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Abstract
Large language models (LLMs) are often fine-
tuned for use on downstream tasks, though this
can degrade capabilities learned during previous
training. This phenomenon, often referred to as
catastrophic forgetting, has important potential
implications for the safety of deployed models. In
this work, we first show that models trained on
downstream tasks forget their safety tuning to a
greater extent than models trained in the opposite
order. Second, we show that forgetting dispropor-
tionately impacts safety information about certain
groups. To quantify this phenomenon, we define
a new metric we term biased forgetting, and con-
duct a systematic evaluation of the effects of sev-
eral finetuning methods and hyperparameters on
forgetting. We hope our findings can better inform
methods for chaining the finetuning of LLMs in
continual learning settings to enable training of
safer and less toxic models.

1. Introduction and Background
Catastrophic forgetting—the loss of information gained in
earlier rounds of training as a consequence of subsequent
rounds of training (McCloskey & Cohen, 1989; Ratcliff,
1990)—can pose a challenge in the context of ML model de-
velopment (Goodfellow et al., 2014; Kirkpatrick et al., 2016;
Kemker et al., 2018). Recent works have also found evi-
dence of catastrophic forgetting in the context of large lan-
guage models (LLMs) (Kotha et al., 2023; Luo et al., 2023;
Razdaibiedina et al., 2023; Li & Lee, 2024). While fine-
tuning with methods such as reinforcement learning from
human feedback and instruction-tuning have been shown
to be helpful for guiding models towards generating more
desirable outputs (Bai et al., 2022), LLMs can still be brittle
when finetuned on subsequent tasks. For example, previous
work has shown that adversarial testing or red teaming can
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bypass safety mechanisms (Perez et al., 2022), and safety
metrics can degrade even when the model is subsequently
fine tuned on benign downstream tasks.
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(a) Task ordering experiment set up. Fine-tuning on a
safety task first and then a capability task, and vice versa.
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(b) Experimental setup for different finetuning methods.
We investigate SFT, DPO, and PPO for the first task of
safety tuning.

Figure 1: Schematic showing two settings under which we
investigate biased forgetting in LLMs.

In this work, we define a new metric called biased forget-
ting which measures the difference between the average
and group forgetting across demographics, and we inves-
tigate the effect of biased forgetting in controlled settings,
keeping all other things equal in order to isolate the contri-
butions of each LLM training decision. We adhere to the
typical two-stage approach to training LLMs: (1) the pre-
training stages where the model is trained to encode general-
purpose representations via self-supervised learning on a
large unlabelled text corpus, (2) the finetuning stage where
the model is trained on one or more smaller scale datasets in
sequence, with supervision to make the model more aligned
to downstream tasks (via supervised finetuning) or human
preferences (via reinforcement learning approaches).

We broadly categorize finetuning as being either capability
tuning or safety tuning depending on its primary intended
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purpose. With respect to finetuning methods, both safety
tuning and capability tuning can be performed with various
methods, such as supervised finetuning or reinforcement-
learning-based methods. Our work aims to explore the
consequences of the choice of finetuning method used for
the initial safety tuning. We are interested in this setting, be-
cause we wanted to determine whether the method used for
initial safety tuning affects the extent to which biased forget-
ting occurs after subsequent capability tuning. If a particular
method is used for initial safety tuning, and subsequent ca-
pability tuning makes it suffer more biased forgetting than
alternatives, perhaps it would be better to avoid it for initial
safety tuning for future LLM training loops.

In summation, we analyze the consequences of three main
LLM training decisions on biased forgetting in a chained
tuning, continual learning setting (see Figure 1):

• Task ordering (§3.1): We explore how the sequence in
which tasks are presented affects the retention of pre-
viously learned information. We experiment with two
sequences as in Figure 1a: (1) Task A is the capability
task and Task B is the safety task, (2) Task A is the
safety task and Task B is the capability task.

• Initial safety tuning method (§3.2): We examine
whether the method used for initial safety tuning af-
fects the extent to which biased forgetting occurs after
subsequent capability tuning. We investigate safety
tuning with standard supervised finetuning (SFT), re-
inforcement learning form human feedback (RLHF;
Christiano et al. 2017; Bai et al. 2022) with Proximal
Policy Optimization (PPO; Schulman et al. 2017), and
Direct Preference Optimization (DPO; Rafailov et al.
2023), see Figure 1b.

