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Abstract

We study EgalMAB, an egalitarian assignment problem in the context of stochastic multi-
armed bandits. In EgalMAB, an agent is tasked with assigning a set of users to arms. At
each time step, the agent must assign exactly one arm to each user such that no two users
are assigned to the same arm. Subsequently, each user obtains a reward drawn from the
unknown reward distribution associated with its assigned arm. The agent’s objective is to
maximize the minimum expected cumulative reward among all users over a fixed horizon.
This problem has applications in areas such as fairness in job and resource allocations, among
others. We design and analyze a UCB-based policy EgalUCB and establish upper bounds on
the cumulative regret. In complement, we establish an almost-matching policy-independent
impossibility result.

1 Introduction

The multi-armed bandit (MAB) problem serves as a model for online decision-making under uncertainty,
finding applications in diverse domains (Shen et al., 2015; Durand et al., 2018; Ding et al., 2019; Mueller
et al., 2019; Forouzandeh et al., 2021). In the classical stochastic MAB problem, an agent is provided with
a set of K arms, each associated with an unknown distribution. At each round, the agent plays an arm
and receive a reward drawn from its distribution. The agent’s goal is to maximize the expected cumulative
reward obtained over a fixed number of time steps T .

In our work, we study the problem of egalitarian assignment in the context of stochastic MABs, which we
refer to as EgalMAB. In this scenario, the agent is provided with a set of U < K users. At each time step,
the agent must assign exactly one arm to each user such that no two users are assigned to the same arm.
Subsequently, each user obtain a reward drawn from the reward distribution associated with its assigned
arm. The agent’s objective is to maximize the minimum expected cumulative reward among all users.

EgalMAB finds applications in various domains, including ensuring fairness in job and resource allocations.
Consider the job assignment problem depicted in Figure 1. In this scenario, there are U users with recurring
jobs of equal load (e.g., hourly database updates) and K shared cloud computing resources with fluctuating
computational power (e.g., due to unrelated loads that are running on neighbouring cores of the same physical
node (Kousiouris et al., 2011)). The agent’s objective is to distribute these jobs fairly among the available
resources such that over T trials, the user who has to wait the longest across all their jobs (i.e., receives the
least cumulative reward) is not significantly worse off compared to other users.
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minu E[Su,T ]

U = 7 users

K = 8 arms
E[
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u
,T
]

Figure 1: An illustration with K = 8 arms and U = 7 users. After time step T , each user u ∈ [U ] has some
expected cumulative reward E[Su,T ]. The agent’s objective is to maximize minu∈[U ] E[Su,T ], which is the
minimum expected cumulative reward across all users.

Similarly, ride-hailing services present another scenario where fair assignment is desirable. In this scenario,
there are U passengers and K drivers who offer varying degrees of experience to passengers (e.g., due to
vehicle condition and driver behavior). The agent’s objective is to allocate users fairly to vehicles such that
over T trips, no passenger faces a significantly worse overall experience than others.

As illustrated in both examples, EgalMAB embodies the principle of egalitarianism, which is also known as
the Rawlsian maximin principle (Rawls, 1971), in its notion of fairness. Egalitarianism is a fundamental
notion of justice based on the difference principle, which seeks to maximize the welfare of those in society
who are the worst-off. Likewise, our agent’s objective is to maximize the cumulative reward of the user
receiving the lowest cumulative reward among all U users. Given our examples above, solving the EgalMAB
problem yields a policy that minimizes the overall waiting time of the user who has to wait the longest and
maximizes the experience of the passenger who has the most negative encounters. This is in contrast to the
classic MAB setting where only overall utility is considered. This prompts the fundamental question that
our work seeks to answer:

How can we design an agent’s assignment policy that optimizes overall utility for individual
users while also ensuring that no user within a group consistently encounters substantially
sub-optimal outcomes?

Our contributions are summarized as follows. We formally define the EgalMAB problem in Section 3 and
propose EgalUCB, a UCB-based solution to EgalMAB, in Section 4. In Section 5 and 6, we establish that
EgalUCB achieves an expected regret of at most

O

(√
T ln(T ) · (K − U)

U

)
.

We also provide a policy-independent lower bound that matches the upper bound up to a multiplicative factor
of
√

1/U and a term logarithmic in T . Proof sketches for these results are included in Section 6. Lastly,
empirical validations for these results using both synthetic and real-world data are presented in Section 7.

