

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 FROM MARKOV TO LAPLACE: HOW MAMBA IN-CONTEXT LEARNS MARKOV CHAINS

Anonymous authors

Paper under double-blind review

ABSTRACT

While transformer-based language models have driven the AI revolution thus far, their computational complexity has spurred growing interest in viable alternatives, such as structured state space sequence models (SSMs) and Selective SSMs. Among these, Mamba (S6) and its variant Mamba-2 have shown remarkable inference speed-ups over transformers while achieving comparable or superior performance on complex language modeling tasks. However, despite these architectural innovations and empirical successes, the fundamental learning capabilities of Mamba remain poorly understood. In this paper, we address this gap by studying in-context learning (ICL) on Markov chains and uncovering an interesting phenomenon: even a single-layer Mamba efficiently learns the in-context Laplacian smoothing estimator, which is both Bayes and minimax optimal. To explain this, we theoretically characterize the representation capacity of Mamba and reveal the fundamental role of convolution in enabling it to represent the optimal Laplacian smoothing. These theoretical insights align strongly with empirical results and, to the best of our knowledge, represent the first formal connection between Mamba and optimal statistical estimators. Finally, we outline promising research directions inspired by these findings. Code is available at <https://anonymous.4open.science/r/Markov-Mamba-39C5>.

1 INTRODUCTION

Transformers have been at the forefront of recent breakthroughs in language modeling, driving the AI revolution (Vaswani et al., 2017; Radford & Narasimhan, 2018; Devlin et al., 2018). Despite their empirical success, transformers suffer from high computational complexity, such as quadratic scaling in sequence length during training and linear cache size at inference (Gu & Dao, 2023a). To address these limitations, there is a growing interest in designing alternative efficient architectures among which structured state space models (SSMs) are the most prominent. In particular, Selective SSMs such as Mamba and Mamba-2, have achieved state-of-the-art results in various language modeling tasks, while greatly improving the inference throughput (Cirone et al., 2025).

Motivated by this success, there is tremendous interest in understanding the sequential modeling abilities of SSMs, especially that of Mamba. In particular, mirroring a theme that has been successful in unraveling fundamental mechanisms (e.g. induction heads) behind transformers (Makkuvu et al., 2025; 2024; Rajaraman et al., 2024; Nichani et al., 2024; Edelman et al., 2024), a growing body of research explores Mamba through its in-context learning (ICL) capabilities (Grazzi et al., 2024; Halloran et al., 2024; Akyürek et al., 2024; Park et al., 2024). While these works reveal interesting insights about Mamba’s ICL abilities vis-a-vis transformers, they are largely empirical in nature, and we currently lack a fundamental theoretical understanding of Mamba and its underlying learning mechanisms. We are thus motivated to ask:

Can we systematically characterize the ICL capabilities of Mamba?

In this paper, we approach this question from the point of view of representation power, and characterize Mamba’s ICL capabilities on Markov processes, building upon the Markov-ICL framework originally introduced for transformers (Edelman et al., 2024). As opposed to a Mamba vs. Transformers comparison, here we leverage this framework for a detailed study of Mamba, and uncover an interesting phenomenon: even a single-layer Mamba efficiently learns the in-context Laplacian

Figure 1: Single-layer Mamba learns the optimal Laplacian estimator when trained on random Markov chains, exhibiting ICL. (a) shows the predicted probability distribution on a fixed test sequence for models trained on binary first-order Markov sources. (b) quantifies the L_1 deviation from the optimal estimator for random sequences and various Markov orders. The error intervals show the standard deviation across 5 runs. Sec. 4.3 and Fig. 10 further discuss Mamba vs. Transformers.

smoothing estimator, which is both Bayes and minimax optimal, for all Markov orders (Figs. 1 and 10a). Towards explaining this, we theoretically characterize the representation capacity of Mamba and demonstrate that the convolution mechanism, together with selectivity and recurrence, plays a fundamental role in realizing the Laplacian smoothing. Importantly, we showcase that these theoretical insights align strongly with empirical results, even outside the realm of Markovian data. To the best of our knowledge, this is the first result of its kind connecting Mamba and optimal statistical estimators.

In summary, we make the following contributions:

- Leveraging the Markov-ICL framework, we uncover the surprising fact that even a single-layer Mamba learns the optimal in-context estimator for all Markov orders (Fig. 1). Intriguingly, convolution plays a pivotal role, more so than gating and non-linear activation, in this learning ability (Sec. 3).
- Towards explaining this phenomenon, we characterize the representational capacity of single-layer Mamba and show, both theoretically and empirically, how it represents the optimal in-context estimator for any finite-state first-order processes, through an intricate interplay of convolution, selectivity and recurrence. Further, we provide fundamental limits for higher-order processes (Sec. 4).
- We demonstrate the generality of our findings on non-Markovian data and illustrate the fundamental role of convolution even on complex language-modeling tasks (Sec. 5).

1.1 RELATED WORK

SSMs (Gu et al., 2020; 2021) have been recently introduced as an alternative recurrent architecture aimed at rivaling the well established transformer backbone (Vaswani et al., 2017). The model was originally introduced as a discretized linear dynamical system (Gu et al., 2021). Recent works tried to re-frame the architecture from a linear recurrent perspective (Orvieto et al., 2023b). However, there are still many gaps in understanding this family of models (Team et al., 2024), such as questions around expressivity (Orvieto et al., 2023a). This is particularly important given the proliferation of Mamba-inspired architectures that have emerged since its introduction (Qin & Liu, 2024; Csordás et al., 2024; Zhu et al., 2024; Gu & Dao, 2023b; De et al., 2024; Beck et al., 2024).

To this end, our work squarely focuses on understanding the representation power of Mamba, and in particular its ICL capability, which, while extensively studied for transformers (Xie et al., 2021; Hendel et al., 2023; Bai et al., 2023), remains largely unexplored for SSMs. In this space, recent studies such as Sushma et al. (2024), have shown that SSMs can perform gradient-based learning

for in-context adaptation similar to transformers. There is conflicting evidence whether Mamba’s ICL abilities are better (Grazzi et al., 2024) or worse (Halloran et al., 2024; Akyürek et al., 2024) compared to transformers. Nonetheless, SSMs have demonstrated promising results in in-context reinforcement learning tasks (Lu et al., 2024), as well as in next-state prediction for dynamical models (Joseph et al., 2024), highlighting the potential of SSMs as efficient alternatives to transformers for ICL tasks. Motivated by this, as opposed to an architectural comparison Jelassi et al. (2024); Bhattacharya et al. (2024); Merrill et al. (2024); Sarrof et al. (2024), here we solely focus on Mamba’s ICL capabilities, specifically, through the lens of random Markov processes. This framework has been successfully applied to transformers (Edelman et al., 2024; Makkavu et al., 2025; 2024; Rajaraman et al., 2024; Nichani et al., 2024), where it helped unveil fundamental learning mechanisms of transformers such as induction heads. Ours is the first work that employs this framework for Mamba and SSMs.

2 PROBLEM SETUP

We formally define the problem setting and provide necessary background. We use the following notation: scalars are denoted by such italic lower case letters as x, y , Euclidean vectors by bold \mathbf{x}, \mathbf{y} , and matrices by upper case X, Y , etc. $\mathbf{1}$ refers to the all-one vector. For $T \in \mathbb{N}$, $[T] \triangleq \{1, \dots, T\}$, and for a sequence $(x_t)_{t \geq 1}$, define $x_k^t \triangleq (x_k, \dots, x_t)$. For $z \in \mathbb{R}$, $\text{sigmoid}(z) \triangleq 1/(1 + e^{-z})$, $\text{ReLU}(z) \triangleq \max(0, z)$, and $\text{softplus}(z) \triangleq \log(1 + e^z)$. $\text{Unif}(S)$ denotes the uniform distribution over a set S and $\text{Dir}(\beta)$ denotes the Dirichlet distribution with parameter $\beta > 0$. $D_{\text{KL}}(P \| Q)$ denotes the KL divergence between distributions P and Q .

2.1 INPUT DATA: RANDOM MARKOV CHAINS

To investigate the ICL capabilities of Mamba, we build upon the Markov-ICL framework of Edelman et al. (2024). In particular, we let the input tokens to be stochastic and drawn from a random Markov chain of order k . That is, the token sequence $x = (x_t)_{t=1}^T \in \mathcal{X}^T$ on the state space (vocabulary) \mathcal{X} follows the transition dynamics:

$$\mathbb{P}(x_{t+1} = \cdot | x_1^t) = \mathbb{P}(x_{t+1} = \cdot | x_{t-k+1}^t), \quad (1)$$

almost surely for all $t \in [T]$, and the k^{th} -order Markov kernels, $\mathbb{P}(x_{t+1} = \cdot | x_{t-k+1}^t = i_{t-k+1}^t)$, are sampled independently for each tuple (i_{t-k+1}, \dots, i_t) from the Dirichlet prior $\text{Dir}(\beta \cdot \mathbf{1})$, with $\beta > 0$. When $\beta = 1$, this corresponds to the uniform distribution on the S -dimensional simplex Δ_1^S , where size $S = |\mathcal{X}|$.

The transition matrix $P = (P_{i_1^k})_{i_1^k \in \mathcal{X}^k}$, $P_{i_1^k} \in [0, 1]^S$, encapsulates the set of all S^k conditional probabilities of the chain, each row corresponding to one of them. While this transition matrix governs the generation of each token x_t for $t > k$, the first k -tokens x_1, \dots, x_k are drawn i.i.d. from $\text{Unif}(\mathcal{X})$. This constitutes the joint law of the random variables (P, x) , termed random Markov distribution henceforth. More succinctly,

Data generation (Random Markov sequences).

1. Draw P with each row sampled i.i.d. from $\text{Dir}(\beta \cdot \mathbf{1})$.
2. For $t = 1, \dots, k$, sample $x_t \sim \text{Unif}(\mathcal{X})$.
3. For $t = k, \dots, T$, sample $x_{t+1} \sim P_{x_{t-k+1}^t}$.
4. Return the input $x = (x_t)_{t=1}^T$.
5. Repeat the above steps to generate a batch $\{x^{(b)}\}_{b \in [B]}$.

Why Random Markov is a good testbed for ICL. As a consequence of the generation process, every sequence follows a different Markov distribution. Therefore, at inference, a model trained on this random Markovian data has to estimate the next-token distribution in-context for every test sequence. Hence, this data class serves as a good sandbox to gauge the ICL capabilities of Mamba, which was also used in a similar context for transformers (Nichani et al., 2024; Rajaraman et al., 2024).

2.2 MAMBA ARCHITECTURE

Selective SSMs such as Mamba and Mamba-2 are a class of sequence-to-sequence models that are closely related to RNNs and classical state space models (Gu & Dao, 2023b).

A key feature underpinning these models is the *selectivity mechanism*, enabling them to selectively choose inputs at every timestep, as opposed to linear time-invariant (LTI) systems. While we believe our work captures the behavior of all selective SSMs, we will specifically focus on the state-of-the-art Mamba-2 model to simplify exposition. By slight abuse of terminology, henceforth we will also refer to this model simply as Mamba. Mathematically speaking, Mamba implements the sequence-to-sequence mapping Mamba : $\mathbb{R}^{d \times T} \mapsto \mathbb{R}^{d \times T}$, where given a sequence of input embeddings $\mathbf{x} = (\mathbf{x}_t)_{t=1}^T \in \mathbb{R}^{d \times T}$ of dimension d , it outputs the corresponding output embeddings $\mathbf{o} = (\mathbf{o}_t)_{t=1}^T \in \mathbb{R}^{d \times T}$ of the same dimension with $\mathbf{o} = \text{Mamba}(\mathbf{x})$. More precisely, fix $t \in [T]$. Then the output \mathbf{o}_t at time t is computed as $\mathbf{o}_t = \text{Mamba}(\mathbf{x}_1^t)$ using the following recurrence equations (Dao & Gu, 2024):

$$\begin{aligned} H_t &= a_t H_{t-1} + \tilde{\mathbf{x}}_t \mathbf{b}_t^\top \in \mathbb{R}^{ed \times N}, \\ \mathbf{y}_t &= H_t \mathbf{c}_t \in \mathbb{R}^{ed}, \\ \mathbf{z}_t &= \mathbf{y}_t \odot \text{ReLU}(W_z \mathbf{x}_t) \in \mathbb{R}^{ed}, \\ \mathbf{o}_t &= W_o \mathbf{z}_t \in \mathbb{R}^d, \end{aligned} \quad (\text{Mamba})$$

$$\begin{aligned} a_t &\triangleq \exp(-a \cdot \Delta_t) \in (0, 1), \\ \Delta_t &\triangleq \text{softplus}(\langle \mathbf{w}_\Delta, \mathbf{x}_t \rangle + \delta) \in \mathbb{R}, \\ \tilde{\mathbf{x}}_t &\triangleq \text{ReLU}(\text{conv}_X(W_X \mathbf{x}_{t-w+1}^t)) \cdot \Delta_t, \\ \mathbf{b}_t &\triangleq \text{ReLU}(\text{conv}_B(W_B \mathbf{x}_{t-w+1}^t)), \\ \mathbf{c}_t &\triangleq \text{ReLU}(\text{conv}_C(W_C \mathbf{x}_{t-w+1}^t)), \end{aligned} \quad (\text{Input selectivity})$$

where the initial state $H_0 = 0$, $W_z \in \mathbb{R}^{ed \times d}$, $W_o \in \mathbb{R}^{d \times ed}$, $a \geq 0$, $\mathbf{w}_\Delta \in \mathbb{R}^d$, $\delta \in \mathbb{R}$, $W_X \in \mathbb{R}^{ed \times d}$, $W_B \in \mathbb{R}^{N \times d}$ and $W_C \in \mathbb{R}^{N \times d}$ are all learnable parameters, and $\text{conv}(\mathbf{z}_{t-w+1}^t)$ is a time-wise convolution of window $w \in \mathbb{N}$ with distinct kernels per dimension. Here $e \in \mathbb{N}$ is the feature expansion factor, typically 2. Let θ_{Mamba} denote the set of all these parameters.