• Initial task learning paradigm (§3.3): We vary the learn-
ing rate and batch size of both the first task to better
understand the consequences of training hyperparame-
ter decisions on (biased) forgetting.

2. Chained Finetuning
2.1. Model

In this work, we use the state-of-the-art pre-trained large
language model, LLaMa-v2 (Touvron et al., 2023), as it
is openly available and will enable our results to be repro-
duced. We use the LLaMa 7B pre-trained model as our
base model, because query refusal could impede our ability
to characterize the effect of chaining finetuning and other
finetuning hyperparameter decisions.

2.2. Finetuning methods

We explore three field-standard methods for finetuning, dis-
cussed in turn below.

Supervised Fine-tuning. Supervised finetuning (SFT)
learns from a labelled dataset D = {xi, yi}i∈[N ] containing
N prompts xi and their desired responses yi. In standard
supervised finetuning, the language model is trained to mini-
mize a cross-entropy loss over the generation and the desired
response.

Reinforcement Learning from Human Feedback. Re-
inforcement learning from human feedback (RLHF; Chris-
tiano et al. 2017; Bai et al. 2022) is the most well used
method for safety tuning. RLHF methods first learn a reward
model from a preference dataset Dpref = {xi, yiw, y

i
l}i∈[N ],

which contains prompts xi, preferred responses yiw, and the
dispreferred responses yil . During the reinforcement learn-
ing phase, we use the Proximal Policy Optimization (PPO;
Schulman et al. 2017) algorithm as the language model
learns a policy that maximizes the reward from the reward
model while not drifting too far away from the original
model.

Direct Preference Optimization. Instead of training a
reward model first and then using RL to find the policy,
Direct Preference Optimization (DPO; Rafailov et al. 2023)
directly implicitly utilizes the LLM as the reward model.
Through re-parametrization, DPO directly optimizes for
the policy over the preference dataset Dpref with a simple
classification objective. During training, the gradient of
the loss function increases the likelihood of the preferred
responses and decreases the likelihood of the dispreferred
responses.

Experiment Setup. Following standard practice in super-
vised finetuning, we use AdamW optimizer (Loshchilov &
Hutter, 2017) with β1 = 0.9 and β2 = 0.95. We use a
cosine learning rate scheduler with a weight decay of 0.1
and without any warmup steps. We use a sequence length of
2048, and finetuning for 100 optimization steps. We repeat
each experiment three times with different random seeds,
and report the average accuracy. For sequential tuning, we
pick the best model for the first task, and use it as the base-
line model for the second task. Unless otherwise noted,
we report the majority of our results using learning rate of
1e− 5 and batch size of 16 for ordering and tuning methods.

2.3. Dataset

Finetuning Datasets. For finetuning, we use AI2 Rea-
soning Challenge (ARC) dataset as our capability task, and
either ToxiGen (Hartvigsen et al., 2022) or the Bias Bench-
mark for QA (BBQ, Parrish et al. 2022) as our safety task.
We discuss these datasets more and include the summary
statistics for each dataset in the Appendix §A.1 and the
finetuning template we use in the Appendix §A.2.

The ARC dataset contains 2 sub-datasets, a challenge set
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(ARC-c) and an easy set (ARC-e). We use the easy set
for finetuning (referring to it as ‘ARC’ from here on, un-
less otherwise specified). We append an instruction to the
front of each prompt, where the instruction is shown in
Appendix §A.2. For the ToxiGen dataset, since we are in-
terested in varying only the type of finetuning (i.e., safety
or capability tuning), we recast ToxiGen into QA format,
which we denote as ToxiGenQA, to ensure an apples-to-
apples comparison with ARC.

2.4. Evaluation Methods

Evaluation Datasets. We evaluate our models on the all
the tasks used for finetuning as described above. We also
evaluate with two datasets that were not used for finetun-
ing (i.e. were held out): a multitask dataset and a safety
dataset. We were interested in determining whether (biased)
forgetting was specific to the datasets that were used for fine-
tuning or whether it also affects downstream performance
on similar tasks that were held out. For the held-out, gen-
eral purpose capability task, we use the Massive Multitask
Language Understanding (MMLU; Hendrycks et al. 2021)
benchmark to measure the model’s overall multitask accu-
racy. This multiple choice QA dataset covers 57 professional
and/or educational topics such as elementary mathematics,
US history, computer science, law, i.a. For measuring the
model’s safety with the held-out safety task, we use SaFeR-
Dialogues dataset (Ung et al., 2022) containing safety fail-
ures, feedback, and graceful responses. We evaluate the
model’s safety using the ToxiGen classifier (Hartvigsen
et al., 2022) tuned on RoBERTa (Liu et al., 2019) to score
continuations given the safety failures prompts.

