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ABSTRACT

To visualize and analyze high-dimensional biological data, scientists often turn
to manifold learning and dimensionality reduction techniques such as tSNE and
UMAP. However, these methods (1) are non-projective, which means that new
data cannot be projected on the manifold without refitting, and (2) lack the ex-
plainability to help practitioners understand which features drive manifold loca-
tions and neighborhoods. In practice, scientists often must turn to marginal distri-
butions along a manifold or expert annotations to explain reduced dimension data.
Here, we present Local Interpretable Manifold Explanations for Dimension Eval-
uations (LIMEADE), a surrogate model integrated with a dimensionality reduc-
tion method, similar to the LIME surrogate used in classification and regression
models. We define LIMEADE as a group lasso-regularized multi-task regression
problem that identifies sparse linear projections of the data aligning with local
neighborhoods of the manifold space. When applied to single-cell proteomics
data, LIMEADE effectively extracts biologically meaningful features, providing
a more interpretable approach to feature selection and dimensionality reduction.

1 INTRODUCTION

Dimension reduction (DR), also known as manifold learning, has become commonplace for visual-
izing complex data. These unsupervised learning methods take a high dimensional dataset of size
n × p, and via a function f , map the data to a new set of components: f : Rn×p → Rn×r, where
r ≪ p, with r typically set to 2 or 3 for ease of visualization. Each specific DR method defines a
different function f , designed to capture meaningful information present in the data. Local methods
seek to preserve the relationships between similar observations in the high-dimensional space when
mapping to a new lower-dimensional space, whereas global methods focus on preserving structural
patterns across the entire dataset (Van Der Maaten et al., 2009).

With increasingly complex biological datasets being collected, nonlinear DR methods such as t-
SNE (Van der Maaten & Hinton, 2008), UMAP (McInnes et al., 2018), and PHATE (Moon et al.,
2019), have gained popularity. These methods have proven effective in capturing lower-dimension
structures across diverse fields, including cancer research (Zikry et al., 2024; Abdelmoula et al.,
2016), neuroscience (Lee et al., 2021; He et al., 2021), and chemistry (Pouyet et al., 2018). However,
unlike principal component analysis (PCA), these methods are nonprojective, meaning the function
f is unknown; to project new data onto an existing manifold, whether it be from a replicate or
additional treatment condition, the entire model needs to be refit at computational cost.

Furthermore, these methods are not inherently interpretable. Here, we define interpretable machine
learning (IML) as in Allen et al. (2023), where the goal is to ”generate human-understandable in-
sights into data, the learned model, or the model output.” Models such as tSNE, UMAP, and PHATE
are black boxes. Without post-hoc metrics, users cannot precisely determine how and why a man-
ifold is being constructed from their original data, a concern that is especially critical when these
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methods inform conclusions in biomedicine (Patra et al., 2021). Past work shows how these methods
are extremely sensitive to hyperparameter choices (Xia et al., 2024), random initializations (Kobak
& Linderman, 2021) and most significantly, feature selection (Ranek et al., 2024).

A surrogate model is designed to mimic the predictions of a complex black-box model to enable in-
sights into the underlying decision-making process Nóbrega & Marinho (2019). Local interpretable
model-agnostic explanations (LIME) apply this principle to black box supervised classification mod-
els, converting the decision boundary into an optimization problem with regularization to find the
best local linear approximation (Ribeiro et al., 2016). Further work applies this concept in DR (Bar-
dos et al., 2022; Björklund et al., 2023; Bibal et al., 2020; Zeng et al., 2023; Collaris et al., 2023),
where the decision boundary is determined by the placement of individual observations, instead of
being drawn across classes. However, this past work does not adequately address how to constrain
the optimization problem across the different dimensions of r; instead of leveraging information
across components, many methods apply regularization by treating the dimensions independently or
averaging their effects, rather than fully exploiting all available information.

