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Abstract
Deep neural networks learn structured features
from complex, non-Gaussian inputs, but the mech-
anisms behind this process remain poorly under-
stood. Our work is motivated by the observation
that the first-layer filters learnt by deep convo-
lutional neural networks from natural images re-
semble those learnt by independent component
analysis (ICA), a simple unsupervised method
that seeks the most non-Gaussian projections of
its inputs. This similarity suggests that ICA pro-
vides a simple, yet principled model for study-
ing feature learning. Here, we leverage this con-
nection to investigate the interplay between data
structure and optimisation in feature learning for
the most popular ICA algorithm, FastICA, and
stochastic gradient descent (SGD), which is used
to train deep networks. We rigorously establish
that FastICA requires at least n ≳ d4 samples
to recover a single non-Gaussian direction from
d-dimensional inputs on a simple synthetic data
model. We show that vanilla online SGD outper-
forms FastICA, and prove that the optimal sample
complexity n ≳ d2 can be reached by smoothing
the loss, albeit in a data-dependent way. We fi-
nally demonstrate the existence of a search phase
for FastICA on ImageNet, and discuss how the
strong non-Gaussianity of said images compen-
sates for the poor sample complexity of FastICA.

1. Introduction
The practical success of deep neural networks is gener-
ally attributed to their ability to learn the most relevant
input features directly from data (LeCun et al., 2015). A
classic example for this feature learning are deep convolu-
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tional neural networks (CNNs), which recover Gabor fil-
ters (Gabor, 1946) like the ones shown in Figure 1(a) in
their first layer when trained on sets of natural images like
ImageNet (Krizhevsky et al., 2012; Lindsey et al., 2019;
Guth & Ménard, 2024). Since Gabor filters are localised
in both space and frequency domains, they are effective for
capturing edges and textures in natural images (Hyvärinen
et al., 2009). How these filters emerge from training a deep
network end-to-end on natural images with stochastic gradi-
ent descent remains a key question for the theory of neural
networks.

Deep neural networks are not the only approach to learning
Gabor filters directly from data. Instead, it is well-known
that independent component analysis (ICA) (Comon, 1994;
Bell & Sejnowski, 1995; Olshausen & Field, 1996; Bell &
Sejnowski, 1996; Hyvärinen & Oja, 2000), a simple, unsu-
pervised learning algorithm, learns filters that are similar to
the first-layer filters of a deep CNN when applied to patches
of natural images, see Figure 1(b). The key idea of ICA is
to identify directions of maximal non-Gaussianity in input
space, suggesting that the non-Gaussian structure in data
plays a crucial role in shaping the representations learnt by
deep neural networks (Refinetti et al., 2023). More precisely,
given a set of n zero-mean inputs D = {x1, x2, . . . , xn},
ICA seeks the direction w∗ ∈ Rd that maximises the non-
Gaussianity of the projections of the inputs s := w · x,

w∗ := argmax
∥w∥=1

ED G(w · x), (1)

where the contrast function G is a measure of the non-
Gaussianity of the projection s, for example its excess
kurtosis G(s) = s4 − 3. For ICA, inputs are always pre-
whitened, so ICA can be seen as a refinement of stan-
dard principal component analysis, which instead seeks
the projection of the data that maximises its variance, i.e.
G(s) = s2. On images, PCA yields a completely differ-
ent set of filters which is spatially extended and oscillating
due to the approximate translation-invariance of the image
patches (Hyvärinen et al., 2009), see Figure 1(c).

A closer look at the dynamics of the CNNs trained on
the standard ImageNet dataset (Deng et al., 2009) reveals
further similarities between ICA and deep CNNs. In Fig-
ure 1(d), we plot the excess kurtosis of the first-layer pro-
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Figure 1. Independent component analysis yields similar filters as deep convolutional neural networks. (a) The first-layer
convolutional filters extracted from an AlexNet trained on ImageNet show the hallmarks of Gabor filters (Gabor, 1946), like orientation,
localisation, and bandwidth-specificity. (b) Independent components found with online SGD on 100 000 64 × 64 patches extracted
from ImageNet. (c) Leading principal components of the same ImageNet patches. (d) Excess kurtosis of the representations of the first
convolutional layer of three deep CNNs during training on ImageNet. For each filter, we compute the dot product s between its weights
and patches sampled from ImageNet, then compute its excess kurtosis averaged over image patches and neurons. (e) Snapshots of a subset
of convolutional filters of AlexNet at various points during training. As the excess kurtosis of representations increases, prototypes of
Gabor filters emerge, which are then sharpened during the remainder of training. Full experimental details in Appendix A.1.

