Under review as a conference paper at ICLR 2026

FROM MARKOV TO LAPLACE: HOw MAMBA
IN-CONTEXT LEARNS MARKOV CHAINS

Anonymous authors
Paper under double-blind review

ABSTRACT

While transformer-based language models have driven the AI revolution thus
far, their computational complexity has spurred growing interest in viable al-
ternatives, such as structured state space sequence models (SSMs) and Selec-
tive SSMs. Among these, Mamba (S6) and its variant Mamba-2 have shown
remarkable inference speed-ups over transformers while achieving comparable
or superior performance on complex language modeling tasks. However, despite
these architectural innovations and empirical successes, the fundamental learn-
ing capabilities of Mamba remain poorly understood. In this paper, we address
this gap by studying in-context learning (ICL) on Markov chains and uncover-
ing an interesting phenomenon: even a single-layer Mamba efficiently learns the
in-context Laplacian smoothing estimator, which is both Bayes and minimax op-
timal. To explain this, we theoretically characterize the representation capacity
of Mamba and reveal the fundamental role of convolution in enabling it to repre-
sent the optimal Laplacian smoothing. These theoretical insights align strongly
with empirical results and, to the best of our knowledge, represent the first formal
connection between Mamba and optimal statistical estimators. Finally, we outline
promising research directions inspired by these findings. Code is available at
https://anonymous.4open.science/r/Markov—Mamba—-39C5.

1 INTRODUCTION

Transformers have been at the forefront of recent breakthroughs in language modeling, driving the Al
revolution (Vaswani et al.,|2017; |Radford & Narasimhan, 2018} |Devlin et al., 2018)). Despite their
empirical success, transformers suffer from high computational complexity, such as quadratic scaling
in sequence length during training and linear cache size at inference (Gu & Daol 2023a). To address
these limitations, there is a growing interest in designing alternative efficient architectures among
which structured state space models (SSMs) are the most prominent. In particular, Selective SSMs
such as Mamba and Mamba-2, have achieved state-of-the-art results in various language modeling
tasks, while greatly improving the inference throughput (Cirone et al., 2025)).

Motivated by this success, there is tremendous interest in understanding the sequential modeling
abilities of SSMs, especially that of Mamba. In particular, mirroring a theme that has been successful
in unraveling fundamental mechanisms (e.g. induction heads) behind transformers (Makkuva et al.,
20255 |2024; Rajaraman et al., [2024; [Nichani et al., 2024} [Edelman et al.| [2024)), a growing body
of research explores Mamba through its in-context learning (ICL) capabilities (Grazzi et al., [2024;
Halloran et al. 2024} |Akytirek et al.,2024; Park et al.,2024). While these works reveal interesting
insights about Mamba’s ICL abilities vis-a-vis transformers, they are largely empirical in nature, and
we currently lack a fundamental theoretical understanding of Mamba and its underlying learning
mechanisms. We are thus motivated to ask:

Can we systematically characterize the ICL capabilities of Mamba?

In this paper, we approach this question from the point of view of representation power, and char-
acterize Mamba’s ICL capabilities on Markov processes, building upon the Markov-ICL framework
originally introduced for transformers (Edelman et al.| [2024). As opposed to a Mamba vs. Trans-
formers comparison, here we leverage this framework for a detailed study of Mamba, and uncover
an interesting phenomenon: even a single-layer Mamba efficiently learns the in-context Laplacian


https://anonymous.4open.science/r/Markov-Mamba-39C5

Predicted probability Pg (z¢4+1 =1 | z})

Under review as a conference paper at ICLR 2026

0.35

0.9 ~ — 1-layer Mamba mm 1-layer Mamba
// \ A —— 1-layer Transformer 0.30 B 1-layer Transformer
0.8 # \‘/ —— 2-layer Transformer B 2-layer Transformer

Optimal estimator 0.25

| A N 0.20
' - ' 0.15
. 0.10
0.3 0.0 i i
- & i
0.00 1 2 i 3 i 4

0 10 20 30 40 50 60 70
t:xy =0 Markov order

L4 distance

(9]

(a) Next-token probability estimation (b) L1 distance of model estimation from optimal

Figure 1: Single-layer Mamba learns the optimal Laplacian estimator when trained on random
Markov chains, exhibiting ICL. (a) shows the predicted probability distribution on a fixed test
sequence for models trained on binary first-order Markov sources. (b) quantifies the L; deviation
from the optimal estimator for random sequences and various Markov orders. The error intervals show
the standard deviation across 5 runs. Sec. @ and Fig. Elfurther discuss Mamba vs. Transformers.

smoothing estimator, which is both Bayes and minimax optimal, for all Markov orders (Figs. [T]and
[7a). Towards explaining this, we theoretically characterize the representation capacity of Mamba and
demonstrate that the convolution mechanism, together with selectivity and recurrence, plays a fun-
damental role in realizing the Laplacian smoothing. Importantly, we showcase that these theoretical
insights align strongly with empirical results, even outside the realm of Markovian data. To the best of
our knowledge, this is the first result of its kind connecting Mamba and optimal statistical estimators.

In summary, we make the following contributions:

* Leveraging the Markov-ICL framework, we uncover the surprising fact that even a
single-layer Mamba learns the optimal in-context estimator for all Markov orders (Fig.[T).
Intriguingly, convolution plays a pivotal role, more so than gating and non-linear activation,
in this learning ability (Sec.[3).

» Towards explaining this phenomenon, we characterize the representational capacity of
single-layer Mamba and show, both theoretically and empirically, how it represents the
optimal in-context estimator for any finite-state first-order processes, through an intricate
interplay of convolution, selectivity and recurrence. Further, we provide fundamental limits
for higher-order processes (Sec. ).

* We demonstrate the generality of our findings on non-Markovian data and illustrate the
fundamental role of convolution even on complex language-modeling tasks (Sec. [3).

1.1 RELATED WORK

SSMs (Gu et all,[2020; 2021)) have been recently introduced as an alternative recurrent architecture
aimed at rivaling the well established transformer backbone (Vaswani et al.l[2017). The model was
originally introduced as a discretized linear dynamical system (Gu et al.,[2021). Recent works tried to
re-frame the architecture from a linear recurrent perspective (Orvieto et al., 2023b). However, there
are still many gaps in understanding this family of models (Team et al.,[2024), such as questions
around expressivity (Orvieto et al.,[2023al). This is particularly important given the proliferation of
Mamba-inspired architectures that have emerged since its introduction (Qin & Liu, Csordas

et al, 2024 Zhu et al, 2024 [Gu & Dao), 2023b; De et al, 2024 [Beck et al., 2024).

To this end, our work squarely focuses on understanding the representation power of Mamba, and
in particular its ICL capability, which, while extensively studied for transformers
[Hendel et al.| 2023} [Bai et al.,[2023)), remains largely unexplored for SSMs. In this space, recent
studies such as[Sushma et al.|(2024])), have shown that SSMs can perform gradient-based learning




Under review as a conference paper at ICLR 2026

for in-context adaptation similar to transformers. There is conflicting evidence whether Mamba’s ICL
abilities are better (Grazzi et al.,2024) or worse (Halloran et al.} 2024} |Akytirek et al.,|2024) compared
to transformers. Nonetheless, SSMs have demonstrated promising results in in-context reinforcement
learning tasks (Lu et al.,[2024), as well as in next-state prediction for dynamical models (Joseph
et al.| 2024)), highlighting the potential of SSMs as efficient alternatives to transformers for ICL tasks.
Motivated by this, as opposed to an architectural comparison [Jelassi et al.| (2024); Bhattamishra et al.
(2024); Merrill et al.[(2024); |Sarrof et al.|(2024), here we solely focus on Mamba’s ICL capabilities,
specifically, through the lens of random Markov processes. This framework has been successfully
applied to transformers (Edelman et al., 2024} [Makkuva et al., [2025}; 2024; |Rajaraman et al.| [2024;
Nichani et al.,|2024), where it helped unveil fundamental learning mechanisms of transformers such
as induction heads. Ours is the first work that employs this framework for Mamba and SSMs.

2 PROBLEM SETUP

We formally define the problem setting and provide necessary background. We use the
following notation: scalars are denoted by such italic lower case letters as x,y, Euclidean
vectors by bold x,y, and matrices by upper case X,Y, etc. 1 refers to the all-one vector. For
T € N, [T] £ {1,...,T}, and for a sequence (r;)¢>1, define 2t = (v,...,7;). For z € R,
sigmoid(z) = 1/(1 + e~ *),ReLU(z) £ max(0, z), and softplus(z) = log(1 + €*). Unif(S)
denotes the uniform distribution over a set S and Dir(83) denotes the Dirichlet distribution with
parameter 3 > 0. Dki, (P||@) denotes the KL divergence between distributions P and Q.

2.1 INPUT DATA: RANDOM MARKOV CHAINS

To investigate the ICL capabilities of Mamba, we build upon the Markov-ICL framework of Edelman
et al.| (2024). In particular, we let the input tokens to be stochastic and drawn from a random Markov
chain of order k . That is, the token sequence = = (z;)7_, € X7 on the state space (vocabulary) X
follows the transition dynamics:

P (zp41 =" 21) =P (xe41 = | 24_p11) , M
almost surely for all ¢ € [T, and the k™-order Markov kernels, P (zy41 = | 2f_, ., =if_, ),
are sampled independently for each tuple (i¢—_x1,- - ,%;) from the Dirichlet prior Dir(53 - 1), with

B > 0. When g = 1, this corresponds to the uniform distribution on the S-dimensional simplex
A7, where size S = |X|.

The transition matrix P = (Pirf)izfG xn, B € [0,1]°, encapsulates the set of all S* conditional
probabilities of the chain, each row corresponding to one of them. While this transition matrix
governs the generation of each token x, for ¢t > k, the first k-tokens 1, . . ., xj are drawn i.i.d. from
Unif(X). This constitutes the joint law of the random variables (P, z), termed random Markov
distribution henceforth. More succinctly,

Data generation (Random Markov sequences).