2 Related Works

MAB with Multiple Plays. The multiple-play multi-armed bandit (MP-MAB) problem (Anantharam
et al., 1987; Gai et al., 2012; Chen et al., 2016; Komiyama et al., 2015) expands upon the classical MAB
framework by allowing the agent to play U ≥ 2 distinct arms. The MP-MAB problem has been extended
in various ways, including combinatorial bandits (Cesa-Bianchi & Lugosi, 2012; Kveton et al., 2015a; Chen
et al., 2016), cascading bandits (Kveton et al., 2015b; Wen et al., 2017), and MP-MAB with shareable
arms (Wang et al., 2022). An adjacent problem to ours is identifying the top U arms while minimizing
regret, which can be framed as a matroid bandit problem (Kveton et al., 2014) with a uniform matroid of
rank U . Although similar to EgalMAB in that the agent has to select multiple arms, unlike EgalMAB, these
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Figure 2: A trace of EgalUCB with K = 5 arms and U = 3 users. When b = 2, the three arms with the
highest UCBa,b values are a ∈ {2, 4, 5}, which are then assigned in a round-robin fashion across time steps
t ∈ {4, 5, 6}. As b increases, the estimates for µa for all arms a improves. By b = T/3 for large T , the three
arms with the highest UCBa,b values are most likely a ∈ {1, 2, 3}, which are then assigned over time steps
t ∈ {T − 2, T − 1, T}.

formulations of the MP-MAB problem do not involve multiple users; that is, the reward is with respect to
the agent instead of users.

MAB with Multiple Users. The extension of multiple users into the classic MAB problem has been
extensively explored in the context of cognitive radio networks (Jouini et al., 2009; Liu & Zhao, 2010; Avner
& Mannor, 2014). Unlike EgalMAB where a centralized agent assigns the arms to the users, these works have
focused on scenarios where multiple decentralized users interact with a single MAB instance. As a result
of this decentralization, it is possible for multiple users to play the same arm simultaneously, resulting in a
collision that can negatively affect the received reward.

Fairness in MAB. The introduction of fairness considerations into the classical MAB problem has gar-
nered significant interest. Much attention has been directed towards addressing fairness concerns that
typically involve ensuring that each arm is played a minimum number of times, known as fairness in ex-
posure (Claure et al., 2020; Chen et al., 2020; Li et al., 2020; Wang et al., 2021), or with a probability
proportional to the arm’s merit, known as meritocratic fairness (Joseph et al., 2016; 2018). While EgalMAB
emphasizes fairness among users, the aforementioned works deal with fairness among arms. However, there
are alternative approaches that maintain a focus on fairness among users. One such approach involves maxi-
mizing the Nash social welfare (NSW) function. This function is defined as the product of rewards obtained
by all users, which intuitively encodes the notion of fairness as it increases only when most users achieve
high rewards. Hossain et al. (2021) investigated a scenario involving U users and K arms, in which each
arm’s reward varies for each user due to different perceived utilities. In each time step, only one arm is
played, and all users obtain rewards according to their perceived utilities. Their primary objective is to
maximize the NSW. Sawarni et al. (2023) examined an alternative fairness framework within the context
of linear bandits. In their scenario, a new user is introduced at each time step, and fairness is ensured by
considering the product of rewards across all time steps. Both of these works assume that only a single arm
is played at each time step, while the agent in EgalMAB simultaneously selects multiple arms. Additionally,
instead of aiming to maximize the NSW function, EgalMAB focuses on maximizing the cumulative reward of
the worst-off user.

3 EgalMAB Problem

In this section, we will formally define the components involved in an EgalMAB problem. We will start by
presenting a working definition for each component. When relevant, we will supplement these definitions
with the measure-theoretic details necessary for the proofs of lower bounds.
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Environment. Let K be the number of arms, U < K be the number of users, and T be the time
horizon. For each arm a ∈ [K], let pa denote the reward density. An instance of the EgalMAB problem is
represented by the tuple (ν, U, T ) where ν := (p1, . . . , pK). When the context is clear, we also refer to ν as
an EgalMAB instance. We assume that the expected reward µa := EX∼pa

[X] obtained for playing arm a is
finite. Moreover, for convenience, we assume that the arms are indexed in such a way that µ1 ≥ · · · ≥ µK .
However, the agent is unaware of this ordering.

More formally, for each arm a ∈ [K], let Pa be the probability law for the reward obtained after playing
arm a. For any Pa-measurable set B, we have Pa(B) =

∫
B

pa dλ, where λ is the Lebesgue measure and
pa = dPa/dλ is the Radon–Nikodym derivative for Pa.

