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ABSTRACT

While transformer-based language models have driven the AI revolution thus
far, their computational complexity has spurred growing interest in viable al-
ternatives, such as structured state space sequence models (SSMs) and Selec-
tive SSMs. Among these, Mamba (S6) and its variant Mamba-2 have shown
remarkable inference speed-ups over transformers while achieving comparable
or superior performance on complex language modeling tasks. However, despite
these architectural innovations and empirical successes, the fundamental learn-
ing capabilities of Mamba remain poorly understood. In this paper, we address
this gap by studying in-context learning (ICL) on Markov chains and uncover-
ing an interesting phenomenon: even a single-layer Mamba efficiently learns the
in-context Laplacian smoothing estimator, which is both Bayes and minimax op-
timal. To explain this, we theoretically characterize the representation capacity
of Mamba and reveal the fundamental role of convolution in enabling it to repre-
sent the optimal Laplacian smoothing. These theoretical insights align strongly
with empirical results and, to the best of our knowledge, represent the first formal
connection between Mamba and optimal statistical estimators. Finally, we outline
promising research directions inspired by these findings. Code is available at
https://anonymous.4open.science/r/Markov-Mamba-39C5.

1 INTRODUCTION

Transformers have been at the forefront of recent breakthroughs in language modeling, driving the AI
revolution (Vaswani et al., 2017; Radford & Narasimhan, 2018; Devlin et al., 2018). Despite their
empirical success, transformers suffer from high computational complexity, such as quadratic scaling
in sequence length during training and linear cache size at inference (Gu & Dao, 2023a). To address
these limitations, there is a growing interest in designing alternative efficient architectures among
which structured state space models (SSMs) are the most prominent. In particular, Selective SSMs
such as Mamba and Mamba-2, have achieved state-of-the-art results in various language modeling
tasks, while greatly improving the inference throughput (Cirone et al., 2025).

Motivated by this success, there is tremendous interest in understanding the sequential modeling
abilities of SSMs, especially that of Mamba. In particular, mirroring a theme that has been successful
in unraveling fundamental mechanisms (e.g. induction heads) behind transformers (Makkuva et al.,
2025; 2024; Rajaraman et al., 2024; Nichani et al., 2024; Edelman et al., 2024), a growing body
of research explores Mamba through its in-context learning (ICL) capabilities (Grazzi et al., 2024;
Halloran et al., 2024; Akyürek et al., 2024; Park et al., 2024). While these works reveal interesting
insights about Mamba’s ICL abilities vis-a-vis transformers, they are largely empirical in nature, and
we currently lack a fundamental theoretical understanding of Mamba and its underlying learning
mechanisms. We are thus motivated to ask:

Can we systematically characterize the ICL capabilities of Mamba?

In this paper, we approach this question from the point of view of representation power, and char-
acterize Mamba’s ICL capabilities on Markov processes, building upon the Markov-ICL framework
originally introduced for transformers (Edelman et al., 2024). As opposed to a Mamba vs. Trans-
formers comparison, here we leverage this framework for a detailed study of Mamba, and uncover
an interesting phenomenon: even a single-layer Mamba efficiently learns the in-context Laplacian
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Figure 1: Single-layer Mamba learns the optimal Laplacian estimator when trained on random
Markov chains, exhibiting ICL. (a) shows the predicted probability distribution on a fixed test
sequence for models trained on binary first-order Markov sources. (b) quantifies the L1 deviation
from the optimal estimator for random sequences and various Markov orders. The error intervals show
the standard deviation across 5 runs. Sec. 4.3 and Fig. 10 further discuss Mamba vs. Transformers.

smoothing estimator, which is both Bayes and minimax optimal, for all Markov orders (Figs. 1 and
10a). Towards explaining this, we theoretically characterize the representation capacity of Mamba and
demonstrate that the convolution mechanism, together with selectivity and recurrence, plays a fun-
damental role in realizing the Laplacian smoothing. Importantly, we showcase that these theoretical
insights align strongly with empirical results, even outside the realm of Markovian data. To the best of
our knowledge, this is the first result of its kind connecting Mamba and optimal statistical estimators.

In summary, we make the following contributions:

• Leveraging the Markov-ICL framework, we uncover the surprising fact that even a
single-layer Mamba learns the optimal in-context estimator for all Markov orders (Fig. 1).
Intriguingly, convolution plays a pivotal role, more so than gating and non-linear activation,
in this learning ability (Sec. 3).

• Towards explaining this phenomenon, we characterize the representational capacity of
single-layer Mamba and show, both theoretically and empirically, how it represents the
optimal in-context estimator for any finite-state first-order processes, through an intricate
interplay of convolution, selectivity and recurrence. Further, we provide fundamental limits
for higher-order processes (Sec. 4).

• We demonstrate the generality of our findings on non-Markovian data and illustrate the
fundamental role of convolution even on complex language-modeling tasks (Sec. 5).

1.1 RELATED WORK

SSMs (Gu et al., 2020; 2021) have been recently introduced as an alternative recurrent architecture
aimed at rivaling the well established transformer backbone (Vaswani et al., 2017). The model was
originally introduced as a discretized linear dynamical system (Gu et al., 2021). Recent works tried to
re-frame the architecture from a linear recurrent perspective (Orvieto et al., 2023b). However, there
are still many gaps in understanding this family of models (Team et al., 2024), such as questions
around expressivity (Orvieto et al., 2023a). This is particularly important given the proliferation of
Mamba-inspired architectures that have emerged since its introduction (Qin & Liu, 2024; Csordás
et al., 2024; Zhu et al., 2024; Gu & Dao, 2023b; De et al., 2024; Beck et al., 2024).

To this end, our work squarely focuses on understanding the representation power of Mamba, and
in particular its ICL capability, which, while extensively studied for transformers (Xie et al., 2021;
Hendel et al., 2023; Bai et al., 2023), remains largely unexplored for SSMs. In this space, recent
studies such as Sushma et al. (2024), have shown that SSMs can perform gradient-based learning

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

for in-context adaptation similar to transformers. There is conflicting evidence whether Mamba’s ICL
abilities are better (Grazzi et al., 2024) or worse (Halloran et al., 2024; Akyürek et al., 2024) compared
to transformers. Nonetheless, SSMs have demonstrated promising results in in-context reinforcement
learning tasks (Lu et al., 2024), as well as in next-state prediction for dynamical models (Joseph
et al., 2024), highlighting the potential of SSMs as efficient alternatives to transformers for ICL tasks.
Motivated by this, as opposed to an architectural comparison Jelassi et al. (2024); Bhattamishra et al.
(2024); Merrill et al. (2024); Sarrof et al. (2024), here we solely focus on Mamba’s ICL capabilities,
specifically, through the lens of random Markov processes. This framework has been successfully
applied to transformers (Edelman et al., 2024; Makkuva et al., 2025; 2024; Rajaraman et al., 2024;
Nichani et al., 2024), where it helped unveil fundamental learning mechanisms of transformers such
as induction heads. Ours is the first work that employs this framework for Mamba and SSMs.

2 PROBLEM SETUP

We formally define the problem setting and provide necessary background. We use the
following notation: scalars are denoted by such italic lower case letters as x, y, Euclidean
vectors by bold x,y, and matrices by upper case X,Y , etc. 1 refers to the all-one vector. For
T ∈ N, [T ] ≜ {1, . . . , T}, and for a sequence (xt)t≥1, define xt

k ≜ (xk, . . . , xt). For z ∈ R,
sigmoid(z) ≜ 1/(1 + e−z),ReLU(z) ≜ max(0, z), and softplus(z) ≜ log(1 + ez). Unif(S)
denotes the uniform distribution over a set S and Dir(β) denotes the Dirichlet distribution with
parameter β > 0. DKL (P∥Q) denotes the KL divergence between distributions P and Q.

2.1 INPUT DATA: RANDOM MARKOV CHAINS

To investigate the ICL capabilities of Mamba, we build upon the Markov-ICL framework of Edelman
et al. (2024). In particular, we let the input tokens to be stochastic and drawn from a random Markov
chain of order k . That is, the token sequence x = (xt)

T
t=1 ∈ X T on the state space (vocabulary) X

follows the transition dynamics:

P
(
xt+1 = · | xt

1

)
= P

(
xt+1 = · | xt

t−k+1

)
, (1)

almost surely for all t ∈ [T ], and the kth-order Markov kernels, P
(
xt+1 = · | xt

t−k+1 = itt−k+1

)
,

are sampled independently for each tuple (it−k+1, · · · , it) from the Dirichlet prior Dir(β · 1), with
β > 0. When β = 1, this corresponds to the uniform distribution on the S-dimensional simplex
∆S

1 , where size S = |X |.
The transition matrix P = (Pik1

)ik1∈Xk , Pik1
∈ [0, 1]S , encapsulates the set of all Sk conditional

probabilities of the chain, each row corresponding to one of them. While this transition matrix
governs the generation of each token xt for t > k, the first k-tokens x1, . . . , xk are drawn i.i.d. from
Unif(X ). This constitutes the joint law of the random variables (P, x), termed random Markov
distribution henceforth. More succinctly,

Data generation (Random Markov sequences).