. Return the input z = (z;)Z_;.
. Repeat the above steps to generate a batch {x(*)} be[B]-

1. Draw P with each row sampled i.i.d. from Dir(3 - 1).
2. Fort =1,...,k, sample z; ~ Unif(X).

3. Fort =k,...,T, sample ;41 ~ P_,,:LHI.

4

5

Why Random Markoyv is a good testbed for ICL. As a consequence of the generation process, every
sequence follows a different Markov distribution. Therefore, at inference, a model trained on this
random Markovian data has to estimate the next-token distribution in-context for every test sequence.
Hence, this data class serves as a good sandbox to gauge the ICL capabilities of Mamba, which was
also used in a similar context for transformers (Nichani et al.,|2024; Rajaraman et al.| 2024)).

2.2 MAMBA ARCHITECTURE

Selective SSMs such as Mamba and Mamba-2 are a class of sequence-to-sequence mod-
els that are closely related to RNNs and classical state space models (Gu & Daol [2023b).



Under review as a conference paper at ICLR 2026

A key feature underpinning these models is

the selectivity mechanism, enabling them to folwi) - folwl) - folal)
selectively choose inputs at every timestep, -

as opposed to linear time-invariant (LTI) sys- UE) UE)
tems. While we believe our work cap- logit; --- logit, --- logity

tures the behavior of all selective SSMs, we

N . ‘ Linear ‘ ‘ Linear ‘ ‘ Linear ‘
will specifically focus on the state-of-the-art
Mamba-2 model to simplify exposition. By v e veo e vr
slight abuse of te.rminology, henceforth we will ‘MLP‘ ‘MLP‘ ‘MLP‘
also refer to this model simply as Mamba. T T
Mathematically speaking, Mamba implements oo e ur
thg, sequencel-ito-sequence mapping Mamba : ‘Mamba} }Mamba} }Mamba
RI*T s RI*T where given a sequence of ; ; ;
input embeddings * = (z;)L,; € R™T ;. ;. "
of dimension d, it outputs the correspond- . N ’
ing output embeddings o = (Ot)tT:1 c ‘Embeddmg‘ ‘Embeddlng‘ ‘Embeddmg‘
RI*T of the same dimension with o = L AT

Mamba(x). More precisely, fix t € [T].
Then the output o, at time ¢ is computed
as o = Mamba(xz!) using the follow- Figure 2: Mamba-based language model.
ing recurrence equations (Dao & Gu, 2024):

a; = exp(—a- A;) € (0,1),

A = softplus((wa, x;) + 6) € R,

Z; £ ReLU(convy (Wx Tl _yi1)) Ay,
b; = ReLU(convg(Wp )_,, 1)),

¢t = ReLU(conve(We a1 1)),

Hy=a;Hy 1 + 2 b] € REN
Yy =Hic € Reda
zy = y; © ReLU(W, ;) € R*?,
o, =W,z € Rd,

-

(Mamba) ..
(Input selectivity)

where the initial state Hy = 0, W, € R W, € R¥>¢? ¢ > 0, wa € R%,§ € R,Wx €
Redxd Wp € RV*4 and We € RV*4 are all learnable parameters, and conv(z!_, ;) is a
time-wise convolution of window w € N with distinct kernels per dimension. Here e € N is the
feature expansion factor, typically 2. Let Oyamba denote the set of all these parameters.

Intuition behind Mamba. The underlying intuition behind the update equations in[Mambalis simple:
given a sequence of input embeddings (), we first capture their local temporal information using
separate convolutions to compute &, by, and ¢, (Input selectivity). Equipped with this local memory,
we perform a linear state update to compute the current state H; from the past H;_;, weighed by an
input-dependent decay factor a; € (0, 1), and (Z;, b;). Subsequently, we compute the state projection
Yy, modulate it with an input-selective term to yield z;, and finally project it down to get the output
embedding o,, which is a function of the entire input sequence until then, :cﬁ, i.e., o; = Mamba (mﬁ)

Mamba-based language model. block is then incorporated into a full-fledged language
model as follows:

zy € {0, 1} x, Mo, LB D o BTl gt )

where fo(z) £ Pg (v;11 = - | #%) = softmax(logit,) € [0,1]° is the probability estimation for
the next symbol x;,1 conditioned on the past 2. We omit the layer norm here for simplicity. We
compactly denote the set of all model parameters as @ € R”. We refer to §f0r more details.

2.3 LEARNING TASK: NEXT-TOKEN PREDICTION

With the objective of auto-regressively estimating the next token, we train the model parameters
0 to minimize the cross-entropy loss between the next-token predicted probability fg(x}) and the
corresponding ground-truth symbol x;,1 across all the positions ¢ € [T:
1 Tt+1
L(6) 2 -~ > EpE,erp[log £57 4 (ah)], 3)
te[T)



Under review as a conference paper at ICLR 2026

where féj )({L‘tl) 2 Pg (7411 = j | %) for j € X, and the expectation is both over the transition
kernels P and the Markov sequences * = (z;)._; sampled from P. In practice, it is replaced by
empirical average across a finite set of batches, sampled according to the random Markov distribution
in Sec. @ For our experiments we use the AdamW optimizer (Kingma & Bal 2015)).

2.4 OPTIMAL ESTIMATOR: LAPLACIAN SMOOTHING

Given the Bayesian prediction loss in Eq. (3], it is natural to ask: what is the optimal 0 minimizing it?
It follows from a classical result in statistics (Rissanen| (1984), § [A) that this minimum is achieved
when the corresponding model prediction matches the (average) ground-truth predictive distribution,
ie. Po (z111 = j | 27) = Epjpt [P (2441 = j | x)], for all ¢. Given the joint distribution of the pair
(P, z%*1) in Sec. where the kernel P ~ Dir(8 - 1), it can be shown (§ |A) that the conditional
expectation above simplifies to the well-known Laplacian smoothing, also known as the add-f
estimator (see e.g. Merhav & Feder|(1998)):

nj-i-ﬂ
n+ 28’

where n; is the number of times token j follows the current kt-order context xL ka1 in the sequence

]P’gk) (rip1 =4 |at) 2 Epjyt [P (241 =7 2})] = (Laplacian smoothing)

ol ie. n; = |{i: (2!°},2;) = (x_,..7)}| and n is the frequency of this context, i.e. n = |{i :
xi:,lc =zt , +1}|- Adjusting these counts by 3 plays the role of additive smoothing, which avoids
assigning zero probabilities to unseen events, an idea dating back to Laplace (Laplacel|1814). It is
also known that the add-$ estimator is asymptotically minimax optimal, as T" — oo (Xie & Barron,
1997; Hao et al., 2018]).

How Laplacian smoothing implies ICL. If Mamba realizes this smoothing estimator, i.e. Pg = P(ﬁk),
it automatically implies its ICL abilities: given a fresh test sequence at inference, in order to optimally
predict the next token, it has to process the input tokens in-context to compute the relevant counts, as
in the [Laplacian smoothing| But does Mamba realize this optimal counting estimator in practice?

3 DOES MAMBA LEARN IN-CONTEXT ESTIMATORS?

To investigate the ICL capabilities of Mamba, we consider the problem setup described above and
train Mamba and transformer models using AdamW on the next-token prediction loss in Eq. (3] on
random Markov chains (we refer to § [F]for more experimental details). These experiments reveal
interesting and rather surprising insights about Mamba:

1. Mamba learns the optimal Laplacian smoothing estimator on the Markov prediction task,
even with a single layer (Fig.[Ta).

2. Convolution mechanism plays a fundamental role in Mamba, more so than gating and
non-linear activations, in aiding its learning abilities (Fig. [3a).

In the sequel, we expand upon these observations in detail.

1) Mamba learns the Laplacian smoothing. After training, we evaluate Mamba and transformers
on the same test sequence fixed beforehand and compare their performance to that of the optimal
[Laplacian smoothing|estimator. Specifically, we compare their next-token prediction probabilities
with those of the add-3 estimator. Fig. illustrates these results for various Markov orders, which
uncovers a surprising phenomenon: even a single-layer Mamba sharply matches the optimal
estimator on the whole sequence. The same conclusion holds for larger state spaces and deeper
models (Fig. , and even when part of the dataset is held out (see §@. For transformers, we observe
that a two-layer model also matches the predictor, albeit less sharply, whereas a single layer fails
to solve the task. This aligns with recent theoretical results (Sanford et al., 2024} |[Ekbote et al.| [2025),
that show that two layers are required for transformers to implement an induction head (realizing
the counting estimator) efficiently (Sec. further discusses Mamba vs. Transformers).

2) Convolution is the key. To decipher the key architectural component behind Mamba’s success
in Markov prediction task, we do an ablation study on its three main features: (i) convolution in

(ii) ReLU non-linearity in[Input selectivity} and (iii) the gating mechanism in[Mamba|and



Test loss

Under review as a conference paper at ICLR 2026

0.40 0.35

Mamba = Order 1

0.35 —— MambaZero 0.30
—— Mamba without convolution

Order 2
B Order 3
m Order 4

0.15
0.10
: B
0.05 0.05
0.00 000 = =i will --ii l_ii
2 3 4 5 6

0 5 10 15 20 25 30 35

Iteration (x200) Convolution window of Mamba

0.25

Test loss

(a) Importance of convolution (b) Relation between window size and Markov order

Figure 3: (a) illustrates the fundamental role of convolution, without which the model fails to
learn the task. In contrast, a simplified variant with just the convolution (MambaZero) matches the
performance of the full model. (b) highlights the relation between the Markov order k and the window
size w of Mamba. It is required that w > k + 1 for the model to learn the order-k prediction task.

Amongst them, interestingly, convolution plays a fundamental role in the model’s performance,
as illustrated in Fig.[3a Here we compare the full Mamba architecture from Sec.[2.2] Mamba with
just the convolution in removed, and a simplified Mamba architecture with only
convolution (MambaZero in Sec. ' Further experiments on adding/removing convolution to
Mamba and transformers, as well as experiments with varying width, are shown in § [E4] while
experiments on natural language are deferred to Sec.[5.2] As a metric of comparison, we use the
closeness of each of these models’ losses L(8) to that of the optimal add-3 estimator Lg, i.e. i.e.
|L(0) — Lg|. The closer this metric is to zero, the better the model’s performance is. Remarkably,
the simplified Mamba with just the convolution succeeds on the Markov prediction task, while the
full model without convolution fails, highlighting its fundamental importance. This raises a natural
question: how does convolution help Mamba to implement the optimal Laplacian estimator?