Intuition behind Mamba. The underlying intuition behind the update equations in Mamba is simple: given a sequence of input embeddings (\mathbf{x}_t) , we first capture their local temporal information using separate convolutions to compute $\tilde{\mathbf{x}}_t$, \mathbf{b}_t , and \mathbf{c}_t (Input selectivity). Equipped with this local memory, we perform a linear state update to compute the current state H_t from the past H_{t-1} , weighed by an input-dependent decay factor $a_t \in (0, 1)$, and $(\tilde{\mathbf{x}}_t, \mathbf{b}_t)$. Subsequently, we compute the state projection \mathbf{y}_t , modulate it with an input-selective term to yield \mathbf{z}_t , and finally project it down to get the output embedding \mathbf{o}_t , which is a function of the entire input sequence until then, \mathbf{x}_1^t , i.e., $\mathbf{o}_t = \text{Mamba}(\mathbf{x}_1^t)$.

Mamba-based language model. Mamba block is then incorporated into a full-fledged language model as follows:

$$x_t \in \{0, 1\} \xrightarrow{\text{Embedding}} \mathbf{x}_t \xrightarrow{\text{Mamba}} \mathbf{u}_t \xrightarrow{\text{MLP}} \mathbf{v}_t \xrightarrow{\text{Linear}} \text{logit}_t \xrightarrow{\text{Prediction}} f_\theta(x_1^t), \quad (2)$$

where $f_\theta(x_1^t) \triangleq \mathbb{P}_\theta(x_{t+1} = \cdot | x_1^t) = \text{softmax}(\text{logit}_t) \in [0, 1]^S$ is the probability estimation for the next symbol x_{t+1} conditioned on the past x_1^t . We omit the layer norm here for simplicity. We compactly denote the set of all model parameters as $\theta \in \mathbb{R}^D$. We refer to § B for more details.

2.3 LEARNING TASK: NEXT-TOKEN PREDICTION

With the objective of auto-regressively estimating the next token, we train the model parameters θ to minimize the cross-entropy loss between the next-token predicted probability $f_\theta(x_1^t)$ and the corresponding ground-truth symbol x_{t+1} across all the positions $t \in [T]$:

$$L(\theta) \triangleq -\frac{1}{T} \sum_{t \in [T]} \mathbb{E}_P \mathbb{E}_{x_1^{t+1} \sim P} [\log f_\theta^{(x_{t+1})}(x_1^t)], \quad (3)$$

Figure 2: Mamba-based language model.

$$a_t \triangleq \exp(-a \cdot \Delta_t) \in (0, 1),$$

$$\Delta_t \triangleq \text{softplus}(\langle \mathbf{w}_\Delta, \mathbf{x}_t \rangle + \delta) \in \mathbb{R},$$

$$\tilde{\mathbf{x}}_t \triangleq \text{ReLU}(\text{conv}_X(W_X \mathbf{x}_{t-w+1}^t)) \cdot \Delta_t,$$

$$\mathbf{b}_t \triangleq \text{ReLU}(\text{conv}_B(W_B \mathbf{x}_{t-w+1}^t)),$$

$$\mathbf{c}_t \triangleq \text{ReLU}(\text{conv}_C(W_C \mathbf{x}_{t-w+1}^t)),$$

$$(\text{Input selectivity})$$

$$a_t \triangleq \exp(-a \cdot \Delta_t) \in (0, 1),$$

$$\Delta_t \triangleq \text{softplus}(\langle \mathbf{w}_\Delta, \mathbf{x}_t \rangle + \delta) \in \mathbb{R},$$

$$\tilde{\mathbf{x}}_t \triangleq \text{ReLU}(\text{conv}_X(W_X \mathbf{x}_{t-w+1}^t)) \cdot \Delta_t,$$

$$\mathbf{b}_t \triangleq \text{ReLU}(\text{conv}_B(W_B \mathbf{x}_{t-w+1}^t)),$$

$$\mathbf{c}_t \triangleq \text{ReLU}(\text{conv}_C(W_C \mathbf{x}_{t-w+1}^t)),$$

$$(\text{Input selectivity})$$

where the initial state $H_0 = 0$, $W_z \in \mathbb{R}^{ed \times d}$, $W_o \in \mathbb{R}^{d \times ed}$, $a \geq 0$, $\mathbf{w}_\Delta \in \mathbb{R}^d$, $\delta \in \mathbb{R}$, $W_X \in \mathbb{R}^{ed \times d}$, $W_B \in \mathbb{R}^{N \times d}$ and $W_C \in \mathbb{R}^{N \times d}$ are all learnable parameters, and $\text{conv}(\mathbf{z}_{t-w+1}^t)$ is a time-wise convolution of window $w \in \mathbb{N}$ with distinct kernels per dimension. Here $e \in \mathbb{N}$ is the feature expansion factor, typically 2. Let θ_{Mamba} denote the set of all these parameters.

Intuition behind Mamba. The underlying intuition behind the update equations in Mamba is simple: given a sequence of input embeddings (\mathbf{x}_t) , we first capture their local temporal information using separate convolutions to compute $\tilde{\mathbf{x}}_t$, \mathbf{b}_t , and \mathbf{c}_t (Input selectivity). Equipped with this local memory, we perform a linear state update to compute the current state H_t from the past H_{t-1} , weighed by an input-dependent decay factor $a_t \in (0, 1)$, and $(\tilde{\mathbf{x}}_t, \mathbf{b}_t)$. Subsequently, we compute the state projection \mathbf{y}_t , modulate it with an input-selective term to yield \mathbf{z}_t , and finally project it down to get the output embedding \mathbf{o}_t , which is a function of the entire input sequence until then, \mathbf{x}_1^t , i.e., $\mathbf{o}_t = \text{Mamba}(\mathbf{x}_1^t)$.

Mamba-based language model. Mamba block is then incorporated into a full-fledged language model as follows:

$$x_t \in \{0, 1\} \xrightarrow{\text{Embedding}} \mathbf{x}_t \xrightarrow{\text{Mamba}} \mathbf{u}_t \xrightarrow{\text{MLP}} \mathbf{v}_t \xrightarrow{\text{Linear}} \text{logit}_t \xrightarrow{\text{Prediction}} f_\theta(x_1^t), \quad (2)$$

where $f_\theta(x_1^t) \triangleq \mathbb{P}_\theta(x_{t+1} = \cdot | x_1^t) = \text{softmax}(\text{logit}_t) \in [0, 1]^S$ is the probability estimation for the next symbol x_{t+1} conditioned on the past x_1^t . We omit the layer norm here for simplicity. We compactly denote the set of all model parameters as $\theta \in \mathbb{R}^D$. We refer to § B for more details.

216 where $f_{\theta}^{(j)}(x_1^t) \triangleq \mathbb{P}_{\theta}(x_{t+1} = j \mid x_1^t)$ for $j \in \mathcal{X}$, and the expectation is both over the transition
 217 kernels P and the Markov sequences $x = (x_t)_{t=1}^T$ sampled from P . In practice, it is replaced by
 218 empirical average across a finite set of batches, sampled according to the random Markov distribution
 219 in Sec. 2.1. For our experiments we use the AdamW optimizer (Kingma & Ba, 2015).
 220

221 2.4 OPTIMAL ESTIMATOR: LAPLACIAN SMOOTHING

223 Given the Bayesian prediction loss in Eq. (3), it is natural to ask: *what is the optimal θ minimizing it?*
 224 It follows from a classical result in statistics (Rissanen (1984), § A) that this minimum is achieved
 225 when the corresponding model prediction matches the (average) ground-truth predictive distribution,
 226 i.e. $\mathbb{P}_{\theta}(x_{t+1} = j \mid x_1^t) = \mathbb{E}_{P|x_1^t}[\mathbb{P}(x_{t+1} = j \mid x_1^t)]$, for all t . Given the joint distribution of the pair
 227 (P, x_1^{t+1}) in Sec. 2.1, where the kernel $P \sim \text{Dir}(\beta \cdot \mathbf{1})$, it can be shown (§ A) that the conditional
 228 expectation above simplifies to the well-known *Laplacian smoothing*, also known as the *add- β*
 229 *estimator* (see e.g. Merhav & Feder (1998)):

$$231 \mathbb{P}_{\beta}^{(k)}(x_{t+1} = j \mid x_1^t) \triangleq \mathbb{E}_{P|x_1^t}[\mathbb{P}(x_{t+1} = j \mid x_1^t)] = \frac{n_j + \beta}{n + 2\beta}, \quad (\text{Laplacian smoothing})$$

233 where n_j is the number of times token j follows the current k^{th} -order context x_{t-k+1}^t in the sequence
 234 x_1^t , i.e. $n_j = |\{i : (x_{i-k}^{i-1}, x_i) = (x_{t-k+1}^t, j)\}|$ and n is the frequency of this context, i.e. $n = |\{i : x_{i-k}^{i-1} = x_{t-k+1}^t\}|$. Adjusting these counts by β plays the role of additive smoothing, which avoids
 235 assigning zero probabilities to unseen events, an idea dating back to Laplace (Laplace, 1814). It is
 236 also known that the add- β estimator is asymptotically minimax optimal, as $T \rightarrow \infty$ (Xie & Barron,
 237 1997; Hao et al., 2018).

238 **How Laplacian smoothing implies ICL.** If Mamba realizes this smoothing estimator, i.e. $\mathbb{P}_{\theta} = \mathbb{P}_{\beta}^{(k)}$,
 239 it automatically implies its ICL abilities: given a fresh test sequence at inference, in order to optimally
 240 predict the next token, it has to process the input tokens in-context to compute the relevant counts, as
 241 in the Laplacian smoothing. *But does Mamba realize this optimal counting estimator in practice?*

245 3 DOES MAMBA LEARN IN-CONTEXT ESTIMATORS?

247 To investigate the ICL capabilities of Mamba, we consider the problem setup described above and
 248 train Mamba and transformer models using AdamW on the next-token prediction loss in Eq. (3) on
 249 random Markov chains (we refer to § F for more experimental details). These experiments reveal
 250 interesting and rather surprising insights about Mamba:
 251

- 252 1. Mamba learns the optimal Laplacian smoothing estimator on the Markov prediction task,
 253 even with a single layer (Fig. 1a).
- 254 2. Convolution mechanism plays a fundamental role in Mamba, more so than gating and
 255 non-linear activations, in aiding its learning abilities (Fig. 3a).

257 In the sequel, we expand upon these observations in detail.

258 **1) Mamba learns the Laplacian smoothing.** After training, we evaluate Mamba and transformers
 259 on the same test sequence fixed beforehand and compare their performance to that of the optimal
 260 Laplacian smoothing estimator. Specifically, we compare their next-token prediction probabilities
 261 with those of the add- β estimator. Fig. 1 illustrates these results for various Markov orders, which
 262 uncovers a surprising phenomenon: *even a single-layer Mamba sharply matches the optimal*
 263 *estimator on the whole sequence*. The same conclusion holds for larger state spaces and deeper
 264 models (Fig. 10a), as well as in over-parametrized settings (Fig. 9), and even when part of the
 265 dataset is held out (see § E). For transformers, we observe that a two-layer model also matches the
 266 predictor, albeit less sharply, whereas a single layer fails to solve the task. This aligns with recent
 267 theoretical results (Sanford et al., 2024; Ekbote et al., 2025), that show that two layers are required
 268 for transformers to implement an induction head (realizing the counting estimator) efficiently. We
 269 also observe that linear attention performs similarly to softmax attention in this setting (cf. Fig. 7).
 Sec. 4.3 further discusses Mamba vs. Transformers.

Figure 3: (a) illustrates the fundamental role of convolution, without which the model fails to learn the task. In contrast, a simplified variant with just the convolution (MambaZero) matches the performance of the full model. (b) highlights the relation between the Markov order k and the window size w of Mamba. It is required that $w \geq k + 1$ for the model to learn the order- k prediction task.

2) Convolution is the key. To decipher the key architectural component behind Mamba’s success in Markov prediction task, we do an ablation study on its three main features: (i) convolution in Input selectivity, (ii) ReLU non-linearity in Input selectivity, and (iii) the gating mechanism in Mamba and MLP. Amongst them, interestingly, *convolution* plays a fundamental role in the model’s performance, as illustrated in Fig. 3a. Here we compare the full Mamba architecture from Sec. 2.2, Mamba with just the convolution in Input selectivity removed, and a simplified Mamba architecture with only convolution (MambaZero in Sec. 4.1). Further experiments on adding/removing convolution to Mamba and transformers, as well as experiments with varying width, are shown in § E.6, while experiments on natural language are deferred to Sec. 5.2. As a metric of comparison, we use the closeness of each of these models’ losses $L(\theta)$ to that of the optimal add- β estimator L_β , i.e. i.e. $|L(\theta) - L_\beta|$. The closer this metric is to zero, the better the model’s performance is. Remarkably, the simplified Mamba with just the convolution succeeds on the Markov prediction task, while the full model without convolution fails, highlighting its fundamental importance. This raises a natural question: *how does convolution help Mamba to implement the optimal Laplacian estimator?*

4 HOW MAMBA IMPLEMENTS THE LAPLACIAN ESTIMATOR

Motivated by its success in learning the optimal estimator, here we study how Mamba represents Laplacian smoothing. Specifically, we provide a concrete theoretical construction backed by empirical results, that illustrates the mechanism Mamba uses to implement the estimator in practice.