1. Draw P with each row sampled i.i.d. from Dir(β · 1).
2. For t = 1, . . . , k, sample xt ∼ Unif(X ).
3. For t = k, . . . , T , sample xt+1 ∼ Pxt

t−k+1
.

4. Return the input x = (xt)
T
t=1.

5. Repeat the above steps to generate a batch {x(b)}b∈[B].

Why Random Markov is a good testbed for ICL. As a consequence of the generation process, every
sequence follows a different Markov distribution. Therefore, at inference, a model trained on this
random Markovian data has to estimate the next-token distribution in-context for every test sequence.
Hence, this data class serves as a good sandbox to gauge the ICL capabilities of Mamba, which was
also used in a similar context for transformers (Nichani et al., 2024; Rajaraman et al., 2024).

2.2 MAMBA ARCHITECTURE

Selective SSMs such as Mamba and Mamba-2 are a class of sequence-to-sequence mod-
els that are closely related to RNNs and classical state space models (Gu & Dao, 2023b).

3
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Figure 2: Mamba-based language model.

A key feature underpinning these models is
the selectivity mechanism, enabling them to
selectively choose inputs at every timestep,
as opposed to linear time-invariant (LTI) sys-
tems. While we believe our work cap-
tures the behavior of all selective SSMs, we
will specifically focus on the state-of-the-art
Mamba-2 model to simplify exposition. By
slight abuse of terminology, henceforth we will
also refer to this model simply as Mamba.
Mathematically speaking, Mamba implements
the sequence-to-sequence mapping Mamba :
Rd×T 7→ Rd×T , where given a sequence of
input embeddings x = (xt)

T
t=1 ∈ Rd×T

of dimension d, it outputs the correspond-
ing output embeddings o = (ot)

T
t=1 ∈

Rd×T of the same dimension with o =
Mamba(x). More precisely, fix t ∈ [T ].
Then the output ot at time t is computed
as ot = Mamba(xt

1) using the follow-
ing recurrence equations (Dao & Gu, 2024):

Ht = at Ht−1 + x̃t b
⊤
t ∈ Red×N ,

yt = Ht ct ∈ Red,

zt = yt ⊙ ReLU(Wz xt) ∈ Red,

ot = Wo zt ∈ Rd,

(Mamba)

at ≜ exp(−a ·∆t) ∈ (0, 1),

∆t ≜ softplus(⟨w∆,xt⟩+ δ) ∈ R,

x̃t ≜ ReLU(convX(WX xt
t−w+1)) ·∆t,

bt ≜ ReLU(convB(WB xt
t−w+1)),

ct ≜ ReLU(convC(WC xt
t−w+1)),

(Input selectivity)

where the initial state H0 = 0, Wz ∈ Red×d,Wo ∈ Rd×ed, a ≥ 0,w∆ ∈ Rd, δ ∈ R,WX ∈
Red×d,WB ∈ RN×d and WC ∈ RN×d are all learnable parameters, and conv(zt

t−w+1) is a
time-wise convolution of window w ∈ N with distinct kernels per dimension. Here e ∈ N is the
feature expansion factor, typically 2. Let θMamba denote the set of all these parameters.

Intuition behind Mamba. The underlying intuition behind the update equations in Mamba is simple:
given a sequence of input embeddings (xt), we first capture their local temporal information using
separate convolutions to compute x̃t, bt, and ct (Input selectivity). Equipped with this local memory,
we perform a linear state update to compute the current state Ht from the past Ht−1, weighed by an
input-dependent decay factor at ∈ (0, 1), and (x̃t, bt). Subsequently, we compute the state projection
yt, modulate it with an input-selective term to yield zt, and finally project it down to get the output
embedding ot, which is a function of the entire input sequence until then, xt

1, i.e., ot = Mamba(xt
1).

Mamba-based language model. Mamba block is then incorporated into a full-fledged language
model as follows:

xt ∈ {0, 1} Embedding−−−−−−→ xt
Mamba−−−−→ ut

MLP−−−→ vt
Linear−−−→ logitt

Prediction−−−−−→ fθ(x
t
1), (2)

where fθ(x
t
1) ≜ Pθ (xt+1 = · | xt

1) = softmax(logitt) ∈ [0, 1]S is the probability estimation for
the next symbol xt+1 conditioned on the past xt

1. We omit the layer norm here for simplicity. We
compactly denote the set of all model parameters as θ ∈ RD. We refer to § B for more details.

2.3 LEARNING TASK: NEXT-TOKEN PREDICTION

With the objective of auto-regressively estimating the next token, we train the model parameters
θ to minimize the cross-entropy loss between the next-token predicted probability fθ(x

t
1) and the

corresponding ground-truth symbol xt+1 across all the positions t ∈ [T ]:

L(θ) ≜ − 1

T

∑
t∈[T ]

EPExt+1
1 ∼P

[
log f

(xt+1)
θ (xt

1)
]
, (3)

4
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where f
(j)
θ (xt

1) ≜ Pθ (xt+1 = j | xt
1) for j ∈ X , and the expectation is both over the transition

kernels P and the Markov sequences x = (xt)
T
t=1 sampled from P . In practice, it is replaced by

empirical average across a finite set of batches, sampled according to the random Markov distribution
in Sec. 2.1. For our experiments we use the AdamW optimizer (Kingma & Ba, 2015).

2.4 OPTIMAL ESTIMATOR: LAPLACIAN SMOOTHING

Given the Bayesian prediction loss in Eq. (3), it is natural to ask: what is the optimal θ minimizing it?
It follows from a classical result in statistics (Rissanen (1984), § A) that this minimum is achieved
when the corresponding model prediction matches the (average) ground-truth predictive distribution,
i.e. Pθ (xt+1 = j | xt

1) = EP |xt
1
[P (xt+1 = j | xt

1)], for all t. Given the joint distribution of the pair
(P, xt+1

1 ) in Sec. 2.1, where the kernel P ∼ Dir(β · 1), it can be shown (§ A) that the conditional
expectation above simplifies to the well-known Laplacian smoothing, also known as the add-β
estimator (see e.g. Merhav & Feder (1998)):

P(k)
β

(
xt+1 = j | xt

1

)
≜ EP |xt

1

[
P
(
xt+1 = j | xt

1

)]
=

nj + β

n+ 2β
, (Laplacian smoothing)

where nj is the number of times token j follows the current kth-order context xt
t−k+1 in the sequence

xt
1, i.e. nj = |{i : (xi−1

i−k, xi) = (xt
t−k+1, j)}| and n is the frequency of this context, i.e. n = |{i :

xi−1
i−k = xt

t−k+1}|. Adjusting these counts by β plays the role of additive smoothing, which avoids
assigning zero probabilities to unseen events, an idea dating back to Laplace (Laplace, 1814). It is
also known that the add-β estimator is asymptotically minimax optimal, as T → ∞ (Xie & Barron,
1997; Hao et al., 2018).

How Laplacian smoothing implies ICL. If Mamba realizes this smoothing estimator, i.e. Pθ = P(k)
β ,

it automatically implies its ICL abilities: given a fresh test sequence at inference, in order to optimally
predict the next token, it has to process the input tokens in-context to compute the relevant counts, as
in the Laplacian smoothing. But does Mamba realize this optimal counting estimator in practice?

3 DOES MAMBA LEARN IN-CONTEXT ESTIMATORS?

To investigate the ICL capabilities of Mamba, we consider the problem setup described above and
train Mamba and transformer models using AdamW on the next-token prediction loss in Eq. (3) on
random Markov chains (we refer to § F for more experimental details). These experiments reveal
interesting and rather surprising insights about Mamba:

1. Mamba learns the optimal Laplacian smoothing estimator on the Markov prediction task,
even with a single layer (Fig. 1a).

2. Convolution mechanism plays a fundamental role in Mamba, more so than gating and
non-linear activations, in aiding its learning abilities (Fig. 3a).

In the sequel, we expand upon these observations in detail.

1) Mamba learns the Laplacian smoothing. After training, we evaluate Mamba and transformers
on the same test sequence fixed beforehand and compare their performance to that of the optimal
Laplacian smoothing estimator. Specifically, we compare their next-token prediction probabilities
with those of the add-β estimator. Fig. 1 illustrates these results for various Markov orders, which
uncovers a surprising phenomenon: even a single-layer Mamba sharply matches the optimal
estimator on the whole sequence. The same conclusion holds for larger state spaces and deeper
models (Fig. 10a), as well as in over-parametrized settings (Fig. 9), and even when part of the
dataset is held out (see § E). For transformers, we observe that a two-layer model also matches the
predictor, albeit less sharply, whereas a single layer fails to solve the task. This aligns with recent
theoretical results (Sanford et al., 2024; Ekbote et al., 2025), that show that two layers are required
for transformers to implement an induction head (realizing the counting estimator) efficiently. We
also observe that linear attention performs similarly to softmax attention in this setting (cf. Fig. 7).
Sec. 4.3 further discusses Mamba vs. Transformers.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

0 5 10 15 20 25 30 35
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40
                                            
 
                              

Iteration (×200)

Te
st

lo
ss

Mamba

MambaZero

Mamba without convolution

(a) Importance of convolution

2 3 4 5 6
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
           
           
           
           

Convolution window of Mamba

Te
st

lo
ss

Order 1
Order 2
Order 3
Order 4

(b) Relation between window size and Markov order

Figure 3: (a) illustrates the fundamental role of convolution, without which the model fails to
learn the task. In contrast, a simplified variant with just the convolution (MambaZero) matches the
performance of the full model. (b) highlights the relation between the Markov order k and the window
size w of Mamba. It is required that w ≥ k + 1 for the model to learn the order-k prediction task.