jections skµ = wk · xµ of ImageNet patches xµ along the
weights {wk}k=1,...,K of the K first-layer filters of three
different CNNs during training, averaged over patches and
neurons. If the projections skµ are normally distributed,
the excess kurtosis is (close to) zero, as is the case early
during training when weights are close to their (uniform)
initialisation. In all three networks, the non-Gaussianity of
projections increases sharply between 103 and 104 steps,
before plateauing. Interestingly, the moment in which the
deep CNN focuses on non-Gaussian projections is precisely
the moment in which the Gabor filters form, see Figure 1(e).

Taken together, the similarity between filters obtained by
deep CNNs and ICA and the dynamics of the excess kurtosis
of first-layer representations of deep CNNs suggest that ICA
can serve as a simplified, yet principled model for studying
feature learning from non-Gaussian inputs.

In this work, we develop a quantitative theory of feature
learning from non-Gaussian inputs by providing a sharp
analysis of the sample complexity of two algorithms for
Independent Component Analysis, namely FastICA, the
most popular ICA algorithm used in practice, and SGD,
which is used to train deep neural networks.

Early theoretical works on independent component analysis
focused mostly on the speed of convergence of different
algorithms for finding w∗ in the classical regime of fixed
input dimension and large number of samples; the most
popular algorithm for performing ICA, FastICA (Hyvärinen
& Oja, 2000), derives its name from the fact that it con-
verges with a quadratic (Hyvarinen, 1999) rather than linear
rate. However, ICA struggles in modern applications where
inputs tend to be high-dimensional; for example, its perfor-
mance is highly sensitive to its initial conditions (Zarzoso
et al., 2006; Auddy & Yuan, 2024). For algorithms run-
ning in high dimensions, the main bottleneck is typically

not the speed of convergence, but the length of the initial
search phase before the algorithm recovers any trace of a
signal (Bottou, 2003; Bottou & Le Cun, 2003). The focus
of our work is therefore in establishing lower bounds on
the sample complexity required by FastICA and SGD for
escaping the search phase.

Recently, Auddy & Yuan (2024) showed that in high di-
mensions, n ≳ d/ε2 samples are necessary and sufficient
to ensure the existence of estimates of the non-Gaussian
directions with an error up to ε when given unlimited com-
putational resources, while the sample complexity required
for polynomial time algorithms is n ≳ d2/ε2. They also
proposed an initialisation scheme for FastICA that reaches
the optimal performance. While these results establish fun-
damental statistical and computational limits of ICA, a pre-
cise and rigorous analysis of how the two main algorithms
used in practice, FastICA and SGD, escape the search phase
starting from random initialization is lacking.

In this paper, we derive sharp algorithmic thresholds on
the sample complexity required by ICA to recover non-
Gaussian features of high-dimensional inputs. Our analy-
sis leverages recent breakthroughs in the analysis of super-
vised learning dynamics with Gaussian inputs Ben Arous
et al. (2021); Damian et al. (2023); Dandi et al. (2024) for
analysing the unsupervised case with non-Gaussian inputs.
Our main results are as follows:

• We prove that the popular FastICA algorithm exhibits
poor sample complexity, requiring a large-size batch
of n ≳ d4 to recover a hidden direction in the first step
(see Section 3.3);

• We prove that the sample complexity of online SGD
can be reduced down to the computational threshold of
n ≳ d2, at the cost of fine-tuning the contrast function
in a data-dependent way (see Section 3.5);
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• We demonstrate that FastICA exhibits a search phase
at linear sample complexity when trained on Ima-
geNet patches, but recovers a non-Gaussian direction
at quadratic sample complexity, and we discuss how
the strong non-Gaussianity of real images speeds up
recovery (see Section 4).

