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ABSTRACT

Transformer-based Multimodal Large Language Models (MLLMs) struggle to
process hour-long video inputs due to the quadratic computational complexity of
causal self-attention, leading to prohibitively high computational costs during both
training and inference. Existing token compression approaches reduce the number
of video tokens, but often suffer from significant information loss and remain in-
efficient for extremely long sequences. In this work, we propose a hybrid RWKV-
Transformer model that distills transformer layers into linear RNNs by reusing
their attention projection weights, guided by a progressive distillation strategy.
Without any token reduction, when fully replaced, throughput increases by up to
nearly 2×. Besides replacing about 25% of standard Transformer layers with
RWKV modules improves throughput by 20% compared to the original Trans-
former model, while matching its performance on multiple video understanding
benchmarks such as Video-MME and MLVU, and even outperforming it on VN-
Bench and LVBench, with average scores of 74.0% and 46.8%, respectively.

1 INTRODUCTION

Inspired by LLMs (Achiam et al., 2023; Touvron et al., 2023), MLLMs (Li et al., 2023a; Zhu et al.,
2023; Li et al., 2025; Liu et al., 2023) have advanced multimodal understanding, especially for im-
ages. Recent Transformer-based MLLMs excel at high-res image (Laurençon et al., 2023; Liu et al.,
2024b; Wang et al., 2024b) and interleaved image-text tasks (Jiang et al., 2024; Li et al., 2024a;b).
However, their quadratic self-attention complexity limits long-context processing, hindering effec-
tive long-video understanding.

A key challenge for MLLMs in long-video processing is encoding each frame into many visual to-
kens, incurring high compute/memory costs. Prior work mitigates this by reducing token counts:
some use Q-Former (Li et al., 2023a) for compression (Fei et al., 2024; Li et al., 2023b;c; Zhang
et al., 2023); others chunk and adaptively compress tokens (Shen et al., 2024; Shu et al., 2025).
Yet, aggressive compression loses critical visual details in ultra-long videos, and self-attention’s
quadratic cost remains a bottleneck. An alternative approach uses cross-attention to let text embed-
dings interact with visual features (Alayrac et al., 2022; Li et al., 2025; Liu et al., 2024a), but limits
interaction frequency and lacks persistent visual context within the LLM.

To mitigate Transformer complexity, efficient architectures like Mamba (Gu & Dao, 2023; Dao &
Gu, 2021) (SSM-based) and RWKV (Peng et al., 2023; 2024; 2025) (linear RNN) replace softmax
attention with hardware-friendly operations, boosting throughput. Recent works (Xu et al., 2025; Li
et al., 2024c; Lu et al., 2024) apply them to accelerate video understanding. However, as shown in
Chen et al. (2024b); Zhang et al. (2024a), linear RNNs suffer history decay beyond training length,
degrading long-context performance. Hybrid models like LongLLaVA (Wang et al., 2024d) and
Vamba (Ren et al., 2025) combine Mamba with Transformers to retain modeling strength while
gaining efficiency, but require scratch training and suffer instability on long sequences (Yu & Erich-
son, 2025), often underperforming pure Transformers despite speed gains.

To improve throughput without token reduction and minimize training cost, we propose a hybrid
RWKV-Transformer architecture for video MLLMs. Specifically: (1) We map pre-trained attention
weights directly to RWKV, enabling full parameter reuse without retraining; (2) We employ cross-
attention to help RWKV capture global context, mitigating its inherent history decay.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Experimental results show that replacing Transformer layers with RWKV modules increases
throughput by up to nearly 2×. In particular, replacing 25% of the Transformer layers with RWKV
achieves performance comparable to the original model on multiple video benchmarks and even
exceeds the original Transformer-based model by 0.6% on VNBench (Zhao et al., 2024b) and by
1.5% on LVBench (Li et al., 2023b).

Our summarized contributions are as follows:

• We are the first to propose a hybrid RWKV-Transformer architecture for video multimodal
large models, enabling significant inference acceleration without token reduction or retrain-
ing.

• We introduce a parameter remapping strategy that directly transfers pre-trained atten-
tion weights to RWKV modules and design a progressive distillation strategy, preserving
learned representations while minimizing training cost. And we leverage cross-attention to
assist RWKV in capturing global contextual information.

• We demonstrate that replacing Transformer layers with RWKV modules increases through-
put by up to nearly 2×. In particular, replacing 25% of the Transformer layers with RWKV
modules achieves performance comparable to the original model across multiple video
benchmarks, and even surpasses the original Transformer-based model on VNBench and
LVBench.

2 RELATED WORKS

Video MLLMs. Existing Transformer-based video MLLMs (Li et al., 2023b; Maaz et al., 2023;
Zhang et al., 2023; Wang et al., 2024b; Cheng et al., 2024) append per-frame visual features, but
quadratic attention causes slow inference. Most mitigate this via token compression: heuristic
pooling (Xu et al., 2024a; Zhang et al., 2024b; Xu et al., 2024b), similarity-based merging (Chai
et al., 2024; Shen et al., 2024), or trainable modules like Q-Former (Li et al., 2023a) and cross-
attention (Liu et al., 2024e). However, aggressive compression often discards fine-grained details,
degrading performance.

RNN-based Large Language Models. While Transformer-based LLMs (Achiam et al., 2023; Tou-
vron et al., 2023; Team, 2024) excel in NLP, their quadratic complexity motivates renewed interest
in RNNs (Feng et al., 2024; Li et al., 2018; Peng et al., 2025; Roemmele & Gordon, 2018; Shen
et al., 2018), which offer constant per-token cost. Linear attention (Katharopoulos et al., 2020) re-
duces complexity to O(N) via kernel approximations, with variants (Chai & Xu, 2025; Gu & Dao,
2023; Dao & Gu, 2021; Peng et al., 2023; 2024; 2025; De et al., 2024) achieving strong results.
RWKV (Peng et al., 2023; 2024; 2025) uniquely combines Transformer-style training with RNN-
style inference. However, as Chen et al. (2024b) shows, such models struggle to extrapolate beyond
training length. Our hybrid RWKV-Transformer preserves efficiency while enhancing long-context
modeling, without sacrificing parallelism or scalability.