2) Convolution is the key. To decipher the key architectural component behind Mamba’s success
in Markov prediction task, we do an ablation study on its three main features: (i) convolution in Input
selectivity, (ii) ReLU non-linearity in Input selectivity, and (iii) the gating mechanism in Mamba and
MLP. Amongst them, interestingly, convolution plays a fundamental role in the model’s performance,
as illustrated in Fig. 3a. Here we compare the full Mamba architecture from Sec. 2.2, Mamba with
just the convolution in Input selectivity removed, and a simplified Mamba architecture with only
convolution (MambaZero in Sec. 4.1). Further experiments on adding/removing convolution to
Mamba and transformers, as well as experiments with varying width, are shown in § E.6, while
experiments on natural language are deferred to Sec. 5.2. As a metric of comparison, we use the
closeness of each of these models’ losses L(θ) to that of the optimal add-β estimator Lβ , i.e. i.e.
|L(θ)− Lβ |. The closer this metric is to zero, the better the model’s performance is. Remarkably,
the simplified Mamba with just the convolution succeeds on the Markov prediction task, while the
full model without convolution fails, highlighting its fundamental importance. This raises a natural
question: how does convolution help Mamba to implement the optimal Laplacian estimator?

4 HOW MAMBA IMPLEMENTS THE LAPLACIAN ESTIMATOR

Motivated by its success in learning the optimal estimator, here we study how Mamba represents
Laplacian smoothing. Specifically, we provide a concrete theoretical construction backed by
empirical results, that illustrates the mechanism Mamba uses to implement the estimator in practice.

4.1 MAMBAZERO: SIMPLIFIED MODEL

Building upon the insight that Mamba with just the convolution achieves the same performance
as that of the full model (Fig. 3a), we consider its simplified version: MambaZero. MambaZero
retains only the essential elements of the full model in Sec. 2.2: the Embedding layer, the convolution
inside the Mamba block in Input selectivity, and the Linear layer. More formally, it is given by:

xt = ext
∈ Rd, (Embedding)

ut = xt +MambaZero(xt
1), (MambaZero)

logitt = Wℓ ut ∈ RS , (Linear)

fθ(x
t
1) = (logitt/∥logitt∥1) , (Prediction)

Ht = atHt−1 + x̃t b
⊤
t ∈ Red×N ,

yt = Ht ct ∈ Red,

ot = Wo yt ∈ Rd,

(MambaZero)

where ex is the token embedding for x ∈ X , and the input-selective terms at, x̃t, bt and ct are
computed as in Input selectivity without ReLU and just the convolution. Here we use the L1

6
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normalization instead of the softmax in the Prediction layer to ease theoretical analysis, similar to
Nichani et al. (2024); Rajaraman et al. (2024). Let θ = ({ei}i∈X ,θMambaZero,Wℓ) ∈ RD denote
the full set of parameters for appropriate D ≥ 1.

4.2 MAIN THEOREM: MAMBA REPRESENTS THE LAPLACIAN ESTIMATOR

We now present our main theorem that MambaZero can represent Laplacian smoothing for any
finite-state first-order Markov process. A key defining feature of our constructive proof is that it aligns
with the structures empirically learned by the model, shedding light on the fundamental learning
mechanisms of Mamba.
Theorem 1. For a state space X = {1, 2, . . . , S} of size |X | = S, there is a choice of parameters for
the canonical MambaZero model, with dimensions N = S, d = 2S, e = 1 and convolution window
w = 2, such that its output prediction exactly matches that of the Laplacian estimator, for first-order
Markov chains on X . More formally, for any β > 0, there exists a set of parameters θ such that, for
all sequences (xt)t≥1 and all t ≥ 1,

DKL

(
P(1)
β (· | xt

1)∥Pθ

(
· | xt

1

))
= 0.

Remark. The KL divergence above is precisely the penalty paid in the cross-entropy loss in Eq. (3)
at time t when using the predictor Pθ instead of the optimal P(1)

β . In other words, the result implies
that the loss of MambaZero can be made exactly equal to the optimal.

4.2.1 KEY MECHANISM AND PROOF SKETCH

Main idea. To build our intuition towards how MambaZero can realize the add-β counting estimator
for first-order Markov sequences, let’s focus on the core MambaZero block. The key observation
here is the following: if the state Ht−1 can capture all the transition counts i → j till xt−1

1 , the new
state Ht can be updated to account for the current transition xt−1 → xt on top of the existing counts,
by a suitable choice of at, x̃t, and bt. Then the relevant count information corresponding to the
current prefix xt could be read off from the state projection yt = Htct, and be modified to account
for β-smoothing via the Linear and Prediction layers. Buttressing this idea are two key empirical
facts, which in fact hold for any k ≥ 1, underpinning our construction:

(i) State-to-state transition factor at ≈ 1 for all t ≥ 1. We empirically observe that when the
MambaZero model is trained on random first-order Markov data, at convergence we have at ≈ 1 for
all t ≥ 1 (Fig. 4). Since at modulates how much past information flows into the present, at = 1 is
required for the state Ht to store all previous transition counts. Note that this can be easily achieved
by setting either a or ∆t to be zero in Input selectivity, which we empirically observe as well.

(ii) Convolution window w ≥ k + 1. Recalling that k is the Markov order, we empirically observe
that the window size w = k + 1 is sufficient for the full Mamba to learn the Laplacian smoothing
on kth-order Markov chains (Fig. 3b). To understand why, note that in the MambaZero architecture
above, apart from the MambaZero block, all remaining equations operate on the current token at time
t. In the MambaZero block, the dependency of the output yt on the previous tokens is due to that of
the state Ht on (x̃t, bt) in the update equation, and of ct in the state projection. Since (x̃t, bt, ct)
depend on the past through the convolutions, a window of size k + 1 enables them to keep track of
the current token as well as its length-k prefix, which is necessary to compute the counts needed in
Laplacian smoothing. On the other hand, if wX , wB ≤ k, then one can find confusable sequences,
i.e. sequences that share the same number of occurrences of all length-k prefixes, but whose counts
of the tokens following each prefix is different, resulting in the model’s estimate to deviate from
that of the optimal add-β. We refer to § C.1 for more details. While having all the window sizes
wX , wB , wc ≥ k + 1 is sufficient, it can be further strengthened to wc = k (§ C.1).

We now detail our construction for the first-order case, capitalizing on these insights.

Construction. Let us fix w = k + 1 = 2. Then, x̃t and bt only depend on the current token xt and
the previous one xt−1, while ct only depends on xt. Thus, x̃t and bt can only take S2 possible values
depending on the last transition in the sequence, whereas ct only S. To ease the notation, we will
denote these values by x̃(ij), b(ij), and c(i) respectively, for i, j ∈ X . Additionally, at t = 1, these
terms depend only on the current symbol, taking two additional values each, denoted by x̃(i), b(i).
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Let nij denote the number of transitions i → j in the input sequence xt
1. Then, unfolding the state

update recursion in MambaZero, we get that the output of the MambaZero block is

ot = Wo x̃0b
⊤
0 ct +

∑
ij

nij Wo x̃
(ij)b(ij)⊤ct. (4)

While the output in Eq. (4) depends on all the transition counts, in view of Laplacian smoothing, we
ideally want only those counts pertaining to relevant transitions, i.e. if xt = 0, the counts n0j , for
j ∈ X , and similarly for other values of xt. To this end, we empirically observe that at convergence,
the model’s parameters are such that b(ij)⊤ct ≈ 0 whether i ̸= xt (cf. Fig. 5). Due to this property,
only the counts that are involved in the computation of the Laplacian estimator for the current token
xt appear in the output ot. Stitching these facts, the final logits in the Linear layer depend on the first
and current token via

logitt = Wℓ xt +WℓWo x̃0b
⊤
0 ct +

∑
j

nxt,jWℓWo x̃
(xt,j)b(xt,j)⊤ct. (5)

The final step is to then show that for properly chosen parameters, one can make the two vectors
associated with the counts to be orthogonal, and the other vectors, independent of the counts, to
sum up to the vector β1 (which we also empirically verified, cf. Fig. 5). Subsequently, the L1

normalization in Prediction layer will give a next-token probability estimate, matching that of the
add-β estimator. We defer the full proof and additional details to § C.

Dimension reduction for binary state space. Interestingly, for the binary case X = {0, 1}, it is
possible to further reduce the hidden dimension d = 2S in Thm. 1 to d = S = 2 by leveraging the
relationship between the transition counts. The key theoretical insight is that the transition counts in
binary sequences are strongly correlated. Specifically, n01 and n10 are at most one apart: every time
a transition 0 → 1 occurs, either the sequence is followed by only 1’s until the end, or a subsequent
transition 1 → 0 also occurs. Therefore, the dependency of the output on n01 is in fact a dependency
on n10. One can leverage this property to help MambaZero realize Laplacian smoothing with just
two-dimensional embeddings, with arbitrarily small error. We refer to Thm. 4 in § C.3 for full details.