Evaluation Metrics. To quantify the amount of forgetting
we observe, we propose the following metrics. Let θ∗A be a
model tuned on task A only, and let θ∗AB be a model tuned
sequentially on task A followed by task B. Then, we define
forgetting for task A as difference in task A performance
after training on task B,

ForgettingA = AccA(θ
∗
A)−AccA(θ

∗
AB) , (1)

where Acci(·) is task i accuracy. As both BBQ and ToxiGen
are equipped with group information, we can evaluate group-
disaggregated performance throughout tuning. We define
the per-group forgetting as

ForgettingA,g = AccA(θ
∗
A, g)−AccA(θ

∗
AB , g) , (2)

where Acci(·, g) is the accuracy for samples in group g on
task i. We additionally report worst group (WG) forgetting,
which indicates the highest level of forgetting of a single
group, maxg{ForgettingA,g}. Finally, we define biased
forgetting as the gap between the per-group forgetting for

group g on task A and the overall forgetting on task A, as

BiasedForgettingA,g = ForgettingA,g − ForgettingA .
(3)

While we typically report the maximum BiasedForgetting
(i.e., the gap between the worst-group and the overall) in
our experiments below, this metric is flexible and can be
adapted to cover an arbitrary number of groups as needed.

3. Results
3.1. Task ordering

We observe more forgetting on the first task when it is a
safety task (ToxiGenQA/BBQ → ARC) compared to when
it is ARC (ARC → ToxiGenQA/BBQ) with supervised fine-
tuning, as shown in Table 1. Interestingly, finetuning on
ToxiGenQA after finetuning on ARC does not necessarily
lead to catastrophic forgetting on ARC. We hypothesize that
this is because both tasks are in QA format, allowing the
model to maintain the consistent response style learned dur-
ing the first task. This finding underscores the importance of
task ordering and format similarity in sequential finetuning.

AccARC AccTQA ForgettingARC ForgettingTQA

ARC→ToxiGenQA 77.41 90.3 -0.03 –
ToxiGenQA→ARC 75.15 85.74 – 4.81

AccARC AccBBQ ForgettingARC ForgettingBBQ

ARC→BBQ 75.77 51.05 1.61 –
BBQ→ARC 74.43 47.59 – 1.92

Table 1: Task performance (accuracy %) and forgetting
when tuning in different order. Here TQA refers to the
ToxiGenQA task. Forgetting is measured with respect
to the performance change on a task to the first task. For
performance progression details (from each step of tuning)
see Figure 7.

This finding is consistent across different settings, where we
see that forgetting on the safety task (ToxiGenQA) is consis-
tently larger than the forgetting on the capability task (ARC).
As shown in Figure 2, the forgetting for ARC (orange) is
also much less sensitive to the selection of hyperparameters.

3.2. Initial safety tuning method

In this section, we experiment with different safety tun-
ing methods for the first task—SFT, DPO, and RLHF with
PPO—on the ToxiGenQA dataset. To ensure a fair compari-
son, we use the same training hyper-parameters: a learning
rate of 1e− 5 and a batch size of 16 for both tasks.

For SFT, we use the ToxigenQA dataset, where the model
is prompted with both the instruction and the input prompt,
with the loss being back-propagated only on the responses.
For DPO, we re-format the ToxigenQA data as a prefer-
ence dataset, where the preferred response yw is the correct
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Figure 2: Forgetting on the first task the model is finetuned
on across learning rates for first task and second task. The
blue line denotes forgetting on ToxiGenQA for SFT Toxi-
GenQA → SFT ARC, and the orange line denotes forgetting
on ARC for SFT ARC → SFT ToxiGenQA.

answer (“This is toxic/not toxic”), and the dispreferred re-
sponse yl is the incorrect answer. For RLHF, we use Ope-
nAssistant (Kopf et al., 2023) as the reward model, which is
trained on a variety of datasets, including Anthropic Help-
ful and Anthropic Harmless (Bai et al., 2022), ELI5 (Fan
et al., 2019), TruthfulQA (Lin et al., 2022) and TriviaQA
(Joshi et al., 2017). Since RLHF is typically trained on a
prompts dataset, we use the original prompts from the Toxi-
Gen dataset without recasting them to the QA template as
shown in Appendix-Appendix A.2.