3 PRELIMINARIES

Before formally introducing our efficient hybrid architecture for video understanding, we first define
its two key components:

3.1 ATTENTION MECHANISM

Let x ∈ RN×C denote a sequence of N features with dimension C. Single head Softmax atten-
tion Vaswani et al. (2017), also known as dot-product attention, can be written as:

Q = xWQ, K = xWK , V = xWV , yi =

N∑
j=1

exp
(
QiK

⊤
j /

√
d
)

∑N
j=1 exp

(
QiK⊤

j /
√
d
)Vj (1)

where WQ,WK ∈ RC×d, WV ∈ RC×C denote projection matrices, Q,K ∈ RN×d, V ∈ RN×C

represent query/key/value matrices, and Qi,Ki ∈ R1×d, Vi ∈ R1×C are individual query/key/value
tokens. Softmax attention computes the similarities between each query-key pair, leading to O(N2)
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complexity. Therefore, it incurs unbearable computational cost in long-sequence modeling scenar-
ios.

Linear attention (Katharopoulos et al., 2020), another attention paradigm, is proposed to effectively
address this problem by reducing the computation complexity to O(N). Specifically, linear attention
replaces the non-linear Softmax function with linear normalization, and adopts an additional kernel
function ϕ in Q and K:

Q = ϕ(xWQ), K = ϕ(xWK), V = xWV ,

yi =

N∑
j=1

QiK
⊤
j∑N

j=1 QiK⊤
j

Vj =
Qi

(∑N
j=1 K

⊤
j Vj

)
Qi

(∑N
j=1 K

⊤
j

) .
(2)

This enables the rearrangement of the computation order from
(
QK⊤)

V to Q
(
K⊤V

)
based on

the associative property of matrix multiplication, thus reducing computation complexity to O(N).

Equation (2) presents linear attention featuring a complete sequence context, where each query gath-
ers information from all keys and values. When applied to autoregressive models, linear attention
can be constrained to limit the context of the i-th token to preceding tokens only (where j ≤ i). This
causal variant of linear attention is expressed as:

yi =
Qi

(∑i
j=1 K

⊤
j Vj

)
Qi

(∑i
j=1 K

⊤
j

) =
QiSi

QiZi
, Si =

i∑
j=1

K⊤
j Vj , Zi =

i∑
j=1

K⊤
j . (3)

This results in a recurrent linear attention form:
Si = Si−1 +K⊤

i Vi, Zi = Zi−1 +K⊤
i , yi = QiSi/QiZi. (4)

3.2 RWKV

RWKV(Peng et al., 2023) combines the parallelizable training efficiency of Transformers with the
sequential inference capability of RNNs. Its recurrent mechanism only references the immediately
preceding token, enabling unbounded sequence length during inference without increasing memory
consumption. The core architecture of RWKV-4 computes a weighted sum of past values, modulated
by an accept vector, to efficiently facilitate information flow across time steps. we use D to denote
the model dimension and use h to denote the number of heads. This can be expressed as:

wkvt =

∑t−1
i=1 exp

(
−(t− 1− i)w + ki

)
⊙ vi + exp(u+ kt)⊙ vt∑t−1

i=1 exp
(
−(t− 1− i)w + ki

)
+ exp(u+ kt)

,

yt = rt ·wkvt.

(5)

where t is the current time index, i ∈ {1, . . . , t − 1} indexes historical steps, w ∈ RD/h is the
learnable decay rate, u ∈ RD/h is a learnable vector that emphasizes attention to the current token,
ki,kt ∈ RD/h are key vectors, vi,vt are value vectors, and rt ∈ RD/h is the receptance vector that
acts as the receiver of past information.

The wkvt attention calculation can alternatively be written in a recurrent form:
wkvt = St−1 + diag(u) · kT

t · vt,

St = diag(w) · St−1 + kT
t · vt.

(6)

For computational convenience, we set diag(w) = diag(u) = I, where I denotes the identity
matrix. The above equations then simplify to:

wkvt = St = St−1 + kT
t · vt,

yt = rt · St.
(7)

Building upon RWKV-4, RWKV-5 employs matrix-valued hidden states to enhance model expres-
sivity, while RWKV-6 introduces data-dependent token shifting and linear interpolation between
input tokens to further improve sequence modeling capability. RWKV-7 enhances sequence model-
ing by dynamically updating its recurrent state based on contextual interactions between keys and
values. Crucially, RWKV maintains linear time complexity O(N) and constant memory usage dur-
ing inference, making it highly efficient for long-sequence modeling.

3
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Figure 1: Hybrid architecture overview. Left: video frames are encoded into visual tokens, seg-
mented into scenes via inter-frame similarity, and pooled into scene tokens. Middle: visual, text,
and scene tokens are fed into the hybrid LLM; scene tokens are only used in hybrid decoder lay-
ers. Right: visual and text tokens pass through RWKV; scene tokens interact with text via cross-
attention, and outputs are fused via dynamic gating.

4 HYBRID RWKV-TRANSFORMER ARCHITECTURE

As shown in Figure 1, our hybrid architecture integrates a visual encoder, projector, and LLM.
Video features are segmented by adjacent-token similarity, then temporally pooled into scene to-
kens—serving as global anchors to mitigate RWKV’s history decay. Meanwhile, original features
are preserved. Hybrid layers inject cross-attention into pre-trained decoders, enabling text embed-
dings to retrieve fine-grained details. A dynamic gating mechanism further modulates per-token
visual absorption.