4 HoOwW MAMBA IMPLEMENTS THE LAPLACIAN ESTIMATOR

Motivated by its success in learning the optimal estimator, here we study how Mamba represents
Laplacian smoothing. Specifically, we provide a concrete theoretical construction backed by
empirical results, that illustrates the mechanism Mamba uses to implement the estimator in practice.

4.1 MAMBAZERO: SIMPLIFIED MODEL

Building upon the insight that Mamba with just the convolution achieves the same performance
as that of the full model (Fig. [3a), we consider its simplified version: MambaZero. MambaZero
retains only the essential elements of the full model in Sec.[2.2} the Embedding]layer, the convolution
inside the Mamba block in and the layer. More formally, it is given by:

x, = e, € R, Embeddin N
¢ . ( ) H, = a,Hy_ + 3 b] € RN,
u; = x; + MambaZero(x!), (MambaZero) J
5 y; = Hy c; € R, (MambaZero)
logit, = Wyu; € R”, (Linear) d
t . . .. Oy = WO Y € R )
fo(z7) = (logit,/||logit||1) , (Prediction)

where e, is the token embedding for z € X, and the input-selective terms a;, &, b; and c; are
computed as in without ReLU and just the convolution. Here we use the L
normalization instead of the softmax in the [Prediction|layer to ease theoretical analysis, similar to
Nichani et al. (2024); Rajaraman et al.| (2024). Let 8 = ({e; }icx, OMambazero, We) € R denote
the full set of parameters for appropriate D > 1.



Under review as a conference paper at ICLR 2026

4.2 MAIN THEOREM: MAMBA REPRESENTS THE LAPLACIAN ESTIMATOR

We now present our main theorem that MambaZero can represent Laplacian smoothing for any
finite-state first-order Markov process. A key defining feature of our constructive proof is that it aligns
with the structures empirically learned by the model, shedding light on the fundamental learning
mechanisms of Mamba.

Theorem 1. For a state space X = {1,2,...,5} of size |X| = S, there is a choice of parameters
for the canonical MambaZero model, with dimensions N = S, d = 2S,e = 1 and convolution
window w = 2, such that its output prediction is exactly matches that of the Laplacian estimator, for
first-order Markov chains on X. More formally, for any 3 > 0, there exists a set of parameters 0
such that, for all sequences (x¢)¢>1 and all t > 1,

DkL (]Pél)(. | 20)||Pg (- | xﬁ)) —o.

Remark. The KL divergence above is precisely the penalty paid in the cross-entropy loss in Eq. (3)
at time ¢ when using the predictor Pg instead of the optimal IP’S). In other words, the result implies
that the loss of MambaZero can be made exactly equal to the optimal.

4.2.1 KEY MECHANISM AND PROOF SKETCH

Main idea. To build our intuition towards how MambaZero can realize the add-3 counting estimator
for first-order Markov sequences, let’s focus on the core[MambaZero| block. The key observatlon
here is the following: if the state H;_; can capture all the transmon counts i — j till 2~ ! the new
state H; can be updated to account for the current transition z;_; — x; on top of the ex1st1ng counts,
by a suitable choice of a;, ;, and b;. Then the relevant count information corresponding to the
current prefix x; could be read off from the state projection y; = H;c;, and be modified to account
for B-smoothing via the |[Linear| and [Prediction|layers. Buttressing this idea are two key empirical
facts, which in fact hold for any £ > 1, underpinning our construction:

(i) State-to-state transition factor a; ~ 1 for all ¢ > 1. We empirically observe that when the
MambaZero model is trained on random first-order Markov data, at convergence we have a; ~ 1 for
allt > 1 (Fig. Ef[) Since a; modulates how much past information flows into the present, a; = 1 is
required for the state H; to store all previous transition counts. Note that this can be easily achieved

by setting either a or A; to be zero in[Input selectivity] which we empirically observe as well.

(ii) Convolution window w > k + 1. Recalling that % is the Markov order, we empirically observe
that the window size w = k + 1 is sufficient for the full Mamba to learn the Laplacian smoothing
on kM-order Markov chains (Fig. . To understand why, note that in the MambaZero architecture
above, apart from the[MambaZero|block, all remaining equations operate on the current token at time
t.In theblock, the dependency of the output y; on the previous tokens is due to that of
the state H; on (¢, b;) in the update equation, and of ¢; in the state projection. Since (Z¢, by, c;)
depend on the past through the convolutions, a window of size k£ + 1 enables them to keep track of
the current token as well as its length-k prefix, which is necessary to compute the counts needed in
|Lap1a01an smoothing] On the other hand, if wx,wp < k, then one can find confusable sequences,
i.e. sequences that share the same number of occurrences of all length-£ prefixes, but whose counts
of the tokens following each prefix is different, resulting in the model’s estimate to deviate from
that of the optimal add-5. We refer to § for more details. While having all the window sizes
wx,wp,w, > k + 1 is sufficient, it can be further strengthened to w, = k (§ .

We now detail our construction for the first-order case, capitalizing on these insights.

Construction. Let us fix w = k + 1 = 2. Then, ; and b; only depend on the current token x; and
the previous one x;_1, while ¢; only depends on z;. Thus, ; and b; can only take 52 possible values
depending on the last transition in the sequence, whereas c; only S. To ease the notation, we will
denote these values by (7), b(i) and ¢(?) respectively, for 7,7 € X'. Additionally, at ¢t = 1, these
terms depend only on the current symbol, taking two additional values each, denoted by z(9), b(?).
Let n;; denote the number of transitions ¢ — j in the input sequence z. Then, unfolding the state

update recursion in we get that the output of the block is
Oy = WO 5ngct + Znij WO .’i(ij)b(ij)TCt. (4)

ij



Under review as a conference paper at ICLR 2026

While the output in Eq. (@) depends on all the transition counts, in view of [Laplacian smoothing] we
ideally want only those counts pertaining to relevant transitions, i.e. if x; = 0, the counts n;, for
j € X, and smilarly for other values of x;. To this end, we empirically observe that at convergence,
the model’s parameters are such that b)) T ¢, ~ 0 whether 7 # ;. Due to this property, only the
counts that are involved in the computation of the Laplacian estimator for the current token x; appear
in the output o;. Stitching these facts, the final logits in the layer depend on the first and
current token via

logit, = W@, + WeW, @obg ¢t + Y na, ;WeW, 27700 T ey, 5)
J

The final step is to then show that for properly chosen parameters, one can make the two vectors
associated with the counts to be orthogonal, and the other vectors, independent of the counts, to sum
up to the vector 1. Subsequently, the L, normalization in[Prediction|layer will give a next-token
probability estimate, matching that of the add-3 estimator. We defer the full proof and additional
details to §[C

Dimension reduction for binary state space. Interestingly, for the binary case X = {0, 1}, it is
possible to further reduce the hidden dimension d = 25 in Thm.[IJto d = S = 2 by leveraging the
relationship between the transition counts. The key theoretical insight is that the transition counts in
binary sequences are strongly correlated. Specifically, ng; and ni( are at most one apart: every time
a transition 0 — 1 occurs, either the sequence is followed by only 1’s until the end, or a subsequent
transition 1 — 0 also occurs. Therefore, the dependency of the output on ng; is in fact a dependency
on n1p. One can leverage this property to help MambaZero realize Laplacian smoothing with just
two-dimensional embeddings, with arbitrarily small error. We refer to Thm. [in § [C.3|for full details.

4.3 LOWER BOUND: FUNDAMENTAL LIMIT ON THE REPRESENTATION POWER OF MAMBA

We now provide a fundamental limit on the representation power of recurrent architectures like
Mamba, in the form of a lower bound on the hidden dimension that is required to represent the
optimal estimator. In particular, our result establishes that with finite bit precision, irrespective of
depth, for any recurrent architecture to implement the Laplacian estimator, the hidden dimension
has to at least scale as (2%).

Theorem 2. Consider a recurrent model of the form

Hy = hy(Hi—1,21),

yr = Po ( | xﬁ) = g:(Hy),
with transformations (hy, g;), where H; € R? and the model has a bit precision of p. Suppose that
the k™-order Markov kernel P is sampled from the Dirichlet prior with = 1, P ~ Dir(1 - 1).

Suppose also that the recurrent architecture satisfies the following point-wise guarantee: for any
sufficiently large t, almost surely over P and % ~ P,

o (-128) =PV (2| <. (©)

.
where ]P’gk) (- | %) is the Laplacian estimator for 3 = 1. Then, the recurrent architecture must satisfy

d-p> 21— 3¢)log(1/e).

We defer the full proof and additional details to App.
Depth. We note that Thm. [2does not assume depth one, and holds for recurrent models of any depth.

Mamba vs. Transformers. As Thm. [2| demonstrates, to capture a kM-order Markov process,
Mamba requires the hidden dimension to scale exponentially in %, whereas the best known result for
transformers needs a three layer model with the hidden dimension growing linearly in k& (Rajaraman
et al.} 2024). On the other hand, for first-order sources we empirically observe from Fig. @] that
1-layer Mamba tracks the optimal estimator more sharply than a transformer (see § [E| for additional
comparative results). While these comparisons are meant to provide a more detailed context for
Mamba, we would like to emphasize that the main focus of our paper is not a comparative study
but rather a fundamental understanding of Mamba’s ICL abilities.



Under review as a conference paper at ICLR 2026

Higher orders and learning dynamics. While Thm. [I| demonstrates that Mamba can represent
the optimal estimator for finite-state first-order processes, our empirical results in Fig. [Tb]strongly
suggest that a similar conclusion holds for higher-order sources. In a similar vein, analyzing Mamba’s
learning dynamics in its convergence to this smoothing estimator is an interesting topic of future
research, but outside the scope of this paper, whose focus is on representation power.