4.1 MAMBAZERO: SIMPLIFIED MODEL

Building upon the insight that Mamba with just the convolution achieves the same performance as that of the full model (Fig. 3a), we consider its simplified version: MambaZero. MambaZero retains only the essential elements of the full model in Sec. 2.2: the Embedding layer, the convolution inside the Mamba block in Input selectivity, and the Linear layer. More formally, it is given by:

$$\begin{aligned}
 \mathbf{x}_t &= \mathbf{e}_{x_t} \in \mathbb{R}^d, & (\text{Embedding}) \quad H_t &= a_t H_{t-1} + \tilde{\mathbf{x}}_t \mathbf{b}_t^\top \in \mathbb{R}^{ed \times N}, \\
 \mathbf{u}_t &= \mathbf{x}_t + \text{MambaZero}(\mathbf{x}_1^t), & (\text{MambaZero}) \quad \mathbf{y}_t &= H_t \mathbf{c}_t \in \mathbb{R}^{ed}, \quad (\text{MambaZero}) \\
 \text{logit}_t &= W_\ell \mathbf{u}_t \in \mathbb{R}^S, & (\text{Linear}) \quad \mathbf{o}_t &= W_o \mathbf{y}_t \in \mathbb{R}^d,
 \end{aligned}$$

where \mathbf{e}_x is the token embedding for $x \in \mathcal{X}$, and the input-selective terms $a_t, \tilde{\mathbf{x}}_t, \mathbf{b}_t$ and \mathbf{c}_t are computed as in Input selectivity without ReLU and just the convolution. Here we use the L_1

324 normalization instead of the softmax in the Prediction layer to ease theoretical analysis, similar to
 325 Nichani et al. (2024); Rajaraman et al. (2024). Let $\theta = (\{e_i\}_{i \in \mathcal{X}}, \theta_{\text{MambaZero}}, W_\ell) \in \mathbb{R}^D$ denote
 326 the full set of parameters for appropriate $D \geq 1$.
 327

328 4.2 MAIN THEOREM: MAMBA REPRESENTS THE LAPLACIAN ESTIMATOR 329

330 We now present our main theorem that MambaZero can represent Laplacian smoothing for any
 331 finite-state first-order Markov process. A key defining feature of our constructive proof is that it aligns
 332 with the structures empirically learned by the model, shedding light on the fundamental learning
 333 mechanisms of Mamba.

334 **Theorem 1.** *For a state space $\mathcal{X} = \{1, 2, \dots, S\}$ of size $|\mathcal{X}| = S$, there is a choice of parameters for
 335 the canonical MambaZero model, with dimensions $N = S$, $d = 2S$, $e = 1$ and convolution window
 336 $w = 2$, such that its output prediction exactly matches that of the Laplacian estimator, for first-order
 337 Markov chains on \mathcal{X} . More formally, for any $\beta > 0$, there exists a set of parameters θ such that, for
 338 all sequences $(x_t)_{t \geq 1}$ and all $t \geq 1$,*

$$339 D_{\text{KL}} \left(\mathbb{P}_\beta^{(1)}(\cdot | x_1^t) \| \mathbb{P}_\theta(\cdot | x_1^t) \right) = 0. \\ 340$$

341 **Remark.** The KL divergence above is precisely the penalty paid in the cross-entropy loss in Eq. (3)
 342 at time t when using the predictor \mathbb{P}_θ instead of the optimal $\mathbb{P}_\beta^{(1)}$. In other words, the result implies
 343 that the loss of MambaZero can be made exactly equal to the optimal.
 344

345 4.2.1 KEY MECHANISM AND PROOF SKETCH 346

347 **Main idea.** To build our intuition towards how MambaZero can realize the add- β counting estimator
 348 for first-order Markov sequences, let's focus on the core MambaZero block. The key observation
 349 here is the following: if the state H_{t-1} can capture all the transition counts $i \rightarrow j$ till x_1^{t-1} , the new
 350 state H_t can be updated to account for the current transition $x_{t-1} \rightarrow x_t$ on top of the existing counts,
 351 by a suitable choice of a_t , \tilde{x}_t , and b_t . Then the relevant count information corresponding to the
 352 current prefix x_t could be read off from the state projection $y_t = H_t c_t$, and be modified to account
 353 for β -smoothing via the Linear and Prediction layers. Buttressing this idea are two key empirical
 354 facts, which in fact hold for any $k \geq 1$, underpinning our construction:
 355

356 **(i) State-to-state transition factor $a_t \approx 1$ for all $t \geq 1$.** We empirically observe that when the
 357 MambaZero model is trained on random first-order Markov data, at convergence we have $a_t \approx 1$ for
 358 all $t \geq 1$ (Fig. 4). Since a_t modulates how much past information flows into the present, $a_t = 1$ is
 359 required for the state H_t to store all previous transition counts. Note that this can be easily achieved
 360 by setting either a or Δ_t to be zero in Input selectivity, which we empirically observe as well.

361 **(ii) Convolution window $w \geq k + 1$.** Recalling that k is the Markov order, we empirically observe
 362 that the window size $w = k + 1$ is sufficient for the full Mamba to learn the Laplacian smoothing
 363 on k^{th} -order Markov chains (Fig. 3b). To understand why, note that in the MambaZero architecture
 364 above, apart from the MambaZero block, all remaining equations operate on the current token at time
 365 t . In the MambaZero block, the dependency of the output y_t on the previous tokens is due to that of
 366 the state H_t on (\tilde{x}_t, b_t) in the update equation, and of c_t in the state projection. Since (\tilde{x}_t, b_t, c_t)
 367 depend on the past through the convolutions, a window of size $k + 1$ enables them to keep track of
 368 the current token as well as its length- k prefix, which is necessary to compute the counts needed in
 369 Laplacian smoothing. On the other hand, if $w_X, w_B \leq k$, then one can find *confusable* sequences,
 370 i.e. sequences that share the same number of occurrences of all length- k prefixes, but whose counts
 371 of the tokens following each prefix is different, resulting in the model's estimate to deviate from
 372 that of the optimal add- β . We refer to § C.1 for more details. While having all the window sizes
 373 $w_X, w_B, w_c \geq k + 1$ is sufficient, it can be further strengthened to $w_c = k$ (§ C.1).

374 We now detail our construction for the first-order case, capitalizing on these insights.
 375

376 **Construction.** Let us fix $w = k + 1 = 2$. Then, \tilde{x}_t and b_t only depend on the current token x_t and
 377 the previous one x_{t-1} , while c_t only depends on x_t . Thus, \tilde{x}_t and b_t can only take S^2 possible values
 378 depending on the last transition in the sequence, whereas c_t only S . To ease the notation, we will
 379 denote these values by $\tilde{x}^{(ij)}$, $b^{(ij)}$, and $c^{(i)}$ respectively, for $i, j \in \mathcal{X}$. Additionally, at $t = 1$, these
 380 terms depend only on the current symbol, taking two additional values each, denoted by $\tilde{x}^{(i)}$, $b^{(i)}$.

378 Let n_{ij} denote the number of transitions $i \rightarrow j$ in the input sequence x_1^t . Then, unfolding the state
 379 update recursion in MambaZero, we get that the output of the MambaZero block is
 380

$$381 \quad \mathbf{o}_t = W_o \tilde{\mathbf{x}}_0 \mathbf{b}_0^\top \mathbf{c}_t + \sum_{ij} n_{ij} W_o \tilde{\mathbf{x}}^{(ij)} \mathbf{b}^{(ij)\top} \mathbf{c}_t. \quad (4)$$

$$382$$

383 While the output in Eq. (4) depends on all the transition counts, in view of Laplacian smoothing, we
 384 ideally want only those counts pertaining to relevant transitions, i.e. if $x_t = 0$, the counts n_{0j} , for
 385 $j \in \mathcal{X}$, and similarly for other values of x_t . To this end, we empirically observe that at convergence,
 386 the model’s parameters are such that $\mathbf{b}^{(ij)\top} \mathbf{c}_t \approx 0$ whether $i \neq x_t$ (cf. Fig. 5). Due to this property,
 387 only the counts that are involved in the computation of the Laplacian estimator for the current token
 388 x_t appear in the output \mathbf{o}_t . Stitching these facts, the final logits in the Linear layer depend on the first
 389 and current token via

$$390 \quad \text{logit}_t = W_\ell \mathbf{x}_t + W_\ell W_o \tilde{\mathbf{x}}_0 \mathbf{b}_0^\top \mathbf{c}_t + \sum_j n_{x_t, j} W_\ell W_o \tilde{\mathbf{x}}^{(x_t, j)} \mathbf{b}^{(x_t, j)\top} \mathbf{c}_t. \quad (5)$$

$$391$$

$$392$$

393 The final step is to then show that for properly chosen parameters, one can make the two vectors
 394 associated with the counts to be orthogonal, and the other vectors, independent of the counts, to
 395 sum up to the vector $\beta \mathbf{1}$ (which we also empirically verified, cf. Fig. 5). Subsequently, the L_1
 396 normalization in Prediction layer will give a next-token probability estimate, matching that of the
 397 add- β estimator. We defer the full proof and additional details to § C.

398 **Dimension reduction for binary state space.** Interestingly, for the binary case $\mathcal{X} = \{0, 1\}$, it is
 399 possible to further reduce the hidden dimension $d = 2S$ in Thm. 1 to $d = S = 2$ by leveraging the
 400 relationship between the transition counts. The key theoretical insight is that the transition counts in
 401 binary sequences are strongly correlated. Specifically, n_{01} and n_{10} are at most one apart: every time
 402 a transition $0 \rightarrow 1$ occurs, either the sequence is followed by only 1’s until the end, or a subsequent
 403 transition $1 \rightarrow 0$ also occurs. Therefore, the dependency of the output on n_{01} is in fact a dependency
 404 on n_{10} . One can leverage this property to help MambaZero realize Laplacian smoothing with just
 405 two-dimensional embeddings, with arbitrarily small error. We refer to Thm. 4 in § C.3 for full details.

406 4.3 LOWER BOUND: FUNDAMENTAL LIMIT ON THE REPRESENTATION POWER OF MAMBA

408 We now provide a fundamental limit on the representation power of recurrent architectures like
 409 Mamba, in the form of a lower bound on the hidden dimension that is required to represent the
 410 optimal estimator. In particular, our result establishes that with finite bit precision, irrespective of
 411 depth, for any recurrent architecture to implement the Laplacian estimator, the hidden dimension
 412 has to at least scale as $\Omega(2^k)$.

413 **Theorem 2.** Consider a recurrent model of the form

$$414 \quad H_t = h_t(H_{t-1}, x_t),$$

$$415 \quad y_t = \mathbb{P}_\theta(\cdot | x_1^t) = g_t(H_t),$$

$$416$$

417 with transformations (h_t, g_t) , where $H_t \in \mathbb{R}^d$ and the model has a bit precision of p . Suppose that
 418 the k^{th} -order Markov kernel P is sampled from the Dirichlet prior with $\beta = 1$, $P \sim \text{Dir}(1 \cdot \mathbf{1})$.
 419 Suppose also that the recurrent architecture satisfies the following point-wise guarantee: for any
 420 sufficiently large t , almost surely over P and $x_1^t \sim P$,

$$421 \quad \left\| \mathbb{P}_\theta(\cdot | x_1^t) - \mathbb{P}_1^{(k)}(\cdot | x_1^t) \right\|_\infty \leq \varepsilon, \quad (6)$$

$$422$$

$$423$$

424 where $\mathbb{P}_1^{(k)}(\cdot | x_1^t)$ is the Laplacian estimator for $\beta = 1$. Then, the recurrent architecture must satisfy

$$425 \quad d \cdot p \geq 2^k (1 - 3\varepsilon) \log(1/\varepsilon).$$

$$426$$

$$427$$

428 We defer the full proof and additional details to App. D.

429 **Depth.** We note that Thm. 2 does not assume depth one, and holds for recurrent models of any depth.

430 **Mamba vs. Transformers.** As Thm. 2 demonstrates, to capture a k^{th} -order Markov process,
 431 Mamba requires the hidden dimension to scale exponentially in k , whereas the best known result for

432 transformers needs a three layer model with the hidden dimension growing linearly in k (Rajaraman
 433 et al., 2024). On the other hand, for first-order sources we empirically observe from Fig. 1a that
 434 1-layer Mamba tracks the optimal estimator more sharply than a transformer (see § E for additional
 435 comparative results). While these comparisons are meant to provide a more detailed context for
 436 Mamba, we would like to emphasize that the main focus of our paper is not a comparative study
 437 but rather a *fundamental understanding of Mamba’s ICL abilities*.

438 **Higher orders and learning dynamics.** While Thm. 1 demonstrates that Mamba can represent
 439 the optimal estimator for finite-state first-order processes, our empirical results in Fig. 1b strongly
 440 suggest that a similar conclusion holds for higher-order sources. In a similar vein, analyzing Mamba’s
 441 learning dynamics in its convergence to this smoothing estimator is an interesting topic of future
 442 research, but outside the scope of this paper, whose focus is on representation power.

443

444

445 5 BEYOND MARKOV

446

447

448 5.1 SWITCHING MARKOV MODEL

449

450 A key component of Mamba enabling selectivity is the state-transition factor a_t , that controls the flow
 451 of information from the past state H_{t-1} to the current H_t : if $a_t = 1$, the past information is fully
 452 utilized in computing the current state, and hence the output, whereas $a_t = 0$ completely ignores the
 453 past. In the Markovian setting considered so far, the role of a_t has largely been dormant: $a_t \approx 1$ for
 454 all $t \geq 1$, as the optimal Laplacian predictor requires counts of all transitions, demanding the use
 455 of full past (Sec. 4.2). To better highlight this selectivity mechanism, we consider a non-Markovian
 456 process, where the role of a_t becomes fundamental.

457

458

459

460

461

462

463

464

465

466

467 Specifically, we focus on the *switching Markov process*, where we add a *switch* token to the binary
 468 alphabet, i.e. we consider $\mathcal{X} = \{0, 1, S\}$. The key difference here compared to the random Markov
 469 generation in Sec. 2.1 is that until we hit switch token, we follow the same binary Markov sequence
 470 generation as the former, but once the switch state is reached, we sample a new Markov kernel
 471 and then generate a new Markov sequence. The switch tokens are sampled according to a parallel
 472 i.i.d. Bernoulli process with probability p_{switch} (0.01 in our experiments). The sampling process is
 473 described in detail in § E.7. With this data model, the optimal prediction strategy is to use the add- β
 474 estimator in between two switch tokens, and reset the transition counts every time a switch occurs.
 475 We provide empirical evidence in § E.7. Indeed, Fig. 13 illustrates that Mamba implements precisely
 476 this strategy, closely tracking the switching events via the transition factor a_t : it sets a_t to be zero
 477 whenever $x_t = S$ and to one otherwise.

478

479

480 5.2 NATURAL LANGUAGE MODELING

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

Table 1: Perplexity results on the WikiText-103 dataset.