4.1 ENCODING SCENE TOKENS

Video content often contains substantial redundancy, as consecutive frames within the same scene
typically convey highly similar visual information. Processing every frame independently may lead
to redundant computation and potential overfitting. To mitigate this, conventional approaches(Shi
et al., 2025; Jiang et al., 2025) apply fixed-interval time pooling to reduce redundancy. However,
such methods often merge frames across scene boundaries, which can severely compromise the
semantic quality of the pooled representations. In contrast, our method first computes pairwise
similarity scores between tokens of adjacent frames:

st =
1

Sim(Vt,Vt+1)
(8)

where Vt denotes the visual token sequence at frame t, and Sim(·, ·) is a cosine similarity function.

We then select the top-k similarity scores st that the similarity is less than the threshold τ , and record
their corresponding frame indices as scene boundaries, denoted by the set B:

B =

{
t

∣∣∣∣ st ∈ TopK
(
{si}T−1

i=1

)
and st >

1

τ

}
(9)

where T is the total number of frames, st is the similarity score between frame t and t + 1, and
TopK(·) returns the indices of the k highest values.

The video is then segmented into |B|+1 scenes, and each scene is independently pooled to generate
compact scene tokens for global context modeling. Let the sorted boundary indices be denoted as
B = {b1, b2, . . . , b|B|} with b1 < b2 < · · · < b|B|. We define auxiliary boundaries b0 = 0 and
b|B|+1 = T for notational convenience. Then, for the j-th scene (j = 1, 2, . . . , |B| + 1), spanning
frames from bj−1 + 1 to bj , its scene token Vs,j is computed via temporal average pooling:

Vs,j =
1

bj − bj−1

bj∑
t=bj−1+1

Vt (10)
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4.2 HYBRID DECODER LAYER

At the core of our hybrid architecture is the hybrid decoder layer, enabling text-scene interaction
during LLM forward pass. As in Figure 1, it replaces self-attention with RWKV-v6-Finch (Peng
et al., 2024) for efficiency. Cross-attention, parallel to RWKV, retrieves visual context from scene
tokens and merges via skip connection. A dynamic gate modulates this output to reduce interference
and stabilize training. We detail its computation below. Our model is built on Qwen2.5-VL (Bai
et al., 2025) by replacing selected self-attention layers with hybrid layers.

Cross-Attention. The input to the hybrid decoder layer consists of hidden states and scene tokens.
Inspired by mPLUG-Owl3 Ye et al. (2024), both inputs are first processed through a shared layer
normalization layer. After normalization, the hidden states are processed in parallel by RWKV and
cross-attention modules. All hidden states are fed into RWKV for sequential modeling. For cross-
attention, however, the queries are restricted to text tokens only. We denote the query matrix as
Qt ∈ Rn×d, where n is the number of text tokens and d is the hidden dimension (head dimension
omitted for simplicity).

The cross-attention output X′ is computed by projecting the text embeddings and scene tokens into
query, key, and value spaces:

X ′ = Attn (WQXt, WKVs, WV Vs) (11)

where Attn represents the multi-head cross attention. Xt ∈ Rn×d denotes the layer-normalized
hidden states of text tokens, and WQ,WK ,WV ∈ Rd×d are learnable projection matrices for the
cross-attention module.

Dynamic gate. While cross-attention output X enriches text tokens with visual context, it risks inter-
fering with the pre-trained LLM. Conventional methods use a static, learnable scalar gate (Alayrac
et al., 2022; Dubey et al., 2024), applying uniform weights regardless of token-specific relevance.
Nevertheless, such a static gate applies uniform weights across all tokens. In practical applications,
the requirement for visual context attention can vary substantially among tokens and input instruc-
tions, as demonstrated by heterogeneous attention patterns (Zhu et al., 2024). To overcome this
constraint, Shi et al. (2025) introduce a dynamic gating mechanism incorporating a warm-up strat-
egy. This architecture enables the model to determine, for each token individually, the proportion
of cross-attention output to incorporate into each text token’s embedding. In contrast to Shi et al.
(2025), who route detailed tokens to cross-attention and coarse tokens to self-attention, where the
loss of fine-grained visual information in self-attention impairs temporal reasoning and representa-
tion coherence, and then merge them before a shared output projection, our method feeds all visual
tokens into RWKV while using scene tokens only for enhancement, and applies separate output
projections followed by dynamic gating, thereby preserving fine-grained details and maintaining the
specialized function of each component to enable better reuse of pre-trained weights.

Specifically, a single linear layer followed by a tanh activation is applied to the text embeddings to
generate a dynamic gating vector gd ∈ Rn, where each element gd,t corresponds to the gate value
for the t-th text token. To mitigate the influence of the cross-attention branch during early training
stages, a static, learnable warm-up factor gs is introduced, initialized to zero.

The final fused representation Xt is obtained by modulating and merging the cross-attention output
X ′ into the original text embeddings Xt as follows:

Xt = Xt +X′ ⊙ gd · gs (12)
where ⊙ denotes element-wise multiplication broadcasted along the token dimension. Importantly,
the cross-attention module updates only Xt, the text-only component of the hidden states, while the
scene tokens remain fixed throughout this process.

4.3 WEIGHT INITIALIZATION.

As detailed in Section 3, the formulations of RWKV and linear attention can be approximated by
equation(7) and equation(4), respectively. These two operations exhibit several structural similari-
ties. To facilitate analysis, we rewrite equation(7) and equation(4) into a unified form as follows:

St = St−1 + k⊤
t vt, yt = rtSt/1. (13)

Si = Si−1 +K⊤
i Vi, yi = QiSi/QiZi. (14)

5
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It is evident that equation(13) and equation(14) are highly similar. Specifically: k ∼ K, v ∼ V ,
r ∼ Q. To maximize parameter reuse and minimize training cost, we initialize the RWKV
projection matrices Wr, Wk, and Wv using the corresponding pre-trained self-attention weights
WQ, WK , and WV , respectively. Similarly, the projection weights of the cross-attention module
(WQ, WK , WV ) are also initialized from the same set of pre-trained self-attention parameters.
(Wang et al., 2024a) suggests that the majority of knowledge in Transformer-based models is
encoded within the MLP layers. Motivated by this finding, we retain both the architectural structure
and pre-trained weights of the MLP layers to preserve this transferred knowledge and avoid
unnecessary retraining.