5 BEYOND MARKOV

5.1 SWITCHING MARKOV MODEL

A key component of enabling selectivity is the state-transition factor ay, that controls the flow
of information from the past state H;_; to the current H;: if a; = 1, the past information is fully
utilized in computing the current state, and hence the output, whereas a; = 0 completely ignores the
past. In the Markovian setting considered so far, the role of a; has largely been dormant: a; ~ 1 for
all ¢ > 1, as the optimal Laplacian predictor requires counts of all transitions, demanding the use
of full past (Sec.#.2). To better highlight this selectivity mechanism, we consider a non-Markovian
process, where the role of a, becomes fundamental.

Specifically, we focus on the switching Markov process, where we add a switch token to the binary
alphabet, i.e. we consider X = {0, 1, S}. The key difference here compared to the random Markov
generation in Sec. [2.1]is that until we hit switch token, we follow the same binary Markov sequence
generation as the former, but once the switch state is reached, we sample a new Markov kernel
and then generate a new Markov sequence. The switch tokens are sampled according to a parallel
i.i.d. Bernoulli process with probability pswitch (0.01 in our experiments). The sampling process is
described in detail in § [E.5] With this data model, the optimal prediction strategy is to use the add-3
estimator in between two switch tokens, and reset the transition counts every time a switch occurs.
We provide empirical evidence in § [E.5] Indeed, Fig. [I0]illustrates that Mamba implements precisely
this strategy, closely tracking the switching events via the transition factor a;: it sets a; to be zero
whenever x; = S and to one otherwise.

5.2 NATURAL LANGUAGE MODELING

To test the generality of our finding that

convolution plays a key role on Markovian  Taple 1: Perplexity results on the WikiText-103 dataset.
data (Fig.[3), we conduct experiments on
language modeling using the WikiText-
103 dataset. Details on the experimental
setup can be found in §@ By adding orre- Mamba-2 (w/o conv) 14.53 M  30.68
moving convolution in both these models, Mamba-2 (w/ conv) 14.54M 27.55
we obtain the results in The re- Transformer (w/o conv) 14.46 M  29.28

sults illustrate that convolution f?nhances Transformer (w/ conv) 1446 M 28.67
the performance of the two architectures,
in particular for Mamba (11% vs. 2%),
highlighting its saliency. Further ablation studies on this task show that together with convolution,

gating also plays a central role (17% change, cf. § [E.6).

Model Params. Perplexity

6 CONCLUSION

Structured state space sequence models (SSMs) and Selective SSMs such as Mamba have shown re-
markable inference speed-ups over transformers while achieving comparable or superior performance
on complex language modeling tasks. In this paper, we studied in-context learning (ICL) capabilities
of Mamba on random Markov chains and show that, unlike transformers, even a single-layer Mamba
efficiently learns the in-context Laplacian smoothing estimator. To explain this, we theoretically and
empirically characterized the representation capacity of Mamba, which revealed the fundamental
role of convolution, together with selectivity and recurrence, in enabling it. We further provided
additional empirical results on non-Markovian data, showing the generality of our insights. Extending
our results to deeper Mamba models, as well as investigating Mamba’s learning dynamics, are some
interesting future directions.



Under review as a conference paper at ICLR 2026

REFERENCES

Ekin Akyiirek, Bailin Wang, Yoon Kim, and Jacob Andreas. In-context language learning: Arhitec-
tures and algorithms. arXiv preprint arXiv:2401.12973, 2024.

Yu Bai, Fan Chen, Huan Wang, Caiming Xiong, and Song Mei. Transformers as statisticians:
Provable in-context learning with in-context algorithm selection. In Workshop on Efficient Systems
for Foundation Models @ ICML2023, 2023.

Maximilian Beck, Korbinian Poppel, Markus Spanring, Andreas Auer, Oleksandra Prudnikova,
Michael Kopp, Giinter Klambauer, Johannes Brandstetter, and Sepp Hochreiter. xlstm: Extended
long short-term memory. arXiv preprint arXiv:2405.04517, 2024.

Satwik Bhattamishra, Michael Hahn, Phil Blunsom, and Varun Kanade. Separations in the represen-
tational capabilities of transformers and recurrent architectures. Advances in Neural Information
Processing Systems, 37:36002-36045, 2024.

Marco Bondaschi and Michael Gastpar. Batch universal prediction. In 2024 IEEE International
Symposium on Information Theory (ISIT), pp. 3552-3557, 2024. doi: 10.1109/ISIT57864.2024.
10619270.

Marco Bondaschi and Michael Gastpar. Alpha-NML universal predictors. IEEE Transactions on
Information Theory, 71(2):1171-1183, 2025. doi: 10.1109/TIT.2024.3521221.

N. Cesa-Bianchi and G. Lugosi. Prediction, Learning, and Games. Cambridge University Press,
2006.

Nicola Muca Cirone, Antonio Orvieto, Benjamin Walker, Cristopher Salvi, and Terry Lyons. Theo-
retical foundations of deep selective state-space models, 2025. URL https://arxiv.org/
abs/2402.19047.

Rébert Csordds, Kazuki Irie, Jiirgen Schmidhuber, Christopher Potts, and Christopher D Manning.
Moeut: Mixture-of-experts universal transformers. arXiv preprint arXiv:2405.16039, 2024.

Tri Dao and Albert Gu. Transformers are SSMs: Generalized Models and Efficient Algorithms
Through Structured State Space Duality. arXiv preprint arXiv:2405.21060, 2024.

Soham De, Samuel L Smith, Anushan Fernando, Aleksandar Botev, George Cristian-Muraru, Albert
Gu, Ruba Haroun, Leonard Berrada, Yutian Chen, Srivatsan Srinivasan, et al. Griffin: Mixing
Gated Linear Recurrences with Local Attention for Efficient Language Models. arXiv preprint
arXiv:2402.19427, 2024.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding, 2018. URL https://arxiv.org/
abs/1810.04805!

Benjamin L. Edelman, Ezra Edelman, Surbhi Goel, Eran Malach, and Nikolaos Tsilivis. The
Evolution of Statistical Induction Heads: In-Context Learning Markov Chains, 2024.

Chanakya Ekbote, Marco Bondaschi, Nived Rajaraman, Jason D. Lee, Michael Gastpar, Ashok Vard-
han Makkuva, and Paul Pu Liang. What one cannot, two can: Two-layer transformers provably
represent induction heads on any-order markov chains, 2025. URL https://arxiv.org/
abs/2508.07208!

Riccardo Grazzi, Julien Siems, Simon Schrodi, Thomas Brox, and Frank Hutter. Is mamba capable
of in-context learning? arXiv preprint arXiv:2402.03170, 2024.

Albert Gu and Tri Dao. Mamba: Linear-Time Sequence Modeling with Selective State Spaces. arXiv
preprint arXiv: 2312.00752, 2023a.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023b.

10


https://arxiv.org/abs/2402.19047
https://arxiv.org/abs/2402.19047
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/2508.07208
https://arxiv.org/abs/2508.07208

Under review as a conference paper at ICLR 2026

Albert Gu, Tri Dao, Stefano Ermon, Atri Rudra, and Christopher Ré. Hippo: Recurrent memory
with optimal polynomial projections. In Advances in Neural Information Processing Systems,
volume 33, pp. 1474-1487, 2020.

Albert Gu, Isys Johnson, Karan Goel, Khaled Saab, Tri Dao, Atri Rudra, and Christopher Ré.
Combining recurrent, convolutional, and continuous-time models with linear state space layers. In
Advances in Neural Information Processing Systems, volume 34, pp. 572-585, 2021.

John T Halloran, Manbir Gulati, and Paul F Roysdon. Mamba state-space models can be strong
downstream learners. arXiv preprint arXiv:2406.00209, 2024.

Yi Hao, Alon Orlitsky, and Venkatadheeraj Pichapati. On learning markov chains. In Advances in
Neural Information Processing Systems, volume 31, pp. 646-655, 2018.

Roee Hendel, Mor Geva, and Amir Globerson. In-context learning creates task vectors. arXiv preprint
arXiv:2310.15916, 2023.

Samy Jelassi, David Brandfonbrener, Sham M Kakade, and Eran Malach. Repeat after me: Trans-
formers are better than state space models at copying. arXiv preprint arXiv:2402.01032, 2024.

Federico Arangath Joseph, Kilian Konstantin Haefeli, Noah Liniger, and Caglar Gulcehre. Hippo-
prophecy: State-space models can provably learn dynamical systems in context. arXiv preprint
arXiv:2407.09375, 2024.

Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations (ICLR), 2015.

Pierre Simon Laplace. Essai philosophique sur les probabilités. Courcier, Paris, France, 1814.
Reprinted by Cambridge University Press, 2009. In the reprint, the estimator appears on page 23.

Chris Lu, Yannick Schroecker, Albert Gu, Emilio Parisotto, Jakob Foerster, Satinder Singh, and
Feryal Behbahani. Structured state space models for in-context reinforcement learning. Advances
in Neural Information Processing Systems, 36, 2024.

Ashok Vardhan Makkuva, Marco Bondaschi, Adway Girish, Alliot Nagle, Hyeji Kim, Michael
Gastpar, and Chanakya Ekbote. Local to Global: Learning Dynamics and Effect of Initialization
for Transformers. In The Thirty-eighth Annual Conference on Neural Information Processing
Systems, 2024.

Ashok Vardhan Makkuva, Marco Bondaschi, Alliot Nagle, Adway Girish, Hyeji Kim, Martin Jaggi,
and Michael Gastpar. Attention with Markov: A curious case of single-layer transformers. In The
Thirteenth International Conference on Learning Representations, 2025.

N. Merhav and M. Feder. Universal prediction. /EEE Transactions on Information Theory, 44(6):
2124-2147, 1998. doi: 10.1109/18.720534.

William Merrill, Jackson Petty, and Ashish Sabharwal. The illusion of state in state-space models.
arXiv preprint arXiv:2404.08819, 2024.

Eshaan Nichani, Alex Damian, and Jason D Lee. How Transformers Learn Causal Structure with
Gradient Descent. arXiv preprint arXiv:2402.14735, 2024.

Antonio Orvieto, Soham De, Caglar Gulcehre, Razvan Pascanu, and Samuel L Smith. On the univer-
sality of linear recurrences followed by nonlinear projections. arXiv preprint arXiv:2307.11888,
2023a.