4.3 LOWER BOUND: FUNDAMENTAL LIMIT ON THE REPRESENTATION POWER OF MAMBA

We now provide a fundamental limit on the representation power of recurrent architectures like
Mamba, in the form of a lower bound on the hidden dimension that is required to represent the
optimal estimator. In particular, our result establishes that with finite bit precision, irrespective of
depth, for any recurrent architecture to implement the Laplacian estimator, the hidden dimension
has to at least scale as Ω(2k).
Theorem 2. Consider a recurrent model of the form

Ht = ht(Ht−1, xt),

yt = Pθ

(
· | xt

1

)
= gt(Ht),

with transformations (ht, gt), where Ht ∈ Rd and the model has a bit precision of p. Suppose that
the kth-order Markov kernel P is sampled from the Dirichlet prior with β = 1, P ∼ Dir(1 · 1).
Suppose also that the recurrent architecture satisfies the following point-wise guarantee: for any
sufficiently large t, almost surely over P and xt

1 ∼ P ,∥∥∥Pθ

(
· | xt

1

)
− P(k)

1 (· | xt
1)
∥∥∥
∞

≤ ε, (6)

where P(k)
1 (· | xt

1) is the Laplacian estimator for β = 1. Then, the recurrent architecture must satisfy

d · p ≥ 2k(1− 3ε) log(1/ε).

We defer the full proof and additional details to App. D.

Depth. We note that Thm. 2 does not assume depth one, and holds for recurrent models of any depth.

Mamba vs. Transformers. As Thm. 2 demonstrates, to capture a kth-order Markov process,
Mamba requires the hidden dimension to scale exponentially in k, whereas the best known result for
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transformers needs a three layer model with the hidden dimension growing linearly in k (Rajaraman
et al., 2024). On the other hand, for first-order sources we empirically observe from Fig. 1a that
1-layer Mamba tracks the optimal estimator more sharply than a transformer (see § E for additional
comparative results). While these comparisons are meant to provide a more detailed context for
Mamba, we would like to emphasize that the main focus of our paper is not a comparative study
but rather a fundamental understanding of Mamba’s ICL abilities.

Higher orders and learning dynamics. While Thm. 1 demonstrates that Mamba can represent
the optimal estimator for finite-state first-order processes, our empirical results in Fig. 1b strongly
suggest that a similar conclusion holds for higher-order sources. In a similar vein, analyzing Mamba’s
learning dynamics in its convergence to this smoothing estimator is an interesting topic of future
research, but outside the scope of this paper, whose focus is on representation power.

5 BEYOND MARKOV

5.1 SWITCHING MARKOV MODEL

A key component of Mamba enabling selectivity is the state-transition factor at, that controls the flow
of information from the past state Ht−1 to the current Ht: if at = 1, the past information is fully
utilized in computing the current state, and hence the output, whereas at = 0 completely ignores the
past. In the Markovian setting considered so far, the role of at has largely been dormant: at ≈ 1 for
all t ≥ 1, as the optimal Laplacian predictor requires counts of all transitions, demanding the use
of full past (Sec. 4.2). To better highlight this selectivity mechanism, we consider a non-Markovian
process, where the role of at becomes fundamental.

Specifically, we focus on the switching Markov process, where we add a switch token to the binary
alphabet, i.e. we consider X = {0, 1,S}. The key difference here compared to the random Markov
generation in Sec. 2.1 is that until we hit switch token, we follow the same binary Markov sequence
generation as the former, but once the switch state is reached, we sample a new Markov kernel
and then generate a new Markov sequence. The switch tokens are sampled according to a parallel
i.i.d. Bernoulli process with probability pswitch (0.01 in our experiments). The sampling process is
described in detail in § E.7. With this data model, the optimal prediction strategy is to use the add-β
estimator in between two switch tokens, and reset the transition counts every time a switch occurs.
We provide empirical evidence in § E.7. Indeed, Fig. 13 illustrates that Mamba implements precisely
this strategy, closely tracking the switching events via the transition factor at: it sets at to be zero
whenever xt = S and to one otherwise.

5.2 NATURAL LANGUAGE MODELING

Table 1: Perplexity results on the WikiText-103 dataset.

Model Params. Perplexity
Mamba-2 (w/o conv) 14.53 M 30.68
Mamba-2 (w/ conv) 14.54 M 27.55

Transformer (w/o conv) 14.46 M 29.28
Transformer (w/ conv) 14.46 M 28.67

To test the generality of our finding that
convolution plays a key role on Markovian
data (Fig. 3), we conduct experiments on
language modeling using the WikiText-
103 dataset. Details on the experimental
setup can be found in § F. By adding or re-
moving convolution in both these models,
we obtain the results in Table 1. The re-
sults illustrate that convolution enhances
the performance of the two architectures,
in particular for Mamba (11% vs. 2%),
highlighting its saliency. Further ablation studies on this task show that together with convolution,
gating also plays a central role (17% change, cf. § E.8, Table 4). Furthermore, additional experiments
with deeper models show that the relative importance of convolution seems to decrease as the number
of layers increases (cf. § E.8, Table 5). This may be due to the fact that the role of convolution is
taken over by other Mamba layers, which are known to successfully approximate convolution (Wang
& Xue, 2023).
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6 CONCLUSION

Structured state space sequence models (SSMs) and Selective SSMs such as Mamba have shown re-
markable inference speed-ups over transformers while achieving comparable or superior performance
on complex language modeling tasks. In this paper, we studied in-context learning (ICL) capabilities
of Mamba on random Markov chains and show that, unlike transformers, even a single-layer Mamba
efficiently learns the in-context Laplacian smoothing estimator. To explain this, we theoretically and
empirically characterized the representation capacity of Mamba, which revealed the fundamental
role of convolution, together with selectivity and recurrence, in enabling it. We further provided
additional empirical results on non-Markovian data, showing the generality of our insights. Extending
our results to deeper Mamba models, as well as investigating Mamba’s learning dynamics, are some
interesting future directions.
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A PRELIMINARIES ON LAPLACIAN SMOOTHING

Laplacian smoothing is a mature and well understood topic. An account can be found, e.g., in Merhav
& Feder (1998); Cesa-Bianchi & Lugosi (2006), with some recent updates in Bondaschi & Gastpar
(2024; 2025). For the sake of completeness, we provide a brief outline of how it applies to our
context. For k-th order Markov data, at every time instant t, the Laplacian add-β estimator applied
to the subsequence of tokens with the same context ik1 ∈ X k as the current one is the predictor that
minimizes the Bayesian cross-entropy loss in Eq. (3), when the Markov kernel is sampled according
to the product Dirichlet distribution Dir(β · 1). We first give an intuition of why this is the case, and
we provide a full proof at the end of the section. We consider the binary case X = {0, 1}, but the
results can be extended to arbitrary finite alphabets.

Consider a given sequence (xt)
T
t=1. For every length-k context ik1 ∈ X k, let (xt)|ik1 be the subse-

quence of tokens preceded by ik1 . Note that, since each sequence (xt) is generated by a k-th order
Markov chain, all the tokens in the sequence with the same length-k prefix share the same conditional
probability distribution. Furthermore, since each of the conditional distributions of the chain is
randomly chosen independently from the others, the subsequence (xt)|ik1 is a sufficient statistic to
estimate the probability distribution of all the tokens with the same prefix ik1 . Therefore, the optimal
prediction for a sequence (xt)

T
t=1 is given by employing the optimal predictor for each i.i.d. subse-

quence (xt)|ik1 , for every ik1 ∈ X k. Since each conditional distribution is sampled from a Dirichlet
distribution with parameter β, it is well known that the optimal predictor for such subsequences is the
add-constant estimator, with constant equal to β. More specifically, if xt−1

t−k = ik1 , then the optimal
estimation for xt is

P(k)
β

(
xt+1 = j | xt

1

)
=

nj + β

n+ 2β
, (7)

where nj is the number of times token j appears in the subsequence xt
1|ik1 = (xℓ ∈ xt

1 : xℓ−1
ℓ−k = ik1),

and n is the length of the subsequence.

We now provide a formal proof of this fact.
Theorem 3. Consider the class of all k-th order Markov kernels P = (Pik1

)ik1∈Xk , where each Pik1
=

P(· | ik1) is a probability distribution on X = {0, 1}. Let each Pik1
be sampled i.i.d. from Dir(β · 1),

and let xk
1 ∼ Unif(X k) and xt+1|xt

1 ∼ Pxt
t−k+1

. Then, the predictor f (j)(xt
1) = P̂(xt+1 = j | xt

1),
for j ∈ {0, 1}, that minimizes the loss

L ≜ − 1

T

∑
t∈[T ]

EPExt+1
1 ∼P

[
xt+1 · log f (1)(xt

1) + (1− xt+1) · log f (0)(xt
1)
]

(8)

is the add-β estimator in Eq. (7), i.e. the minimizer f (j)
∗ (xt

1) = P(k)
β (xt+1 = j | xt

1), for all t ≥ k.