4.4 PROGRESSIVE DISTILLATION

To more effectively inherit and leverage the powerful representational capacity of the pre-trained
model, we adopt a progressive knowledge distillation(Hinton et al., 2015) strategy. The distillation
process is partitioned into three interrelated yet distinct stages: (1) RWKV Distillation, (2) Decoder
Layer Distillation, and (3) LLM Distillation. This approach gradually increases both the duration of
training videos and the number of trainable parameters, guiding the student model to transfer knowl-
edge from structural components to holistic language modeling capabilities, thereby enhancing its
generalization and task adaptability.

Stage 1: RWKV Distillation. In this stage, the primary objective is to align the newly intro-
duced RWKV modules and cross-attention components, which lack pre-trained weights, with their
corresponding self-attention counterparts in the original architecture. During training, all model pa-
rameters except those of the RWKV and cross-attention modules are frozen, including remaining
self-attention layers, MLP layers within replaced decoder blocks, and the visual encoder. For this
stage, we sample image-caption pairs to train the model’s image understanding capability. Addi-
tionally, we sample short video clips to enhance its short video understanding ability. The training
objective is to minimize the Kullback-Leibler divergence (KLD) between the output logits of the
student (hybrid) model and the teacher (original pre-trained) model:

Lkd(πS ;πT ) = −E(x,yk)∼πT

[
log

πT (yk | y<k, x)

πS(yk | y<k, x)

]
(15)

where πT (yk | y<k, x) and πS(yk | y<k, x) denote the probability of the predicted tokens for teacher
MLLM and student MLLM.

Stage 2: Decoder Layer Distillation. In this stage, the goal is to enable the newly introduced hybrid
decoder layers to better mimic the output distribution of their original counterparts. All model
parameters are frozen except those of the hybrid decoder layers. The training objective remains
consistent with Stage 1. The training data comprises newly sampled short videos and medium-
length videos.

Stage 3: LLM Distillation. During this stage, we unfreeze all parameters in the LLM component,
while keeping the visual encoder frozen to maintain stable visual representations. The training
dataset includes a long video dataset based on short and medium videos. To fully leverage both the
knowledge embedded in the pre-trained model and the supervisory signal from downstream data,
we employ a dual-objective strategy that combines the Kullback-Leibler divergence (KLD) loss
with the standard next-token prediction objective. Specifically, the KLD loss aligns the student’s
output distribution with that of the teacher to preserve pre-trained knowledge, while the next-token
prediction loss optimizes task-specific performance using ground-truth supervision. The total loss
is formulated as:

LLLM(πS ;πT ) = −αE(x,yk)∼D [log πS(yk | y<k, x)]− βE(x,yk)∼πT

[
log

πT (yk | y<k, x)

πS(yk | y<k, x)

]
(16)

where, D denotes the training data distribution, α and β are balancing coefficients, balancing task-
specific learning and knowledge preservation.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Target Models. We adopt Qwen2.5-VL-7B-Instruct (Bai et al., 2025) as the base model for our
experiments. We replace selected decoder layers with our proposed hybrid RWKV decoder layers.

6
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Specifically, we first evaluate a configuration where 25% of the decoder layers are replaced. Building
upon this, we further apply a layer-wise replacement strategy to substitute an additional 25% of
layers, resulting in a total of 50% replaced layers for comparative analysis. We set the maximum
boundary count K = 15 and the similarity threshold τ = 0.60.

Training Recipe. We employ a three-stage distillation strategy to enable the hybrid model to pro-
gressively acquire knowledge from the original model. In each stage, we expand the training data to
include longer video sequences and adjust the training configuration accordingly. All experiments
are conducted on a machine equipped with 8 NVIDIA A800 80G GPUs. Detailed training schedules
and hyperparameters are specified in Appendix A.1.

Evaluation Benchmarks. We evaluate our method on several mainstream video understanding
benchmarks. To assess the model’s needle-in-a-haystack capability, we use VNBench(Zhao et al.,
2024b). For long video understanding, we adopt MLVU (Zhou et al., 2025), Video-MME (Fu et al.,
2025), LongVideoBench (Wu et al., 2024), and LVBench(Wang et al., 2024c).

5.2 MAIN EVALUATION RESULTS

Table 1: Results on VNBench for needle-in-a-haystack capability. The best result in each column
is highlighted in bold. Models marked with an asterisk (∗) are evaluated using our own evaluation
script.

Model Size Retrieval Ordering Counting AvgE I-1 I-2 E I-1 I-2 E-1 E-2 I

Proprietary Models
Gemini 1.5 Pro (Team et al., 2024) - 100.0 96.0 76.0 90.7 95.3 32.7 60.7 7.3 42.0 66.7

GPT-4o (OpenAI, 2024) - 100.0 98.0 87.3 88.4 86.6 45.2 36.8 0.0 36.1 64.4
GPT-4V (Achiam et al., 2023) - 100.0 99.3 82.0 42.6 22.8 23.0 37.6 0.0 32.4 48.9

Open-source MLLMs
VideoChatGPT (Maaz et al., 2023) 7B 4.7 4.7 0.7 2.7 11.3 0.0 2.0 4.0 6.7 4.1

Video-LLaMA2 (Zhang et al., 2023) 7B 1.2 26.0 6.0 0.0 0.0 0.0 2.0 4.7 0.7 4.5
Video-LLaVA-7B (Lin et al., 2023) 7B 26.0 28.0 17.3 0.7 0.7 2.0 16.7 0.7 20.0 12.4

VideoChat2 (Li et al., 2023b) 7B 43.4 40.0 14.6 0.0 0.0 1.3 3.3 0.7 8.0 12.4
LLaVA-NeXT-Video-7B (Liu et al., 2024b) 7B 56.7 56.7 19.3 0.7 0.0 0.7 6.7 14.6 25.3 20.1