Antonio Orvieto, Samuel L Smith, Albert Gu, Anushan Fernando, Caglar Gulcehre, Razvan Pascanu,
and Soham De. Resurrecting recurrent neural networks for long sequences. arXiv preprint
arXiv:2303.06349, 2023b.

Matteo Pagliardini. GPT-2 modular codebase implementation. https://github.com/epfml/
llm-baselinesl Accessed: Jan. 2025.

11


https://github.com/epfml/llm-baselines
https://github.com/epfml/llm-baselines

Under review as a conference paper at ICLR 2026

Jongho Park, Jaeseung Park, Zheyang Xiong, Nayoung Lee, Jaewoong Cho, Samet Oymak, Kang-
wook Lee, and Dimitris Papailiopoulos. Can mamba learn how to learn? a comparative study
on in-context learning tasks. In Proceedings of the 41st International Conference on Machine
Learning, 2024.

Jiahao Qin and Feng Liu. Mamba-spike: Enhancing the mamba architecture with a spiking front-end
for efficient temporal data processing. arXiv preprint arXiv:2408.11823, 2024.

Alec Radford and Karthik Narasimhan. Improving language understanding by generative pre-training.
2018. URL https://api.semanticscholar.org/CorpusID:49313245.

Nived Rajaraman, Marco Bondaschi, Ashok Vardhan Makkuva, Kannan Ramchandran, and Michael
Gastpar. Transformers on Markov data: Constant depth suffices. In The Thirty-eighth Annual
Conference on Neural Information Processing Systems, 2024.

J. Rissanen. Universal coding, information, prediction, and estimation. IEEE Transactions on
Information Theory, 30(4):629-636, 1984. doi: 10.1109/TIT.1984.1056936.

Clayton Sanford, Daniel Hsu, and Matus Telgarsky. One-layer transformers fail to solve the induction
heads task, 2024. URL https://arxiv.org/abs/2408.14332.

Yash Sarrof, Yana Veitsman, and Michael Hahn. The Expressive Capacity of State Space Models: A
Formal Language Perspective. arXiv preprint arXiv: 2405.17394, 2024.

Neeraj Mohan Sushma, Yudou Tian, Harshvardhan Mestha, Nicolo Colombo, David Kappel, and
Anand Subramoney. State-space models can learn in-context by gradient descent. arXiv preprint
arXiv:2410.11687, 2024.

Jamba Team, Barak Lenz, Alan Arazi, Amir Bergman, Avshalom Manevich, Barak Peleg, Ben
Aviram, Chen Almagor, Clara Fridman, Dan Padnos, et al. Jamba-1.5: Hybrid transformer-mamba
models at scale. arXiv preprint arXiv:2408.12570, 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Fukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information
Processing Systems, pp. 5998-6008, 2017.

Qun Xie and A.R. Barron. Minimax redundancy for the class of memoryless sources. IEEE
Transactions on Information Theory, 43(2):646-657, 1997.

Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. An explanation of in-context
learning as implicit bayesian inference. arXiv preprint arXiv:2111.02080, 2021.

L Zhu, B Liao, Q Zhang, X Wang, W Liu, and X Wang. Vision Mamba: Efficient visual representation
learning with bidirectional state space model. arXiv preprint arXiv:2401.09417, 2024.

12


https://api.semanticscholar.org/CorpusID:49313245
https://arxiv.org/abs/2408.14332

Under review as a conference paper at ICLR 2026

A PRELIMINARIES ON LAPLACIAN SMOOTHING

Laplacian smoothing is a mature and well understood topic. An account can be found, e.g., in Merhav,
& Feder (1998); |Cesa-Bianchi & Lugosi| (2006), with some recent updates in|Bondaschi & Gastpar
(2024; 2025)). For the sake of completeness, we provide a brief outline of how it applies to our
context. For k-th order Markov data, at every time instant ¢, the Laplacian add-/ estimator applied
to the subsequence of tokens with the same context i¥ € X'* as the current one is the predictor that
minimizes the Bayesian cross-entropy loss in Eq. (3), when the Markov kernel is sampled according
to the product Dirichlet distribution Dir( - 1). We first give an intuition of why this is the case, and
we provide a full proof at the end of the section. We consider the binary case X = {0, 1}, but the
results can be extended to arbitrary finite alphabets.

Consider a given sequence (:ct) . For every length-k context i¥ € X*, let (z;)|;+ be the subse-

lit
quence of tokens preceded by i¥. Note that, since each sequence (z;) is generated by a k-th order
Markov chain, all the tokens in the sequence with the same length-£ prefix share the same conditional
probability distribution. Furthermore, since each of the conditional distributions of the chain is
randomly chosen independently from the others, the subsequence (xt)| is a sufficient statistic to

estimate the probability distribution of all the tokens with the same preﬁx i¥. Therefore, the optimal
prediction for a sequence xt) ]le given by employing the optimal predictor for each i.i.d. subse-
quence (z¢)|;x, for every if € X™. Since each conditional distribution is sampled from a Dirichlet
distribution w1th parameter 3, it is well known that the optimal predictor for such subsequences is the
add-constant estimator, with constant equal to 5. More specifically, if xt k = 4¥, then the optimal
estimation for x; is
. n; +
P (o =3 |af) = 2205

!

where n; is the number of times token j appears in the subsequence 2} | ir = (g € x¥ 1 x,_y, = i),
and n is the length of the subsequence.

N

We now provide a formal proof of this fact.
Theorem 3. Consider the class of all k-th order Markov kernels P = (P,L'llc)ilfexk, where each Py =
P(- | i¥) is a probability distribution on X = {0, 1}. Let each Py be sampled i.i.d. from Dir(f - 1),
and let 2§ ~ Unif (X*) and x4, 1|2} ~ Pyt .- Then, the predictor FO (@) = P(zyr = j | 2),
Sor j € {0,1}, that minimizes the loss

L2 0 S BrEn plres -log fO(a) + (1 — i) -Tog /O (o) ®)

te[T]

is the add-B estimator in Eq. (), i.e. the minimizer £ (zt) = ]P’(ﬁk) (T4p1 =g | 2Y), forallt > k.

Proof. First note that

= f—ZEP]E i1 _p[esr - log fP (@) + (1 — 2441) - log fO (2)]

—7 ZEm;Esz (w141 - log f(2h) + (1 — e41) - log £ ()]
t

1
=7 DBt [Bapy ot [reaa] - 1og fO (1) + (1= Byt [2041]) - log £O ()]
t

Let us define the distribution fil)(x‘i) = Egpylat [Te+1] and f(o)( Ha1- (1)( t). Then, we can
rewrite the loss as

ZExl — £ (at) og fO(at) — £ (a}) - log FO ()]

For every t € [T] and every 2} € X*, the term inside the expectation is minimized by picking

FO(zt) = £ (2t). In fact, note that it can be rewritten as

— P (at) log V() — £7(ah) - log f O (ah)

13



Under review as a conference paper at ICLR 2026

()

FO ()

o

0) (.t
e (x
= M (at) log fe (z1)

— 1P (@) 10g £ ()

— 1) log 1O ()

=

= D (fo (@)1 f(21)) + H(f. (1)),

which is minimized when Dgy, (f«(x})]|f(z})) = 0, i.e., when f(xé) = fu(z!). We will now show
that f, (z!) is precisely the add-3 estimator. Consider any context i} and any sequence z¢ such that
T} .y =i Letalso p = Py (1) = P(1 | i}). Then,

fﬁl)(xi) £ Eoyprlat [T4+1]
- ]EPi/f Iwi]Ewm\wi,Pi;f [e41]
—Ep,u [Py (V)]
= Ep gt [P (),

where in the last equation we used the fact that, when z¥ ~ Unif(X'*), the subsequence z ik isa
sufficient statistic for F;». Hence,

M(at) = Epi,f = [P (1)]

Lopf (1 — p)Pip(1 — p)no

" Fe G- g "7
B fol pm+ﬁ(1 _ p)no+ﬁ—1 dp
o fol qm+B-1(1 — g)ro+A-1dgq
_ T+ B8+ 1) (no +B8) I'(n+25)
T(n+26+1) T(n1 + B)C(no + B)
_m+f
n+ 28’

where we used the fact that Pz ~ Dir( - 1), that fol ¢ 71— @)=t =T(21)T(20) /T (21 + 20),
and that I'(z + 1) = 2I'(2). O

Remark. The proof above is for z¥ ~ Unif(X*). However, note that the same proof would also
work for z¥ distributed according to any distribution that is independent of the Markov kernel P. If
instead the distribution depends on P (e.g., the stationary distribution of the Markov chain), then the
proof would fail in the step where z} |,L-;f is a sufficient statistic for Pj:.

Remark. It is important to note that, to be able to implement such a predictor requires in-context
capabilities: at inference, in order to optimally predict the next token, the model must be able to look
into the previous tokens of the test sequence, and count the tokens with the correct prefix.

14



Under review as a conference paper at ICLR 2026

B MAMBA-BASED LANGUAGE MODELING ARCHITECTURE

block can be incorporated into a full-fledged language model as follows: let x =
(r1,72,-- ,o7) € XT be an input token-sequence over the alphabet X'; here X = {0,1} as
explained in Sec. Then, at every ¢ € [T, the output of the language model 0 is given by the
following sequence of equations (Dao & Gu, 2024):

T =€y € Rd, (Embedding)

uy = x; + Mamba(z!) € R?, (Mamba)

vy = uy + Wa[ReLU(Wiu,) © Wauy) € RY, (MLP)
logit, = Wyv; € RY, (Linear)
fo(z}) £ Pg (2441 = - | 21) = softmax(logit,) € [0,1]%, (Prediction)

where the parameters e; € RY, W, € R4 1/, € R¥*4 and W, € R*? are learnable, and
fo(x!) is the probability law for the next symbol z;,1 conditioned on the past z{. We omit the
layer norm here for simplicity. We compactly denote the set of all model parameters as 6, i.e.
0 = ({ei}icx, OMamba, Wi,2.3, W) € RP.

15



ag

Under review as a conference paper at ICLR 2026

C PRELIMINARIES AND PROOF OF THM. [I]AND THM. [4]

C.1 EMPIRICAL INSIGHTS

Here we expand upon our empirical observations in[4.2.1] which form the basis of our proof.