Contribution Here, we present our method for Local Interpretable Manifold Explanations for
Dimension Evaluations (LIMEADE). Unlike prior approaches, we leverage the full dimensionality
of the manifold representation to train a surrogate model for interpretability. Instead of averaging
across the dimensions of the reduced space Y , we formulate a multitask regression problem to learn
an interpretable linear projection. To select covariates across the dimensions of r, we apply the
Group Lasso, a multivariate extension of Lasso designed to select groups of features. We apply
LIMEADE to a single-cell proteomics dataset modeling the cell cycle, where significant biological
expert annotation and post-hoc feature importance was required to identify a small subset of features
most relevant to the cell cycle. We demonstrate how LIMEADE can select the most relevant features
and effectively recapitulate the underlying the cell cycle manifold.

2 METHOD

Notation and Model For LIMEADE, we take the input pair (X,Y ), where Xn×p is our nor-
malized original data, along with a reduced feature embedding after dimension reduction Yn×r,
where r ≪ p. The goal is to learn the f such that Y = f(X). With projective methods such as
PCA, this function is defined, and for a new data point xn+1, we can easily project into Rr via
ŷn+1 = f(xn+1). However, with nonprojective DR methods, f is unknown. Hence, we seek to
learn a linear projection as a surrogate model of this relationship. Additionally, we apply the Group
Lasso (Yuan & Lin, 2006) for regularization and feature sparsity across the dimensions of r. Unlike
standard Lasso, which applies an ℓ1 penalty to individual coefficients and promotes element-wise
sparsity, the Group Lasso extends this framework by penalizing groups of coefficients together,
which allows entire features to be either fully included or excluded across all dimensions of r.
Specifically, we seek to learn Vp×r, such that:

V̂ = argmin
V

1

2
||Y −XV ||22 + λ

p∑
j=1

||Vj ||2

 (1)

where j = 1, . . . , J are individual features, grouping across dimensions of the reduced embedding.
Equation 1 is the global formulation of LIMEADE; creating a single linear projection for the entire
data. If there exist partitions such that (X,Y ) = [(XM1

, YM1
), . . . , (XMk

, YMk
)], then for each of

the k partitions, we can form separate hyperplanes,

V̂Mk
= argmin

V

1

2
||YMk

−XMk
Vk||22 + λ

p∑
j=1

||Vj ||2

 (2)

Further formulations may include single-point interpretations, where a local neighborhood is defined
using a radial basis function to weight nearby points, described in Section A.2, and previously seen
in Ribeiro et al. (2016); Collaris et al. (2023); Bardos et al. (2022). We implement LIMEADE in R
with the package grpreg using EBIC tuning (Chen & Chen, 2008) with γ = 0.5.
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Real Data Application We evaluate the single-cell proteomics dataset described in Stallaert et al.
(2022) as a motivating example for LIMEADE. This is an iterative indirect immunofluorescence
imaging (4i) dataset collected in 8,850 asynchronous retinal pigment epithelium cells, where each of
the 187 experimental markers collected is hypothesized to be an indicator of cell cycle progression.
A primary goal of this study was to identify a small subset of these markers as key factors for
cells progressing or exiting the cell cycle. Within the 187 markers, many are highly correlated,
including measurements of the same protein in different parts of the cell. To this end, the authors first
developed stepwise random forest regression models to predict cell cycle phase and ages, and took
the top 40 features, measured via permutation importance, to feed into their DR method of choice—a
2-dimensional PHATE (Moon et al., 2019). Here, we seek to determine whether LIMEADE can
recover a similar or more interpretable set of features to recapitulate the cell cycle. If so, it would
provide a more direct and systematic approach to interpreting high-dimensional feature selection
with regards to understanding a lower dimensional representation.