ST-LLM (Liu et al., 2024d) 7B 58.0 64.7 31.3 0.0 0.0 0.0 21.3 1.3 27.3 22.7
LLaVA-OneVision-7B (Li et al., 2024a) 7B 88.7 87.3 55.3 70.0 50.0 37.3 41.3 8.7 27.3 51.8

Qwen2.5-VL-7B* (Bai et al., 2025) 7B 100.0 78.8 97.8 91.6 85.2 85.2 67.4 23.1 30.7 73.4
Hybrid-architecture MLLMs

LongLLaVA(Wang et al., 2024d) 9B 98.3 57.2 96.3 24.2 57.2 24.3 24.5 21.0 26.0 44.4
Qwen-RWKV-VL(25%)(ours) 8B 100.0 70.2 98.8 91.8 89.3 79.1 71.4 20.4 36.6 74.0
Qwen-RWKV-VL(50%)(ours) 9B 99.8 60.8 98.7 41.0 57.6 58.1 55.9 22.7 34.9 58.6

Needle-in-a-Haystack Performance. As shown in Table 1, our hybrid model with 25% of decoder
layers replaced by RWKV modules surpasses the original model by a small margin on the needle-in-
a-haystack task. Moreover, by leveraging pre-trained weights from the original model, our approach
achieves this superior performance using significantly less training data, substantially outperforming
models trained from scratch such as LongLLaVA.

Video Understanding Performance. We compare our model against other state-of-the-art video
understanding models in Table 2. For our hybrid architecture, we evaluate two configurations:
replacing 25% and 50% of decoder layers with RWKV modules, respectively. Notably, both
VAMBA (Ren et al., 2025) and Slow-fast MLLM (Shi et al., 2025) exhibit substantial performance
degradation compared to their original counterparts, despite being trained on over 1M and 3,467K
samples, respectively. In contrast, our 25% replacement model achieves competitive or superior
results relative to the baseline across most benchmarks, with particularly pronounced improvements
on LVBench and VNBench, while requiring only 1,448K training samples.

5.3 ABLATION STUDY

Replacement Layer Position. To study the impact of RWKV layer placement, we replace lay-
ers every 7th position in three regions: early (0, 7, 14, 21), middle (3, 10, 17, 24), and late (6,
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Table 2: Results of video understanding evaluation. The best result in each column is highlighted
in bold. Models marked with an asterisk (∗) are evaluated using our own evaluation script.

Model Size VideoMMEw/o subs MLVU LongVideoBench LVBench
Short Medium Long Avg m-avg val test

Proprietary Models
Gemini 1.5 Pro (Team et al., 2024) - 81.7 74.3 67.4 75.0 62.9 64.0 33.1

GPT-4o (OpenAI, 2024) - 80.0 70.3 65.3 71.9 64.6 66.7 48.9
GPT-4V (Achiam et al., 2023) - 70.5 55.8 53.5 59.9 49.2 59.1 48.7

Open-source MLLMs
mPLUG-Owl3 (Ye et al., 2024) 7B 70.0 57.7 50.1 59.3 - 52.1 43.5

Video-LLaMA2 (Zhang et al., 2023) 7B 55.9 45.4 42.1 47.8 32.7 - -
Video-LLaVA-7B (Lin et al., 2023) 7B 45.3 38.0 36.2 39.9 47.3 39.1 -

VideoChat2 (Li et al., 2023b) 7B 48.3 37.0 33.2 39.5 47.9 36.0 -
Kangaroo (Liu et al., 2024c) 8B 66.1 55.3 46.6 56.0 61.0 56.0 38.3

LLaVA-OneVision-7B (Li et al., 2024a) 7B - - - 58.2 64.7 56.5 38.7
Qwen2.5-VL-7B* (Bai et al., 2025) 7B 76.1 61.7 53.6 63.8 70.4 49.5 45.3

Hybrid-architecture MLLMs
LongLLaVA(Wang et al., 2024d) 9B 52.4 42.2 36.4 43.7 53.3 42.1 31.2

VAMBA(Ren et al., 2025) 10B - - - 57.8 65.9 55.9 42.1
Slow-fast MLLM(Shi et al., 2025) 8B - - - 60.3 68.1 58.0 -
Qwen-RWKV-VL(25%)(ours) 8B 74.4 56.9 52.4 61.3 68.0 47.8 46.8
Qwen-RWKV-VL(25%)(ours) 9B 62.9 47.2 40.6 50.2 61.2 39.9 43.2

13, 20, 27), keeping other layers as Transformer blocks. All variants are trained under identical
distillation settings and evaluated on Video-MME. As shown in Table 3 left, middle-layer and late-
layer replacements achieve comparable performance, while early-layer replacement causes signifi-
cant degradation. We attribute this to disruption of foundational language modeling in early layers,
which harms information propagation and representation learning. This also clarifies why 50% layer
replacement causes such a dramatic decrease: excessive substitutions, particularly in early network
segments, fundamentally weaken the model’s representational power. All subsequent experiments
are conducted on the setting where the late-layer is replaced.

Table 3: Ablation studies on (left) layer replacement positions and (right) loss coefficients α, β.
Performance reported on Video-MME. Best results per column are bolded.

Position Short Medium Long Avg
early 16.0 16.1 16.2 16.1

middle 68.9 53.7 48.9 57.1
late 70.7 53.1 47.7 57.1

(α, β) Short Medium Long Avg
(1.0, 0.0) 71.3 55.8 48.3 58.5
(0.5, 0.5) 71.2 55.4 50.2 59.0
(0.0, 1.0) 74.4 56.9 52.4 61.3

Loss Balancing Coefficients α and β. To analyze the sensitivity of our hybrid distillation objective
to the weighting of its components, we conduct an ablation study over different values of α and β in
the combined loss LKD = α·LCE+β·LKL. We evaluate configurations including (α, β) = (1.0, 0.0),
(0.5, 0.5), (0.0, 1.0). Results on Video-MME. As shown in Table 3 right, the (0.0, 1.0) configura-
tion, which uses only distillation loss without SFT supervision, achieves the best performance. This
stems from limited SFT data quality: adding SFT loss introduces noise that disrupts knowledge
alignment with the teacher. In contrast, distillation loss alone enables the student to better match the
teacher’s output distribution, yielding more stable and consistent transfer.