Model	Params.	Perplexity
Mamba-2 (w/o conv)	14.53 M	30.68
Mamba-2 (w/ conv)	14.54 M	27.55
Transformer (w/o conv)	14.46 M	29.28
Transformer (w/ conv)	14.46 M	28.67

To test the generality of our finding that convolution plays a key role on Markovian data (Fig. 3), we conduct experiments on language modeling using the WikiText-103 dataset. Details on the experimental setup can be found in § F. By adding or removing convolution in both these models, we obtain the results in Table 1. The results illustrate that convolution enhances the performance of the two architectures, in particular for Mamba (11% vs. 2%), highlighting its saliency. Further ablation studies on this task show that together with convolution, gating also plays a central role (17% change, cf. § E.8, Table 4). Furthermore, additional experiments with deeper models show that the relative importance of convolution seems to decrease as the number of layers increases (cf. § E.8, Table 5). This may be due to the fact that the role of convolution is taken over by other Mamba layers, which are known to successfully approximate convolution (Wang & Xue, 2023).

486

6 CONCLUSION

488 Structured state space sequence models (SSMs) and Selective SSMs such as Mamba have shown re-
 489 markable inference speed-ups over transformers while achieving comparable or superior performance
 490 on complex language modeling tasks. In this paper, we studied in-context learning (ICL) capabilities
 491 of Mamba on random Markov chains and show that, unlike transformers, even a single-layer Mamba
 492 efficiently learns the in-context Laplacian smoothing estimator. To explain this, we theoretically and
 493 empirically characterized the representation capacity of Mamba, which revealed the fundamental
 494 role of convolution, together with selectivity and recurrence, in enabling it. We further provided
 495 additional empirical results on non-Markovian data, showing the generality of our insights. Extending
 496 our results to deeper Mamba models, as well as investigating Mamba’s learning dynamics, are some
 497 interesting future directions.

498

REFERENCES

500 Ekin Akyürek, Bailin Wang, Yoon Kim, and Jacob Andreas. In-context language learning: Arhitec-
 501 tures and algorithms. *arXiv preprint arXiv:2401.12973*, 2024.

502

503 Yu Bai, Fan Chen, Huan Wang, Caiming Xiong, and Song Mei. Transformers as statisticians:
 504 Provable in-context learning with in-context algorithm selection. In *Workshop on Efficient Systems
 505 for Foundation Models @ ICML2023*, 2023.

506

507 Maximilian Beck, Korbinian Pöppel, Markus Spanring, Andreas Auer, Oleksandra Prudnikova,
 508 Michael Kopp, Günter Klambauer, Johannes Brandstetter, and Sepp Hochreiter. xlstm: Extended
 509 long short-term memory. *arXiv preprint arXiv:2405.04517*, 2024.

510

511 Satwik Bhattacharya, Michael Hahn, Phil Blunsom, and Varun Kanade. Separations in the represen-
 512 tational capabilities of transformers and recurrent architectures. *Advances in Neural Information
 513 Processing Systems*, 37:36002–36045, 2024.

514

515 Marco Bondaschi and Michael Gastpar. Batch universal prediction. In *2024 IEEE International
 516 Symposium on Information Theory (ISIT)*, pp. 3552–3557, 2024. doi: 10.1109/ISIT57864.2024.
 10619270.

517

518 Marco Bondaschi and Michael Gastpar. Alpha-NML universal predictors. *IEEE Transactions on
 519 Information Theory*, 71(2):1171–1183, 2025. doi: 10.1109/TIT.2024.3521221.

520

521 N. Cesa-Bianchi and G. Lugosi. *Prediction, Learning, and Games*. Cambridge University Press,
 2006.

522

523 Nicola Muca Cirone, Antonio Orvieto, Benjamin Walker, Christopher Salvi, and Terry Lyons. The-
 524 oretical foundations of deep selective state-space models, 2025. URL <https://arxiv.org/abs/2402.19047>.

525

526 Róbert Csordás, Kazuki Irie, Jürgen Schmidhuber, Christopher Potts, and Christopher D Manning.
 527 Moeut: Mixture-of-experts universal transformers. *arXiv preprint arXiv:2405.16039*, 2024.

528

529 Tri Dao and Albert Gu. Transformers are SSMs: Generalized Models and Efficient Algorithms
 530 Through Structured State Space Duality. *arXiv preprint arXiv:2405.21060*, 2024.

531

532 Soham De, Samuel L Smith, Anushan Fernando, Aleksandar Botev, George Cristian-Muraru, Albert
 533 Gu, Ruba Haroun, Leonard Berrada, Yutian Chen, Srivatsan Srinivasan, et al. Griffin: Mixing
 534 Gated Linear Recurrences with Local Attention for Efficient Language Models. *arXiv preprint
 535 arXiv:2402.19427*, 2024.

536

537 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
 538 bidirectional transformers for language understanding, 2018. URL <https://arxiv.org/abs/1810.04805>.

539

Benjamin L. Edelman, Ezra Edelman, Surbhi Goel, Eran Malach, and Nikolaos Tsilivis. The
 Evolution of Statistical Induction Heads: In-Context Learning Markov Chains, 2024.

540 Chanakya Ekbote, Marco Bondaschi, Nived Rajaraman, Jason D. Lee, Michael Gastpar, Ashok Vardhan Makkova, and Paul Pu Liang. What one cannot, two can: Two-layer transformers provably
 541 represent induction heads on any-order markov chains, 2025. URL <https://arxiv.org/abs/2508.07208>.

542

543

544 Riccardo Grazzi, Julien Siems, Simon Schrodi, Thomas Brox, and Frank Hutter. Is mamba capable
 545 of in-context learning? *arXiv preprint arXiv:2402.03170*, 2024.

546

547 Albert Gu and Tri Dao. Mamba: Linear-Time Sequence Modeling with Selective State Spaces. *arXiv
 548 preprint arXiv: 2312.00752*, 2023a.

549

550 Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. *arXiv
 551 preprint arXiv:2312.00752*, 2023b.

552

553 Albert Gu, Tri Dao, Stefano Ermon, Atri Rudra, and Christopher Ré. Hippo: Recurrent memory
 554 with optimal polynomial projections. In *Advances in Neural Information Processing Systems*,
 volume 33, pp. 1474–1487, 2020.

555

556 Albert Gu, Isys Johnson, Karan Goel, Khaled Saab, Tri Dao, Atri Rudra, and Christopher Ré.
 557 Combining recurrent, convolutional, and continuous-time models with linear state space layers. In
 558 *Advances in Neural Information Processing Systems*, volume 34, pp. 572–585, 2021.

559

560 John T Halloran, Manbir Gulati, and Paul F Roysdon. Mamba state-space models can be strong
 561 downstream learners. *arXiv preprint arXiv:2406.00209*, 2024.

562

563 Yi Hao, Alon Orlitsky, and Venkatadheeraj Pichapati. On learning markov chains. In *Advances in
 564 Neural Information Processing Systems*, volume 31, pp. 646–655, 2018.

565

566 Roei Hendel, Mor Geva, and Amir Globerson. In-context learning creates task vectors. *arXiv preprint
 567 arXiv:2310.15916*, 2023.

568

569 Samy Jelassi, David Brandfonbrener, Sham M Kakade, and Eran Malach. Repeat after me: Trans-
 570 formers are better than state space models at copying. *arXiv preprint arXiv:2402.01032*, 2024.

571

572 Federico Arangath Joseph, Kilian Konstantin Haefeli, Noah Liniger, and Caglar Gulcehre. Hippo-
 573 prophecy: State-space models can provably learn dynamical systems in context. *arXiv preprint
 574 arXiv:2407.09375*, 2024.

575

576 Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In *International
 577 Conference on Learning Representations (ICLR)*, 2015.

578

579 Pierre Simon Laplace. *Essai philosophique sur les probabilités*. Courcier, Paris, France, 1814.
 580 Reprinted by Cambridge University Press, 2009. In the reprint, the estimator appears on page 23.

581

582 Chris Lu, Yannick Schroecker, Albert Gu, Emilio Parisotto, Jakob Foerster, Satinder Singh, and
 583 Feryal Behbahani. Structured state space models for in-context reinforcement learning. *Advances
 584 in Neural Information Processing Systems*, 36, 2024.

585

586 Ashok Vardhan Makkova, Marco Bondaschi, Adway Girish, Alliot Nagle, Hyeji Kim, Michael
 587 Gastpar, and Chanakya Ekbote. Local to Global: Learning Dynamics and Effect of Initialization
 588 for Transformers. In *The Thirty-eighth Annual Conference on Neural Information Processing
 589 Systems*, 2024.

590

591 Ashok Vardhan Makkova, Marco Bondaschi, Alliot Nagle, Adway Girish, Hyeji Kim, Martin Jaggi,
 592 and Michael Gastpar. Attention with Markov: A curious case of single-layer transformers. In *The
 593 Thirteenth International Conference on Learning Representations*, 2025.

594

595 N. Merhav and M. Feder. Universal prediction. *IEEE Transactions on Information Theory*, 44(6):
 596 2124–2147, 1998. doi: 10.1109/18.720534.

597

598 William Merrill, Jackson Petty, and Ashish Sabharwal. The illusion of state in state-space models.
 599 *arXiv preprint arXiv:2404.08819*, 2024.

600

601 Eshaan Nichani, Alex Damian, and Jason D Lee. How Transformers Learn Causal Structure with
 602 Gradient Descent. *arXiv preprint arXiv:2402.14735*, 2024.

594 Antonio Orvieto, Soham De, Caglar Gulcehre, Razvan Pascanu, and Samuel L Smith. On the univer-
 595 sality of linear recurrences followed by nonlinear projections. *arXiv preprint arXiv:2307.11888*,
 596 2023a.

597 Antonio Orvieto, Samuel L Smith, Albert Gu, Anushan Fernando, Caglar Gulcehre, Razvan Pascanu,
 598 and Soham De. Resurrecting recurrent neural networks for long sequences. *arXiv preprint*
 599 *arXiv:2303.06349*, 2023b.

600

601 Matteo Pagliardini. GPT-2 modular codebase implementation. <https://github.com/epfml/11m-baselines>. Accessed: Jan. 2025.

602

603 Jongho Park, Jaeseung Park, Zheyang Xiong, Nayoung Lee, Jaewoong Cho, Samet Oymak, Kang-
 604 wook Lee, and Dimitris Papailiopoulos. Can mamba learn how to learn? a comparative study
 605 on in-context learning tasks. In *Proceedings of the 41st International Conference on Machine*
 606 *Learning*, 2024.

607

608 Jiahao Qin and Feng Liu. Mamba-spike: Enhancing the mamba architecture with a spiking front-end
 609 for efficient temporal data processing. *arXiv preprint arXiv:2408.11823*, 2024.

610 Alec Radford and Karthik Narasimhan. Improving language understanding by generative pre-training.
 611 2018. URL <https://api.semanticscholar.org/CorpusID:49313245>.

612

613 Nived Rajaraman, Marco Bondaschi, Ashok Vardhan Makkula, Kannan Ramchandran, and Michael
 614 Gastpar. Transformers on Markov data: Constant depth suffices. In *The Thirty-eighth Annual*
 615 *Conference on Neural Information Processing Systems*, 2024.

616

617 J. Rissanen. Universal coding, information, prediction, and estimation. *IEEE Transactions on*
 618 *Information Theory*, 30(4):629–636, 1984. doi: 10.1109/TIT.1984.1056936.

619 Clayton Sanford, Daniel Hsu, and Matus Telgarsky. One-layer transformers fail to solve the induction
 620 heads task, 2024. URL <https://arxiv.org/abs/2408.14332>.

621

622 Yash Sarrof, Yana Veitsman, and Michael Hahn. The Expressive Capacity of State Space Models: A
 623 Formal Language Perspective. *arXiv preprint arXiv: 2405.17394*, 2024.

624

625 Neeraj Mohan Sushma, Yudou Tian, Harshvardhan Mestha, Nicolo Colombo, David Kappel, and
 626 Anand Subramoney. State-space models can learn in-context by gradient descent. *arXiv preprint*
 627 *arXiv:2410.11687*, 2024.

628

629 Jamba Team, Barak Lenz, Alan Arazi, Amir Bergman, Avshalom Manevich, Barak Peleg, Ben
 630 Aviram, Chen Almagor, Clara Fridman, Dan Padnos, et al. Jamba-1.5: Hybrid transformer-mamba
 631 models at scale. *arXiv preprint arXiv:2408.12570*, 2024.

632

633 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
 634 Kaiser, and Illia Polosukhin. Attention is all you need. In *Advances in Neural Information*
 635 *Processing Systems*, pp. 5998–6008, 2017.

636

637 Shida Wang and Beichen Xue. State-space models with layer-wise nonlinearity are universal
 638 approximators with exponential decaying memory. *Advances in Neural Information Processing*
 639 *Systems*, 36:74021–74038, 2023.

640

641 Qun Xie and A.R. Barron. Minimax redundancy for the class of memoryless sources. *IEEE*
 642 *Transactions on Information Theory*, 43(2):646–657, 1997.

643

644 Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. An explanation of in-context
 645 learning as implicit bayesian inference. *arXiv preprint arXiv:2111.02080*, 2021.

646

647 L Zhu, B Liao, Q Zhang, X Wang, W Liu, and X Wang. Vision Mamba: Efficient visual representation
 648 learning with bidirectional state space model. *arXiv preprint arXiv:2401.09417*, 2024.