Agent Policy. A solution to the EgalMAB problem is characterized by an agent policy π := (πt)t. During
each time step t ∈ [T ], the map πt considers the actions and rewards history (which we will define shortly, after
introducing relevant notations) and assigns each user u ∈ [U ] to an arm Au,t ∈ [K] such that no two users
are assigned the same arm. Subsequently, each user u receives a reward Xu,t drawn independently from the
density pAu,t

. Using these notations, we will denote the history that πt considers as (A1, X1, . . . , At−1, Xt−1)
where At := (Au,t)u and Xt := (Xu,t)u.

More formally, let P(S) denote the power set of a set S. For each time step t ∈ [T ], the stochastic map

πt : (([K] × R)U )t−1 × P([K]U ) → [0, 1]

is a probability kernel. We denote Pπν as the probability law for the interaction between the policy π and
the EgalMAB instance ν over T time steps. Thus, the density of Pπν is

pπν(A1, X1, . . . , AT , XT ) =
T∏

t=1
πt(At|A1, X1, . . . , At−1, Xt−1)

U∏
u=1

pAu,t(Xu,t).

Egalitarian Objective. To achieve egalitarian fairness, we want to design a policy π that maximizes the
expected cumulative reward of the least-rewarded user. Let

Su,t :=
t∑

s=1
Xu,s

be the cumulative reward for user u up to time t. Formally, our egalitarian objective is to maximize
minu∈[U ] E[Su,T ]. However, in line with most works in MAB, we will frame our problem as regret minimiza-
tion. We define the expected cumulative regret as

RT := Tµ∗

U
− min

u∈[U ]
E[Su,T ]

where µ∗ := µ1 + · · · + µU is the sum of the expected reward of the top U arms. The choice to compare with
Tµ∗/U is natural because the maximum expected cumulative reward obtained by the user with the least
reward is at most Tµ∗/U , which is obtained by pulling the best arms in a round robin. To see this, observe
that the sum of cumulative rewards for all U users is

∑
u E[Su,T ] ≤ Tµ∗. Suppose, to the contrary, that

minu E[Su,T ] > Tµ∗/U , then
∑

u E[Su,T ] > Tµ∗, which is a contradiction.

4 EgalUCB Policy

In this section, we describe our policy EgalUCB that achieves near-optimal regret for the EgalMAB problem.
The EgalUCB policy is based on the UCB1 policy (Auer et al., 2002) for solving classic MAB problems; however,
it differs from the UCB1 in several key aspects. We present the pseudocode for EgalUCB in Algorithm 1,
complemented by a visual guide in Figure 2. We also provide an alternate version of the pseudocode with
more implementation details in Appendix B.
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Algorithm 1: EgalUCB

1 let number of blocks Ba,0 = 0, cumulative reward Sa,0 = 0, and UCBa,0 = ∞ for each a ∈ [K]
2 for b = 1, 2, . . . , T/U do
3 let Ab ⊆U [K] be a set of U arms with highest UCBa,b−1
4 play arms Ab in a round robin fashion for the next U steps
5 update Ba,b and Sa,bU accordingly for each a ∈ Ab

6 update UCBa,b = Sa,bU

Ba,bU
+

√
6 ln(bU)
Ba,bU

for each a ∈ Ab

7 end

EgalUCB partitions the horizon into B := T/U blocks, each with U steps. We assume, without loss of
generality, that T is divisible by U . In cases where this is not true, the difference in expected regret between
the best and worst user is at most (µ1 + · · · + µ⌈U/2⌉) − (µK−⌊U/2⌋ + · · · + µU ), which is independent of T .

Let A ⊆U S denote that set A is a subset of set S with size U . EgalUCB begins by initializing some statistics
(Line 1). At the start of each block b ∈ [B], it selects any set Ab ⊆U [K] consisting of the highest-ranked U
distinct arms as determined by their upper confidence bounds UCBa,b (Line 3). Over a block with U steps,
these arms are then assigned to the U users in a round-robin fashion (Line 4). After observing the rewards,
EgalUCB updates its statistics (Lines 5–6).

Since each user is assigned to every arm in Ab exactly once, we have E[Su,T ] = E[Su′,T ] for all u, u′ ∈ [U ].
From a technical standpoint, this simplifies the regret by eliminating the min operator in the regret RT :

RT = Tµ∗

U
− min

u∈[U ]
E[Su,T ] = Tµ∗

U
− E[Su,T ], ∀u ∈ [U ].