Gate. We compare two gating mechanisms on Video-MME: a static gate that applies a single learn-
able scalar to all text tokens, and our proposed dynamic gate that predicts a distinct gating value for
each token based on its embedding. As shown in Table 4, comparing rows 2 and 4, the dynamic
gate consistently outperforms the static variant on Video-MME benchmark. This demonstrates that
token-adaptive modulation is critical for fine-grained fusion of visual and textual features.

Weight Initialization. We compare two RWKV initialization strategies on Video-MME: Random
(random init) and Transfer (weights mapped from self-attention). As shown in Table 4 (row 1 vs
2), Transfer improves average performance from 60.6% to 61.3%, demonstrating that mapped pre-
trained weights provide stronger inductive bias than random initialization, better preserving knowl-
edge during distillation.
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Figure 2: Comparison of training speed between Qwen2.5VL and RWKV hybrid architecture with
different input frame numbers, and throughput comparison between different numbers of replace-
ment layers.

Cross-attention. We compare two variants on Video-MME: without cross-attention (RWKV-only)
and with cross-attention for global visual context. As shown in Table 4 (row 2 vs 3), cross-attention
boosts average performance from 58.6% to 61.3%, demonstrating that while RWKV captures local
dependencies, it lacks long-range visual grounding. Cross-attention provides global anchors that
mitigate history decay—critical for long videos.

Table 4: Comparisons of different gate designs, weight initializations and cross-attention Integration.
Performance reported on Video-MME. Best results per column are bolded.

Gate Init Cross attn Short Medium Long Avg
Dynamic Random ✓ 72.2 58.3 51.2 60.6
Dynamic Transfer ✓ 74.4 56.9 52.4 61.3
Dynamic Transfer × 71.3 56.6 47.8 58.6

Static Transfer ✓ 72.5 57.3 51.1 60.3

5.4 EFFICIENCY ANALYSIS

To quantify the runtime efficiency gains of our hybrid model over the baseline Transformer-based
MLLM (Qwen2.5-VL-Instruct-7B), we conduct comprehensive training and inference benchmarks
under controlled conditions. For training, we ensure a consistent environment by using 8 NVIDIA
A800 80GB GPUs for both models, with a per-GPU batch size of 64. We apply standard optimiza-
tion techniques, including FlashAttention-2 (Dao, 2023), DeepSpeed ZeRO-3 (Rajbhandari et al.,
2020), and gradient checkpointing (Chen et al., 2016). We measure the wall-clock time per training
step across varying input frame counts. As shown in Figure 2a, our model achieves nearly 25%
faster training at 64 input frames.

For inference, we focus on throughput, defined as the number of tokens generated per second. We
fix the input text length to 10K tokens and measure the time to generate the first token (t1) and
the 1000th token (t1000). Throughput is computed as (1000 − 1)/(t1000 − t1). To better simulate
real-world deployment, both models are evaluated on a single NVIDIA A800 80GB GPU with
FlashAttention-2 enabled. As shown in Figure 2b, replacing all Transformer layers with RWKV
modules nearly doubles inference throughput, while replacing only 25% of layers (7 layers) still
yields a 20% speedup.

6 CONCLUSION

We presented a hybrid RWKV-Transformer architecture for efficient multimodal video understand-
ing. By integrating RWKV modules to replace selected Transformer layers and incorporating cross-
attention mechanisms for global context modeling, our approach significantly improves inference
throughput while maintaining competitive performance across multiple video understanding bench-
marks. Extensive evaluations on datasets such as VNBench and LVBench demonstrate our model’s
superiority over existing efficient video LMMs, particularly in handling hour-long video inputs.
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A IMPLEMENTATION DETAILS

A.1 TRAINING STRATEGY AND HYPERPARAMETERS

We adopt a three-stage progressive training strategy to stabilize knowledge transfer and enable hi-
erarchical alignment. In Stage 1, we freeze all modules except the RWKV and cross-attention com-
ponents (which lack pre-trained weights), and train the model on image and short-video datasets to
establish basic visual recognition capability. In Stage 2, we unfreeze all inserted RWKV decoder lay-
ers while keeping other parameters frozen, and extend the training data to include medium-length
videos, enabling layer-wise alignment between the hybrid and original architectures. In the final
stage, we freeze only the ViT encoder and multimodal projector, unfreeze the entire LLM, and
incorporate long videos into the training mix to achieve full model-level alignment. All training
experiments are conducted using the ms-swift framework (Zhao et al., 2024a). Detailed training
hyperparameters are provided in Table 5.

Table 5: Training hyperparameters for each stage.

Hyperparameter Stage 1 Stage 2 Stage 3
Batch size 64 64 64
Learning rate 1× 10−4 1× 10−5 1× 10−6

Weight decay 0.1 0.1 0.1
Warmup ratio 0.03 0.03 0.03
Video max pixels 50176 50176 50176
Fps max frames 64 64 64
Training epochs 1 1 1
Optimizer AdamW AdamW AdamW
Optimizer hyperparameter β1 = 0.9, β2 = 0.95 β1 = 0.9, β2 = 0.95 β1 = 0.9, β2 = 0.95
Learning rate schedule Cosine Cosine Cosine
Max sequence length 8192 8192 8192
Number of samples 542K 656K 250K
Trainable parameters RWKV + Cross-attention Hybrid decoder layers Full LLM
Loss function KL divergence KL divergence αCE + βKL
α / β weights - - 0.0 / 1.0
Mixed precision BF16 BF16 BF16
Model parallelism Zero2 offload Zero3 Zero3 offload

A.2 TRAINING DATASETS

Our training methodology employs a progressive data strategy across three distinct stages. The ini-
tial stage utilizes 542k samples, comprising 342k image-caption pairs sampled from ShareGPT4V-
PT(Chen et al., 2024a) for visual understanding enhancement and 200k samples from 0-30s video
clips in LLaVA-Video-178k(Zhang et al., 2024c) for short video comprehension training, focusing
on distilling RWKV and cross-attention modules. The second stage expands the dataset to 656k
samples by incorporating one-third of the 0-30s video clips and half of the 30-60s video clips from
LLaVA-Video-178k, targeting the distillation of hybrid decoder layers. The final stage further diver-
sifies the training corpus to 250k samples by adding 1-3min video segments, enabling end-to-end
fine-tuning of the LLM component while preserving visual encoder parameters frozen. Throughout
this stage, we employ a hybrid objective function combining Kullback-Leibler divergence loss with
standard next-token prediction cross-entropy loss to optimally balance knowledge preservation from
the pre-trained model and adaptation to downstream task requirements.