State-to-state transition factor ¢, ~ 1 for all ¢ > 1. We empirical evidence supporting this
observation in Fig.

1.0 1.000
~—
0.998
0.8
0.996 MWWWWAMMAMWMN WM AN WML MMMV VWA AAM NVWAW
0.6 0.994
04 0.992
0.990
0.2
0.0
0 100 200 300 400 500

Position ¢

Figure 4: Value of a; across positions at convergence.

Convolution window w > k + 1. Recalling that k is the Markov order, we empirically observe
that the window that w = k + 1 is sufficient for the full Mamba to learn the Laplacian smoothing
on kM-order Markov chains. To understand why, note that in the MambaZero architecture above,
apart from the[MambaZero| block, all remaining equations operate on the current token at time ¢. In
the [MambaZero|block, same as the[Mamba]block except ReLU, the dependency of the output y; on
the previous tokens is due to that of the state H; on (¢, b;) in the update equation, and of ¢; in the
state projection. Since (&, by, ¢;) depend on the past through the convolutions, a window of size
k + 1 enables them to keep track of the current token as well as its length-k prefix, which is necessary
to compute the counts needed in[Laplacian smoothing| On the other hand, if w < k, then one can
find confusable sequences, i.e. sequences that share the same number of occurrences of all length-k
prefixes, but whose counts of the tokens following each prefix is different.

For such sequences, the state H; is the same, and so are the predicted probabilities by the Mamba
model; however, the optimal estimator, depending on the transition counts, would give very different
probability estimates, allowing Mamba’s prediction loss to deviate from that of the optimal. For
example, consider £ = 1. If w = 1, then (&, bs, ¢;) depend only on the current token ;. Then,
consider the two sequences = (0,1,0,1,0,1) and = (0,0,0,1,1,1). At time ¢ = 6, these two
sequences would give the same state H, and the same output y;, since they share the same number of
tokens 0 and 1. Therefore, the estimated probability given by the model would be the same in both
cases. However, the optimal add-constant estimator (with 5 = 1) would estimate the probability of
2411 = 1 to be 1/4 for a, and 3/4 for Z.

Further, it is sufficient that the convolution for ¢; has window we = k. That is, the convolution conve
involved in the computation of ¢; can have a window size equal to the Markov order & (i.e., one less
than conv x and conv ) without affecting the model’s capability of learning the task (or, equivalently,
the left-most kernel coefficients of conv can be taken to be zero). Intuitively, this is because the
role of ¢; in the state projection is to select the correct transition counts for the computation of the
estimator, distilled into y,. In order to do so, it is sufficient to know the length-k context of the current
symbol x;, which can be encoded by a convolution with window size k.

16



Under review as a conference paper at ICLR 2026

C.2 PRrROOF OF THM.[II

Let 8 > 0 be the constant of the considered add-constant estimator. Let us fix a = 0 and A; = 1, so
that a; = 1, for all ¢ > 1. This can be done by picking, e.g., wa = 0 and § such that softplus(d) = 1.
Note that the application of convolution to a given sequence of vectors z! can be rewritten as a linear
matrix-form operation. For example, for conv x, one has that

convx(z) = DYz 1 + DYz )

where Dg?) and DS) are diagonal matrices. The same holds for convp and conv¢, with correspond-
ing diagonal matrices DJ(BO), Dg), D(C?) and D(Cl).

Let us take the embedding vectors e;, 7 € X, to be the one-hot encoding vectors for the alphabet
X, interleaved with zeros, i.e., let e; be such that e; 2;_1 = 1 and 0 otherwise. Furthermore, take
Wx to be the 25 x 25 matrix such that W (i,j) = 1 fori = 2k and j = 2k — 1,for1 < k < S,
and 0 otherwise. (The role of W is shift each coordinate of the embedding vectors by one.) Take
now conv x to be such that its output is simply equal to the current vector, i.e., take Dg?) =0 and
Dg) = I55x2s. Take also Wp = Ig« s and conv g so that the output is equal to the second-to-last
vector, i.e., take DJ(E?) = Ig«s and Dg) = 0. Finally, take W = Igxs and conve such that
C(O) = 0and C(l) = IS><S-

The final logit vector is in general equal to

logit, = Weme + WeW, &6 T ey +Y " nyy W,W, 20609 Te,. (10)
j

Using the matrices chosen above, we can simplify the formula as follows. Firstly, note that b(*1) = 0,
as the b vectors only depend on the second-to-last vectors. Furthermore, since the embedding vectors
are orthogonal to each other, we have that plid )Tct = 1 whether ¢ = x;, and 0 otherwise. (That
is, only the correct counts are kept in the logit computation.) With these simplifications, the logit

formula becomes .
logit, = Wemy + Y na, ; WeW, 2. (1)

J

Finally, take W, = Issx2s and take Wy such that Wy (¢) = S1 for all odd i, Wy(2i,i) = 1 for

1 <4 < S, and 0 otherwise. With this choice, we get, forall t > 1,

logitt :ﬁl—l—ant}jei (12)
J
where e; is the one-hot vector for symbol ¢ € X'. After the normalization, we finally get
nij + 3
fo(r1); = ="——¢=
( 1)] Zk; Nk 4 Sﬁ
if z; = 1, for i € X. This is precisely the required add-3 Laplacian estimator.

13)

C.3 THM.[4: DIMENSIONALITY REDUCTION FOR THE BINARY CASE

Theorem 4. For the canonical MambaZero model with dimensions d = N = 2, e = 1, and
convolution window w = 2, there is a choice of parameters such that the model prediction is
arbitrarily close to the Laplacian estimator for random first-order Markov chains. More formally, for
any 8 > 0 and € € (0, 1), there exists a set of parameters 0 such that, for all sequences (x;);>1 and
allt > 1,

Dy, (PS)(- | 24)|[Po (- | 28)) <.
Proof. Fix € > 0 and let 5 > 0 be the constant of the considered add-constant estimator. Let us fix

a =0and A; = 1, so that a; = 1, for all ¢ > 1. This can be done by picking, e.g., wa = 0 and §
such that softplus(d) = 1. Let us compactly denote the convolution kernels as

convy = (aoo a01> , convg = (700 ,701) (14)

Q1o O11 Y10 Y11

17



Under review as a conference paper at ICLR 2026

where each row corresponds to the kernel weights applied time-wise to each coordinate of the input
sequence (x;);>1. Since the window for conv¢ is we = 1, we can simply assume w.l.o.g. that
Ct = Wc.’I}t.

Let us denote the embedding vectors to be ey = (ego, €01) " and e; = (e10,e11) ', and assume that
the vectors are not collinear. Take also Wx = Wp such that

Wi eo = (3) . Wxe = (?) (1)

and take W such that

c 0
cho=(3>7 chlz(c) (16)
1
Let us also take the kernels of conv x and conv g to be the same across coordinates, i.e.,
convy = <gg gi) , convg = <zg zi) (17)

such that the following conditions are satisfied:

apyo +a1y1 =0
apy1 + a1y > 0
ap # oy

o1 — _
aoYy1t+a1vo BE

(18)

Note that, with such a choice of parameters, we have

X — (%1> . X = (0> . BO= (71) ., BW= (0) (19)
(6751 Y1
co = (ff) o = (0> 20)
) Cl
x(00) _ (@0t x (01 _ (@0 x(10) _ (@1 X — 0
0 ’ ay )’ ap )’ ap + oy

500 _ (o +7 BOH _ (0 o _ (m gy 0 22)
0 ’ M)’ Y0/’ Yot+)

(We replaced the vector notation of Sec. E] with matrix notation, so that X (0) has to be intended as
(9, and so on.) Take also W, = W, = I. With this choice of parameters, the final logit vector
becomes, using Eq. (3)),

logit, = W, (wt F W XEOBED O g W, X @100 BEred) T o)

4+ Ngye, Wo X(mtzt)B(mtl‘t)TCt + Nz, Wo (X(mt,it)B(-Tr,-Tt)T + X(-ftmt,)B(ft?ﬂt)T) C,

(23)
_ (€00 + coarm1 1 ) 0 4 nog - (a0 +a1)(v0 +71)co
= o1 {1;1:1} COOZOFYI 00 0

(@00 + a1m)co
o ((CV()% + a170)co

(24)
_ (€00 + corm _ 0 [ (@om + a1v0)co
= ( o1 ) + Lz =13 (Coao’}/1> =+ noo ( 0

+ no1 - 0
0L\ (om1 + @170)co
(25)

18



Under review as a conference paper at ICLR 2026

if z; = 0, and
. e1o [caom [ (@oy1 + a1vo)er
logltt = (ell + 01041’71) + ]1{931:()} < 0 ) + n10 ((OZO’YO + 0171)01)
0
M ((ao +a1)(y0 + 71)61>
(26)
_ €10 [ 1o ([ (om + a1v0)cr
= (ell + 01041’71) + ]]-{r1:0} < 0 ) + n1o ( 0 )

+nq - 0
(o + a1v0)an

(27)

if z; = 1. Take now
eoo = e11 = (a1 + a1y0)Beo — ary1co (28)
eo1 = e10 = (Y1 + a170)Bco — apyi1co (29)

With this choice of parameters, after the layer normalization, the final output probability vector is

+ B+ Liz=0} - !
folet) = ( SiE MO S ) (30)
noo + 1ot + 28 + Lz, =0y - € noo +no1 + 28 + Lz, —oy - Pe
if z; = 0, and
' nio + B+ Lz, =1y - Be ni + B !
fo(al) = ) G2
nio +ni1 + 28+ Lz =1y - e " nio+ni1 + 28+ Ly =1y - Pe

if x; = 1. Note that the resulting predicted probabilities exactly match the add-3 estimator when
x1 # x4, but they are slightly different when 1 = x4 due to the additional Se factor. We now show
that, when the additional factor is present, the two predictors nevertheless differ by at most € in KL
distance. We show it for the case x1 = x; = 0, the other case follows in the same way. In fact, note
that