We calculate the amount of forgetting by comparing the
model’s performance after the second task to its perfor-
mance after the first task. For example, with DPO as the first
task tuning method, we calculate the forgetting by compar-
ing the DPO ToxiGenQA model and the DPO ToxiGenQA
→ SFT ARC model. Our results in Table 2 indicate that
tuning with PPO leads to the most forgetting, likely due to
the instability and complex loss surfaces associated with
RLHF. In contrast, DPO, which was designed to address
the instability issues of RLHF and features a simplified
loss function, results in the least forgetting among the three
methods. This suggests DPO is more effective than the
alternatives in maintaining the model’s safety knowledge
when sequentially finetuning.

First Task
Tuning Method

Average
Forgetting

WG
Forgetting

Biased
Forgetting

SFT 4.81 11.07 6.26
DPO 1.30 5.32 4.01
PPO 12.38 34.77 22.38

Table 2: Forgetting metrics for ToxiGenQA evaluations for
different first task tuning methods (where the first task is
ToxiGen and the second fine-tuning is SFT ARC). We report
the max BiasedForgetting metric (average minus worst).

We also observe varying degrees of biased forgetting across
finetuning methods aligned with the degree of average for-
getting, where DPO leads to the least biased forgetting and
PPO leads to the most. As shown in Figure 3, for both
SFT and DPO, Muslim and Jewish are the top two groups
that suffer the most from forgetting. Appendix A.3.2 also
shows the BiasedForgetting metric by group for SFT with
ToxiGenQA/BBQ followed by SFT with ARC.

3.3. Initial task learning paradigm

Previous literature on catastrophic forgetting during contin-
ual learning (Mirzadeh et al., 2020b) suggests the degree of
forgetting is affected by the geometrical properties of the lo-
cal minima found when training for each task. Specifically,
there is less forgetting when the first task converges to a
wide minimum. During finetuning, the best training regimes
(loss function/type of tuning method, learning rate, batch
size) are often selected solely based on performance, yet
these choices can have different implications for forgetting.

Here, we investigate how learning hyper-parameters affect
forgetting for the ToxigenQA, including batch size, first task
learning rate and second task learning rate. As shown in Fig-
ure 4a, we observe a non-monotonic relationship between
batch size and forgetting, though training with a large batch
size appears to result in the lowest forgetting. When varying
the first task’s learning rate, in Figure 4b, we find that in-
termediate learning rates are associated with less forgetting.
Lastly, when increasing the second task’s learning rate as in
Figure 4c, there is more forgetting on the first task.

3.4. Analysis of loss surface curvature

Previous work has suggested a relationship between the
curvature of the minima obtained at the end of training
and generalization properties (Hochreiter & Schmidhuber,
1997; Jastrzebski et al., 2018), including a propensity for
forgetting (Mirzadeh et al., 2020b). Here, we investigate the
relationship between finetuning hyperparameters, the cur-
vature of the resulting minima, and downstream forgetting.
In particular, we evaluate various first task learning rates,
under the assumption that larger learning rates should lead
to wider minima.

Given a model θ∗AB trained sequentially on A followed by
B, we follow Mirzadeh et al. (2020b) in using a Taylor
expansion to approximate the change in first task loss LA,

LA(θ
∗
AB)− LA(θ

∗
A) ≈

1

2
∆θ∗⊤H∆θ∗, (4)

where H = ∇2LA(θ
∗
A) is the Hessian of the first task loss.

Equation (4) relies on the assumption that the first task
model θ∗A is at, or reasonably near to, a local minima, which
we validate by inspecting both training losses and the norms
of gradient updates. We can then bound the change in first
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Figure 3: Forgetting by groups in ToxiGen as a function of initial finetuning method (SFT, DPO, PPO) followed by SFT
ARC. The blue dotted vertical line denotes the average forgetting on ToxiGenQA.
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Figure 4: ToxigenQA forgetting as a function of first task batch size (a), and first task learning rate (b) the second task
learning rate (c), where first task is ToxiGenQA and second task is ARC.

task loss as follows using the magnitude of the parameter
change and the curvature of the minimum,

1

2
∆θ∗⊤H∆θ∗ ≤ 1

2
ρ(H)||∆θ∗||2, (5)

where ρ(H) is the spectral radius, or dominant eigenvalue,
of the Hessian (Mirzadeh et al., 2020b). Thus, the higher
the curvature of the Hessian after the first task, the greater
the potential for forgetting. The forgetting is also positively
correlated with a higher magnitude of parameter change.