A.3 EVALUATION BENCHMARKS

LVBench (Wang et al., 2024c) is a benchmark designed to evaluate the capability of video LMMs
in understanding ultra-long videos. It contains 1,549 question-answer pairs, with an average video
duration of 4,101 seconds. Evaluation focuses on six core dimensions: (1) temporal grounding,
which assesses the model’s ability to identify specific moments in videos; (2) video summarization,
evaluating the capacity to condense key information; (3) video reasoning, testing logical inference
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over video content; (4) entity recognition, identifying persons, objects, or locations; (5) event un-
derstanding, capturing the sequence and significance of events; and (6) key information retrieval,
ensuring the model can extract critical details. The full test set is used for evaluation.

VNBench (Zhao et al., 2024b) is a synthetic video benchmark constructed using the VideoNIAH
framework, designed to evaluate fine-grained video understanding capabilities under controlled con-
ditions. It decouples visual content from query-response pairs by inserting synthetic “needles” (un-
related visual elements) into source videos, enabling targeted evaluation of specific skills. The
benchmark includes three core tasks: (1) Retrieval — locating specific moments; (2) Ordering —
reasoning about event chronology; and (3) Counting — tracking object occurrences over time. These
tasks assess temporal perception, chronological reasoning, and spatio-temporal coherence, respec-
tively. By automating query generation and supporting variable video lengths, VNBench offers a
scalable, skill-isolating evaluation platform ideal for iterative model development.

Video-MME (Fu et al., 2025) is a benchmark specifically designed to evaluate the ability of LMMs
to analyze video content. It comprises a dataset of 900 videos and 2,700 questions, covering six
distinct visual domains. Questions are categorized by video length into short, medium, and long
segments, with median durations of 26 seconds, 164.7 seconds, and 890.7 seconds, respectively.
The benchmark supports two evaluation settings: (1) w/subtitle, where both subtitles and questions
are provided as text input, and (2) w/o subtitle, which relies solely on raw video input alongside
the question. Our study primarily focuses on the w/o subtitle setting, as it encourages models to
leverage video-based visual cues rather than textual prompts from subtitles, thereby providing a
more authentic evaluation of long-video understanding capability.

MLVU (Zhou et al., 2025) is a benchmark designed to evaluate long-video understanding across
diverse tasks and video genres. It includes two types of questions: multiple-choice and free-form
generation. The evaluation framework measures LMM performance along three key dimensions: (1)
holistic video understanding, which requires reasoning over the global context of the entire video;
(2) single-detail video understanding, focusing on identifying critical moments or short segments;
and (3) multi-detail video understanding, which involves establishing connections among multiple
short segments distributed throughout the video.

LongVideoBench (Wu et al., 2024) is a question-answering benchmark designed for interleaved
long video-text inputs. It contains 3,763 videos and 6,678 human-annotated multiple-choice ques-
tions, covering 17 fine-grained categories. The benchmark supports two input formats: (1) mat for-
mat, which processes all video tokens first followed by the question text; and (2) interleaved video-
text format, which inserts subtitles between video frames to simulate natural multimodal streaming.
In our evaluation, we adopt the standard mat format for all baseline models and our VAMBA. Re-
ported results are based on the validation split to ensure fair and reproducible comparison.
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B ADDITIONAL EXPERIMENTS

B.1 EFFECTIVENESS OF PROGRESSIVE TRAINING STAGES

We conduct an ablation study to evaluate the contribution of each training stage in our progressive
distillation strategy.

Table 6: Ablation study on the effectiveness of progressive training stages. Performance reported
on Video-MME. Each strategy builds upon the previous one except only stage2. Best results per
column are bolded.

Qwen-RWKV-VL(25%) Short Medium Long Avg
Stage 1 (RWKV + Cross-Attn) 67.7 51.8 43.4 54.3
+ Stage 2 (Hybrid Decoder Layers) 71.1 56.1 48.1 58.4
+ Stage 3 (Full LLM) 74.4 56.9 52.4 61.3
Only Stage 2 63.8 46.4 38.9 49.7

Table 6 demonstrates the necessity of our staged training strategy. Starting with Stage 1 (training
only RWKV and cross-attention modules) establishes a performance baseline (54.3% Avg). Adding
Stage 2 (unfreezing hybrid decoder layers) improves Avg to 58.4%, and completing Stage 3 (full
LLM fine-tuning) further boosts performance to 61.3%, confirming that gradual exposure to longer
videos and progressive parameter unfreezing are essential for stable knowledge transfer.

Critically, the “Only Stage 2” configuration where hybrid decoder layers are trained from scratch
without first stabilizing the non-pretrained components in Stage 1 performs significantly worse
(49.7% Avg). This degradation occurs because directly optimizing decoder layers without prior
alignment of RWKV and cross-attention modules disrupts the pretrained MLP weights, effectively
“polluting” the inherited linguistic and visual priors.

B.2 SCENE SEGMENTATION HYPERPARAMETERS

We further investigate the impact of varying K and similarity threshold τ on model performance.

Table 7: Ablation study on scene segmentation hyperparameters: similarity threshold τ and maxi-
mum number of scenes (K + 1), where K is the maximum number of boundary positions selected.
Performance reported on VNBench. Best results per column are bolded.