648 **A PRELIMINARIES ON LAPLACIAN SMOOTHING**
649

650 Laplacian smoothing is a mature and well understood topic. An account can be found, e.g., in Merhav
651 & Feder (1998); Cesa-Bianchi & Lugosi (2006), with some recent updates in Bondaschi & Gastpar
652 (2024; 2025). For the sake of completeness, we provide a brief outline of how it applies to our
653 context. For k -th order Markov data, at every time instant t , the Laplacian add- β estimator applied
654 to the subsequence of tokens with the same context $i_1^k \in \mathcal{X}^k$ as the current one is the predictor that
655 minimizes the Bayesian cross-entropy loss in Eq. (3), when the Markov kernel is sampled according
656 to the product Dirichlet distribution $\text{Dir}(\beta \cdot \mathbf{1})$. We first give an intuition of why this is the case, and
657 we provide a full proof at the end of the section. We consider the binary case $\mathcal{X} = \{0, 1\}$, but the
658 results can be extended to arbitrary finite alphabets.
659

660 Consider a given sequence $(x_t)_{t=1}^T$. For every length- k context $i_1^k \in \mathcal{X}^k$, let $(x_t)|_{i_1^k}$ be the sub-
661 sequence of tokens preceded by i_1^k . Note that, since each sequence (x_t) is generated by a k -th order
662 Markov chain, all the tokens in the sequence with the same length- k prefix share the same conditional
663 probability distribution. Furthermore, since each of the conditional distributions of the chain is
664 randomly chosen independently from the others, the subsequence $(x_t)|_{i_1^k}$ is a sufficient statistic to
665 estimate the probability distribution of all the tokens with the same prefix i_1^k . Therefore, the optimal
666 prediction for a sequence $(x_t)_{t=1}^T$ is given by employing the optimal predictor for each i.i.d. sub-
667 sequence $(x_t)|_{i_1^k}$, for every $i_1^k \in \mathcal{X}^k$. Since each conditional distribution is sampled from a Dirichlet
668 distribution with parameter β , it is well known that the optimal predictor for such subsequences is the
669 add-constant estimator, with constant equal to β . More specifically, if $x_{t-k}^{t-1} = i_1^k$, then the optimal
670 estimation for x_t is
671

$$\mathbb{P}_\beta^{(k)}(x_{t+1} = j | x_1^t) = \frac{n_j + \beta}{n + 2\beta}, \quad (7)$$

672 where n_j is the number of times token j appears in the subsequence $x_1^t|_{i_1^k} = (x_\ell \in x_1^t : x_{\ell-k}^{\ell-1} = i_1^k)$,
673 and n is the length of the subsequence.
674

675 We now provide a formal proof of this fact.
676

677 **Theorem 3.** Consider the class of all k -th order Markov kernels $P = (P_{i_1^k})_{i_1^k \in \mathcal{X}^k}$, where each $P_{i_1^k} =$
678 $\mathbb{P}(\cdot | i_1^k)$ is a probability distribution on $\mathcal{X} = \{0, 1\}$. Let each $P_{i_1^k}$ be sampled i.i.d. from $\text{Dir}(\beta \cdot \mathbf{1})$,
679 and let $x_1^k \sim \text{Unif}(\mathcal{X}^k)$ and $x_{t+1}|x_1^t \sim P_{x_{t-k+1}^t}$. Then, the predictor $f^{(j)}(x_1^t) = \hat{\mathbb{P}}(x_{t+1} = j | x_1^t)$,
680 for $j \in \{0, 1\}$, that minimizes the loss
681

$$L \triangleq -\frac{1}{T} \sum_{t \in [T]} \mathbb{E}_P \mathbb{E}_{x_1^t \sim P} [x_{t+1} \cdot \log f^{(1)}(x_1^t) + (1 - x_{t+1}) \cdot \log f^{(0)}(x_1^t)] \quad (8)$$

682 is the add- β estimator in Eq. (7), i.e. the minimizer $f_*^{(j)}(x_1^t) = \mathbb{P}_\beta^{(k)}(x_{t+1} = j | x_1^t)$, for all $t \geq k$.
683

684 *Proof.* First note that
685

$$\begin{aligned} L &= -\frac{1}{T} \sum_t \mathbb{E}_P \mathbb{E}_{x_1^t \sim P} [x_{t+1} \cdot \log f^{(1)}(x_1^t) + (1 - x_{t+1}) \cdot \log f^{(0)}(x_1^t)] \\ &= -\frac{1}{T} \sum_t \mathbb{E}_{x_1^t} \mathbb{E}_{x_{t+1}|x_1^t} [x_{t+1} \cdot \log f^{(1)}(x_1^t) + (1 - x_{t+1}) \cdot \log f^{(0)}(x_1^t)] \\ &= -\frac{1}{T} \sum_t \mathbb{E}_{x_1^t} [\mathbb{E}_{x_{t+1}|x_1^t} [x_{t+1}] \cdot \log f^{(1)}(x_1^t) + (1 - \mathbb{E}_{x_{t+1}|x_1^t} [x_{t+1}]) \cdot \log f^{(0)}(x_1^t)]. \end{aligned}$$

686 Let us define the distribution $f_*^{(1)}(x_1^t) \triangleq \mathbb{E}_{x_{t+1}|x_1^t} [x_{t+1}]$ and $f_*^{(0)}(x_1^t) \triangleq 1 - f_*^{(1)}(x_1^t)$. Then, we can
687 rewrite the loss as
688

$$L = \frac{1}{T} \sum_t \mathbb{E}_{x_1^t} [-f_*^{(1)}(x_1^t) \cdot \log f^{(1)}(x_1^t) - f_*^{(0)}(x_1^t) \cdot \log f^{(0)}(x_1^t)].$$

689 For every $t \in [T]$ and every $x_1^t \in \mathcal{X}^t$, the term inside the expectation is minimized by picking
690 $f^{(1)}(x_1^t) = f_*^{(1)}(x_1^t)$. In fact, note that it can be rewritten as
691

$$-f_*^{(1)}(x_1^t) \cdot \log f^{(1)}(x_1^t) - f_*^{(0)}(x_1^t) \cdot \log f^{(0)}(x_1^t)$$

$$\begin{aligned}
&= f_*^{(1)}(x_1^t) \cdot \log \frac{f_*^{(1)}(x_1^t)}{f^{(1)}(x_1^t)} + f_*^{(0)}(x_1^t) \cdot \log \frac{f_*^{(0)}(x_1^t)}{f^{(0)}(x_1^t)} - f_*^{(1)}(x_1^t) \log f_*^{(1)}(x_1^t) \\
&\quad - f_*^{(0)}(x_1^t) \log f_*^{(0)}(x_1^t) \\
&= D_{\text{KL}}(f_*(x_1^t) \| f(x_1^t)) + H(f_*(x_1^t)),
\end{aligned}$$

which is minimized when $D_{\text{KL}}(f_*(x_1^t) \| f(x_1^t)) = 0$, i.e., when $f(x_1^t) = f_*(x_1^t)$. We will now show that $f_*(x_1^t)$ is precisely the add- β estimator. Consider any context i_1^k and any sequence x_1^t such that $x_{t-k+1}^t = i_1^k$. Let also $p \triangleq P_{i_1^k}(1) = \mathbb{P}(1 | i_1^k)$. Then,

$$\begin{aligned}
f_*^{(1)}(x_1^t) &\triangleq \mathbb{E}_{x_{t+1}|x_1^t}[x_{t+1}] \\
&= \mathbb{E}_{P_{i_1^k}|x_1^t} \mathbb{E}_{x_{t+1}|x_1^t, P_{i_1^k}}[x_{t+1}] \\
&= \mathbb{E}_{P_{i_1^k}|x_1^t}[P_{i_1^k}(1)] \\
&= \mathbb{E}_{P_{i_1^k}|x_1^t|_{i_1^k}}[P_{i_1^k}(1)],
\end{aligned}$$

where in the last equation we used the fact that, when $x_1^k \sim \text{Unif}(\mathcal{X}^k)$, the subsequence $x_1^t|_{i_1^k}$ is a sufficient statistic for $P_{i_1^k}$. Hence,

$$\begin{aligned}
f_*^{(1)}(x_1^t) &= \mathbb{E}_{P_{i_1^k}|x_1^t|_{i_1^k}}[P_{i_1^k}(1)] \\
&= \int_0^1 \frac{p^{\beta-1}(1-p)^{\beta-1}p^{n_1}(1-p)^{n_0}}{\int_0^1 q^{\beta-1}(1-q)^{\beta-1}q^{n_1}(1-q)^{n_0} dq} \cdot p dp \\
&= \frac{\int_0^1 p^{n_1+\beta}(1-p)^{n_0+\beta-1} dp}{\int_0^1 q^{n_1+\beta-1}(1-q)^{n_0+\beta-1} dq} \\
&= \frac{\Gamma(n_1 + \beta + 1)\Gamma(n_0 + \beta)}{\Gamma(n_1 + 2\beta + 1)} \cdot \frac{\Gamma(n + 2\beta)}{\Gamma(n_1 + \beta)\Gamma(n_0 + \beta)} \\
&= \frac{n_1 + \beta}{n + 2\beta},
\end{aligned}$$

where we used the fact that $P_{i_1^k} \sim \text{Dir}(\beta \cdot \mathbf{1})$, that $\int_0^1 q^{z_1-1}(1-q)^{z_0-1} = \Gamma(z_1)\Gamma(z_0)/\Gamma(z_1 + z_0)$, and that $\Gamma(z + 1) = z\Gamma(z)$. \square

Remark. The proof above is for $x_1^k \sim \text{Unif}(\mathcal{X}^k)$. However, note that the same proof would also work for x_1^k distributed according to any distribution that is independent of the Markov kernel P . If instead the distribution depends on P (e.g., the stationary distribution of the Markov chain), then the proof would fail in the step where $x_1^t|_{i_1^k}$ is a sufficient statistic for $P_{i_1^k}$.

Remark. It is important to note that, to be able to implement such a predictor requires in-context capabilities: at inference, in order to optimally predict the next token, the model must be able to look into the previous tokens of the test sequence, and count the tokens with the correct prefix.

744
745
746
747
748
749
750
751
752
753
754
755

756 **B MAMBA-BASED LANGUAGE MODELING ARCHITECTURE**
757

758 Mamba block can be incorporated into a full-fledged language model as follows: let $x =$
759 $(x_1, x_2, \dots, x_T) \in \mathcal{X}^T$ be an input token-sequence over the alphabet \mathcal{X} ; here $\mathcal{X} = \{0, 1\}$ as
760 explained in Sec. 2.1. Then, at every $t \in [T]$, the output of the language model θ is given by the
761 following sequence of equations (Dao & Gu, 2024):

$$\begin{aligned} 762 \quad \mathbf{x}_t &= \mathbf{e}_{x_t} \in \mathbb{R}^d, & (\text{Embedding}) \\ 763 \quad \mathbf{u}_t &= \mathbf{x}_t + \text{Mamba}(\mathbf{x}_1^t) \in \mathbb{R}^d, & (\text{Mamba}) \\ 764 \quad \mathbf{v}_t &= \mathbf{u}_t + W_2[\text{ReLU}(W_1 \mathbf{u}_t) \odot W_3 \mathbf{u}_t] \in \mathbb{R}^d, & (\text{MLP}) \\ 765 \quad \text{logit}_t &= W_\ell \mathbf{v}_t \in \mathbb{R}^S, & (\text{Linear}) \\ 766 \quad f_\theta(x_1^t) &\triangleq \mathbb{P}_\theta(x_{t+1} = \cdot \mid x_1^t) = \text{softmax}(\text{logit}_t) \in [0, 1]^S, & (\text{Prediction}) \\ 767 \end{aligned}$$

768 where the parameters $\mathbf{e}_i \in \mathbb{R}^d$, $W_1 \in \mathbb{R}^{4d \times d}$, $W_2 \in \mathbb{R}^{d \times 4d}$ and $W_\ell \in \mathbb{R}^{S \times d}$ are learnable, and
769 $f_\theta(x_1^t)$ is the probability law for the next symbol x_{t+1} conditioned on the past x_1^t . We omit the
770 layer norm here for simplicity. We compactly denote the set of all model parameters as θ , i.e.
771 $\theta = (\{\mathbf{e}_i\}_{i \in \mathcal{X}}, \theta_{\text{Mamba}}, W_{1,2,3}, W_\ell) \in \mathbb{R}^D$.
772

773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

810 C PRELIMINARIES AND PROOF OF THM. 1 AND THM. 4
811812 C.1 EMPIRICAL INSIGHTS
813814 Here we expand upon our empirical observations in 4.2.1, which form the basis of our proof.
815816 **State-to-state transition factor** $a_t \approx 1$ for all $t \geq 1$. We empirical evidence supporting this
817 observation in Fig. 4.834 Figure 4: Value of a_t across positions at convergence.
835836 **Convolution window** $w \geq k + 1$. Recalling that k is the Markov order, we empirically observe
837 that the window that $w = k + 1$ is sufficient for the full Mamba to learn the Laplacian smoothing
838 on k^{th} -order Markov chains. To understand why, note that in the MambaZero architecture above,
839 apart from the MambaZero block, all remaining equations operate on the current token at time t . In
840 the MambaZero block, same as the Mamba block except ReLU, the dependency of the output y_t on
841 the previous tokens is due to that of the state H_t on (\tilde{x}_t, b_t) in the update equation, and of c_t in the
842 state projection. Since (\tilde{x}_t, b_t, c_t) depend on the past through the convolutions, a window of size
843 $k + 1$ enables them to keep track of the current token as well as its length- k prefix, which is necessary
844 to compute the counts needed in Laplacian smoothing. On the other hand, if $w \leq k$, then one can
845 find *confusable* sequences, i.e. sequences that share the same number of occurrences of all length- k
846 prefixes, but whose counts of the tokens following each prefix is different.847 For such sequences, the state H_t is the same, and so are the predicted probabilities by the Mamba
848 model; however, the optimal estimator, depending on the transition counts, would give very different
849 probability estimates, allowing Mamba's prediction loss to deviate from that of the optimal. For
850 example, consider $k = 1$. If $w = 1$, then (\tilde{x}_t, b_t, c_t) depend only on the current token x_t . Then,
851 consider the two sequences $x = (0, 1, 0, 1, 0, 1)$ and $\tilde{x} = (0, 0, 0, 1, 1, 1)$. At time $t = 6$, these two
852 sequences would give the same state H_t and the same output y_t , since they share the same number of
853 tokens 0 and 1. Therefore, the estimated probability given by the model would be the same in both
854 cases. However, the optimal add-constant estimator (with $\beta = 1$) would estimate the probability of
855 $x_{t+1} = 1$ to be $1/4$ for x , and $3/4$ for \tilde{x} .856 Further, *it is sufficient that the convolution for c_t has window $w_C = k$.* That is, the convolution conv_C
857 involved in the computation of c_t can have a window size equal to the Markov order k (i.e., one less
858 than conv_X and conv_B) without affecting the model's capability of learning the task (or, equivalently,
859 the left-most kernel coefficients of conv_C can be taken to be zero). Intuitively, this is because the
860 role of c_t in the state projection is to select the correct transition counts for the computation of the
861 estimator, distilled into y_t . In order to do so, it is sufficient to know the length- k context of the current
862 symbol x_t , which can be encoded by a convolution with window size k .863 **Orthogonal count-dependent vectors.** The inner products $b^{(ij)\top} c^{(k)}$ corresponding to $i \neq k$ go to
864 zero at convergence: only the correct counts are kept in the final logit.