Be
no1 + B + Be _ no1 + B _ L+ s (32)
noo +no1 +28+Be  noo+no+28 14 L
Now, since
Be
1<1+ <l+e (33)
no1 + B
and 3
€
1<1+———— <1+ 34
- ngo + no1 + 28 — ‘ .
we have that
ng1 + < no1 + B + Be (1+¢) (35)
noo +no1 + 28 T noo + no1 + 28 + Be
but we also have 9
noo + no1 + 5+ﬂ6§1 Lgl—ke, (36)
noo + no1 + 28 noo + no1 + 20

so that

Py (w141 =0 2t)

Po (41 =0 | zf)

PY (141 =1 2})

Po (w111 =1 1)

D, (P (-1 21) IPo (-] 21)) =P (w1 = 0] 1) log

+P§_31) (I’t+1 =1 | I’tl) IOg

(37)
noo+5
_ noo + 8 o n00+07olo1+25
o noo+8
noo + noy + 28 noo+zz(1]+2,3+l3€

19



Under review as a conference paper at ICLR 2026

no1+8

no1 + 3 00 +1101 128
noo + oy + 28 ° _nmtBise
noo+no1+28+P€
(38)
ngo + 5 no1 + 5
< ———Jog(l+€)+ ————log(l + ¢
noo + no1 + 28 B ) noo + no1 + 28 8 )
(39)
<log(l+¢) (40)
<e 41
concluding the proof. O

20



Under review as a conference paper at ICLR 2026

D PROOF OF THM. 2]

Consider a recurrent model of the form H, = h(H;_1,x;) and y; = g(H,) for each ¢ > 1 where
H; € R? and the model has a bit precision of p. In this proof, we will assume that the state space of
the underlying Markov chain is {0, 1}. By the recurrent architecture, the predicted distribution over
the next token x4 41 is of the form,

Yirk = Po (veprt1 = 2 | 2iF) = gz, Hepi). (42)
Recall that the add-1 estimator is defined as,

n(z,xiff) +1

: , 43)
n(ziTh) +2

where n(zF) = Zfi} I(zitF~1 = 2F) indicates the number of times 2} appears in the sequence.
This is the optimal estimator for sequences drawn from the product-Dirichlet prior: for every i¥,
P(- | i%) ~ Dir(1 - 1), which is the distribution we will assume for this proof. Fixing z%, we can
write the add-1 estimator more explicitly as a function of xii’f as,

t+k _ k) _ n(zf,z) +1 (44)

PR (2 =z|at,z =z .
1 ( t+k+1 ‘ 1o &t+1 1 n<Z{g>+2

Now, fixing x%, correctness of the recurrent model means that, almost surely over P drawn from the
prior, and % ~ P and 2§ ~ P(-|2}),

9(@eskr1 =0, Hipr) € P (wyppr = 0|, 2fTh = 28) + [—e.4]. (45)

where Hy}, is a function of % and z¥. As ¢ — oo, under the randomness of the draw of = ~ P, by
the strong law of large numbers RHS converges almost surely to the conditional distribution under P,
almost surely over the choice of P from the product-Dirichlet prior. Here we use the fact that for P
drawn from the product-Dirichlet prior, P(z|z¥) > 0 almost surely, and so the resulting distributions
are exponentially mixing and ergodic. Namely, for each z¥ € {0, 1}*, almost surely over P drawn
from the product-Dirichlet prior,

t—o0

Pr (hm sup [P (i1 = 0| ah a4 = 25) = P(0J26)] > 7)) =0 (46)

for any v > 0. Therefore, a necessary condition to satisfy Equation li is, for each 2¥ € X*,

9(@rsr1 =0, Hepr) € P(0[2F) + [—e — np(t), e + np (). (47)

for some np(t), which is a function of P satisfying limsup,_, . np(t) = 0 almost surely over P
drawn from the prior; note that Hy , is implicitly a function of % and 2¥. Divide the interval [0, 1]
into 1/¢ disjoint intervals of size ¢ each. Recall that P(-|2¥) ~ p = Dir(1 - 1), which implies that
the random variable P(0|z}) for each fixed 2¥ (randomness is over P) is distributed as,

Pr [P(0]z}) = |2}] = Unif([0, 1]). (48)
P
Consider the buckets B = {[0,¢), [¢,2¢),- -, [1 — &, 1]}. Define the function round(p) : [0, 1] —
{0,---,|B| — 1} to return the index of the bucket in B, such that p falls in that bucket.
Lemma 1. Consider any function f(z¥) : X* — {0,--- ||B.| — 1} such that, pointwise,
[round (P(0]2F)) — f(zF)| < r. (49)

Then, when P(0|zF) e Dir(1-1),

Hpamnon ({f(2F) 1 28 € {0,1}%}) > 2% ((1 — 3¢e) log(1/¢) — log(2r + 1)) (50)

where the randomness is over the draw of P and Hgpannon IS the discrete Shannon entropy.

21



Under review as a conference paper at ICLR 2026

Proof. Recall that P(0|zF) " Unif([0, 1]) across zF € X*. Then,
Pr(round(P(0|21)) = j) = Pr(P(0]27) € [e(j — 1/2),£(j + 1/2))) (51)
£ if1<j<|B]-2,
= 52
{38/2 ifj=0o0rj=|B]— 1. (52)
This implies that, by independence of the P(0|z})’s across 2§ € &%,
Hspannon ({P(0]2F) : 2 € X*}) > |&|F(1 — 3¢) log(1/e). (53)

Let e(z¥) be the random variable P(0|zF) — f(2F). P(0|2F) is a measurable function of f(z¥) and
e(2¥), and therefore,

Hspannon ({f(zlf) : zf € Xk} U {6(2’{“) : z]f € Xk}) > Hshannon ({P(O|zf) : zf € Xk}) (54)

Note that e(2}) is bounded in the rate {—r,--- ,7} and can take at most 27 + 1 values. Therefore,
H ({e(2f) : 2f € X*}) < |X|*log(2r + 1). Since H(A, B) < H(A) + H(B), we have that,

Hghannon ({f(zf) 12¥ e Xk}) > Hghannon ({P(O|z’f) ¥ € Xk}) - H ({e(z’f) c2¥ e Xk})
(55)

> X1 (1 — 3¢)log(1/e) — log(2r + 1)). (56)
O

Recall that we are guaranteed that g(x; 11 = 0, Hiix) € P(0|2F) + [—e — np(t),e + np(t)].
This implies that the recurrent model is able to recover round(p) for p = P(0|z{) up to an error
of r = [n(t)/e] for each z¥ € X* by computing round(p) where p = g(z¢ips1 = 0, Hiip).
Informally, this just means that p is likely to fall in a bucket close to p. In combination with Lemma|[T]
for f(2¥) = g(z44k+1 = 0, Hyy i) we have that,

Hstannon ({9 (21 = 0, Hygr) © 21 € {0,1}}) 2 2% (1 — 3¢) log(1/e) — log(2[np () /¢] + 1))

+
(57)

Note however, that g(z¢4,+1 = 0, Hyyr) is a function of zf implicitly, through H;; (which is also
a function of x}). Since the dimensionality of H;, is d and the model is implemented to p bits of
precision,

HShannon({g(xtﬂ—k-&-l = 0; Ht+k) : Z{C S {0; 1}k}) S HShannon(Ht—i-k) S dP (58)

where all randomness here is induced by the random draw of the k"-order Markov kernel P.
Therefore, for the correctness guarantee Equation @ to hold, we need,

dp > 2" ((1 - 3¢)log(1/e) — log(2[np(t)/e] +1)) (59)

in the limit ¢ — oo, and noting that lim sup,_, ., np () = 0 almost surely over P drawn from the
prior, it is necessary that,

dp > 2% (1 — 3¢) log(1/¢). (60)
O

Fig. 5| provides empirical evidence that the exponential dependency of the theorem on the order k is
consistent.

Remark. The proof above assumes that the k"-order Markov chain is on a binary state space.
However, the result can easily be extended to give the lower bound d - p > Q(|X'|¥) for larger state
spaces, as well as similar scaling results for priors Dir(8 - 1) for any 8 > 0. Furthermore, we believe
it should be possible to replace the Lo, error guarantee in Equation (6)) by the KL-divergence between
the two distributions without significantly changing the conclusion (d - p = 22(%)).

Intuition. The intuition behind this result is in the manner in which the recurrent architecture carries
out computation: by proceeding sequentially and compressing the information from the sequence it
has seen thus far at some time ¢ into a small hidden vector, the model does not know what the next

22



Under review as a conference paper at ICLR 2026

k tokens will be: the knowledge of this is vital to be able to compute the add-/ estimator at time
t + k + 1 with a small memory footprint. Indeed, when the identity of the next &k tokens changes,
the output of the model at time ¢ + k& + 1 must look drastically different (as the add-3 estimator
corresponds to approximately evaluating IP(-|#¥), which are unrelated distributions under different
choices of i%). There are ~ 22" possible values the set P = {P(-|i) : i* € {0,1}*} can take. But
when d and p are small, the output of the model just cannot take so many values: it can realize at
most 2P possible sets. In other words, in order to succeed, the recurrent architecture is essentially
forced to keep track of the number of occurrences of each i¥ € {0, 1}* in the sequence at each time
t, which costs an exponential dependence on k in the hidden dimension/precision.

- Iiiil Iiili lllii ll‘li
1 2 3 4 5

Order

0.35

0.30

I
= 0 KN

©
)
3
o

Test loss
o o
N )
(6] o
O 0O o 9o o
m n n
w
N

I IS¢
o N
[$)] o

g
o
S

Figure 5: Relation between the Markov order k£ and the hidden dimension d of the 1-layer Mamba
model. The plot shows that d = 2 is sufficient for the model to learn the k-th order Markov task.
This corroborates the fact that Theorem 2 in the main paper has the correct order dependency.

23



Under review as a conference paper at ICLR 2026

E ADDITIONAL RESULTS

E.1 MULTIPLE STATES

Fig. 6| shows that our results extend to larger number of states.