Threshold τ Max Scenes (K + 1) Retrieval Ordering Counting Avg
0.85 8 90.3 84.8 40.6 71.9
0.85 16 88.4 86.2 41.8 72.2
0.60 16 89.9 86.6 43.5 74.0
0.50 16 89.2 86.6 42.3 73.0

As shown in Table 7, the configuration with τ = 0.60 and K + 1 = 16 achieves the highest average
score (74.0%), outperforming both stricter thresholds like τ = 0.85 and looser ones like τ = 0.50.
Under a fixed threshold (τ = 0.85), increasing the maximum scene count from 8 to 16 slightly
improves performance (71.9% → 72.2%), suggesting that allowing more scene segments helps pre-
serve finer visual transitions. In contrast, τ = 0.60 with K + 1 = 16 achieves the best balance, as
it permits more semantically meaningful boundaries while avoiding excessive fragmentation. Low-
ering τ further to 0.50 (still with 16 scenes) reduces performance (73.0%), indicating that overly
permissive thresholds introduce noisy or redundant segments that harm global representation qual-
ity.
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C QUALITATIVE EVALUATION

C.1 PROMPTS FOR EVALUATION

We specify distinct prompts for each evaluation benchmark. For multiple-choice benchmarks, we
adopt a unified prompt format as follows:

Slow-Fast Architecture for Video Multi-Modal Large Language Models

C. Prompts for Evaluation
Here we specify the prompts we use for different benchmarks. For multi-choice selection benchmarks, including: VideoMME
(w/w.o. subtitles), MVBench, MLVU, LongVideoBench, EgoSchema, PerceptionTest, and the multi-choice split of
TempCompass, we unify the prompt for testing as the format below:

Evaluation prompt for multi-choice question answering benchmarks.
<Video>
Select the best answer to the following multiple-choice question based on the video and the subtitles. Respond with 
only the letter (A, B, C, or D) of the correct option.
 <Question>
A. <Option 1>
B. <Option 2>
C. <Option 3>
D. <Option 4>
Other options · · ·
The best answer is:

Specifically, for VideoMME with subtitles, we use the following prompt to integrate the subtitle information.

Evaluation prompt for VideoMME with subtitiles.
<Video>
This video’s subtitles are listed below:
<Subtitles>
Select the best answer to the following multiple-choice question based on the video and the subtitles.
<Question>
A. <Option 1>
B. <Option 2>
C. <Option 3>
D. <Option 4>
Other options · · ·
Answer with the option’s letter from the given choices directly.

For the open-ended benchmark ActivityNet, we use the following format as below:

Evaluation prompt for ActivityNet-QA.
<Video>
<Question>
Answer the question using a single word or phrase.

19

Figure 3: Prompt for multiple-choice benchmarks

For the open-ended benchmarks, we use the following format as below:

Slow-Fast Architecture for Video Multi-Modal Large Language Models

C. Prompts for Evaluation
Here we specify the prompts we use for different benchmarks. For multi-choice selection benchmarks, including: VideoMME
(w/w.o. subtitles), MVBench, MLVU, LongVideoBench, EgoSchema, PerceptionTest, and the multi-choice split of
TempCompass, we unify the prompt for testing as the format below:

Evaluation prompt for multi-choice question answering benchmarks.
<Video>
Select the best answer to the following multiple-choice question based on the video.
<Question>
A. <Option 1>
B. <Option 2>
C. <Option 3>
D. <Option 4>
E. <Option 5>
Other options · · ·
Answer with the option’s letter from the given choices directly.

Specifically, for VideoMME with subtitles, we use the following prompt to integrate the subtitle information.

Evaluation prompt for VideoMME with subtitiles.
<Video>
This video’s subtitles are listed below:
<Subtitles>
Select the best answer to the following multiple-choice question based on the video and the subtitles.
<Question>
A. <Option 1>
B. <Option 2>
C. <Option 3>
D. <Option 4>
Other options · · ·
Answer with the option’s letter from the given choices directly.

For the open-ended benchmark ActivityNet, we use the following format as below:

Evaluation prompt for open-ended benchmarks.
<Video>
<Question>
Answer the question using a single word or phrase.
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Figure 4: Prompt for open-ended benchmarks
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C.2 QUALITATIVE RESULTS

In this section, we present additional qualitative results of our hybrid model, including tasks such
as object recognition, visual reasoning, needle in a haystack, and counting problems. Results are
visualized in Figure 5.

——————————Object Recognition——————————

Question: Which of the following features/items is not discussed in the video in 

relation to the tomb?

Options: 'A. Inkstone.', 'B. Niche.', 'C. Jade.', 'D. Sacrificial table.’

Model prediction: C

——————————Visual Reasoning——————————

Question: On the screen, there are many advanced math problems on a piece of 

white paper. Among the problems, there is also a complete brain diagram. When 

the subtitle mentions 'an extraordinary brain that lacked the,' what color appears 

on the right side of the brain diagram?

Model prediction: The right side of the brain is blue with stains.

——————————Needle in a Haystack——————————

Question: What is the woman's appearance?

Options: 'A. She is an elderly woman.', 'B. She is a young girl.', 'C. She is a 

middle-aged woman.', 'D. She is a beautiful woman.’

Model prediction: D

——————————Counting Problem——————————

Question: Throughout this video, what is the total count of occurrences for the 

scene featuring the 'paragliding' action?

Model prediction: 1.

Figure 5: Visualization results of our model in some video understanding tasks.
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D THE USE OF LARGE LANGUAGE MODELS (LLMS)

We disclose that we used Qwen3-Max-Preview(Yang et al., 2025) to assist in polishing the language
and improving the clarity of this paper. The model was used for grammar correction, sentence re-
structuring, and enhancing overall readability. All technical content, experimental design, results,
and conclusions were authored and verified solely by the human authors. The LLM did not con-
tribute to the generation of ideas, methods, or data analysis.
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