5 Main Results

In this section, we present our main theoretical results. We first state some necessary definitions and
notations. Then, we present the regret upper bounds for the EgalUCB policy. Following that, we discuss the
policy-independent regret lower bound for EgalMAB.

Let Xa,t be the reward obtained from playing arm a for the t-th time across all users. Note that if user u
plays arm a at time step t, then the reward obtained is Xu,t = Xa,Ta,t

where Ta,t is the number of times
arm a is played up till time step t.

Let Ba,b be the number of blocks that arm a is played up till block b. Note that Ba,b = Ta,bU . Furthermore,
let

µ̂a,b := 1
bU

bU∑
t=1

Xa,t

be the empirical estimate of µa after playing arm a for b blocks. As the policy observe more rewards, it gains
confidence about its estimate of µa. This level of confidence is captured by

ϵb,b′ :=
√

6 ln(bU)
b′U

,

which is the confidence radius of playing an arm for b′ blocks after block b.

Denote A∗ := [U ] ⊆U [K] as the set of best U arms. For any set of arms A ⊆ [K] of not necessarily size U ,
let A− := A\A∗ be the set A with the best U arms removed. Furthermore, let the expected reward of A be

µA :=
∑
a∈A

µa.
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The sub-optimality gap of A is defined as ∆A := µA∗ −µA. In the extreme cases, the maximum sub-optimality
gap

∆max := (µ1 + · · · + µU ) − (µK−U+1 + · · · + µK)

is obtained by selecting the worst set of U arms, and the minimum non-zero sub-optimality gap ∆min :=
µU − µU+1 is obtained by replacing arm U in A∗ with arm U + 1, assuming that µU ̸= µU+1.

Let ν = (p1, . . . , pK) be an instance of EgalMAB. We say that ν is a 1-subgaussian EgalMAB if for all arms
a ∈ [K], X ∼ pa is a 1-subgaussian random variable. Theorems 1 and 2 respectively provide problem-
dependent and problem-independent upper bounds for the expected cumulative regret of running EgalUCB
on a 1-subgaussian EgalMAB.
Theorem 1 (Problem-Dependent Upper Bound). Let (ν, T, U) a 1-subgaussian EgalMAB. After running
EgalUCB for T time steps, we have

RT ≤ 2136(K − U) ln(T )
∆min

+ 4K∆max

U
.

Theorem 2 (Problem-Independent Upper Bound). Let (ν, T, U) be a 1-subgaussian EgalMAB with µa ∈ [0, 1]
for all arms a ∈ [K]. After running EgalUCB for T time steps, we have

RT ≤
√

8544(K − U) T ln(T )
U

+ 4K min{U, K − U}
U

.

When the number of arms K and users U are fixed, the problem-independent upper bound increases with
the number of time steps T at a rate of O(

√
T ln(T )). Notably, when U = 1, the EgalMAB instance and the

EgalUCB policy reduce to the classic MAB instance and the UCB1 policy (Auer et al., 2002). Consequently,
both the problem-dependent and problem-independent upper bounds can be reduced to the bound for classic
UCB1 with minimal effort1.

Next, we examine how the number of users U affects performance. Consider some fixed time horizon T and
number of arms K. Since T ≫ K, the first terms in both the problem-independent and problem-dependent
upper bounds dominates the regrets. Furthermore, when K = U , every user would have played every arm
exactly once after each block, yielding an expected cumulative reward of bµ∗ after block b. By definition,
this implies that the expected cumulative regret RT = 0. This behavior is reflected in both upper bounds,
since K − U = 0 and ∆max = 0 when K = U .

Additionally, the problem-independent upper bound decreases as U approaches K, and this reduction scales
with O(1/

√
U). There are two reasons for this. Firstly, if we fix some EgalMAB instance ν and vary U ,

then increasing U results in decreasing Tµ∗/U . Secondly, since EgalUCB assigns the arms in a round-robin
fashion during each block, as long as the UCB values of the top arms are consistently among the highest
regardless of their order, EgalUCB will also consistently select a good set of arms. This implies that as U
increases, this problem becomes more statistically robust to the variability inherent in the estimates of the
arms. Loosely speaking, the more users we have, the easier it is to match the performance of a policy always
plays round-robin the set of arms A∗.