Proof. First note that

L = − 1

T

∑
t

EPExt+1
1 ∼P

[
xt+1 · log f (1)(xt

1) + (1− xt+1) · log f (0)(xt
1)
]

= − 1

T

∑
t

Ext
1
Ext+1|xt

1

[
xt+1 · log f (1)(xt

1) + (1− xt+1) · log f (0)(xt
1)
]

= − 1

T

∑
t

Ext
1

[
Ext+1|xt

1
[xt+1] · log f (1)(xt

1) + (1− Ext+1|xt
1
[xt+1]) · log f (0)(xt

1)
]
.

Let us define the distribution f
(1)
∗ (xt

1) ≜ Ext+1|xt
1
[xt+1] and f

(0)
∗ (xt

1) ≜ 1− f
(1)
∗ (xt

1). Then, we can
rewrite the loss as

L =
1

T

∑
t

Ext
1

[
− f

(1)
∗ (xt

1) · log f (1)(xt
1)− f

(0)
∗ (xt

1) · log f (0)(xt
1)
]
.

For every t ∈ [T ] and every xt
1 ∈ X t, the term inside the expectation is minimized by picking

f (1)(xt
1) = f

(1)
∗ (xt

1). In fact, note that it can be rewritten as

−f
(1)
∗ (xt

1) · log f (1)(xt
1)− f

(0)
∗ (xt

1) · log f (0)(xt
1)

13
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= f
(1)
∗ (xt

1) · log
f
(1)
∗ (xt

1)

f (1)(xt
1)

+ f
(0)
∗ (xt

1) · log
f
(0)
∗ (xt

1)

f (0)(xt
1)

− f
(1)
∗ (xt

1) log f
(1)
∗ (xt

1)

− f
(0)
∗ (xt

1) log f
(0)
∗ (xt

1)

= DKL

(
f∗(x

t
1)∥f(xt

1)
)
+H(f∗(x

t
1)),

which is minimized when DKL (f∗(xt
1)∥f(xt

1)) = 0, i.e., when f(xt
1) = f∗(xt

1). We will now show
that f∗(xt

1) is precisely the add-β estimator. Consider any context ik1 and any sequence xt
1 such that

xt
t−k+1 = ik1 . Let also p ≜ Pik1

(1) = P(1 | ik1). Then,

f
(1)
∗ (xt

1) ≜ Ext+1|xt
1
[xt+1]

= EP
ik1

|xt
1
Ext+1|xt

1,Pik1

[xt+1]

= EP
ik1

|xt
1
[Pik1

(1)]

= EP
ik1

|xt
1|ik1

[Pik1
(1)],

where in the last equation we used the fact that, when xk
1 ∼ Unif(X k), the subsequence xt

1|ik1 is a
sufficient statistic for Pik1

. Hence,

f
(1)
∗ (xt

1) = EP
ik1

|xt
1|ik1

[Pik1
(1)]

=

∫ 1

0

pβ−1(1− p)β−1pn1(1− p)n0∫ 1

0
qβ−1(1− q)β−1qn1(1− q)n0 dq

· p dp

=

∫ 1

0
pn1+β(1− p)n0+β−1 dp∫ 1

0
qn1+β−1(1− q)n0+β−1 dq

=
Γ(n1 + β + 1)Γ(n0 + β)

Γ(n+ 2β + 1)
· Γ(n+ 2β)

Γ(n1 + β)Γ(n0 + β)

=
n1 + β

n+ 2β
,

where we used the fact that Pik1
∼ Dir(β · 1), that

∫ 1

0
qz1−1(1− q)z0−1 = Γ(z1)Γ(z0)/Γ(z1 + z0),

and that Γ(z + 1) = zΓ(z).

Remark. The proof above is for xk
1 ∼ Unif(X k). However, note that the same proof would also

work for xk
1 distributed according to any distribution that is independent of the Markov kernel P . If

instead the distribution depends on P (e.g., the stationary distribution of the Markov chain), then the
proof would fail in the step where xt

1|ik1 is a sufficient statistic for Pik1
.

Remark. It is important to note that, to be able to implement such a predictor requires in-context
capabilities: at inference, in order to optimally predict the next token, the model must be able to look
into the previous tokens of the test sequence, and count the tokens with the correct prefix.

14
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B MAMBA-BASED LANGUAGE MODELING ARCHITECTURE

Mamba block can be incorporated into a full-fledged language model as follows: let x =
(x1, x2, · · · , xT ) ∈ X T be an input token-sequence over the alphabet X ; here X = {0, 1} as
explained in Sec. 2.1. Then, at every t ∈ [T ], the output of the language model θ is given by the
following sequence of equations (Dao & Gu, 2024):

xt = ext ∈ Rd, (Embedding)

ut = xt +Mamba(xt
1) ∈ Rd, (Mamba)

vt = ut +W2[ReLU(W1ut)⊙W3ut] ∈ Rd, (MLP)

logitt = Wℓ vt ∈ RS , (Linear)

fθ(x
t
1) ≜ Pθ

(
xt+1 = · | xt

1

)
= softmax(logitt) ∈ [0, 1]S , (Prediction)

where the parameters ei ∈ Rd,W1 ∈ R4d×d,W2 ∈ Rd×4d and Wℓ ∈ RS×d are learnable, and
fθ(x

t
1) is the probability law for the next symbol xt+1 conditioned on the past xt

1. We omit the
layer norm here for simplicity. We compactly denote the set of all model parameters as θ, i.e.
θ = ({ei}i∈X ,θMamba,W1,2,3,Wℓ) ∈ RD.

15
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C PRELIMINARIES AND PROOF OF THM. 1 AND THM. 4

C.1 EMPIRICAL INSIGHTS

Here we expand upon our empirical observations in 4.2.1, which form the basis of our proof.

State-to-state transition factor at ≈ 1 for all t ≥ 1. We empirical evidence supporting this
observation in Fig. 4.

Position t

a
t

Figure 4: Value of at across positions at convergence.

Convolution window w ≥ k + 1. Recalling that k is the Markov order, we empirically observe
that the window that w = k + 1 is sufficient for the full Mamba to learn the Laplacian smoothing
on kth-order Markov chains. To understand why, note that in the MambaZero architecture above,
apart from the MambaZero block, all remaining equations operate on the current token at time t. In
the MambaZero block, same as the Mamba block except ReLU, the dependency of the output yt on
the previous tokens is due to that of the state Ht on (x̃t, bt) in the update equation, and of ct in the
state projection. Since (x̃t, bt, ct) depend on the past through the convolutions, a window of size
k+1 enables them to keep track of the current token as well as its length-k prefix, which is necessary
to compute the counts needed in Laplacian smoothing. On the other hand, if w ≤ k, then one can
find confusable sequences, i.e. sequences that share the same number of occurrences of all length-k
prefixes, but whose counts of the tokens following each prefix is different.

For such sequences, the state Ht is the same, and so are the predicted probabilities by the Mamba
model; however, the optimal estimator, depending on the transition counts, would give very different
probability estimates, allowing Mamba’s prediction loss to deviate from that of the optimal. For
example, consider k = 1. If w = 1, then (x̃t, bt, ct) depend only on the current token xt. Then,
consider the two sequences x = (0, 1, 0, 1, 0, 1) and x̃ = (0, 0, 0, 1, 1, 1). At time t = 6, these two
sequences would give the same state Ht and the same output yt, since they share the same number of
tokens 0 and 1. Therefore, the estimated probability given by the model would be the same in both
cases. However, the optimal add-constant estimator (with β = 1) would estimate the probability of
xt+1 = 1 to be 1/4 for x, and 3/4 for x̃.

Further, it is sufficient that the convolution for ct has window wC = k. That is, the convolution convC
involved in the computation of ct can have a window size equal to the Markov order k (i.e., one less
than convX and convB) without affecting the model’s capability of learning the task (or, equivalently,
the left-most kernel coefficients of convC can be taken to be zero). Intuitively, this is because the
role of ct in the state projection is to select the correct transition counts for the computation of the
estimator, distilled into yt. In order to do so, it is sufficient to know the length-k context of the current
symbol xt, which can be encoded by a convolution with window size k.

Orthogonal count-dependent vectors. The inner products b(ij)⊤c(k) corresponding to i ̸= k go to
zero at convergence: only the correct counts are kept in the final logit.
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Convergence to the optimal β = 1. The count-independent part of the final logit converges to
β = 1, corresponding to the optimal Laplacian estimator.
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Figure 5: (a) Counts-related inner products across interations. Only the correct counts corresponding
to b(ij)⊤c(k) for i = k have a non-zero inner product at convergence. (b) Binary coordinates of the
counts-independent vector across iterations. Both coordinates converge to the optimal β = 1.

C.2 PROOF OF THM. 1

Let β > 0 be the constant of the considered add-constant estimator. Let us fix a = 0 and ∆t = 1, so
that at = 1, for all t ≥ 1. This can be done by picking, e.g., w∆ = 0 and δ such that softplus(δ) = 1.
Note that the application of convolution to a given sequence of vectors zt

1 can be rewritten as a linear
matrix-form operation. For example, for convX , one has that

convX(zt) = D
(0)
X zt−1 +D

(1)
X zt (9)

where D(0)
X and D

(1)
X are diagonal matrices. The same holds for convB and convC , with correspond-

ing diagonal matrices D(0)
B , D

(1)
B , D

(0)
C and D

(1)
C .