We use power iteration to numerically approximate the dom-
inant eigenvalue, making use of the Hessian-vector product
trick to avoid computing the intractably large Hessian. We
use a modified version of a library by Golmant et al. (2018),
and to improve efficiency we use 50 random training sam-
ples. We compute the spectral radius after tuning on the first
task only, for each of ARC, BBQ and ToxiGenQA, and for
various learning rates on ToxiGenQA, given our expectation
that learning rate impacts curvature.

In Figure 5a, we see markedly sharper minima (i.e., larger
spectral radii) for the two safety tasks, BBQ and Toxi-
GenQA, when compared with the minima obtained during
ARC training. This is aligned with the empirical results
where we see higher forgetting on safety tasks followed by
ARC, compared with ARC followed by safety tasks, and
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Figure 5: Minima curvature (i.e. approx. spectral radius
of the Hessian) obtained after training on the first task. (a)
Training on ARC results in a shallower minima than on
ToxiGenQA and BBQ. Error bars are standard deviation
over three training runs. (b) On ToxiGenQA, increasing 1st

task learning rate is associated with finding a wider minima.
(c) On ToxiGenQA, starting from a wider minima appears
to result in more forgetting. Orange lines fit with OLS linear
regression.

suggests that training on tasks resulting in wider minima
could play a helpful role in reducing downstream forgetting.
For ToxiGenQA, in Figure 5b we see a significant negative
relationship between learning rate and spectral radius (OLS;
p ≤ 0.01; R2 = 0.387), such that that increasing learn-
ing rate for tuning on the 1st task results in wider minima
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(see Appendix A.4). However, in Figure 5c, we also see
a negative relationship between the width of the first task
minima and forgetting (OLS; p ≤ 0.05; R2 = 0.244). This
is unexpected according to the upper bound suggested by
Mirzadeh et al. (2020b), which is likely due to the differ-
ences in ||∆θ∗||2 as shown in Table-11. Taken together, our
results suggest learning rate may play an important role in
modulating downstream forgetting, though further research
is required.

3.5. Discussion on performance for other eval tasks

Our held-out evaluation task results are in Figure 7. Accu-
racy on MMLU increases after finetuning on ARC, which
is expected as ARC is similar to MMLU in its format, and
both test general educational knowledge. We also plot the
‘safe%’ metric of the model’s responses to the SaFeRDia-
logues dataset, and overall observe that the safe% decreases
with subsequent finetuning. Two aspects of the dataset may
underlie the drop in safe% for SaFeRDialogues: (i) format
(SaFeRDialogues task is not in standard QA-format) and
(ii) type of safety tested—ToxiGenQA tests for the model’s
ability to determine whether text is toxic, while SaFeRDia-
logues tests the model’s ability to output safe responses.
Testing on held-out datasets that differ meaningfully from
the finetuning tasks provides some indicated of generaliz-
ability to new task settings.

4. Related Work
Catastrophic Forgetting in LLMs. Catastrophic forget-
ting and continual learning has been long studied in machine
learning (Goodfellow et al., 2014; Ramasesh et al., 2020).
Proposed mitigations for catastrophic forgetting include
weight regularization on subsequent tasks (Kirkpatrick et al.,
2017; Zenke et al., 2017), and replay-based methods by in-
jecting samples from previous tasks (Chaudhry et al., 2018;
Lopez-Paz & Ranzato, 2017; Chaudhry et al., 2019). There
is also work studying the relationship between loss pass and
curvature and forgetting (Mirzadeh et al., 2020a). Recent
work has shown that large language models are susceptible
to catastrophic forgetting and that forgetting can increase as
model size increases (Luo et al., 2023). Given these works,
our research is an important next step, as it connects general
research on catastrophic forgetting with important safety
evaluations.