The main technical challenge in establishing our results
is dealing with the non-Gaussianity of the inputs, which
adds complexity to our analysis both by introducing addi-
tional terms whose statistics need to be controlled, and by
impacting the intrinsic properties of the loss function.

2. Setup
We first describe the most popular algorithm to perform ICA,
called FastICA, and we introduce the classic ICA model for
synthetic data which will allow us to systematically test the
performance of FastICA.

2.1. FastICA and contrast functions

Performing ICA on a generic set of inputs x ∈ Rd drawn
from a data distribution P with zero mean and identity co-
variance means finding a unit vector w ∈ Sd−1 which is an
extremum of the population loss

L(w) := EP G(w · x), (2)

where G : R → R is a suitable “contrast function” which
measures the non-Gaussianity of the projections s = w · x.
The two standard choices for G(s) used in practice (Pe-
dregosa et al., 2011) are

G(s) := −e−s2/2 and G(s) :=
log cosh(as)

a
(3)

for some a ∈ [1, 2]. Another classical choice is the excess
kurtosis, G(s) := s4 − 3, even though it is more sensi-
tive to outliers; therefore, the first two contrast functions
are preferred in practice since their growth is slower than
polynomial. In practice, the expectation is approximated
as an average over a set of n centered and whitened inputs
D = {xµ}nµ=1 (that we assume to be drawn i.i.d. from P).

As an optimisation algorithm, we focus on the classic
FastICA algorithm of Hyvärinen & Oja (2000). While a
number of works have recently proposed alternative algo-
rithms with provable guarantees, e.g. Arora et al. (2012),
Anandkumar et al. (2014), or Voss et al. (2015), we focus in-
stead on FastICA since it is the most popular ICA algorithm
(it is the reference implementation in scikit-learn (Pedregosa
et al., 2011)).

FastICA finds extremal points of the population loss (2) via
a second-order fixed-point iteration. Here, we simply state
the FastICA algorithm for convenience; see Hyvärinen &
Oja (2000) for a detailed derivation and discussion. Given a

dataset D, we initialise the weight vector randomly on the
unit sphere, w0 ∼ Unif(Sd−1), and then iterate the FastICA
updates for t ≥ 1 until convergence:{

w̃t = ED[xG
′(wt−1 · x)]− ED[G

′′(wt−1 · x)]wt−1,

wt = w̃t/∥w̃t∥.
(4)

The FastICA iteration is made of two contributions: a “gra-
dient” term ∇wL(w, x)

∣∣
w=wt−1

= xG′(wt−1 · x), which
drives the algorithm towards a direction where the gradient
vanishes, and the “regularisation” ED[G

′′(wt−1 · x)]wt−1,
which ensures quadratic rather than the linear convergence
of first-order methods, giving FastICA its name. As we will
show in Proposition 1, the regularisation term is also key
for efficient learning.

2.2. The ICA data model

To carefully test the sample complexity of FastICA and
other ICA algorithms like SGD in a controlled setting, we
first study the case of synthetic data according to a noisy
version of the standard ICA data model before moving to
real data in Section 4. The idea is to have inputs that follow
an isotropic Gaussian distribution in all but one direction
that we will call the spike v ∈ Sd−1. The projection of the
inputs along the spike yields a non-Gaussian distribution,
so this is the direction that ICA should recover. Specifically,
we assume that the data points D = {xµ}nµ=1 are drawn
according to

xµ = S
(√

β νµv + zµ
)
∈ Rd, (5)

where zµ ∼ N (0,1d) is a vector with white noise, while
the scalar random variable νµ is the latent variable for each
input, and follows a non-Gaussian distribution. For concrete-
ness, we choose a Rademacher distribution under which
νµ = ±1 with equal probability. The signal-to-noise ratio
β ≥ 0 sets the relative strength of the non-Gaussian com-
ponent along v compared to the Gaussian part zµ of each
input. Since whitening the inputs is a standard preprocess-
ing step for FastICA (Hyvärinen & Oja, 2000), we finally
pre-multiply the inputs with the whitening matrix