Let us take the embedding vectors ei, i ∈ X , to be the one-hot encoding vectors for the alphabet
X , interleaved with zeros, i.e., let ei be such that ei,2i−1 = 1 and 0 otherwise. Furthermore, take
WX to be the 2S × 2S matrix such that WX(i, j) = 1 for i = 2k and j = 2k − 1, for 1 ≤ k ≤ S,
and 0 otherwise. (The role of WX is shift each coordinate of the embedding vectors by one.) Take
now convX to be such that its output is simply equal to the current vector, i.e., take D

(0)
X = 0 and

D
(1)
X = I2S×2S . Take also WB = IS×S and convB so that the output is equal to the second-to-last

vector, i.e., take D
(0)
B = IS×S and D

(1)
X = 0. Finally, take WC = IS×S and convC such that

C(0) = 0 and C(1) = IS×S .

The final logit vector is in general equal to

logitt = Wℓxt +WℓWo x̃
(x1)b(x1)⊤ct +

∑
ij

nij WℓWo x̃
(ij)b(ij)⊤ct. (10)

Using the matrices chosen above, we can simplify the formula as follows. Firstly, note that b(x1) = 0,
as the b vectors only depend on the second-to-last vectors. Furthermore, since the embedding vectors
are orthogonal to each other, we have that b(ij)⊤ct = 1 whether i = xt, and 0 otherwise. (That
is, only the correct counts are kept in the logit computation.) With these simplifications, the logit
formula becomes

logitt = Wℓxt +
∑
j

nxt,j WℓWo x̃
(j). (11)

Finally, take Wo = I2S×2S and take Wℓ such that Wℓ(i) = β1 for all odd i, Wℓ(2i, i) = 1 for
1 ≤ i ≤ S, and 0 otherwise. With this choice, we get, for all t ≥ 1,

logitt = β1+
∑
j

nxt,jei (12)
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where ei is the one-hot vector for symbol i ∈ X . After the normalization, we finally get

fθ(x
t
1)j =

nij + β∑
k nik + Sβ

(13)

if xt = i, for i ∈ X . This is precisely the required add-β Laplacian estimator.

C.3 THM. 4: DIMENSIONALITY REDUCTION FOR THE BINARY CASE

Theorem 4. For the canonical MambaZero model with dimensions d = N = 2, e = 1, and
convolution window w = 2, there is a choice of parameters such that the model prediction is
arbitrarily close to the Laplacian estimator for random first-order Markov chains. More formally, for
any β > 0 and ϵ ∈ (0, 1), there exists a set of parameters θ such that, for all sequences (xt)t≥1 and
all t ≥ 1,

DKL

(
P(1)
β (· | xt

1)∥Pθ

(
· | xt

1

))
≤ ϵ.

Proof. Fix ϵ > 0 and let β > 0 be the constant of the considered add-constant estimator. Let us fix
a = 0 and ∆t = 1, so that at = 1, for all t ≥ 1. This can be done by picking, e.g., w∆ = 0 and δ
such that softplus(δ) = 1. Let us compactly denote the convolution kernels as

convX =

(
α00 α01

α10 α11

)
, convB =

(
γ00 γ01
γ10 γ11

)
(14)

where each row corresponds to the kernel weights applied time-wise to each coordinate of the input
sequence (xt)t≥1. Since the window for convC is wC = 1, we can simply assume w.l.o.g. that
Ct = WCxt.

Let us denote the embedding vectors to be e0 = (e00, e01)
⊤ and e1 = (e10, e11)

⊤, and assume that
the vectors are not collinear. Take also WX = WB such that

WX e0 =

(
1
0

)
, WX e1 =

(
0
1

)
(15)

and take WC such that

WC e0 =

(
c0
0

)
, WC e1 =

(
0
c1

)
. (16)

Let us also take the kernels of convX and convB to be the same across coordinates, i.e.,

convX =

(
α0 α1

α0 α1

)
, convB =

(
γ0 γ1
γ0 γ1

)
(17)

such that the following conditions are satisfied:
α0γ0 + α1γ1 = 0

α0γ1 + α1γ0 > 0

α0 ̸= α1
α0γ1

α0γ1+α1γ0
= −βϵ

(18)

Note that, with such a choice of parameters, we have

X(0) =

(
α1

0

)
, X(1) =

(
0
α1

)
, B(0) =

(
γ1
0

)
, B(1) =

(
0
γ1

)
(19)

C(0) =

(
c0
0

)
, C(1) =

(
0
c1

)
(20)

X(00) =

(
α0 + α1

0

)
, X(01) =

(
α0

α1

)
, X(10) =

(
α1

α0

)
, X(11) =

(
0

α0 + α1

)
(21)

B(00) =

(
γ0 + γ1

0

)
, B(01) =

(
γ0
γ1

)
, B(10) =

(
γ1
γ0

)
, B(11) =

(
0

γ0 + γ1

)
. (22)
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(We replaced the vector notation of Sec. 4 with matrix notation, so that X(0) has to be intended as
x̃(0), and so on.) Take also Wo = Wℓ = I . With this choice of parameters, the final logit vector
becomes, using Eq. (5),

logitt = Wℓ

(
xt +WoX

(x1)B(x1)
⊤
C(xt) + 1{x1 ̸=xt}WoX

(x1xt)B(x1xt)⊤C(xt)

+ nxtxt
Wo X

(xtxt)B(xtxt)⊤Ct + nxtx̄t
Wo

(
X(xtx̄t)B(xtx̄t)⊤ +X(x̄txt)B(x̄txt)⊤

)
Ct

)
(23)

=

(
e00 + c0α1γ1

e01

)
+ 1{x1=1} ·

(
0

c0α0γ1

)
+ n00 ·

(
(α0 + α1)(γ0 + γ1)c0

0

)
+ n01 ·

(
(α0γ0 + α1γ1)c0
(α0γ1 + α1γ0)c0

)
(24)

=

(
e00 + c0α1γ1

e01

)
+ 1{x1=1} ·

(
0

c0α0γ1

)
+ n00 ·

(
(α0γ1 + α1γ0)c0

0

)
+ n01 ·

(
0

(α0γ1 + α1γ0)c0

)
(25)

if xt = 0, and

logitt =

(
e10

e11 + c1α1γ1

)
+ 1{x1=0} ·

(
c1α0γ1

0

)
+ n10 ·

(
(α0γ1 + α1γ0)c1
(α0γ0 + α1γ1)c1

)
+ n11 ·

(
0

(α0 + α1)(γ0 + γ1)c1

)
(26)

=

(
e10

e11 + c1α1γ1

)
+ 1{x1=0} ·

(
c1α0γ1

0

)
+ n10 ·

(
(α0γ1 + α1γ0)c1

0

)
+ n11 ·

(
0

(α0γ1 + α1γ0)c1

)
(27)

if xt = 1. Take now

e00 = e11 = (α0γ1 + α1γ0)βc0 − α1γ1c0 (28)
e01 = e10 = (α0γ1 + α1γ0)βc0 − α0γ1c0 (29)

With this choice of parameters, after the layer normalization, the final output probability vector is

fθ(x
t
1) =

(
n00 + β

n00 + n01 + 2β + 1{x1=0} · βϵ
,

n01 + β + 1{x1=0} · βϵ
n00 + n01 + 2β + 1{x1=0} · βϵ

)⊤
(30)

if xt = 0, and

fθ(x
t
1) =

(
n10 + β + 1{x1=1} · βϵ

n10 + n11 + 2β + 1{x1=1} · βϵ
,

n11 + β

n10 + n11 + 2β + 1{x1=1} · βϵ

)⊤
(31)

if xt = 1. Note that the resulting predicted probabilities exactly match the add-β estimator when
x1 ̸= xt, but they are slightly different when x1 = xt due to the additional βϵ factor. We now show
that, when the additional factor is present, the two predictors nevertheless differ by at most ϵ in KL
distance. We show it for the case x1 = xt = 0, the other case follows in the same way. In fact, note
that

n01 + β + βϵ

n00 + n01 + 2β + βϵ
=

n01 + β

n00 + n01 + 2β
·

1 + βϵ
n01+β

1 + βϵ
n00+n01+2β

. (32)

Now, since

1 ≤ 1 +
βϵ

n01 + β
≤ 1 + ϵ (33)
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and
1 ≤ 1 +

βϵ

n00 + n01 + 2β
≤ 1 + ϵ (34)

we have that
n01 + β

n00 + n01 + 2β
≤ n01 + β + βϵ

n00 + n01 + 2β + βϵ
· (1 + ϵ) (35)

but we also have
n00 + n01 + 2β + βϵ

n00 + n01 + 2β
≤ 1 +

βϵ

n00 + n01 + 2β
≤ 1 + ϵ, (36)

so that

DKL

(
P(1)
β

(
· | xt

1

)
∥Pθ

(
· | xt

1

))
= P(1)

β

(
xt+1 = 0 | xt

1

)
log

P(1)
β (xt+1 = 0 | xt

1)