3 RESULTS

Simulation Study To test the ability of LIMEADE to globally recover significant features, we
first generate data from a Gaussian mixture model with low-rank cluster centroids, following Zheng
et al. (2024). Results can be seen in Table 3, where we assess the true positive rate (TPR) and false
positive rate (FPR) of the nonzero features of V̂ . As we increase SNR, global LIMEADE does well
in recovering true features and controlling false discovery at n = 1000 with both p = 100 and
p = 1000. Next, we simulate differentially expressed blocks of features across clusters to test the
feature recovery of partitioned LIMEADE, with results in Table 3. Again, we see extremely strong
TPR and FPR results, with high detection of true features even at low SNR in the p = 100 setting,
and extremely low false discovery rates. Full simulation details can be found in Appendix Section
A.1. Global simulations across SNR of Y overlaid with cluster labels are visible in Figure 2, and
representative plots of the simulated partitioned data are provided in Figure 3.

Table 1: Global Simulation
SNR p=100 p=1000

TPR FPR TPR FPR
0 0.302 0.306 0.004 0.005
1 0.442 0.264 0.008 0.005
2 0.662 0.066 0.135 0.004
3 0.724 0.016 0.389 0.001
4 0.782 0.031 0.488 0.000
5 0.864 0.063 0.570 0.000

Table 2: Partitioned Simulation
SNR p=100 p=1000

TPR FPR TPR FPR
0 0.212 0.210 0.001 0.002
0.25 0.232 0.203 0.003 0.002
0.5 0.576 0.169 0.005 0.002
0.75 0.846 0.083 0.015 0.002
1 0.909 0.042 0.169 0.000
1.25 0.968 0.000 0.636 0.000
1.5 0.997 0.000 0.849 0.000

Cell Cycle Manifold Projections We first seek to assess how well LIMEADE allows us to project
new data onto the original manifold. We split our 4i dataset X ∈ R8850×187 and PHATE embedding
Y ∈ R8850×2 into training and testing via an 80/20 split. We train first train a global LIMEADE
on Xtrain and Ytrain to get V̂ via Equation 1. Then we project held-out data Ytest = XtestV̂ , with
results visible in Figure 1A,B. As with other nonlinear DR methods, the axes of PHATE hold no
intrinsic meaning and are left off the plots. After removing several extreme outliers, we observe that
global LIMEADE performs reasonably well, accurately projecting new data onto the existing cell
cycle manifold, making it sufficient for interpretation. Although some subtleties of the embedding
are obfuscated, cells from the same cell cycle phase remain clustered together, and the phases appear
in a canonical order, preserving the biological structure. Next, we apply partitioned LIMEADE over
individual cell cycle phase clusters, as shown in Figures 1D and E. This approach further improves
the accuracy of the projections, better capturing the nuanced, heterogeneous relationships within
specific cell cycle stages.

Cell Cycle Interpretations When applying global LIMEADE to the cell cycle 4i data, the Group
Lasso selects 24 nonzero features, instead of the 40 features selected to use for DR in Stallaert et al.
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Figure 1: Global LIMEADE recapitulation of single-cell manifold from cell cycle 4i data. A: Orig-
inal manifold Ytest generated using PHATE. B. Global LIMEADE linear projections Ŷtest learned
from 4i features and PHATE embedding. C. Top 10 features from global LIMEADE. D. Original
manifold Ytest for each cell cycle phase cluster. E. Partitioned LIMEADE linear projections. F. Top
10 features for partitioned LIMEADE by cell cycle phase.

(2022), after taking the ℓ2 norm across columns of r in V̂ . We first examine the top 10 features
selected from global LIMEADE, seen in Figure 1C. When compared to the top 10 features found
to be important from Stallaert et al. (2022), 8 of the 10 features are the same. Of the original
40 features selected from the 4i study, 20 of them are selected from global LIMEADE, with 4
selected by LIMEADE not found in the original top 40. The full feature lists, along with overlaps,
differences, and compared ranks, are provided in Table 3 in the Appendix.

