+k+1 = 0, Ht+k) is a function of zk1 implicitly, through Ht+k (which is also
a function of xt

1). Since the dimensionality of Ht+k is d and the model is implemented to p bits of
precision,

HShannon({g(xt+k+1 = 0, Ht+k) : z
k
1 ∈ {0, 1}k}) ≤ HShannon(Ht+k) ≤ dp (58)

where all randomness here is induced by the random draw of the kth-order Markov kernel P .
Therefore, for the correctness guarantee Equation (45) to hold, we need,

dp ≥ 2k ((1− 3ε) log(1/ε)− log(2⌈ηP (t)/ε⌉+ 1)) (59)

in the limit t → ∞, and noting that lim supt→∞ ηP (t) = 0 almost surely over P drawn from the
prior, it is necessary that,

dp ≥ 2k(1− 3ε) log(1/ε). (60)

Fig. 5 provides empirical evidence that the exponential dependency of the theorem on the order k is
consistent.

Remark. The proof above assumes that the kth-order Markov chain is on a binary state space.
However, the result can easily be extended to give the lower bound d · p ≥ Ω(|X |k) for larger state
spaces, as well as similar scaling results for priors Dir(β · 1) for any β > 0. Furthermore, we believe
it should be possible to replace the L∞ error guarantee in Equation (6) by the KL-divergence between
the two distributions without significantly changing the conclusion (d · p = 2Ω(k)).

Intuition. The intuition behind this result is in the manner in which the recurrent architecture carries
out computation: by proceeding sequentially and compressing the information from the sequence it
has seen thus far at some time t into a small hidden vector, the model does not know what the next

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

k tokens will be: the knowledge of this is vital to be able to compute the add-β estimator at time
t + k + 1 with a small memory footprint. Indeed, when the identity of the next k tokens changes,
the output of the model at time t + k + 1 must look drastically different (as the add-β estimator
corresponds to approximately evaluating P(·|ik1), which are unrelated distributions under different
choices of ik1). There are ∼ 22

k

possible values the set P = {P(·|ik1) : ik1 ∈ {0, 1}k} can take. But
when d and p are small, the output of the model just cannot take so many values: it can realize at
most 2dp possible sets. In other words, in order to succeed, the recurrent architecture is essentially
forced to keep track of the number of occurrences of each ik1 ∈ {0, 1}k in the sequence at each time
t, which costs an exponential dependence on k in the hidden dimension/precision.

1 2 3 4 5
Order

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
Te

st
 lo

ss

d = 2
d = 4
d = 8
d = 16
d = 32

Figure 5: Relation between the Markov order k and the hidden dimension d of the 1-layer Mamba
model. The plot shows that d = 2k is sufficient for the model to learn the k-th order Markov task.
This corroborates the fact that Theorem 2 in the main paper has the correct order dependency.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

E ADDITIONAL RESULTS

E.1 MULTIPLE STATES

Fig. 6 shows that our results extend to larger number of states.

0 5 10 15 20 25 30 35
Iteration (x 200)

0.0

0.1

0.2

0.3

0.4

0.5

Te
st

 lo
ss

 g
ap

2 states
4 states
6 states
8 states

(a) Absolute test loss gap

0 5 10 15 20 25 30 35
Iteration (x 200)

0.0

0.1

0.2

0.3

0.4

0.5

Lo
ss

 g
ap

 re
la

tiv
e

to
 o

pt
im

al

2 states
4 states
6 states
8 states

(b) Relative test loss gap

Figure 6: Test loss gap from the optimal for 1-layer Mamba and first-order Markov data, for different
number of states. (a) shows the absolute gap L(θ)− L∗; (b) shows the relative gap (L(θ)− L∗)/L∗.
The loss gap is consistently small for all state sizes.

E.2 DEEPER NETWORKS

Fig. 7 show that our results are consistent with larger number of layers.

1 2 3 4
Order

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Te
st

 lo
ss

1 layer
2 layers
3 layers
4 layers

(a) Mamba

1 2 3 4
Order

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Te
st

 lo
ss

1 layer
2 layers
3 layers
4 layers

(b) Transformers

Figure 7: Test loss gap from the optimal for Mamba and Transformers, for different number of layers
and Markov orders. Mamba has a smaller loss gap than transformers across all orders. Furthermore,
adding more layers to Mamba does not significantly improve performance. As expected, 1-layer
Transformers cannot solve the Markov task, while 1-layer Mamba can.