S = 1d −
β

1 + β +
√
1 + β

vv⊤ ∈ Rd×d,

which ensures that the covariance of the inputs is simply the
identity. This whitening step makes it impossible to trivially
detect the non-Gaussian direction v by performing PCA or
any other method which is based only on the information in
the first and second cumulant. An alternative perspective of
the ICA model is that it provides inputs where the noise is
correlated, and in particular has a negative correlation with
the spike to be recovered.
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Figure 2. Performance of FastICA on the spiked cumulant model for various sample complexity regimes. We run the standard
FastICA updates (4) on data drawn from a noisy ICA model (5). At each step of the algorithm, we draw a new batch of size n = d2

(left), n = d3+ε with ε = 0.2 (middle) and n = d4 (right). In the latter case, we also show the corresponding loss function. We
plot the overlap between the planted non-Gaussian direction v and the estimate w produced by FastICA. While recovery of the spike is
theoretically possible at n = d2 (see Section 2.3), FastICA does not recover the spike at that sample complexity, and instead requires
n = d4 samples to recover the spike v reliably. Theorem 2 confirms this picture for a general data model. Full experimental details in
Appendix A.2 and additional cases ε = 0.5, 0.8 in Figure 5.

2.3. Fundamental limits of recovery

We now briefly recall the fundamental limits of recovering
the spike in the ICA data model (5), which will serve as
benchmarks to evaluate the performance of specific algo-
rithms like FastICA or SGD. From an information-theoretic
point of view, i.e. when given unbounded computational
resources, the presence of the non-Gaussian direction v can
already be detected using a linear number of samples n ≳ d.
However, detecting the spike at this sample complexity is
only possible through exponentially complex algorithms that
are based on exhaustive search. Efficient algorithms, that
can run in polynomial time in d, require at least a quadratic
number of samples n = ω(d2).

For details on the algorithmic result, see Szekely et al.
(2024); Dudeja & Hsu (2024) and Auddy & Yuan (2024)
for a thorough analysis using low-degree methods, and Di-
akonikolas et al. (2017) for a Statistical Query (SQ) analysis,
which reaches equivalent predictions using the low-degree
to SQ equivalence (Brennan et al., 2021). Auddy & Yuan
(2024) establishes the information-theoretic limits of recon-
structing the spike using a min-max type analysis. A similar
statistical-to computational gap appears in the related prob-
lem of tensor PCA (Richard & Montanari, 2014).

2.4. Experiment: FastICA requires a lot of data to
recover the non-Gaussian direction

We are now in a position to evaluate the FastICA algorithm
in the controlled setting of the noisy ICA model (5), where
the goal is to recover the planted non-Gaussian direction
(or “feature”) v. Specifically, we can compare the sample
complexity of FastICA, i.e. the number of samples FastICA
requires to recover v, to the fundamental limits of efficient
or polynomial-time recovery, which is n ≳ d2.

In Figure 2, we plot the absolute value of the overlap be-
tween the spike v and the estimate w obtained by running

FastICA for a couple of steps with n = dθ samples. In
the plot, we consider the limit of online learning, in the
sense that we draw a new training set at each step of the
algorithm; in Figure 7, we show that the picture does not
change when using the same training set repeatedly; see
also our discussion in Section 3.3.3.

We can see immediately that at quadratic sample complexity,
FastICA does not recover the spike at all. Instead, the
overlap is stuck at a value of roughly 1/

√
d, which is the

typical overlap of a randomly direction in Rd with the spike.
This small value for the overlap suggests that the algorithm
is stuck in the search phase, and does not recover the spike
at quadratic sample complexity. With n = d4 samples
instead, FastICA recovers the spike within a few steps. In
the intermediate regime of n = d3+ε samples, ε = 0.2 ,
the algorithm recovers the spike more slowly, and there are
large fluctuations.

These experiments suggest that FastICA has a poor sample
complexity that is quartic in the input dimension for recov-
ering the spike, with an intermediate regime at n = d3+ε

with ε ∈ (0, 1). Our theoretical analysis of FastICA will
now confirm that these are indeed the fundamental limits of
FastICA.

3. Theoretical Results
Before diving into our analysis of FastICA and stochastic
gradient descent (SGD) for performing ICA, we highlight
how to address the key technical difficulty in analysing
learning from non-Gaussian inputs.