As with standard Lasso, the Group Lasso will only select a single feature from a group of corre-
lated features. The authors in Stallaert et al. (2022) and the original imaging technology paper Gut
et al. (2018) note this correlation as part of the immunofluorescent imaging design. For example,
the original model selected the cyclinB1 measurement for the ring, the cell, the cytoplasm, and a
mean edge measurement. As noted specifically for cyclinB1, these are clearly correlated measure-
ments due to the localization patterns of proteins (Porter et al., 2003), and hence possibly redundant
information for the model. As expected, when using partitioned LIMEADE, different features are
selected for different cell cycle clusters (Figure 1F). For example, partitioned LIMEADE, p21 is
found to be the most important feature in G1, supporting known cell cycle dynamics (Barr et al.,
2017). In G2/M, cytoplasmic cyclinB1 is found to be the most important feature, supported by how
cyclinB1 is primarily cytoplasmic during interphase (Gong & Ferrell Jr, 2010). Moreover, each
partitioned projection selects different numbers of features, with G1 at the most with 31 features
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selected, compared to G2/M with only 16. To investigate G1 heterogeneity further, we carry out a
locally-weighted LIMEADE in Section 3 on three selected cells along the G1 region of the manifold.

Conclusion Our robust simulation study and single-cell analysis demonstrate how LIMEADE
deepens the understanding of black-box dimensionality reduction methods. With the novel uti-
lization of the Group Lasso, LIMEADE can help researchers across domains identify key features
driving low-dimensional embeddings along single observation, cluster-wide, or global scales, and
improve interpretability for data-driven insights into complex high-dimensional datasets.
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A APPENDIX

A.1 SIMULATION DESIGN

Global Simulation Following Zheng et al. (2024), we first randomly assign n points into K clus-
ters via a one-hot encoded matrix F ∗ ∈ Rn×K . Next, we compare a rank r matrix W ∈ Rp×r, a
linear indepedent matrix with entries randomly selected from {−SNR, 0, SNR} Then, we generate
the feature loadings matrix Z ∈ Rp×r, where

Z =

[
Zsignal ∈ Rpsignal×r

Znoise ∈ R(p−psignal)×r

]
.

The first psignal rows, Zsignal, are drawn from a random orthogonal matrix, ensuring that the informa-
tive features capture structured variation across dimensions. The remaining p − psignal rows, Znoise,
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are set to zero, ensuring that these features contain no meaningful signal in the low-dimensional
representation. We then form out cluster centroid matrix Θ∗ = WZ⊤ ∈ RK×p, and data X
are simulated from the multivariate normal distribution with mean F ∗Θ∗ and identity covariance
matrix. Y is then generated from 2-dimensional UMAP with default parameters before applying
LIMEADE. With n = 1000, psignal = 20, K = 3, and r = 2, we increase SNR in increments of
0.5 and assess true positive rate (TPR) and false positive rate (FPR) for feature recovery as seen in
Figure 3, averaged over 500 replicates.

Figure 2: UMAP embedding of simulated low-rank cluster centroids across values of SNR for a
single replicate.

Partitioned Simulation We simulate a dataset with 3 clusters, each having different subsets of
psignal < p features from differentially expressed across the population. To represent differential
expression, we generate a pseudotime time variable t sampled evenly from (0, 2π) for each cluster.
The signal features then follow a sinusoidal trajectory along the population, where for observation i
and signal feature j:

Xij = SNR · sin(ti + j · π/psignal) + ϵij
with random Gaussian noise ϵij , and SNR modulates the strength of the signal features over the
noise. All other p− psignal noise features are generated from random Gaussian noise.

We choose each cluster matrix to have partially overlapping different signal feature blocks, each
with 20 signal features. Cluster 1 has signal features 1 : 20, cluster 2 with 11 : 30, and cluster 3
with 21− 40. After generating these clusters into dataset X , we carry out UMAP on the entire data
to get a reduced embedding Y . Representative visualizations are provided in Figure 3. Then, we
partition the pairing (X,Y ) into the separate clusters [(X1, Y1), (X2, Y2), (X3, Y3)], and compute
LIMEADE on each pairing separately to generate [V̂1, V̂2, V̂3] and compute the true positive rate
(TPR) and false positive rate (FPR) for feature recovery.

A.2 LOCAL LIMEADE

We can additionally formulate a locally-weighted LIMEADE, similar to the original LIME formu-
lation (Ribeiro et al., 2016).