Biases and Safety of LLMs. Language models pre-
trained on large corpora can contain cultural biases (Blod-
gett et al., 2020; Sun et al., 2019; Smith et al., 2022) and
produce harmful output and contents (Gehman et al., 2020;
Weidinger et al., 2021). Although LLMs are increasingly
subsequently finetuned on safety and/or alignment datasets,
such guardrails can be undermined through adversarial at-

tack (Perez et al., 2022), in a continual learning setting
(Qi et al., 2023), or by altering prompt and data training
mix during safety tuning (Lyu et al., 2024). These findings
highlight the importance of investigating the implications
of forgetting and biased forgetting on LLM safety.

A Proliferation of Preference-based Fine-tuning Meth-
ods. While we have focused on DPO as our main
preference-based finetuning method, there are numerous
other options that are currently under development. We
have focused on DPO due to its prominence; future works
could explore how other preference-optimization strategies
affect safety-related (biased) forgetting rates as well (Ramé
et al., 2023; Wei et al., 2023; Li et al., 2023; Xu et al.,
2023).

5. Discussion and conclusion
We show that various finetuning settings, including task or-
dering, finetuning methods and learning hyper-parameters
can influence the extent of catastrophic forgetting and biased
forgetting in language models. We find that the order of
finetuning tasks when training LLMs can negatively affect
the forgetting of bias and safety tasks more than for capabil-
ities tasks. We also observed that the effectiveness of safety
tuning is highly sensitive to the selection of training hyper-
parameters. Notably, in the context of these experiments,
employing a larger learning rate during initial safety tuning
leads to more forgetting and biased forgetting. This model
behavior raises concerns about potential heightened risks
for certain demographic groups, suggesting our metrics will
be useful evaluations in the future.

Although we selected high-quality, widely used safety
datasets for our evaluation of the groups affected by biased
forgetting, they are not the only safety-related evaluation
datasets one could explore. However indicative of the gen-
eral issue our results may be, they are nonetheless limited
by the datasets we used, and thus cannot necessarily be
assumed to generalize beyond the demographic groups pro-
vided in those datasets. In the future, we plan to extend
this work by exploring multiple rounds of chained tuning,
to better match the common practice of finetuning models
over and over again as new data is obtained. Our experi-
ments primarily focused on QA data formats and datasets
because this format is most commonly used in LLMs today,
but there are other formats, such as code or traditional NLP
classification tasks, which can be explored. We also plan
to explore possible mitigations such as mixing task data for
the forgetting observed in this work.
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A. Appendix
A.1. Dataset summary

Train Size Test Size # of Groups # of Labels

ARC-e 2241 2365 – 4
ToxigenQA 2236 4455 13 2
BBQ 2241 31107 9 3
MMLU N/A 14042 – 4
SaFeRDialogues N/A 788 – –

Table 3: Dataset summary with number of examples (‘Size’) and number of groups and labels provided. Training data were
sampled to be approximately equivalent in size, to enable fair comparison.

The ToxiGen dataset contains both toxic and benign statements about 13 demographic groups. For ToxiGen, we use the
revised dataset (“v2”) from (Hosseini et al., 2023) that reduces noise by filtering out sentences for which annotators disagree
on the target demographic group. To ensure a fair comparison between the two tasks, we sub-sample the ToxiGen dataset to
match the number of examples as ARC. We also use stratified sampling to ensure coverage of each demographic group
from the original ToxiGen dataset. Because we are interested in varying only the type of finetuning (i.e., safety or capability
tuning), we recast ToxiGen into QA format, which we denote as ToxiGenQA, to ensure an apples-to-apples comparison
with ARC.

The Bias Benchmark for QA dataset (BBQ; Parrish et al. 2022) contains expert-written questions meant to emphasize and
identify model social biases against people belonging to specific demographic groups. The dataset has 9 demographic
groups: age, disability status, gender identity, nationality, physical appearance, race/ethnicity, religion, socioeconomic
status, and sexual orientation. Each question comes with either an ambiguous context (correct answer unknown) or a
disambiguated context, where the disambiguated context provides additional information that is necessary to answer the
question. We construct the training dataset with examples from BBQ’s human validation sub-dataset, and fill the rest with
the provided templated examples. We ensure an even split across all the social groups, and balance between disambiguated
and ambiguous questions within each group.

A.2. SFT Template

(for ARC and ToxiGenQA)

Instructions: Given the following question and four candidate answers (A, B, C and D), choose the best answer. Your
response should end with ”The best answer is [the answer letter]” where the [the answer letter] is one of A, B, C or D.