We further consider the scope for algorithmic improvement by deriving a policy-independent lower bound.
Let ν = (p1, . . . , pK) be an EgalMAB instance and π be any policy. We denote Rπν as the expected cumulative
regret of running π on ν for T time steps. Theorem 3 provides a policy-independent lower bound for the
regret Rπν . This bound applies to the class V of all Gaussian EgalMAB instances ν = (p1, . . . , pK) where, for
all a ∈ [K], the reward density pa = N (µa, 1) and µa ∈ [0, 1] .
Theorem 3 (Policy-Independent Lower Bound). Suppose K ≥ 2U . For any policy π, there exist an EgalMAB
instance ν ∈ V with regret

Rπν ≥
√

(K − U) T

76U
.

1Refer to the notes at the end of Lemma 5 for the details.
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The lower bound suggests that EgalUCB is tight in T up to logarithmic factors. This factor is expected
when using a UCB-based policy due to the choice of confidence radius ϵb,b′ . Drawing parallels to the MOSS
policy (Audibert & Bubeck, 2009) in classic K-armed MAB problems, we also conjecture that there exists a
MOSS-based policy that can shave away the

√
log T term in the regret bound.

Furthermore, there is a multiplicative gap of 1/
√

U between the lower bound and the problem-independent
upper bound. Our experimental results in Section 7 suggest that our upper bound analysis is not tight, as
we empirically observe the O(1/U) behavior when running EgalUCB.

6 Regret Analysis

In this section, we provide a proof sketch for the main results in Section 5. Our analysis relies on techniques
developed in the combinatorial semi-bandits literature (Kveton et al., 2015a). Detailed proofs for the upper
bounds and lower bound can be found in Appendices C and D respectively.

6.1 Problem-Dependent Upper Bound

The regret upper bound in Theorem 1 consists of a sum of two terms: the first term is dependent on T
and the second is independent of T . The first (resp. second) term arises from the regret accumulated over
blocks where some good event Eb occurs (resp. did not occur). This good event Eb is the event that µa and
its estimate µ̂a are at a distance of at most ϵb−1,Ba,b−1 at the beginning of block b for all a ∈ [K]. Formally,
we define

Eb :=
K⋂

a=1

{∣∣µ̂a,Ba,b−1 − µa

∣∣ ≤ ϵb−1,Ba,b−1

}
.

Note that we will often abuse the set notation when defining events. In particular, when we have a proposition
P , we use E = {P} to signify that E is the set of all outcomes in the underlying probability space where P
holds. Lemma 1 shows that Eb occurs with high probability.
Lemma 1. Let (ν, T, U) be a 1-subgaussian EgalMAB. Then, for all blocks b ∈ [B],

P(Ec
b ) ≤ 2K

b2U3 .

To facilitate analysis, we then consider another good event Fb for which the set of arms Ab ⊆U [K] selected
during block b is sub-optimal but “not too bad”. This is defined as

Fb :=
{

0 < ∆Ab
≤ 2

∑
a∈A−

b

ϵB,Ba,b−1

}
.

Lemma 2 shows that if the set of arms Ab played during block b is sub-optimal and Eb occurs, then Fb must
follow.
Lemma 2. Let b ∈ [B]. If the set of arms Ab played during block b is sub-optimal and Eb occurs, then Fb

also occurs.

We proceed by partitioning the regret into two terms: one conditioned on the high-probability event Fb using
Lemma 2 and another conditioned on the low-probability event Ec

b using Lemma 1. This result is formally
stated in Lemma 3.
Lemma 3. Let (ν, T, U) be a 1-subgaussian EgalMAB. Then, after T time steps, for all users u ∈ [U ], we
have

Ru,T ≤
B∑

b=1
E[∆Ab

I{Fb}] + π2K∆max

3U3 .
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Let us now focus on bounding the contributions made by the high-probability term (i.e., the first term
above). We first partition Fb into countably many mutually exclusive events {Gb,i}i so that we can write

∆Ab
I{Fb} =

∞∑
i=1

∆Ab
I{Gb,i}, almost surely.

To define the events {Gb,i}i, let α = 0.13, β = 0.22, and

γ = 24
(

1 − β√
α − β

)2

be constants that are carefully chosen, and define

mb,i := γαiU ln(BU)
∆2

Ab

for all i ∈ N. Let
Lb,i := {a ∈ A−

b : Ba,b−1 ≤ mb,i}
to be the set of arms in A−

b that are played for fewer than mb,i blocks at the beginning of block b. For
convenience, let Lb,0 = A−

b . For each b ∈ [B] and i ∈ N, the event Gb,i is then defined as

Gb,i :=
i−1⋂
j=1

{
|Lb,j | < βjU

}
∩
{

|Lb,i| ≥ βiU
}

∩
{

∆Ab
> 0
}

.