Pθ (xt+1 = 0 | xt
1)

+ P(1)
β

(
xt+1 = 1 | xt

1

)
log

P(1)
β (xt+1 = 1 | xt

1)

Pθ (xt+1 = 1 | xt
1)
(37)

=
n00 + β

n00 + n01 + 2β
log

n00+β
n00+n01+2β

n00+β
n00+n01+2β+βϵ

+
n01 + β

n00 + n01 + 2β
log

n01+β
n00+n01+2β

n01+β+βϵ
n00+n01+2β+βϵ

(38)

≤ n00 + β

n00 + n01 + 2β
log(1 + ϵ) +

n01 + β

n00 + n01 + 2β
log(1 + ϵ)

(39)
≤ log(1 + ϵ) (40)
≤ ϵ (41)

concluding the proof.
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D PROOF OF THM. 2

Consider a recurrent model of the form Ht = h(Ht−1, xt) and yt = g(Ht) for each t ≥ 1 where
Ht ∈ Rd and the model has a bit precision of p. In this proof, we will assume that the state space of
the underlying Markov chain is {0, 1}. By the recurrent architecture, the predicted distribution over
the next token xt+k+1 is of the form,

yt+k = Pθ

(
xt+k+1 = z | xt+k

1

)
= g(z,Ht+k). (42)

Recall that the add-1 estimator is defined as,

n(z, xt+k
t+1) + 1

n(xt+k
t+1) + 2

, (43)

where n(zk1 ) =
∑t+1

i=1 I(x
i+k−1
i = zk1 ) indicates the number of times zk1 appears in the sequence.

This is the optimal estimator for sequences drawn from the product-Dirichlet prior: for every ik1 ,
P (· | ik1) ∼ Dir(1 · 1), which is the distribution we will assume for this proof. Fixing xt

1, we can
write the add-1 estimator more explicitly as a function of xt+k

t+1 as,

P(k)
1

(
xt+k+1 = z | xt

1, x
t+k
t+1 = zk1

)
=

n(zk1 , z) + 1

n(zk1 ) + 2
. (44)

Now, fixing xt
1, correctness of the recurrent model means that, almost surely over P drawn from the

prior, and xt
1 ∼ P and zk1 ∼ P (·|xt

1),

g(xt+k+1 = 0, Ht+k) ∈ P(k)
1

(
xt+k+1 = 0 | xt

1, x
t+k
t+1 = zk1

)
+ [−ε, ε]. (45)

where Ht+k is a function of xt
1 and zk1 . As t → ∞, under the randomness of the draw of xt

1 ∼ P , by
the strong law of large numbers RHS converges almost surely to the conditional distribution under P ,
almost surely over the choice of P from the product-Dirichlet prior. Here we use the fact that for P
drawn from the product-Dirichlet prior, P (z|zk1 ) > 0 almost surely, and so the resulting distributions
are exponentially mixing and ergodic. Namely, for each zk1 ∈ {0, 1}k, almost surely over P drawn
from the product-Dirichlet prior,

Pr

(
lim sup
t→∞

∣∣∣P(k)
1

(
xt+k+1 = 0 | xt

1, x
t+k
t+1 = zk1

)
− P (0|zk1 )

∣∣∣ > γ)

)
= 0 (46)

for any γ > 0. Therefore, a necessary condition to satisfy Equation (45) is, for each zk1 ∈ X k,

g(xt+k+1 = 0, Ht+k) ∈ P (0|zk1 ) + [−ε− ηP (t), ε+ ηP (t)]. (47)

for some ηP (t), which is a function of P satisfying lim supt→∞ ηP (t) = 0 almost surely over P
drawn from the prior; note that Ht+k is implicitly a function of xt

1 and zk1 . Divide the interval [0, 1]
into 1/ε disjoint intervals of size ε each. Recall that P (·|zk1 ) ∼ ρ = Dir(1 · 1), which implies that
the random variable P (0|zk1 ) for each fixed zk1 (randomness is over P ) is distributed as,

Pr
ρ

[
P (0|zk1 ) = ·

∣∣zk1 ] = Unif([0, 1]). (48)

Consider the buckets Bε = {[0, ε), [ε, 2ε), · · · , [1− ε, 1]}. Define the function round(p) : [0, 1] →
{0, · · · , |Bε| − 1} to return the index of the bucket in Bε such that p falls in that bucket.

Lemma 1. Consider any function f(zk1 ) : X k → {0, · · · , |Bε| − 1} such that, pointwise,

|round(P (0|zk1 ))− f(zk1 )| ≤ r. (49)

Then, when P (0|zk1 )
i.i.d.∼ Dir(1 · 1),

HShannon({f(zk1 ) : zk1 ∈ {0, 1}k}) ≥ 2k ((1− 3ε) log(1/ε)− log(2r + 1)) (50)

where the randomness is over the draw of P and HShannon is the discrete Shannon entropy.
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Proof. Recall that P (0|zk1 )
i.i.d.∼ Unif([0, 1]) across zk1 ∈ X k. Then,

Pr(round(P (0|zk1 )) = j) = Pr(P (0|zk1 ) ∈ [ε(j − 1/2), ε(j + 1/2))) (51)

=

{
ε if 1 ≤ j ≤ |Bε| − 2,

3ε/2 if j = 0 or j = |Bε| − 1.
(52)

This implies that, by independence of the P (0|zk1 )’s across zk1 ∈ X k,

HShannon
({

P (0|zk1 ) : zk1 ∈ X k
})

≥ |X |k(1− 3ε) log(1/ε). (53)

Let e(zk1 ) be the random variable P (0|zk1 )− f(zk1 ). P (0|zk1 ) is a measurable function of f(zk1 ) and
e(zk1 ), and therefore,

HShannon
({

f(zk1 ) : z
k
1 ∈ X k

}
∪
{
e(zk1 ) : z

k
1 ∈ X k

})
≥ HShannon

({
P (0|zk1 ) : zk1 ∈ X k

})
(54)

Note that e(zk1 ) is bounded in the rate {−r, · · · , r} and can take at most 2r + 1 values. Therefore,
H

({
e(zk1 ) : z

k
1 ∈ X k

})
≤ |X |k log(2r + 1). Since H(A,B) ≤ H(A) +H(B), we have that,

HShannon
({

f(zk1 ) : z
k
1 ∈ X k

})
≥ HShannon

({
P (0|zk1 ) : zk1 ∈ X k

})
−H

({
e(zk1 ) : z

k
1 ∈ X k

})
(55)

≥ |X |k ((1− 3ε) log(1/ε)− log(2r + 1)) . (56)

Recall that we are guaranteed that g(xt+k+1 = 0, Ht+k) ∈ P (0|zk1 ) + [−ε − ηP (t), ε + ηP (t)].
This implies that the recurrent model is able to recover round(p) for p = P (0|zk1 ) up to an error
of r = ⌈η(t)/ε⌉ for each zk1 ∈ X k by computing round(p̂) where p̂ = g(xt+k+1 = 0, Ht+k).
Informally, this just means that p̂ is likely to fall in a bucket close to p. In combination with Lemma 1,
for f(zk1 ) = g(xt+k+1 = 0, Ht+k) we have that,

HShannon({g(xt+k+1 = 0, Ht+k) : z
k
1 ∈ {0, 1}k}) ≥ 2k ((1− 3ε) log(1/ε)− log(2⌈ηP (t)/ε⌉+ 1))

(57)

Note however, that g(xt+k+1 = 0, Ht+k) is a function of zk1 implicitly, through Ht+k (which is also
a function of xt

1). Since the dimensionality of Ht+k is d and the model is implemented to p bits of
precision,

HShannon({g(xt+k+1 = 0, Ht+k) : z
k
1 ∈ {0, 1}k}) ≤ HShannon(Ht+k) ≤ dp (58)

where all randomness here is induced by the random draw of the kth-order Markov kernel P .
Therefore, for the correctness guarantee Equation (45) to hold, we need,

dp ≥ 2k ((1− 3ε) log(1/ε)− log(2⌈ηP (t)/ε⌉+ 1)) (59)

in the limit t → ∞, and noting that lim supt→∞ ηP (t) = 0 almost surely over P drawn from the
prior, it is necessary that,

dp ≥ 2k(1− 3ε) log(1/ε). (60)

Fig. 6 provides empirical evidence that the exponential dependency of the theorem on the order k is
consistent.

Remark. The proof above assumes that the kth-order Markov chain is on a binary state space.
However, the result can easily be extended to give the lower bound d · p ≥ Ω(|X |k) for larger state
spaces, as well as similar scaling results for priors Dir(β · 1) for any β > 0. Furthermore, we believe
it should be possible to replace the L∞ error guarantee in Equation (6) by the KL-divergence between
the two distributions without significantly changing the conclusion (d · p = 2Ω(k)).