V̂ = argmin
V

1

2
||W 1/2(Y −XV )||22 + λ

p∑
j=1

||Vj ||2

 (3)
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Figure 3: Simulated data with partitioned signal features. A. Representative data from a single repli-
cate for simulated partitioned data described in Section A.1, with SNR of 1.5. B. UMAP embedding
of clusters seen in A.

where, for row xi ∈ X ,

Wi = diag(w1, w2, . . . , wn), wi = exp
(
−γ∥xi −X∥2

)
For new point xn+1, we can first find the nearest neighbor in the original space: xj =
NearestNeighbor(xn+1, X), and take the associated v̂j , and then project based on that: ŷn+1 =
xn+1v̂j . Existing literature focuses on variations of how to create these local neighborhoods through
sampling methods (Bibal et al., 2020; Collaris et al., 2023), but with the cell cycle 4i data, we hand-
select points of interest.

From the analysis of cell cycle phase partitions in Section 3, we see that the G1 cluster has selected
the most features of any cell cycle phase. Therefore, we hypothesize that G1 may have the most
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heterogenous sub-phase states. From In Figures 4A and B, we handpick three cells across G1 in the
PHATE structure; one close to G0 cells, one close to G2/M cells, and one close to S phase cells.
After carrying out locally-weighted LIMEADE, with γ = 1/4p, where p is the original number of
features after preprocessing (176) from cell cycle 4i data X , we obtain three V̂ estimates, one per
point.

The top 10 features from each V̂ are listed in Figure 4C. LIMEADE detects significant heterogeneity
where features are found to be important in the respective cell placement on the manifold. The green
point, nearest to S phase cells, has p21 protein as its top feature, as opposed to cyclinD1 for the cell
near G2/M and cyclinA for the cell near G0.

Figure 4: Local interpretations of heterogenous cells in G1. A. Selected points in different manifold
locations in G1. B. Selected points in G1 placed along the population manifold to visualize prox-
imity to different phases. C. LIMEADE feature interpretations for each of the three points along
G1.
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Feature Global LIMEADE Rank Original Rank

Int Med cycA nuc 1 2
Int Med cycB1 cyto 2 16
Int Med cycD1 nuc 3 3
Int Med p21 nuc 4 4
Int Intg DNA nuc 5 5
Int Med E2F1 nuc 6 1
Int Med Cdh1 nuc 7 9
Int Med Skp2 nuc 8 6
Int Med PCNA nuc 9 11
Int Med Cdt1 nuc 10 7
Int Med p27 nuc 11 20
Int Med pRB nuc 12 18
Int Med CDK4 nuc 13 27
AreaShape Area nuc 14 8
Int Med CDK2 nuc 15 26
Int Med pH2AX nuc 16 12
Int Med PCNA cyto 17 73
Int Med Skp2 cyto 18 81
Int Med DNA nuc 19 28
Int Med cFos nuc 20 29
Int Med cycE nuc 21 10
Int Med E2F1 cell 22 48
Int Med p21 cell 23 211
Int Med CDK6 nuc 24 32
Int Med cMyc nuc – 13
Int Med RB nuc – 14
Int Med cycB1 cell – 15
Int Med cycB1 ring – 17
Int Intg p21 nuc – 19
Int Med ERK nuc – 21
Int Med pp53 nuc – 22
Int Med S6 nuc – 23
Int MeanEdge cycB1 cell – 24
Int Med pp21 nuc – 25
AreaShape Area cell – 30
Int MeanEdge Fra1 cell – 31
Int Med p16 nuc – 33
Int Med cycD1 cyto – 34
Int Med GSK3b nuc – 35
Int Med p38 nuc – 36
Int Med Bcl2 nuc – 37
Int Med CDK2 cyto – 38
Int MeanEdge Skp2 cell – 39
Int Med cycA cell – 40

Table 3: Comparison of global LIMEADE feature ranking and original cell cycle 4i ranking. Red
denotes features selected by global LIMEADE not included in the most important features for man-
ifold visualization in Stallaert et al. (2022).
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