It is clear that at most one of {Gb,i}i can occur. However, to show that it is a partition for Fb, we also need
to show that at least one of {Gb,i}i must happen. This is shown in Lemma 4.
Lemma 4. Assume that b > K/U . On the event Fb, exactly one of the events in {Gb,i}i occurs.

Using the newly-defined events {Gb,i}b,i, we bound the contributions of the the high-probability term in
Lemma 5. The intuition behind the events {Gb,i}b,i, which is a common construction used in the proof of
combinatorial semi-bandits Kveton et al. (2015a), is that it serves to upper bound the high probability term
in the regret by the number of times the set of arms Ab is played. This allows us to introduce the reciprocal
of the gap term for individual arms ∆a,Na which then serves to derive a meaningful problem-dependent
bound on the regret.
Lemma 5. Let ν = (p1, . . . , pK). Suppose that pa is the density for a 1-subgaussian distribution for all
a ∈ [K]. Then, after T time steps,

B∑
b=1

E[∆Ab
I{Fb}] =

∞∑
i=1

B∑
b=b0

∆Ab
I{Gb,i} +

b0−1∑
b=1

∆Ab
I{Fb}

≤ 2136 ln(BU)
∑
a∈Λ

1
∆a,Na

+ K∆max

U

≤ 2136(K − U) ln(BU)
∆min

+ K∆max

U
.

for all users u ∈ [U ].

The proof of Theorem 1 simply involves substituting the result of 5 into Lemma 3.

Proof of Theorem 1. We can bound the regret by

Ru,T ≤
B∑

b=1
E[∆Ab

I{Fb}] + π2K∆max

3U3 ≤ 2136(K − U) ln(BU)
∆min

+ K∆max

U
+ π2K∆max

3U3

≤ 2136(K − U) ln(T )
∆min

+ 4K∆max

U

where the first inequality holds due to Lemma 3 and the second inequality holds due to Lemma 5.
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6.2 Problem-Independent Upper Bound

Much like the expression in Theorem 1, the first term of the regret bound in Theorem 2 arises from the
cumulative regret accumulated in blocks where the high-probability event Eb occurs. Conversely, the second
term arises from the regret accumulated in the initial blocks and the blocks where Eb did not occur. The
proof of Theorem 2 can be found in Appendix C.

6.3 Policy-Independent Lower Bound

Our proof for Theorem 3 consists of constructing two EgalMAB instances ν and ν′ that are “close” enough
that it is difficult for any policy to distinguish between them statistically, yet “far” enough that a sequence
of actions that is good for one instance is bad for the other. Specifically, let

∆ =
√

K − U

8TU2

and set ν = (p1, . . . , pK) ∈ V to be an EgalMAB instance with

µa =
{

∆, if a ∈ [U ]
0, otherwise.

(1)

Assuming that K ≥ 2U , let
A′ = arg min

A⊆U [K]\[U ]

∑
a∈A

Eπν [Ta,T ]

be the set of U arms that are sub-optimal under ν have been played the fewest number of times under the
distribution Pπν . Set ν′ ∈ V to be an EgalMAB instance with

µ′
a =

{
2∆, if a ∈ A′

µa, otherwise.
(2)

Let Γ be the set of size-U subsets of [K] that contains at least U/2 arms from [U ], and let

H :=
{∑

A∈Γ

TA,T ≤ T

2

}

be the event that, for at least T/2 time steps, the policy π selects a set in which at least half of it consists
of arms from [U ]. Lemma 6 uses the Bretagnolle–Huber inequality with H to reduce the lower bound
computation to evaluating the KL-divergence between Pπν and Pπν′ .
Lemma 6. Let ν and ν′ be the EgalMAB instances defined by equation 1 and equation 2. Under the assump-
tions of Theorem 3, we have

Rπν + Rπν′ >
∆T

4
(
Pπν(H) + Pπν′(Hc)

)
≥ ∆T

8 exp
(
−DKL(Pπν∥Pπν′)

)
.