Intuition. The intuition behind this result is in the manner in which the recurrent architecture carries
out computation: by proceeding sequentially and compressing the information from the sequence it
has seen thus far at some time t into a small hidden vector, the model does not know what the next
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k tokens will be: the knowledge of this is vital to be able to compute the add-β estimator at time
t + k + 1 with a small memory footprint. Indeed, when the identity of the next k tokens changes,
the output of the model at time t + k + 1 must look drastically different (as the add-β estimator
corresponds to approximately evaluating P(·|ik1), which are unrelated distributions under different
choices of ik1). There are ∼ 22

k

possible values the set P = {P(·|ik1) : ik1 ∈ {0, 1}k} can take. But
when d and p are small, the output of the model just cannot take so many values: it can realize at
most 2dp possible sets. In other words, in order to succeed, the recurrent architecture is essentially
forced to keep track of the number of occurrences of each ik1 ∈ {0, 1}k in the sequence at each time
t, which costs an exponential dependence on k in the hidden dimension/precision.
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Figure 6: Relation between the Markov order k and the hidden dimension d of the 1-layer Mamba
model. The plot shows that d = 2k is sufficient for the model to learn the k-th order Markov task.
This corroborates the fact that Theorem 2 in the main paper has the correct order dependency.
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E ADDITIONAL RESULTS

E.1 LINEAR ATTENTION
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Figure 7: Comparison of predicted probability and test loss between a 1-layer Mamba and the other
baselines, including linear attention. Mamba outperforms all baselines. Linear attention and softmax
attention Transformers perform similarly.

E.2 MULTIPLE STATES

Fig. 8 shows that our results extend to larger number of states.
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(a) Absolute test loss gap
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(b) Relative test loss gap

Figure 8: Test loss gap from the optimal for 1-layer Mamba and first-order Markov data, for different
number of states. (a) shows the absolute gap L(θ)− L∗; (b) shows the relative gap (L(θ)− L∗)/L∗.
The loss gap is consistently small for all state sizes.

E.3 DEEPER NETWORKS

Fig. 10 show that our results are consistent with larger number of layers.

E.4 OVER-PARAMETRIZED SETTINGS

Fig. 9 shows that our observations hold also for larger convolution width and deeper networks.
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Figure 9: Test loss gap from optimal across iterations in over-parametrized settings. (a) shows 1-layer
Mamba with varying convolution width. (b) shows a Mamba with convolution width w = 2 and
varying number of layers. The models correctly learn the optimal predictor in all cases.
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Figure 10: Test loss gap from the optimal for Mamba and Transformers, for different number of layers
and Markov orders. Mamba has a smaller loss gap than transformers across all orders. Furthermore,
adding more layers to Mamba does not significantly improve performance. As expected, 1-layer
Transformers cannot solve the Markov task, while 1-layer Mamba can.

E.5 HOLD-OUT EXPERIMENT

We also consider the following interesting experiment: we trained Mamba only on sequences from a
subset of the Markov simplex, specifically the interval [0, 0.5], and we tested it on sequences from
its complement [0.5, 1]. Interestingly, our experiments show that the test loss still converges to the
optimal. However, by inspecting the actual estimated probabilities on a fixed test sequence, we see that
the absolute difference between the model’s estimation and the optimal Laplacian smoothing is high
for the first samples, and gradually decreases as the sequence progresses. This is justified by the fact
that the Laplacian estimator is not only Bayes-optimal, but also minimax optimal (i.e., independently
of the prior on the simplex) in the limit of long sequences (i.e., the gap from the optimal loss goes
to 0 as n → ∞). Table 2 shows the absolute difference |Pθ(xt = 1|xt−1

1 ) − P∗(xt = 1|xt−1
1 )| for

several t, showing how this difference gradually goes to zero as t increases.

E.6 CONVOLUTION

Fig. 11 shows that adding convolution to transformers (similarly to Mamba) makes the model solve
the task with just one layer. On the contrary, Fig. 12 shows that Mamba needs two layers to solve the
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Table 2: Results for the hold-out experiment.

Length t Abs. difference from optimal
1 0.378± 0.050
50 0.098± 0.039
100 0.007± 0.003
300 0.001± 0.001

task if convolution is removed. Table 3 shows that a one-layer Mamba without convolution cannot
learn the optimal estimator, no matter how wide the model is.
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Figure 11: Predicted probability and test loss for Transformers with and without convolution. Adding
convolution to the K,Q, V matrices of transformers makes the models succeed in learning the
Markov task, similarly to 1-layer Mamba.
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Figure 12: Predicted probability and test loss for the full 1-layer Mamba and a 2-layer Mamba without
convolution. Similarly to transformers, Mamba needs two layers to solve the Markov task when
convolution is removed.

E.7 SWITCHING MARKOV

Here we detail the switching Markov process more formally:

1. Initialize t = 0.
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Table 3: Experiments on one-layer Mamba without convolution, with varying width. The model does
not learn the optimal estimator successfully.

Hidden dimension d Avg. test loss gap from optimal
10 0.113± 0.032
100 0.158± 0.055
1000 0.140± 0.072

2. Draw a binary Markov kernel P with each row sampled i.i.d. from Dir(β · 1).
3. Let xt = S with probability pswitch, or sample xt ∼ Pxt

t−k+1,:
with probability 1− pswitch.

4. If xt = S, set t = t+ 1 and go to step 2; if xt ̸= S, set t = t+ 1 and go to step 3.

Fig. 13 illustrates the behavior of Mamba on this process when pswitch = 0.01.
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Figure 13: One-layer Mamba on switching Markov data. Mamba is able to learn the optimal predictor
by forgetting past counts every time a switch token occurs. This is achieved by setting at = 0 at
every switch, and at = 1 otherwise.

E.8 FURTHER ABLATION FOR NATURAL LANGUAGE

The fundamental role played by convolution in modeling natural language is demonstrated in Table 1.
However, we find that other components, in particular gating factor at, play an essential role as
well, when natural language is considered. In Table 4, we show the increase in test perplexity when
convolution, gating factor at and non-linearities are individually removed from the full Mamba-2
architecture.

Table 4: Perplexity results on the WikiText-103 dataset.

Model Params. Perplexity Percentage increase
Mamba-2 (full) 14.54 M 27.55 –
Mamba-2 (w/o conv) 14.53 M 30.68 11%
Mamba-2 (w/o gating factor) 14.54 M 32.16 17%
Mamba-2 (w/o non-linearities) 14.54 M 28.98 5%
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Table 5: Perplexity results on WikiText-103 and PG-19 datasets for Mamba with 12 layers.

Dataset Model Params. Perplexity
WikiText-103 Mamba-2 110 M 21.38
WikiText-103 Mamba-2 w/o convolution 110 M 21.46
WikiText-103 Mamba-2 w/o gating 110 M 21.71

PG-19 Mamba-2 200 M 14.16
PG-19 Mamba-2 w/o convolution 200 M 14.28
PG-19 Mamba-2 w/o gating 200 M 14.66
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F MODEL ARCHITECTURES AND HYPER-PARAMETERS

The following tables discuss details on the architectures and hyperparameters used in all the paper’s
experiments. Each experiment was run on a single Nvidia A100 GPU. The time taken by each
experiment was between 10 to 60 minutes.

Table 6: Parameters in the Mamba architecture with their shape.

Parameter Matrix shape

embedding 2× d
mamba.A 1
mamba.dt 1
mamba.in_proj (2ed+ 2N + 1)× d
mamba.conv1d (ed+ 2N)× w
mamba.out_proj d× (2ed+ 2N + 1)
mlp.fc1 4d× d
mlp.fc2 d× 4d
lm_head d× 2

Table 7: Settings and parameters for the Mamba model used in the experiments.

Dataset k-th order binary Markov source
Architecture Based on the Mamba-2 architecture as implemented in Dao & Gu (2024)

Batch size Grid-searched in {16, 32, 64, 128, 256}
Accumulation steps 1

Optimizer AdamW (β1 = 0.9, β2 = 0.95)
Learning rate 0.001
Scheduler Cosine
# Iterations 10000
Weight decay 1× 10−3

Dropout 0
Sequence length Grid-searched in {128, 256, 512}
Embedding dimension Grid-searched in {2, 4, 8, 16, 32}
Mamba layers 1
Heads 1
Convolution window Between 2 and 6

Repetitions 5

Table 8: Parameters in the transformer architecture with their shape.

Parameter Matrix shape

transformer.wte 2× d
transformer.wpe N × d
transformer.h.ln_1 (×ℓ) d× 1
transformer.h.attn.c_attn (×ℓ) 3d× d
transformer.h.attn.c_proj (×ℓ) d× d
transformer.h.ln_2 (×ℓ) d× 1
transformer.h.mlp.c_fc (×ℓ) 4d× d
transformer.h.mlp.c_proj (×ℓ) d× 4d
transformer.ln_f d× 1
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Table 9: Settings and parameters for the transformer model used in the experiments.

Dataset k-th order binary Markov source
Architecture Based on the GPT-2 architecture as implemented in Pagliardini

Batch size Grid-searched in {16, 32, 64, 128, 256}
Accumulation steps 1

Optimizer AdamW (β1 = 0.9, β2 = 0.95)
Learning rate 0.001
Scheduler Cosine
# Iterations 10000
Weight decay 1× 10−3

Dropout 0
Sequence length Grid-searched in {128, 256, 512, 1024}
Embedding dimension Grid-searched in {4, 8, 16, 32}
Transformer layers Between 1 and 2 depending on the experiment
Attention heads 1

Repetitions 5
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