864
865 **Convergence to the optimal $\beta = 1$.** The count-independent part of the final logit converges to
866 $\beta = 1$, corresponding to the optimal Laplacian estimator.

881
882 Figure 5: (a) Counts-related inner products across iterations. Only the correct counts corresponding
883 to $\mathbf{b}^{(ij)\top} \mathbf{c}^{(k)}$ for $i = k$ have a non-zero inner product at convergence. (b) Binary coordinates of the
884 counts-independent vector across iterations. Both coordinates converge to the optimal $\beta = 1$.

885 C.2 PROOF OF THM. 1

887 Let $\beta > 0$ be the constant of the considered add-constant estimator. Let us fix $a = 0$ and $\Delta_t = 1$, so
888 that $a_t = 1$, for all $t \geq 1$. This can be done by picking, e.g., $\mathbf{w}_\Delta = \mathbf{0}$ and δ such that $\text{softplus}(\delta) = 1$.
889 Note that the application of convolution to a given sequence of vectors \mathbf{z}_1^t can be rewritten as a linear
890 matrix-form operation. For example, for conv_X , one has that

$$\text{conv}_X(\mathbf{z}_t) = D_X^{(0)} \mathbf{z}_{t-1} + D_X^{(1)} \mathbf{z}_t \quad (9)$$

893 where $D_X^{(0)}$ and $D_X^{(1)}$ are diagonal matrices. The same holds for conv_B and conv_C , with correspond-
894 ing diagonal matrices $D_B^{(0)}, D_B^{(1)}, D_C^{(0)}$ and $D_C^{(1)}$.

895 Let us take the embedding vectors $\mathbf{e}_i, i \in \mathcal{X}$, to be the one-hot encoding vectors for the alphabet
896 \mathcal{X} , interleaved with zeros, i.e., let \mathbf{e}_i be such that $e_{i,2i-1} = 1$ and 0 otherwise. Furthermore, take
897 W_X to be the $2S \times 2S$ matrix such that $W_X(i, j) = 1$ for $i = 2k$ and $j = 2k - 1$, for $1 \leq k \leq S$,
898 and 0 otherwise. (The role of W_X is shift each coordinate of the embedding vectors by one.) Take
899 now conv_X to be such that its output is simply equal to the current vector, i.e., take $D_X^{(0)} = \mathbf{0}$ and
900 $D_X^{(1)} = I_{2S \times 2S}$. Take also $W_B = I_{S \times S}$ and conv_B so that the output is equal to the second-to-last
901 vector, i.e., take $D_B^{(0)} = I_{S \times S}$ and $D_B^{(1)} = \mathbf{0}$. Finally, take $W_C = I_{S \times S}$ and conv_C such that
902 $C^{(0)} = \mathbf{0}$ and $C^{(1)} = I_{S \times S}$.

904 The final logit vector is in general equal to

$$\text{logit}_t = W_\ell \mathbf{x}_t + W_\ell W_o \tilde{\mathbf{x}}^{(x_1)} \mathbf{b}^{(x_1)\top} \mathbf{c}_t + \sum_{ij} n_{ij} W_\ell W_o \tilde{\mathbf{x}}^{(ij)} \mathbf{b}^{(ij)\top} \mathbf{c}_t. \quad (10)$$

908 Using the matrices chosen above, we can simplify the formula as follows. Firstly, note that $\mathbf{b}^{(x_1)} = \mathbf{0}$,
909 as the \mathbf{b} vectors only depend on the second-to-last vectors. Furthermore, since the embedding vectors
910 are orthogonal to each other, we have that $\mathbf{b}^{(ij)\top} \mathbf{c}_t = 1$ whether $i = x_t$, and 0 otherwise. (That
911 is, only the correct counts are kept in the logit computation.) With these simplifications, the logit
912 formula becomes

$$\text{logit}_t = W_\ell \mathbf{x}_t + \sum_j n_{x_t, j} W_\ell W_o \tilde{\mathbf{x}}^{(j)}. \quad (11)$$

914 Finally, take $W_o = I_{2S \times 2S}$ and take W_ℓ such that $W_\ell(i) = \beta \mathbf{1}$ for all odd i , $W_\ell(2i, i) = 1$ for
915 $1 \leq i \leq S$, and 0 otherwise. With this choice, we get, for all $t \geq 1$,

$$\text{logit}_t = \beta \mathbf{1} + \sum_j n_{x_t, j} \mathbf{e}_i \quad (12)$$

918 where \mathbf{e}_i is the one-hot vector for symbol $i \in \mathcal{X}$. After the normalization, we finally get
 919

$$f_{\theta}(x_1^t)_j = \frac{n_{ij} + \beta}{\sum_k n_{ik} + S\beta} \quad (13)$$

920 if $x_t = i$, for $i \in \mathcal{X}$. This is precisely the required add- β Laplacian estimator.
 921

922 **C.3 THM. 4: DIMENSIONALITY REDUCTION FOR THE BINARY CASE**
 923

924 **Theorem 4.** *For the canonical MambaZero model with dimensions $d = N = 2$, $e = 1$, and
 925 convolution window $w = 2$, there is a choice of parameters such that the model prediction is
 926 arbitrarily close to the Laplacian estimator for random first-order Markov chains. More formally, for
 927 any $\beta > 0$ and $\epsilon \in (0, 1)$, there exists a set of parameters θ such that, for all sequences $(x_t)_{t \geq 1}$ and
 928 all $t \geq 1$,*

$$D_{\text{KL}} \left(\mathbb{P}_{\beta}^{(1)}(\cdot | x_1^t) \| \mathbb{P}_{\theta}(\cdot | x_1^t) \right) \leq \epsilon.$$

931 *Proof.* Fix $\epsilon > 0$ and let $\beta > 0$ be the constant of the considered add-constant estimator. Let us fix
 932 $a = 0$ and $\Delta_t = 1$, so that $a_t = 1$, for all $t \geq 1$. This can be done by picking, e.g., $\mathbf{w}_{\Delta} = \mathbf{0}$ and δ
 933 such that $\text{softplus}(\delta) = 1$. Let us compactly denote the convolution kernels as
 934

$$\text{conv}_X = \begin{pmatrix} \alpha_{00} & \alpha_{01} \\ \alpha_{10} & \alpha_{11} \end{pmatrix}, \quad \text{conv}_B = \begin{pmatrix} \gamma_{00} & \gamma_{01} \\ \gamma_{10} & \gamma_{11} \end{pmatrix} \quad (14)$$

935 where each row corresponds to the kernel weights applied time-wise to each coordinate of the input
 936 sequence $(\mathbf{x}_t)_{t \geq 1}$. Since the window for conv_C is $w_C = 1$, we can simply assume w.l.o.g. that
 937 $C_t = W_C \mathbf{x}_t$.
 938

939 Let us denote the embedding vectors to be $\mathbf{e}_0 = (e_{00}, e_{01})^{\top}$ and $\mathbf{e}_1 = (e_{10}, e_{11})^{\top}$, and assume that
 940 the vectors are not collinear. Take also $W_X = W_B$ such that
 941

$$W_X \mathbf{e}_0 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad W_X \mathbf{e}_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \quad (15)$$

942 and take W_C such that
 943

$$W_C \mathbf{e}_0 = \begin{pmatrix} c_0 \\ 0 \end{pmatrix}, \quad W_C \mathbf{e}_1 = \begin{pmatrix} 0 \\ c_1 \end{pmatrix}. \quad (16)$$

944 Let us also take the kernels of conv_X and conv_B to be the same across coordinates, i.e.,
 945

$$\text{conv}_X = \begin{pmatrix} \alpha_0 & \alpha_1 \\ \alpha_0 & \alpha_1 \end{pmatrix}, \quad \text{conv}_B = \begin{pmatrix} \gamma_0 & \gamma_1 \\ \gamma_0 & \gamma_1 \end{pmatrix} \quad (17)$$

946 such that the following conditions are satisfied:
 947

$$\begin{cases} \alpha_0 \gamma_0 + \alpha_1 \gamma_1 = 0 \\ \alpha_0 \gamma_1 + \alpha_1 \gamma_0 > 0 \\ \alpha_0 \neq \alpha_1 \\ \frac{\alpha_0 \gamma_1}{\alpha_0 \gamma_1 + \alpha_1 \gamma_0} = -\beta \epsilon \end{cases} \quad (18)$$

948 Note that, with such a choice of parameters, we have
 949

$$X^{(0)} = \begin{pmatrix} \alpha_1 \\ 0 \end{pmatrix}, \quad X^{(1)} = \begin{pmatrix} 0 \\ \alpha_1 \end{pmatrix}, \quad B^{(0)} = \begin{pmatrix} \gamma_1 \\ 0 \end{pmatrix}, \quad B^{(1)} = \begin{pmatrix} 0 \\ \gamma_1 \end{pmatrix} \quad (19)$$

$$C^{(0)} = \begin{pmatrix} c_0 \\ 0 \end{pmatrix}, \quad C^{(1)} = \begin{pmatrix} 0 \\ c_1 \end{pmatrix} \quad (20)$$

$$X^{(00)} = \begin{pmatrix} \alpha_0 + \alpha_1 \\ 0 \end{pmatrix}, \quad X^{(01)} = \begin{pmatrix} \alpha_0 \\ \alpha_1 \end{pmatrix}, \quad X^{(10)} = \begin{pmatrix} \alpha_1 \\ \alpha_0 \end{pmatrix}, \quad X^{(11)} = \begin{pmatrix} 0 \\ \alpha_0 + \alpha_1 \end{pmatrix} \quad (21)$$

$$B^{(00)} = \begin{pmatrix} \gamma_0 + \gamma_1 \\ 0 \end{pmatrix}, \quad B^{(01)} = \begin{pmatrix} \gamma_0 \\ \gamma_1 \end{pmatrix}, \quad B^{(10)} = \begin{pmatrix} \gamma_1 \\ \gamma_0 \end{pmatrix}, \quad B^{(11)} = \begin{pmatrix} 0 \\ \gamma_0 + \gamma_1 \end{pmatrix}. \quad (22)$$

(We replaced the vector notation of Sec. 4 with matrix notation, so that $X^{(0)}$ has to be intended as $\tilde{\mathbf{x}}^{(0)}$, and so on.) Take also $W_o = W_\ell = I$. With this choice of parameters, the final logit vector becomes, using Eq. (5),

$$\begin{aligned} \text{logit}_t &= W_\ell \left(\mathbf{x}_t + W_o X^{(x_1)} B^{(x_1)^\top} C^{(x_t)} + \mathbb{1}_{\{x_1 \neq x_t\}} W_o X^{(x_1 x_t)} B^{(x_1 x_t)^\top} C^{(x_t)} \right. \\ &\quad \left. + n_{x_t x_t} W_o X^{(x_t x_t)} B^{(x_t x_t)^\top} C_t + n_{x_t \bar{x}_t} W_o \left(X^{(x_t \bar{x}_t)} B^{(x_t \bar{x}_t)^\top} + X^{(\bar{x}_t x_t)} B^{(\bar{x}_t x_t)^\top} \right) C_t \right) \end{aligned} \quad (23)$$

$$\begin{aligned} &= \begin{pmatrix} e_{00} + c_0 \alpha_1 \gamma_1 \\ e_{01} \end{pmatrix} + \mathbb{1}_{\{x_1=1\}} \cdot \begin{pmatrix} 0 \\ c_0 \alpha_0 \gamma_1 \end{pmatrix} + n_{00} \cdot \begin{pmatrix} (\alpha_0 + \alpha_1)(\gamma_0 + \gamma_1) c_0 \\ 0 \end{pmatrix} \\ &\quad + n_{01} \cdot \begin{pmatrix} (\alpha_0 \gamma_0 + \alpha_1 \gamma_1) c_0 \\ (\alpha_0 \gamma_1 + \alpha_1 \gamma_0) c_0 \end{pmatrix} \end{aligned} \quad (24)$$

$$\begin{aligned} &= \begin{pmatrix} e_{00} + c_0 \alpha_1 \gamma_1 \\ e_{01} \end{pmatrix} + \mathbb{1}_{\{x_1=1\}} \cdot \begin{pmatrix} 0 \\ c_0 \alpha_0 \gamma_1 \end{pmatrix} + n_{00} \cdot \begin{pmatrix} (\alpha_0 \gamma_1 + \alpha_1 \gamma_0) c_0 \\ 0 \end{pmatrix} \\ &\quad + n_{01} \cdot \begin{pmatrix} 0 \\ (\alpha_0 \gamma_1 + \alpha_1 \gamma_0) c_0 \end{pmatrix} \end{aligned} \quad (25)$$

if $x_t = 0$, and

$$\begin{aligned} \text{logit}_t &= \begin{pmatrix} e_{10} \\ e_{11} + c_1 \alpha_1 \gamma_1 \end{pmatrix} + \mathbb{1}_{\{x_1=0\}} \cdot \begin{pmatrix} c_1 \alpha_0 \gamma_1 \\ 0 \end{pmatrix} + n_{10} \cdot \begin{pmatrix} (\alpha_0 \gamma_1 + \alpha_1 \gamma_0) c_1 \\ (\alpha_0 \gamma_0 + \alpha_1 \gamma_1) c_1 \end{pmatrix} \\ &\quad + n_{11} \cdot \begin{pmatrix} 0 \\ (\alpha_0 + \alpha_1)(\gamma_0 + \gamma_1) c_1 \end{pmatrix} \end{aligned} \quad (26)$$

$$\begin{aligned} &= \begin{pmatrix} e_{10} \\ e_{11} + c_1 \alpha_1 \gamma_1 \end{pmatrix} + \mathbb{1}_{\{x_1=0\}} \cdot \begin{pmatrix} c_1 \alpha_0 \gamma_1 \\ 0 \end{pmatrix} + n_{10} \cdot \begin{pmatrix} (\alpha_0 \gamma_1 + \alpha_1 \gamma_0) c_1 \\ 0 \end{pmatrix} \\ &\quad + n_{11} \cdot \begin{pmatrix} 0 \\ (\alpha_0 \gamma_1 + \alpha_1 \gamma_0) c_1 \end{pmatrix} \end{aligned} \quad (27)$$

if $x_t = 1$. Take now

$$e_{00} = e_{11} = (\alpha_0 \gamma_1 + \alpha_1 \gamma_0) \beta c_0 - \alpha_1 \gamma_1 c_0 \quad (28)$$

$$e_{01} = e_{10} = (\alpha_0 \gamma_1 + \alpha_1 \gamma_0) \beta c_0 - \alpha_0 \gamma_1 c_0 \quad (29)$$