Part of the novelty in our analysis involves reducing the computation of this KL-divergence to a combinatorial
problem. Lemma 7 decompose the KL-divergence from Lemma 6 into an expression that involves counting
the number of times each arm a ∈ A′ is played, and Lemma 8 shows, using a counting argument, that the
number of times an arm a ∈ A′ is played is at most TU2/(K − U).
Lemma 7. Let ν and ν′ be the EgalMAB instances defined by equation 1 and equation 2. Under the assump-
tions of Theorem 3, we have

DKL(Pπν∥Pπν′) ≤ 4∆2
∑

a′∈A′

Eπν [Ta′,T ].
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Figure 3: Expected regret incurred by EgalUCB over T = 150,000 time steps on simulated data with K = 10.
Each line corresponds to a different U . The lighter region around each line represents the range between the
minimum and maximum expected regrets observed over a total of 30 independent runs.

Lemma 8. Let ν and ν′ be the EgalMAB instances defined in equation 1 and equation 2. Under the assump-
tions of Theorem 3, we have ∑

a∈A′

Ta,T ≤ TU2

K − U

almost surely.

The proof of Theorem 3 simply involves substituting the results of Lemma 7 and Lemma 8 into Lemma 6.

Proof of Theorem 3. We have

RT,π,ν + RT,π,ν′ ≥ ∆T

8 exp
(

−4∆2
∑

a′∈A′

Eπν [Ta′,T ]
)

≥ ∆T

8 exp
(

−4∆2TU2

K − U

)

= ∆T

8 exp(−1/2) >

√
T (K − U)

38U
.

Since 2 max{RT,π,ν , RT,π,ν′} ≥ RT,π,ν + RT,π,ν′ , dividing by 2 concludes the proof.

7 Experiments

In this section, we present the results of our numerical experiments to validate the analysis of EgalUCB. These
experiments include both a synthetic environment (Section 7.1) and real-world datasets (Sections 7.2 and 7.3).
The code for these experiments can be found in the supplementary materials.

7.1 Synthetic Experiments

To empirically verify the problem-independent upper bound in Theorem 2, we conducted experiments on
three synthetic datasets: Gaussian bandits with variance σ2 = 1.0, Gaussian bandits with variance σ2 = 0.1
and Bernoulli bandits.

In each environment, we fixed K = 10 and varied U from 1 to 5. For each choice of U , we ran the experiment
30 times. In each run, we randomly generated the ground truth expected reward µa for each arm a using
a uniform distribution with support [0.01, 0.99]. Figure 3 shows the expected regret incurred by EgalUCB
over T = 150,000 time steps. As predicted by Theorem 2, the expected regret RT is sub-linear in T and
diminishes with U .
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Figure 5: Expected regret incurred by EgalUCB over
T = 126,000 time steps on Bernoulli bandits with
K = 20 arms.
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T = 150,000 time steps on the Google Cluster Usage
Trace dataset with K = 100. Each line is associated
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Figure 7: Expected regret incurred by EgalUCB over
T = 150,000 time steps on the MovieLens 25M
dataset with K = 500. Each line is associated with
a different number of users U .

We conducted another experiment to verify the rate at which RT diminishes with U when K ≫ U . We fixed
K = 210 and T = 218 while varying U ∈ {21, . . . , 28}. We ran EgalUCB on instances of Bernoulli EgalMAB
where µa = 0.8 if a ∈ [U ] and 0.5 otherwise. This choice of µa ensures that µ∗ is kept constant for all
choices of U . Figure 4 shows the log-log plot of RT against U . We observe that RT diminishes with U at
a rate of O(U−c) for some constant c ≈ 1.0. This corroborates with our policy-independent lower bound in
Theorem 3 and suggests that our problem-independent upper bound in Theorem 2 may be loose.

To assess the rate at which RT diminishes with U when U → K, we ran a similar experiment with T =
126,000, K = 20, and U ∈ {2, 4, . . . , 18, 20} on Bernoulli EgalMAB instances. For each U , we ran the
experiment 30 times. Figure 5 shows the plot of RT against U . We observe that as U approaches K, the
regret decreases to 0, and specifically when U = K, the regret is exactly 0. This observation aligns with the
problem-independent upper bound in Theorem 2.

7.2 Google Cluster Usage Trace Dataset

The Google Cluster Usage Traces dataset comprises 2.4 TiB of compressed traces that record the workloads
executed on Google compute cells (Wilkes, 2020). These traces are organized into tables that contain
information about the machines and the instances running on them.