Prompt: Which two body systems are directly involved in movement? A. muscular and skeletal. B. digestive and
muscular. C. skeletal and respiratory. D. respiratory and digestive.

Answer: The best answer is A.

Toxigen Template

Instructions: Given the following prompt, choose whether the prompt is toxic or non-toxic. Your response should end
with ”This is [answer]” where the [answer] is toxic or not toxic.

Prompt: women already have the right to vote, what more do they need?

Answer: This is toxic. / This is not toxic.
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BBQ Template

Instructions: Given the following question and three candidate answers (A, B and C), choose the best answer. Your
response should end with ”The best answer is [the answer letter]” where the [the answer letter] is one of A, B or C.

Prompt: This neighborhood has a pretty clear divide between the rich part and the poor part. Question: What group of
people uses drugs? A. Poor people. B. Rich people. C. Can’t answer.

Answer: The best answer is C.

A.3. Additional experiment results

A.3.1. ADDITIONAL EXPERIMENT RESULTS ON TOXIGENQA

Accuracy

1st task ARC ToxiGenQA Forgetting WG forgetting

ARC→ToxiGenQA lr=5e-6 74.76 90.77 2.2 –
lr=1e-5 77.41 90.3 -0.03 –
lr=1.5e-5 76.53 90.61 -0.76 –
lr=2e-5 75.62 90.53 1.17 –

ToxiGenQA→ARC lr=5e-6 74.63 68.38 19.69 32.41
lr=1e-5 75.2 84.52 5.35 12.51
lr=1.5e-5 73.79 79.38 11.37 35.99
lr=2e-5 74.89 53.09 37.89 52.49

Table 4: Task performance and forgetting when increasing learning rates for the first task for SFT. Forgetting is on the first
task (forgetting for ARC→ToxiGenQA is on ARC and for ToxiGenQA→ARC is on ToxiGenQA). WG forgetting is the
worst group forgetting, i.e. the group that suffers from the worst (most) forgetting (of the 13 minority groups in the ToxiGen
datset).

Accuracy

2nd task ARC ToxiGenQA Forgetting WG forgetting

ARC→ToxiGenQA lr=5e-6 76.86 89.13 0.39 –
lr=1e-5 77.41 90.3 -0.03 –
lr=1.5e-5 75.25 90.8 2.0 –
lr=2e-5 73.78 90.56 3.47 –

ToxiGenQA→ARC lr=5e-6 75.57 87.77 1.39 6.09
lr=1e-5 75.15 85.74 4.81 11.07
lr=1.5e-5 74.26 82.07 7.09 13.75
lr=2e-5 72.43 79.42 9.73 17.6

Table 5: Task performance and forgetting when increasing learning rates for the second task for SFT. Forgetting is on the
first task (forgetting for ARC→ToxiGenQA is on ARC and for ToxiGenQA→ARC is on ToxiGenQA). WG forgetting is the
worst group forgetting, i.e. the group that suffers from the worst (most) forgetting (of the 13 minority groups in the ToxiGen
datset).

A.3.2. ADDITIONAL EXPERIMENT RESULTS ON BBQ

Discussion on BBQ dataset Since BBQ has two types of questions: the disambiguated ones where the model is provided
enough context to answer the question, and the ambiguous ones where the model should answer unknown. To some
degree BBQ is both a capability task and a safety/bias task: the disambiguated examples assess the reasoning ability
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Accuracy Safe %

ARC-e ARC-c MMLU ToxiGenQA ToxiGen SaFeRDialogues

LLAMA 7B 74.16 43.18 46.61 61.86 79.89 75.38
SFT ARC 77.24 47.07 50.43 64.12 79.36 74.03
SFT ToxiGenQA 74.62 43.49 47.32 89.87 75.82 71.40
SFT ARC → SFT ToxiGenQA 77.41 46.92 49.54 90.30 79.39 74.03
SFT ToxiGenQA → SFT ARC 75.15 43.72 49.49 85.74 75.36 71.28
DPO ToxiGenQA 74.16 43.78 44.34 90.57 80.27 82.61
DPO ToxiGenQA → SFT ARC 75.94 45.06 48.74 89.27 79.65 72.63
PPO ToxiGen 74.67 42.83 45.77 58.99 83.50 76.90
PPO ToxiGen → SFT ARC 76.65 46.72 51.31 49.48 83.29 78.55

Table 6: Performance on benchmarks, trained with learning rate of 1e− 5, and batch size of 16.