0.5 0.5
—— 2 states —— 2 states
—— 4 states —— 4 states
0.4 —— 6 states E 0.4 —— 6 states
—— 8 states 5 —— 8 states
g °
$0.3 203
[
3 2
o K]
— [}
1% b=
Q@ 0.2 s 0.2
(=)
[}
8
0.1 =01
0.0 0.0
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
Iteration (x 200) Iteration (x 200)
(a) Absolute test loss gap (b) Relative test loss gap

Figure 6: Test loss gap from the optimal for 1-layer Mamba and first-order Markov data, for different
number of states. (a) shows the absolute gap L(#) — L*; (b) shows the relative gap (L(8) — L*)/L*.
The loss gap is consistently small for all state sizes.

E.2 DEEPER NETWORKS

Fig. [7]show that our results are consistent with larger number of layers.

0.35 0.35
. 1 layer . 1 layer
0.30 2 layers 0.30 mmm 2 layers
w3 layers 3 layers
0.25 . 4 layers 025 mmm 4 layers
@ 0.20 % 0.20
kel k<]
k7] ®
2 0.15 2 0.15
0.10 0.10
TN I ii I
oo mss  Hmmm  HHEE oo Wi
1 2 3 4 1 2 3 4
Order Order
(a) Mamba (b) Transformers

Figure 7: Test loss gap from the optimal for Mamba and Transformers, for different number of layers
and Markov orders. Mamba has a smaller loss gap than transformers across all orders. Furthermore,
adding more layers to Mamba does not significantly improve performance. As expected, 1-layer
Transformers cannot solve the Markov task, while 1-layer Mamba can.

E.3 HOLD-OUT EXPERIMENT

We also consider the following interesting experiment: we trained Mamba only on sequences from a
subset of the Markov simplex, specifically the interval [0, 0.5], and we tested it on sequences from
its complement [0.5, 1]. Interestingly, our experiments show that the test loss still converges to the
optimal. However, by inspecting the actual estimated probabilities on a fixed test sequence, we see that
the absolute difference between the model’s estimation and the optimal Laplacian smoothing is high

24



Under review as a conference paper at ICLR 2026

for the first samples, and gradually decreases as the sequence progresses. This is justified by the fact
that the Laplacian estimator is not only Bayes-optimal, but also minimax optimal (i.e., independently
of the prior on the simplex) in the limit of long sequences (i.e., the gap from the optimal loss goes
to 0 as n — 00). Table [2]shows the absolute difference [P (z; = 1|zi7) — P*(x, = 1|t~ 1)] for
several ¢, showing how this difference gradually goes to zero as ¢ increases.

Table 2: Results for the hold-out experiment.

Length ¢ Abs. difference from optimal

1 0.378 £0.050
50 0.098 £ 0.039
100 0.007 £ 0.003
300 0.001 £ 0.001

E.4 CONVOLUTION

Fig.[8|shows that adding convolution to transformers (similarly to Mamba) makes the model solve
the task with just one layer. On the contrary, Fig. [0]shows that Mamba needs two layers to solve the
task if convolution is removed. Table [3|shows that a one-layer Mamba without convolution cannot
learn the optimal estimator, no matter how wide the model is.

1.0 0.40
1-layer Mamba
0.35 —— 1-layer Transformer

o
@

— 1-layer Transformer + convolution

/
/
/

Predicted probability
o
[}
Test loss
o o
N N
o (6]

04 0.15
1-layer Mamba
0.10

0.2 —— 1-layer Transformer

—— 1-layer Transformer + convolution 0.05 \M

----- Optimal predictor
0.0 0.00

0 10 20 30 40 50 60 70 0 5 10 15 20 25 30 35
t:x_t=0 Iteration (x 200)
(a) Predicted probability (b) Test loss

Figure 8: Predicted probability and test loss for Transformers with and without convolution. Adding
convolution to the K, (), V matrices of transformers makes the models succeed in learning the
Markov task, similarly to 1-layer Mamba.

Table 3: Experiments on one-layer Mamba without convolution, with varying width. The model does
not learn the optimal estimator successfully.

Hidden dimension d  Avg, test loss gap from optimal

10 0.113 £ 0.032
100 0.158 +0.055
1000 0.140 £ 0.072

E.5 SWITCHING MARKOV
Here we detail the switching Markov process more formally:

1. Initialize t = 0.
2. Draw a binary Markov kernel P with each row sampled i.i.d. from Dir(j3 - 1).

25



Predicted probability P (z¢+1 = 1 | z})

Under review as a conference paper at ICLR 2026

0.5
0.4
2
3
3 8 0.3
a i<}
3 g
] F o2
3
& 05 1-layer Mamba
—— 1-layer Mamba without convolution v 0.1
04~ —— 2.ayer Mamba without convolution
----- Optimal predictor
0.3 0.0
0 10 20 30 40 50 60 70
t:x t=0

(a) Predicted probability

1-layer Mamba
—— 1-layer Mamba without convolution
—— 2-layer Mamba without convolution

2 4 6 8 10 12 14

Iteration (x 200)

(b) Test loss

Figure 9: Predicted probability and test loss for the full 1-layer Mamba and a 2-layer Mamba without
convolution. Similarly to transformers, Mamba needs two layers to solve the Markov task when

convolution is removed.

3. Let z; = S with probability pswitch, Or sample x; ~ PQJLHP: with probability 1 — pswitch-
4. Ifxy = S,sett =t + 1 and go to step 2; if z; # 9, sett = ¢ + 1 and go to step 3.

Fig. |'1;G|illustrates the behavior of Mamba on this process when pgyitcn = 0.01.

0.8

—— 1-layer Mamba 1.0
07 & Optimal estimator

0.6
0.5
0.4
0.3
0.2

0.1

0.0
0 50 100 150 200 250 300 0

t:xy =0
(a) Predicted probabilities

100 200 300 400 500
Position ¢

(b) Value of a; across positions

Figure 10: One-layer Mamba on switching Markov data. Mamba is able to learn the optimal predictor
by forgetting past counts every time a switch token occurs. This is achieved by setting a; = 0 at

every switch, and a; = 1 otherwise.

E.6 FURTHER ABLATION FOR NATURAL LANGUAGE

The fundamental role played by convolution in modeling natural language is demonstrated in Table T}
However, we find that other components, in particular gating factor a;, play an essential role as
well, when natural language is considered. In Table[d] we show the increase in test perplexity when
convolution, gating factor a; and non-linearities are individually removed from the full Mamba-2

architecture.

26



Under review as a conference paper at ICLR 2026

Table 4: Perplexity results on the WikiText-103 dataset.

Model Params. Perplexity Percentage increase
Mamba-2 (full) 14.54 M 27.55 -

Mamba-2 (w/o conv) 14.53 M  30.68 11%

Mamba-2 (w/o gating factor) 14.54M  32.16 17%

Mamba-2 (w/o non-linearities) 14.54 M  28.98 5%

27



Under review as a conference paper at ICLR 2026

F MODEL ARCHITECTURES AND HYPER-PARAMETERS

The following tables discuss details on the architectures and hyperparameters used in all the paper’s
experiments. Each experiment was run on a single Nvidia A100 GPU. The time taken by each
experiment was between 10 to 60 minutes.

Table 5: Parameters in the Mamba architecture with their shape.

Parameter Matrix shape
embedding 2xd

mamba.A 1

mamba.dt 1

mamba.in_proj (2ed+ 2N +1) xd
mamba.convld (ed+2N) x w
mamba.out_proj d x (2ed + 2N + 1)
mlp.fcl 4d x d

mlp.fc2 dx 4d

Im_head dx2

Table 6: Settings and parameters for the Mamba model used in the experiments.

Dataset k-th order binary Markov source
Architecture Based on the Mamba-2 architecture as implemented in|Dao & Gu|(2024)
Batch size Grid-searched in {16, 32, 64, 128, 256}
Accumulation steps 1

Optimizer AdamW (81 = 0.9, B2 = 0.95)
Learning rate 0.001

Scheduler Cosine

# Iterations 10000

Weight decay 1x1073

Dropout 0

Sequence length Grid-searched in {128, 256, 512}
Embedding dimension  Grid-searched in {2, 4, 8,16, 32}
Mamba layers 1

Heads 1

Convolution window Between 2 and 6

Repetitions 5

Table 7: Parameters in the transformer architecture with their shape.

Parameter Matrix shape
transformer.wte 2xd
transformer.wpe N xd
transformer.h.In_1 (x¢) dx1
transformer.h.attn.c_attn (x¢) 3d x d
transformer.h.attn.c_proj (x£) dxd
transformer.h.In_2 (x¢) dx1
transformer.h.mlp.c_fc (x£) 4d x d
transformer.h.mlp.c_proj (x¢) dx 4d
transformer.In_f dx1

28



Under review as a conference paper at ICLR 2026

Table 8: Settings and parameters for the transformer model used in the experiments.

Dataset k-th order binary Markov source

Architecture Based on the GPT-2 architecture as implemented in |Pagliardini
Batch size Grid-searched in {16, 32, 64, 128, 256}
Accumulation steps 1

Optimizer AdamW (81 = 0.9, B2 = 0.95)

Learning rate 0.001

Scheduler Cosine

# Iterations 10000

Weight decay 1x1073

Dropout 0

Sequence length Grid-searched in {128,256, 512, 1024}
Embedding dimension  Grid-searched in {4, 8, 16, 32}

Transformer layers Between 1 and 2 depending on the experiment
Attention heads 1

Repetitions 5

29



	Introduction
	Related Work

	Problem setup
	Input data: Random Markov chains
	Mamba architecture
	Learning task: next-token prediction
	Optimal estimator: Laplacian smoothing

	Does Mamba learn in-context estimators?
	How Mamba implements the Laplacian estimator
	MambaZero: Simplified model
	Main theorem: Mamba represents the Laplacian estimator
	Key mechanism and proof sketch

	Lower bound: fundamental limit on the representation power of Mamba

	Beyond Markov
	Switching Markov model
	Natural language modeling

	Conclusion
	Preliminaries on Laplacian smoothing
	Mamba-based language modeling architecture
	Preliminaries and Proof of Thm. 1 and Thm. 4
	Empirical insights
	Proof of Thm. 1
	Thm. 4: dimensionality reduction for the binary case

	Proof of Thm. 2
	Additional results
	Multiple states
	Deeper networks
	Hold-out experiment
	Convolution
	Switching Markov
	Further ablation for natural language

	Model architectures and hyper-parameters