With this choice of parameters, after the layer normalization, the final output probability vector is

$$f_{\theta}(x_1^t) = \left(\frac{n_{00} + \beta}{n_{00} + n_{01} + 2\beta + \mathbb{1}_{\{x_1=0\}} \cdot \beta \epsilon}, \frac{n_{01} + \beta + \mathbb{1}_{\{x_1=0\}} \cdot \beta \epsilon}{n_{00} + n_{01} + 2\beta + \mathbb{1}_{\{x_1=0\}} \cdot \beta \epsilon} \right)^\top \quad (30)$$

if $x_t = 0$, and

$$f_{\theta}(x_1^t) = \left(\frac{n_{10} + \beta + \mathbb{1}_{\{x_1=1\}} \cdot \beta \epsilon}{n_{10} + n_{11} + 2\beta + \mathbb{1}_{\{x_1=1\}} \cdot \beta \epsilon}, \frac{n_{11} + \beta}{n_{10} + n_{11} + 2\beta + \mathbb{1}_{\{x_1=1\}} \cdot \beta \epsilon} \right)^\top \quad (31)$$

if $x_t = 1$. Note that the resulting predicted probabilities exactly match the add- β estimator when $x_1 \neq x_t$, but they are slightly different when $x_1 = x_t$ due to the additional $\beta \epsilon$ factor. We now show that, when the additional factor is present, the two predictors nevertheless differ by at most ϵ in KL distance. We show it for the case $x_1 = x_t = 0$, the other case follows in the same way. In fact, note that

$$\frac{n_{01} + \beta + \beta \epsilon}{n_{00} + n_{01} + 2\beta + \beta \epsilon} = \frac{n_{01} + \beta}{n_{00} + n_{01} + 2\beta} \cdot \frac{1 + \frac{\beta \epsilon}{n_{01} + \beta}}{1 + \frac{\beta \epsilon}{n_{00} + n_{01} + 2\beta}}. \quad (32)$$

Now, since

$$1 \leq 1 + \frac{\beta \epsilon}{n_{01} + \beta} \leq 1 + \epsilon \quad (33)$$

1026 and

1027
$$1 \leq 1 + \frac{\beta\epsilon}{n_{00} + n_{01} + 2\beta} \leq 1 + \epsilon \quad (34)$$

1028 we have that

1029
$$\frac{n_{01} + \beta}{n_{00} + n_{01} + 2\beta} \leq \frac{n_{01} + \beta + \beta\epsilon}{n_{00} + n_{01} + 2\beta + \beta\epsilon} \cdot (1 + \epsilon) \quad (35)$$

1030 but we also have

1031
$$\frac{n_{00} + n_{01} + 2\beta + \beta\epsilon}{n_{00} + n_{01} + 2\beta} \leq 1 + \frac{\beta\epsilon}{n_{00} + n_{01} + 2\beta} \leq 1 + \epsilon, \quad (36)$$

1032 so that

1033
$$D_{\text{KL}} \left(\mathbb{P}_{\beta}^{(1)} (\cdot | x_1^t) \| \mathbb{P}_{\theta} (\cdot | x_1^t) \right) = \mathbb{P}_{\beta}^{(1)} (x_{t+1} = 0 | x_1^t) \log \frac{\mathbb{P}_{\beta}^{(1)} (x_{t+1} = 0 | x_1^t)}{\mathbb{P}_{\theta} (x_{t+1} = 0 | x_1^t)} \\ 1034 \quad + \mathbb{P}_{\beta}^{(1)} (x_{t+1} = 1 | x_1^t) \log \frac{\mathbb{P}_{\beta}^{(1)} (x_{t+1} = 1 | x_1^t)}{\mathbb{P}_{\theta} (x_{t+1} = 1 | x_1^t)} \quad (37)$$

1035
$$1036 = \frac{n_{00} + \beta}{n_{00} + n_{01} + 2\beta} \log \frac{\frac{n_{00} + \beta}{n_{00} + n_{01} + 2\beta}}{\frac{n_{00} + \beta}{n_{00} + n_{01} + 2\beta + \beta\epsilon}} \\ 1037 \quad + \frac{n_{01} + \beta}{n_{00} + n_{01} + 2\beta} \log \frac{\frac{n_{01} + \beta}{n_{00} + n_{01} + 2\beta}}{\frac{n_{01} + \beta + \beta\epsilon}{n_{00} + n_{01} + 2\beta + \beta\epsilon}} \quad (38)$$

1038
$$1039 \leq \frac{n_{00} + \beta}{n_{00} + n_{01} + 2\beta} \log(1 + \epsilon) + \frac{n_{01} + \beta}{n_{00} + n_{01} + 2\beta} \log(1 + \epsilon) \quad (39)$$

1040
$$1041 \leq \log(1 + \epsilon) \quad (40)$$

1042
$$1043 \leq \epsilon \quad (41)$$

1044 concluding the proof. □

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080 **D PROOF OF THM. 2**
 1081

1082 Consider a recurrent model of the form $H_t = h(H_{t-1}, x_t)$ and $y_t = g(H_t)$ for each $t \geq 1$ where
 1083 $H_t \in \mathbb{R}^d$ and the model has a bit precision of p . In this proof, we will assume that the state space of
 1084 the underlying Markov chain is $\{0, 1\}$. By the recurrent architecture, the predicted distribution over
 1085 the next token x_{t+k+1} is of the form,

1086
$$y_{t+k} = \mathbb{P}_{\theta} (x_{t+k+1} = z \mid x_1^{t+k}) = g(z, H_{t+k}). \quad (42)$$

1087 Recall that the add-1 estimator is defined as,

1088
$$\frac{n(z, x_{t+1}^{t+k}) + 1}{n(x_{t+1}^{t+k}) + 2}, \quad (43)$$

1089 where $n(z_1^k) = \sum_{i=1}^{t+1} \mathbb{I}(x_i^{i+k-1} = z_1^k)$ indicates the number of times z_1^k appears in the sequence.
 1090 This is the optimal estimator for sequences drawn from the product-Dirichlet prior: for every i_1^k ,
 1091 $P(\cdot \mid i_1^k) \sim \text{Dir}(1 \cdot \mathbf{1})$, which is the distribution we will assume for this proof. Fixing x_1^t , we can
 1092 write the add-1 estimator more explicitly as a function of x_{t+1}^{t+k} as,

1093
$$\mathbb{P}_1^{(k)} (x_{t+k+1} = z \mid x_1^t, x_{t+1}^{t+k} = z_1^k) = \frac{n(z_1^k, z) + 1}{n(z_1^k) + 2}. \quad (44)$$

1094 Now, fixing x_1^t , correctness of the recurrent model means that, almost surely over P drawn from the
 1095 prior, and $x_1^t \sim P$ and $z_1^k \sim P(\cdot \mid x_1^t)$,

1096
$$g(x_{t+k+1} = 0, H_{t+k}) \in \mathbb{P}_1^{(k)} (x_{t+k+1} = 0 \mid x_1^t, x_{t+1}^{t+k} = z_1^k) + [-\varepsilon, \varepsilon]. \quad (45)$$

1097 where H_{t+k} is a function of x_1^t and z_1^k . As $t \rightarrow \infty$, under the randomness of the draw of $x_1^t \sim P$, by
 1098 the strong law of large numbers RHS converges almost surely to the conditional distribution under P ,
 1099 almost surely over the choice of P from the product-Dirichlet prior. Here we use the fact that for P
 1100 drawn from the product-Dirichlet prior, $P(z \mid z_1^k) > 0$ almost surely, and so the resulting distributions
 1101 are exponentially mixing and ergodic. Namely, for each $z_1^k \in \{0, 1\}^k$, almost surely over P drawn
 1102 from the product-Dirichlet prior,

1103
$$\Pr \left(\limsup_{t \rightarrow \infty} \left| \mathbb{P}_1^{(k)} (x_{t+k+1} = 0 \mid x_1^t, x_{t+1}^{t+k} = z_1^k) - P(0 \mid z_1^k) \right| > \gamma \right) = 0 \quad (46)$$

1104 for any $\gamma > 0$. Therefore, a necessary condition to satisfy Equation (45) is, for each $z_1^k \in \mathcal{X}^k$,

1105
$$g(x_{t+k+1} = 0, H_{t+k}) \in P(0 \mid z_1^k) + [-\varepsilon - \eta_P(t), \varepsilon + \eta_P(t)]. \quad (47)$$

1106 for some $\eta_P(t)$, which is a function of P satisfying $\limsup_{t \rightarrow \infty} \eta_P(t) = 0$ almost surely over P
 1107 drawn from the prior; note that H_{t+k} is implicitly a function of x_1^t and z_1^k . Divide the interval $[0, 1]$
 1108 into $1/\varepsilon$ disjoint intervals of size ε each. Recall that $P(\cdot \mid z_1^k) \sim \rho = \text{Dir}(1 \cdot \mathbf{1})$, which implies that
 1109 the random variable $P(0 \mid z_1^k)$ for each fixed z_1^k (randomness is over P) is distributed as,

1110
$$\Pr_{\rho} [P(0 \mid z_1^k) = \cdot \mid z_1^k] = \text{Unif}([0, 1]). \quad (48)$$

1111 Consider the buckets $B_{\varepsilon} = \{[0, \varepsilon], [\varepsilon, 2\varepsilon], \dots, [1 - \varepsilon, 1]\}$. Define the function $\text{round}(p) : [0, 1] \rightarrow$
 1112 $\{0, \dots, |B_{\varepsilon}| - 1\}$ to return the index of the bucket in B_{ε} such that p falls in that bucket.

1113 **Lemma 1.** *Consider any function $f(z_1^k) : \mathcal{X}^k \rightarrow \{0, \dots, |B_{\varepsilon}| - 1\}$ such that, pointwise,*

1114
$$|\text{round}(P(0 \mid z_1^k)) - f(z_1^k)| \leq r. \quad (49)$$

1115 *Then, when $P(0 \mid z_1^k) \stackrel{i.i.d.}{\sim} \text{Dir}(1 \cdot \mathbf{1})$,*

1116
$$H_{\text{Shannon}}(\{f(z_1^k) : z_1^k \in \{0, 1\}^k\}) \geq 2^k ((1 - 3\varepsilon) \log(1/\varepsilon) - \log(2r + 1)) \quad (50)$$

1117 *where the randomness is over the draw of P and H_{Shannon} is the discrete Shannon entropy.*

1134 *Proof.* Recall that $P(0|z_1^k) \stackrel{\text{i.i.d.}}{\sim} \text{Unif}([0, 1])$ across $z_1^k \in \mathcal{X}^k$. Then,

$$1136 \quad \Pr(\text{round}(P(0|z_1^k)) = j) = \Pr(P(0|z_1^k) \in [\varepsilon(j - 1/2), \varepsilon(j + 1/2)]) \quad (51)$$

$$1137 \quad = \begin{cases} \varepsilon & \text{if } 1 \leq j \leq |B_\varepsilon| - 2, \\ 3\varepsilon/2 & \text{if } j = 0 \text{ or } j = |B_\varepsilon| - 1. \end{cases} \quad (52)$$

1140 This implies that, by independence of the $P(0|z_1^k)$'s across $z_1^k \in \mathcal{X}^k$,

$$1142 \quad H_{\text{Shannon}}(\{P(0|z_1^k) : z_1^k \in \mathcal{X}^k\}) \geq |\mathcal{X}|^k(1 - 3\varepsilon) \log(1/\varepsilon). \quad (53)$$

1143 Let $e(z_1^k)$ be the random variable $P(0|z_1^k) - f(z_1^k)$. $P(0|z_1^k)$ is a measurable function of $f(z_1^k)$ and
1144 $e(z_1^k)$, and therefore,

$$1146 \quad H_{\text{Shannon}}(\{f(z_1^k) : z_1^k \in \mathcal{X}^k\} \cup \{e(z_1^k) : z_1^k \in \mathcal{X}^k\}) \geq H_{\text{Shannon}}(\{P(0|z_1^k) : z_1^k \in \mathcal{X}^k\}) \quad (54)$$

1147 Note that $e(z_1^k)$ is bounded in the rate $\{-r, \dots, r\}$ and can take at most $2r + 1$ values. Therefore,
1148 $H(\{e(z_1^k) : z_1^k \in \mathcal{X}^k\}) \leq |\mathcal{X}|^k \log(2r + 1)$. Since $H(A, B) \leq H(A) + H(B)$, we have that,

$$1150 \quad H_{\text{Shannon}}(\{f(z_1^k) : z_1^k \in \mathcal{X}^k\}) \geq H_{\text{Shannon}}(\{P(0|z_1^k) : z_1^k \in \mathcal{X}^k\}) - H(\{e(z_1^k) : z_1^k \in \mathcal{X}^k\}) \quad (55)$$

$$1153 \quad \geq |\mathcal{X}|^k ((1 - 3\varepsilon) \log(1/\varepsilon) - \log(2r + 1)). \quad (56)$$