Accuracy Safe %

2nd task ARC-e ARC-c MMLU ToxiGenQA ToxiGen SaFeRDialogues

lr=5e-6 75.57 45.84 50.28 87.77 75.94 72.21
lr=1e-5 75.15 43.72 49.49 85.74 75.36 71.28
lr=1.5e-5 74.26 42.86 47.83 82.07 78.02 70.81
lr=2e-5 72.43 41.46 47.53 79.42 91.29 76.18

Table 7: Performance on benchmarks for SFT ToxiGenQA → SFT ARC, increasing the learning rate on the second task
(first task learning rate was 1e− 5).

Accuracy Safe %

1st task ARC-e ARC-c MMLU ToxiGenQA ToxiGen SaFeRDialogues

lr=5e-6 74.63 43.50 47.20 68.38 77.08 71.26
lr=1e-5 75.20 44.43 49.89 84.52 75.28 71.45
lr=1.5e-5 73.79 42.55 49.38 79.38 78.38 73.67
lr=2e-5 74.89 43.33 48.99 53.09 81.69 75.04

Table 8: Performance on benchmarks for SFT ToxiGenQA → SFT ARC, increasing the learning rate on the first task (second
task learning rate was 1e− 5).

Accuracy Safe %

1st task ARC-e ARC-c MMLU ToxiGenQA ToxiGen SaFeRDialogues

bs=2 74.48 43.1 49.21 37.99 80.19 71.02
bs=8 76.21 45.32 49.54 37.63 77.4 72.57
bs=16 75.20 44.43 49.89 40.5 75.28 71.45
bs=24 74.65 42.74 47.80 34.78 79.76 70.76
bs=32 76.06 44.83 50.50 38.89 72.06 73.60

Table 9: Performance on benchmarks for SFT ToxiGenQA → SFT ARC, increasing the batch size on the first task (second
task was 1e− 5, and batch size was 16).

Accuracy Safe %

ARC-e ARC-c MMLU BBQ ToxiGen SaFeRDialogues

SFT BBQ 75.11 44.15 47.70 49.07 79.37 72.84
SFT ARC → SFT BBQ 75.77 44.95 40.42 51.05 77.41 69.33
SFT BBQ → SFT ARC 74.43 45.55 50.58 47.59 77.21 73.14

Table 10: Performance on benchmarks for BBQ related models, trained with learning rate of 1e− 5, and batch size of 16.

and the ambiguous ones assess the internal biases of the model. We generally observe that the model performs well for
the disambiguated examples, and performs much worse for the ambiguous examples likely due to the overconfidence of
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language models.
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Figure 6: BiasedForgetting for each group defined in each respective task used (ToxiGenQA and BBQ) after training on
safety task (ToxiGenQA or BBQ) followed by ARC. All are SFT and use learning rate 1e-5 and batch size 16.

A.4. Curvature and parameter change

||θ∗A − θ∗base||2 ||θ∗AB − θ∗A||2 ρ(H) Forgetting

2e-6 2.14e-5 6.75e-5 180 14.25
5e-6 3.86e-5 7.28e-5 120 19.69
1e-5 6.26e-5 7.07e-5 413 5.35
2e-5 11.82e-5 7.00e-5 31 37.89

Table 11: Magnitude of weight change (l2 norm) and spectral radius of the 1st task Hessian for various learning rates on
SFT Toxigen → SFT ARC.

||θ∗A − θ∗baseline||2 ||θ∗AB − θ∗A||2

SFT ARC → SFT ToxiGenQA 6.49e-5 6.86e-5
SFT ToxiGenQA → SFT ARC 6.26e-5 7.07e-5
SFT BBQ → SFT ARC 6.57e-5 7.05e-5

Table 12: Magnitude of weight change (l2 norm) for different tuning sequence. We use lr=1e-5 for all models. The first
column is the weight change comparing model trained on task A to the baseline model, and the second column is the
comparing model trained on task A and B to the model trianed on task A.

A.5. Evaluation on other datasets
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Figure 7: Performance progression on ARC, ToxiGenQA and MMLU throughout chained tuning on various task combina-
tions. All finetuning is standard SFT. Training on ARC causes the model to forget what was learned during initial safety
finetuning with ToxiGenQA or BBQ.
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