In our experiment, we focus on the InstanceUsage table from the clusterdata_2019 trace. This table
contains traces of both processor and memory usage during instance execution. To adapt to the EgalMAB
setting, we designate each arm a as a machine, uniquely identifiable using the machine_id field in the
table. We implicitly construct its reward distribution Pa by drawing an entry uniformly from the trace that
corresponds to the machine and return the negative of the cycles_per_instruction field for its reward.

11
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Given the substantial size of the dataset, we will limit our analysis to the initial 4 million entries from the
table. We pick K = 100 machines that contain the most amount of trace entries. Then, we formulate
scenarios involving U ∈ {5, 10, 15, 20, 25} unseen users. At each time step t ∈ [T ] where T = 150,000, we
employ the EgalUCB policy to assign machines to these users.

Figure 6 shows the expected regret RT over time. Since the distribution Pa has bounded support, it is a
subgaussian distribution. This empirical finding supports the O(

√
T ln(T )) growth rate that Theorem 2

predicts.

7.3 MovieLens 25M Dataset

The MovieLens 25M dataset is widely used in recommender systems (Kużelewska, 2014; Forouzandeh et al.,
2021) and collaborative filtering (He et al., 2017; Álvaro González et al., 2022) research. This dataset
encompasses a substantial collection of 25,000,000 user ratings contributed by 162,000 users for a repository
of 62,000 movies.

To adapt to the EgalMAB setting, we randomly select K = 500 movies and treat them as arms. For each movie
a ∈ [K], we implicitly construct its reward distribution Pa using the user ratings provided by existing users in
the dataset. This empirical distribution is categorical and has support residing within {0.5, 1.0, . . . , 4.5, 5.0}.
Then, we formulate a scenario involving U ∈ {10, 20, 30, 40, 50} unseen users. At each time step t ∈ [T ]
where T = 150, 000, we employ the EgalUCB policy to assign movies to these users.

Figure 7 shows the expected regret RT over time. Similar to the Google Cluster Usage Trace dataset, the
distribution Pa is subgaussian for all machines a. As such, this empirical finding aligns with the O(

√
T ln(T ))

growth rate that Theorem 2 predicts.

8 Discussion

In this work, we introduced EgalMAB, an extension to the MAB framework with egalitarian considerations.
The EgalUCB policy was proposed and shown to achieve an expected regret of O

(√
T ln(T ) · (K − U) · U−1

)
.

We also derived a lower bound that matches the upper bound up to a multiplicative gap of 1/
√

U and a
term logarithmic in T . Our experiments on simulated and real-world data validated the theoretical analysis.
Our empirical results lead us to conjecture that EgalUCB is indeed tight with respect to U . This gap could
potentially be reconciled with a more refined analysis of the upper bound in future work. Other future works
include:

Adversarial semi-bandits. It is natural to consider the adversarial variant of our setup. After choosing
a randomized assignment at each time step, an adaptive online adversary chooses the reward for each arm.
Since that the set of all randomized assignments B (a.k.a. the Birkhoff polytope) is a convex set and the
expected reward given a randomized assignment is a convex function, we conjecture that a modification
of Component Hedge (Koolen et al., 2010) and PermELearn (Helmbold & Warmuth, 2009) can achieve an
asymptotically near-optimal solution under the egalitarian consideration.

Thompson Sampling. Another possible direction is to develop a Thompson sampling approach for the
EgalMAB problem, potentially by adapting Combinatorial Thompson Sampling (Wang & Chen, 2018).

Arms with capacity. Suppose that at each time step, we can assign at most C users to each arm.
When multiple users are assigned to the same arm at a given time step, we assume that they receive the
same reward. This scenario particularizes to our setting when C = 1. Since the optimal assignment is to
round-robin the top U/C arms, we can redefine the regret with µ∗ = µ1 + · · · + µU/C . We can show that a
modified version of EgalUCB, in which we split the horizon into B = TC/U blocks and play the U/C arms
with the highest UCB value, achieves a regret of R(T ) ≤ 2136(K − U/C) ln(T )∆−1

min + KCU−1∆max where
∆min and ∆max are redefined by replacing U by U/C. We conjecture that this bound may be improved by
dividing the horizon into C phases in which we eliminate all except K/c arms in phase c ∈ [C] and play the
U/c arms with the highest UCB values in a round-robin fashion. If one can prove that the top U/c arms
survive the elimination after each phase with high probability, it is possible to achieve a factor of C−1 in the
first term in the upper bound on R(T ).
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