□

1156 Recall that we are guaranteed that $g(x_{t+k+1} = 0, H_{t+k}) \in P(0|z_1^k) + [-\varepsilon - \eta_P(t), \varepsilon + \eta_P(t)]$.
1157 This implies that the recurrent model is able to recover $\text{round}(p)$ for $p = P(0|z_1^k)$ up to an error
1158 of $r = \lceil \eta(t)/\varepsilon \rceil$ for each $z_1^k \in \mathcal{X}^k$ by computing $\text{round}(\hat{p})$ where $\hat{p} = g(x_{t+k+1} = 0, H_{t+k})$.
1159 Informally, this just means that \hat{p} is likely to fall in a bucket close to p . In combination with Lemma 1,
1160 for $f(z_1^k) = g(x_{t+k+1} = 0, H_{t+k})$ we have that,

$$1161 \quad H_{\text{Shannon}}(\{g(x_{t+k+1} = 0, H_{t+k}) : z_1^k \in \{0, 1\}^k\}) \geq 2^k ((1 - 3\varepsilon) \log(1/\varepsilon) - \log(2\lceil \eta_P(t)/\varepsilon \rceil + 1)) \quad (57)$$

1164 Note however, that $g(x_{t+k+1} = 0, H_{t+k})$ is a function of z_1^k implicitly, through H_{t+k} (which is also
1165 a function of x_1^t). Since the dimensionality of H_{t+k} is d and the model is implemented to p bits of
1166 precision,

$$1167 \quad H_{\text{Shannon}}(\{g(x_{t+k+1} = 0, H_{t+k}) : z_1^k \in \{0, 1\}^k\}) \leq H_{\text{Shannon}}(H_{t+k}) \leq dp \quad (58)$$

1169 where all randomness here is induced by the random draw of the k^{th} -order Markov kernel P .
1170 Therefore, for the correctness guarantee Equation (45) to hold, we need,

$$1171 \quad dp \geq 2^k ((1 - 3\varepsilon) \log(1/\varepsilon) - \log(2\lceil \eta_P(t)/\varepsilon \rceil + 1)) \quad (59)$$

1173 in the limit $t \rightarrow \infty$, and noting that $\limsup_{t \rightarrow \infty} \eta_P(t) = 0$ almost surely over P drawn from the
1174 prior, it is necessary that,

$$1175 \quad dp \geq 2^k (1 - 3\varepsilon) \log(1/\varepsilon). \quad (60)$$

□

1178 Fig. 6 provides empirical evidence that the exponential dependency of the theorem on the order k is
1179 consistent.

1180 **Remark.** The proof above assumes that the k^{th} -order Markov chain is on a binary state space.
1181 However, the result can easily be extended to give the lower bound $d \cdot p \geq \Omega(|\mathcal{X}|^k)$ for larger state
1182 spaces, as well as similar scaling results for priors $\text{Dir}(\beta \cdot \mathbf{1})$ for any $\beta > 0$. Furthermore, we believe
1183 it should be possible to replace the L_∞ error guarantee in Equation (6) by the KL-divergence between
1184 the two distributions without significantly changing the conclusion ($d \cdot p = 2^{\Omega(k)}$).

1186 **Intuition.** The intuition behind this result is in the manner in which the recurrent architecture carries
1187 out computation: by proceeding sequentially and compressing the information from the sequence it
has seen thus far at some time t into a small hidden vector, the model does not know what the next

1188 k tokens will be: the knowledge of this is vital to be able to compute the add- β estimator at time
 1189 $t + k + 1$ with a small memory footprint. Indeed, when the identity of the next k tokens changes,
 1190 the output of the model at time $t + k + 1$ must look drastically different (as the add- β estimator
 1191 corresponds to approximately evaluating $\mathbb{P}(\cdot | i_1^k)$, which are unrelated distributions under different
 1192 choices of i_1^k). There are $\sim 2^{2^k}$ possible values the set $P = \{\mathbb{P}(\cdot | i_1^k) : i_1^k \in \{0, 1\}^k\}$ can take. But
 1193 when d and p are small, the output of the model just cannot take so many values: it can realize at
 1194 most 2^{dp} possible sets. In other words, in order to succeed, the recurrent architecture is essentially
 1195 forced to keep track of the number of occurrences of each $i_1^k \in \{0, 1\}^k$ in the sequence at each time
 1196 t , which costs an exponential dependence on k in the hidden dimension/precision.

1197

1213

1214 Figure 6: Relation between the Markov order k and the hidden dimension d of the 1-layer Mamba
 1215 model. The plot shows that $d = 2^k$ is sufficient for the model to learn the k -th order Markov task.
 1216 This corroborates the fact that Theorem 2 in the main paper has the correct order dependency.

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

E ADDITIONAL RESULTS

E.1 LINEAR ATTENTION

(a) Predicted probability

(b) Test loss

Figure 7: Comparison of predicted probability and test loss between a 1-layer Mamba and the other baselines, including linear attention. Mamba outperforms all baselines. Linear attention and softmax attention Transformers perform similarly.

E.2 MULTIPLE STATES

Fig. 8 shows that our results extend to larger number of states.

(a) Absolute test loss gap

(b) Relative test loss gap

Figure 8: Test loss gap from the optimal for 1-layer Mamba and first-order Markov data, for different number of states. (a) shows the absolute gap $L(\theta) - L^*$; (b) shows the relative gap $(L(\theta) - L^*)/L^*$. The loss gap is consistently small for all state sizes.

E.3 DEEPER NETWORKS

Fig. 10 show that our results are consistent with larger number of layers.

E.4 OVER-PARAMETRIZED SETTINGS

Fig. 9 shows that our observations hold also for larger convolution width and deeper networks.

Figure 9: Test loss gap from optimal across iterations in over-parametrized settings. (a) shows 1-layer Mamba with varying convolution width. (b) shows a Mamba with convolution width $w = 2$ and varying number of layers. The models correctly learn the optimal predictor in all cases.

Figure 10: Test loss gap from the optimal for Mamba and Transformers, for different number of layers and Markov orders. Mamba has a smaller loss gap than transformers across all orders. Furthermore, adding more layers to Mamba does not significantly improve performance. As expected, 1-layer Transformers cannot solve the Markov task, while 1-layer Mamba can.

E.5 HOLD-OUT EXPERIMENT

We also consider the following interesting experiment: we trained Mamba only on sequences from a subset of the Markov simplex, specifically the interval $[0, 0.5]$, and we tested it on sequences from its complement $[0.5, 1]$. Interestingly, our experiments show that the test loss still converges to the optimal. However, by inspecting the actual estimated probabilities on a fixed test sequence, we see that the absolute difference between the model's estimation and the optimal Laplacian smoothing is high for the first samples, and gradually decreases as the sequence progresses. This is justified by the fact that the Laplacian estimator is not only Bayes-optimal, but also minimax optimal (i.e., independently of the prior on the simplex) in the limit of long sequences (i.e., the gap from the optimal loss goes to 0 as $n \rightarrow \infty$). Table 2 shows the absolute difference $|\mathbb{P}_\theta(x_t = 1|x_1^{t-1}) - \mathbb{P}^*(x_t = 1|x_1^{t-1})|$ for several t , showing how this difference gradually goes to zero as t increases.

E.6 CONVOLUTION

Fig. 11 shows that adding convolution to transformers (similarly to Mamba) makes the model solve the task with just one layer. On the contrary, Fig. 12 shows that Mamba needs two layers to solve the

1350

Table 2: Results for the hold-out experiment.

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

Length t Abs. difference from optimal

Length t	Abs. difference from optimal
1	0.378 ± 0.050
50	0.098 ± 0.039
100	0.007 ± 0.003
300	0.001 ± 0.001

task if convolution is removed. Table 3 shows that a one-layer Mamba without convolution cannot learn the optimal estimator, no matter how wide the model is.

(a) Predicted probability

(b) Test loss

Figure 11: Predicted probability and test loss for Transformers with and without convolution. Adding convolution to the K, Q, V matrices of transformers makes the models succeed in learning the Markov task, similarly to 1-layer Mamba.

(a) Predicted probability

(b) Test loss

Figure 12: Predicted probability and test loss for the full 1-layer Mamba and a 2-layer Mamba without convolution. Similarly to transformers, Mamba needs two layers to solve the Markov task when convolution is removed.

E.7 SWITCHING MARKOV

Here we detail the switching Markov process more formally:

1. Initialize $t = 0$.

1404 Table 3: Experiments on one-layer Mamba without convolution, with varying width. The model does
 1405 not learn the optimal estimator successfully.
 1406

Hidden dimension d	Avg. test loss gap from optimal
10	0.113 ± 0.032
100	0.158 ± 0.055
1000	0.140 ± 0.072

1412

1413 2. Draw a binary Markov kernel P with each row sampled i.i.d. from $\text{Dir}(\beta \cdot \mathbf{1})$.
 1414 3. Let $x_t = S$ with probability p_{switch} , or sample $x_t \sim P_{x_{t-k+1}^t}$ with probability $1 - p_{\text{switch}}$.
 1415 4. If $x_t = S$, set $t = t + 1$ and go to step 2; if $x_t \neq S$, set $t = t + 1$ and go to step 3.

1416 Fig. 13 illustrates the behavior of Mamba on this process when $p_{\text{switch}} = 0.01$.
 1417

Figure 13: One-layer Mamba on switching Markov data. Mamba is able to learn the optimal predictor by forgetting past counts every time a switch token occurs. This is achieved by setting $a_t = 0$ at every switch, and $a_t = 1$ otherwise.

E.8 FURTHER ABLATION FOR NATURAL LANGUAGE

The fundamental role played by convolution in modeling natural language is demonstrated in Table 1. However, we find that other components, in particular gating factor a_t , play an essential role as well, when natural language is considered. In Table 4, we show the increase in test perplexity when convolution, gating factor a_t and non-linearities are individually removed from the full Mamba-2 architecture.

Table 4: Perplexity results on the WikiText-103 dataset.

Model	Params.	Perplexity	Percentage increase
Mamba-2 (full)	14.54 M	27.55	–
Mamba-2 (w/o conv)	14.53 M	30.68	11%
Mamba-2 (w/o gating factor)	14.54 M	32.16	17%
Mamba-2 (w/o non-linearities)	14.54 M	28.98	5%

1458
 1459
 1460
 1461
 1462
 1463
 1464
 1465
 1466
 1467
 1468
 1469
 1470
 1471
 1472
 1473
 1474
 1475
 1476
 1477
 1478
 1479

Table 5: Perplexity results on WikiText-103 and PG-19 datasets for Mamba with 12 layers.

Dataset	Model	Params.	Perplexity
WikiText-103	Mamba-2	110 M	21.38
WikiText-103	Mamba-2 w/o convolution	110 M	21.46
WikiText-103	Mamba-2 w/o gating	110 M	21.71
PG-19	Mamba-2	200 M	14.16
PG-19	Mamba-2 w/o convolution	200 M	14.28
PG-19	Mamba-2 w/o gating	200 M	14.66

1490
 1491
 1492
 1493
 1494
 1495
 1496
 1497
 1498
 1499
 1500
 1501
 1502
 1503
 1504
 1505
 1506
 1507
 1508
 1509
 1510
 1511

1512 F MODEL ARCHITECTURES AND HYPER-PARAMETERS
1513

1514 The following tables discuss details on the architectures and hyperparameters used in all the paper's
1515 experiments. Each experiment was run on a single Nvidia A100 GPU. The time taken by each
1516 experiment was between 10 to 60 minutes.

1517
1518 Table 6: Parameters in the Mamba architecture with their shape.
1519

1520 Parameter	1521 Matrix shape
1522 embedding	$2 \times d$
1523 mamba.A	1
1524 mamba.dt	1
1525 mamba.in_proj	$(2ed + 2N + 1) \times d$
1526 mamba.conv1d	$(ed + 2N) \times w$
1527 mamba.out_proj	$d \times (2ed + 2N + 1)$
1528 mlp.fc1	$4d \times d$
1529 mlp.fc2	$d \times 4d$
lm_head	$d \times 2$

1530
1531 Table 7: Settings and parameters for the Mamba model used in the experiments.
1532

1533 Dataset	k -th order binary Markov source
1534 Architecture	Based on the Mamba-2 architecture as implemented in Dao & Gu (2024)
1535 Batch size	Grid-searched in {16, 32, 64, 128, 256}
1536 Accumulation steps	1
1537 Optimizer	AdamW ($\beta_1 = 0.9, \beta_2 = 0.95$)
1538 Learning rate	0.001
1539 Scheduler	Cosine
1540 # Iterations	10000
1541 Weight decay	1×10^{-3}
1542 Dropout	0
1543 Sequence length	Grid-searched in {128, 256, 512}
1544 Embedding dimension	Grid-searched in {2, 4, 8, 16, 32}
1545 Mamba layers	1
1546 Heads	1
1547 Convolution window	Between 2 and 6
1548 Repetitions	5

1549
1550 Table 8: Parameters in the transformer architecture with their shape.
1551

1552 Parameter	1553 Matrix shape
transformer.wte	$2 \times d$
transformer.wpe	$N \times d$
transformer.h.ln_1 ($\times \ell$)	$d \times 1$
transformer.h.attn.c_attn ($\times \ell$)	$3d \times d$
transformer.h.attn.c_proj ($\times \ell$)	$d \times d$
transformer.h.ln_2 ($\times \ell$)	$d \times 1$
transformer.h.mlp.c_fc ($\times \ell$)	$4d \times d$
transformer.h.mlp.c_proj ($\times \ell$)	$d \times 4d$
transformer.ln_f	$d \times 1$

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

Table 9: Settings and parameters for the transformer model used in the experiments.

1586

1587	Dataset	k -th order binary Markov source
1588	Architecture	Based on the GPT-2 architecture as implemented in Pagliardini
1589	Batch size	Grid-searched in $\{16, 32, 64, 128, 256\}$
1590	Accumulation steps	1
1591	Optimizer	AdamW ($\beta_1 = 0.9, \beta_2 = 0.95$)
1592	Learning rate	0.001
1593	Scheduler	Cosine
1594	# Iterations	10000
1595	Weight decay	1×10^{-3}
1596	Dropout	0
1597	Sequence length	Grid-searched in $\{128, 256, 512, 1024\}$
1598	Embedding dimension	Grid-searched in $\{4, 8, 16, 32\}$
1599	Transformer layers	Between 1 and 2 depending on the experiment
1600	Attention heads	1
1601	Repetitions	5

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619