E.3 HOLD-OUT EXPERIMENT

We also consider the following interesting experiment: we trained Mamba only on sequences from a
subset of the Markov simplex, specifically the interval [0, 0.5], and we tested it on sequences from
its complement [0.5, 1]. Interestingly, our experiments show that the test loss still converges to the
optimal. However, by inspecting the actual estimated probabilities on a fixed test sequence, we see that
the absolute difference between the model’s estimation and the optimal Laplacian smoothing is high

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

for the first samples, and gradually decreases as the sequence progresses. This is justified by the fact
that the Laplacian estimator is not only Bayes-optimal, but also minimax optimal (i.e., independently
of the prior on the simplex) in the limit of long sequences (i.e., the gap from the optimal loss goes
to 0 as n → ∞). Table 2 shows the absolute difference |Pθ(xt = 1|xt−1

1) − P∗(xt = 1|xt−1
1)| for

several t, showing how this difference gradually goes to zero as t increases.

Table 2: Results for the hold-out experiment.

Length t Abs. difference from optimal
1 0.378± 0.050
50 0.098± 0.039
100 0.007± 0.003
300 0.001± 0.001

E.4 CONVOLUTION

Fig. 8 shows that adding convolution to transformers (similarly to Mamba) makes the model solve
the task with just one layer. On the contrary, Fig. 9 shows that Mamba needs two layers to solve the
task if convolution is removed. Table 3 shows that a one-layer Mamba without convolution cannot
learn the optimal estimator, no matter how wide the model is.

0 10 20 30 40 50 60 70
t : x_t = 0

0.0

0.2

0.4

0.6

0.8

1.0

P
re

di
ct

ed
 p

ro
ba

bi
lit

y

1-layer Mamba
1-layer Transformer
1-layer Transformer + convolution
Optimal predictor

(a) Predicted probability

0 5 10 15 20 25 30 35
Iteration (x 200)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Te
st

 lo
ss

1-layer Mamba
1-layer Transformer
1-layer Transformer + convolution

(b) Test loss

Figure 8: Predicted probability and test loss for Transformers with and without convolution. Adding
convolution to the K,Q, V matrices of transformers makes the models succeed in learning the
Markov task, similarly to 1-layer Mamba.

Table 3: Experiments on one-layer Mamba without convolution, with varying width. The model does
not learn the optimal estimator successfully.

Hidden dimension d Avg. test loss gap from optimal
10 0.113± 0.032
100 0.158± 0.055
1000 0.140± 0.072

E.5 SWITCHING MARKOV

Here we detail the switching Markov process more formally:

1. Initialize t = 0.
2. Draw a binary Markov kernel P with each row sampled i.i.d. from Dir(β · 1).

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

0 10 20 30 40 50 60 70
t : x_t = 0

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P
re

di
ct

ed
 p

ro
ba

bi
lit

y

1-layer Mamba
1-layer Mamba without convolution
2-layer Mamba without convolution
Optimal predictor

(a) Predicted probability

0 2 4 6 8 10 12 14
Iteration (x 200)

0.0

0.1

0.2

0.3

0.4

0.5

Te
st

 lo
ss

1-layer Mamba
1-layer Mamba without convolution
2-layer Mamba without convolution

(b) Test loss

Figure 9: Predicted probability and test loss for the full 1-layer Mamba and a 2-layer Mamba without
convolution. Similarly to transformers, Mamba needs two layers to solve the Markov task when
convolution is removed.

3. Let xt = S with probability pswitch, or sample xt ∼ Pxt
t−k+1,:

with probability 1− pswitch.
4. If xt = S, set t = t+ 1 and go to step 2; if xt ̸= S, set t = t+ 1 and go to step 3.

Fig. 10 illustrates the behavior of Mamba on this process when pswitch = 0.01.

0 50 100 150 200 250 300
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

t : xt = 0

Pr
ed

ic
te

d
pr

ob
ab

ili
ty

P θ
(x

t
+

1
=

1
|x

t 1

)

1-layer Mamba
Optimal estimator

(a) Predicted probabilities

0 100 200 300 400 500

0.0

0.2

0.4

0.6

0.8

1.0

Position t

a
t

(b) Value of at across positions

Figure 10: One-layer Mamba on switching Markov data. Mamba is able to learn the optimal predictor
by forgetting past counts every time a switch token occurs. This is achieved by setting at = 0 at
every switch, and at = 1 otherwise.

E.6 FURTHER ABLATION FOR NATURAL LANGUAGE

The fundamental role played by convolution in modeling natural language is demonstrated in Table 1.
However, we find that other components, in particular gating factor at, play an essential role as
well, when natural language is considered. In Table 4, we show the increase in test perplexity when
convolution, gating factor at and non-linearities are individually removed from the full Mamba-2
architecture.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Table 4: Perplexity results on the WikiText-103 dataset.

Model Params. Perplexity Percentage increase
Mamba-2 (full) 14.54 M 27.55 –
Mamba-2 (w/o conv) 14.53 M 30.68 11%
Mamba-2 (w/o gating factor) 14.54 M 32.16 17%
Mamba-2 (w/o non-linearities) 14.54 M 28.98 5%

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

F MODEL ARCHITECTURES AND HYPER-PARAMETERS

The following tables discuss details on the architectures and hyperparameters used in all the paper’s
experiments. Each experiment was run on a single Nvidia A100 GPU. The time taken by each
experiment was between 10 to 60 minutes.

Table 5: Parameters in the Mamba architecture with their shape.

Parameter Matrix shape

embedding 2× d
mamba.A 1
mamba.dt 1
mamba.in_proj (2ed+ 2N + 1)× d
mamba.conv1d (ed+ 2N)× w
mamba.out_proj d× (2ed+ 2N + 1)
mlp.fc1 4d× d
mlp.fc2 d× 4d
lm_head d× 2

Table 6: Settings and parameters for the Mamba model used in the experiments.

Dataset k-th order binary Markov source
Architecture Based on the Mamba-2 architecture as implemented in Dao & Gu (2024)

Batch size Grid-searched in {16, 32, 64, 128, 256}
Accumulation steps 1

Optimizer AdamW (β1 = 0.9, β2 = 0.95)
Learning rate 0.001
Scheduler Cosine
Iterations 10000
Weight decay 1× 10−3

Dropout 0
Sequence length Grid-searched in {128, 256, 512}
Embedding dimension Grid-searched in {2, 4, 8, 16, 32}
Mamba layers 1
Heads 1
Convolution window Between 2 and 6

Repetitions 5

Table 7: Parameters in the transformer architecture with their shape.

Parameter Matrix shape

transformer.wte 2× d
transformer.wpe N × d
transformer.h.ln_1 (×ℓ) d× 1
transformer.h.attn.c_attn (×ℓ) 3d× d
transformer.h.attn.c_proj (×ℓ) d× d
transformer.h.ln_2 (×ℓ) d× 1
transformer.h.mlp.c_fc (×ℓ) 4d× d
transformer.h.mlp.c_proj (×ℓ) d× 4d
transformer.ln_f d× 1

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Table 8: Settings and parameters for the transformer model used in the experiments.

Dataset k-th order binary Markov source
Architecture Based on the GPT-2 architecture as implemented in Pagliardini

Batch size Grid-searched in {16, 32, 64, 128, 256}
Accumulation steps 1

Optimizer AdamW (β1 = 0.9, β2 = 0.95)
Learning rate 0.001
Scheduler Cosine
Iterations 10000
Weight decay 1× 10−3

Dropout 0
Sequence length Grid-searched in {128, 256, 512, 1024}
Embedding dimension Grid-searched in {4, 8, 16, 32}
Transformer layers Between 1 and 2 depending on the experiment
Attention heads 1

Repetitions 5

29

	Introduction
	Related Work

	Problem setup
	Input data: Random Markov chains
	Mamba architecture
	Learning task: next-token prediction
	Optimal estimator: Laplacian smoothing

	Does Mamba learn in-context estimators?
	How Mamba implements the Laplacian estimator
	MambaZero: Simplified model
	Main theorem: Mamba represents the Laplacian estimator
	Key mechanism and proof sketch

	Lower bound: fundamental limit on the representation power of Mamba

	Beyond Markov
	Switching Markov model
	Natural language modeling

	Conclusion
	Preliminaries on Laplacian smoothing
	Mamba-based language modeling architecture
	Preliminaries and Proof of Thm. 1 and Thm. 4
	Empirical insights
	Proof of Thm. 1
	Thm. 4: dimensionality reduction for the binary case

	Proof of Thm. 2
	Additional results
	Multiple states
	Deeper networks
	Hold-out experiment
	Convolution
	Switching Markov
	Further ablation for natural language

	Model architectures and hyper-parameters