3.1. ICA, likelihood ratios, and information exponents

The key difficulty in analysing the ICA loss (2) or the
FastICA update (4) is that it entails an average over an
explicitly non-Gaussian distribution of the inputs. This is in
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contrast to the vast majority of works on (supervised) learn-
ing algorithms, which usually consider a Gaussian input dis-
tribution, an input distribution that is effectively Gaussian
via the Gaussian Equivalence Theorem, or inputs that are
distributed uniformly on the unit hypercube (as discussed at
the end of the section).

The key idea of the theoretical analysis of FastICA and
SGD is to rewrite the average over the non-Gaussian in-
puts as an average over the standard normal distribution
P0 = N (0,1d), as

L(w) := EP[G(w · x)] = EP0 [G(w · x)ℓ(v · x)] (6)

by introducing the likelihood ratio

ℓ(s) :=
dP
dP0

(s), (7)

akin to how one would proceed in an analysis with the
second moment method in hypothesis testing (Kunisky et al.,
2019). Intuitively, the likelihood ratio (or more precisely,
its norm) measures how different the distribution of the
projection s = w ·x is from a standard Gaussian distribution.
The likelihood ratio will thus be the key object in our study
to determine the number of samples that a given algorithm
like FastICA requires to find a projection that is distinctly
non-Gaussian and yields a large likelihood ratio.

Under the noisy ICA model (5), the likelihood ratio (7)
depends only on the projection of the inputs along the non-
Gaussian direction v to be learnt. We can expand the popu-
lation loss in terms of a single scalar variable, the overlap
α := w · v between weight w and spike v:

L(w) = EP0
[G(w · x)ℓ(v · x)] =

∞∑
k≥0

cGk c
ℓ
k

k!
αk, (8)

where the last equality has been obtained by expanding the
contrast function G and the likelihood ratio ℓ in series of
Hermite polynomials and by using the orthogonality of Her-
mite polynomials (Lemma 11 in Appendix B.3). A key
quantity for the analysis of ICA is the order k∗ of the first
term in the expansion (8) that has a non-zero coefficient.
This quantity was introduced as the “information exponent”
by Ben Arous et al. (2021) in the context of supervised
learning, when they showed that it governs the sample com-
plexity of online SGD in single-index models, like the noisy
ICA model. Related quantities like the leap index of Abbé
et al. (2023); Dandi et al. (2024) and the generative expo-
nent of Damian et al. (2024) govern the sample complexity
for more complex data models with several directions to be
learnt. Here, we note that due to the whitening of the inputs,
the population loss (2) for the noisy ICA model model has
information exponent k∗ = 4, as we show in Appendix C.1.

3.2. Main assumptions

For the following theoretical analysis, we assume that:

Assumption 1. The contrast function G and the data distri-
bution P are such that the loss (2) is a function of the overlap
α := w · v, for a given spike v with unit norm. Moreover,
we assume that ℓ(α) = dP

dP0
(α) ∈ L2 (R,P0).

This assumption is trivially satisfied for the noisy ICA
model (5) and the standard contrast functions in Equa-
tion (3), but it allows us to prove our results on the sample
complexity of FastICA (Theorem 2) and smoothed SGD
(Theorem 4) for arbitrary sub-Gaussian latent variables ν
(see Definition 6 in Appendix B). In principle, these hy-
potheses exclude the case of a fat-tailed distributions on the
latent variable, i.e. those that do not belong to L2 (R,P0).
However, the results of simulations with a Laplace prior
on ν (see Figure 9) reveal the same picture as in the sub-
Gaussian case, suggesting that this assumption could be
further relaxed.

Assumption 2 (Contrast function). We assume G to be
even. For our analysis of FastICA, we require G ∈ C3(R)
with bounded derivatives. For smoothed SGD in Sec-
tion 3.5, we additionally require

∑∞
k≥0(c

G
k )

2/k! < 1 and
that there exist some C1, C2 > 0 such that, for any s ∈ R,
|G′(s)| ≤ C1(1 + s2)C2 holds.

3.3. Sample complexity of FastICA

Our goal is to rigorously quantify the sample complexity of
FastICA on the noisy ICA model (5). FastICA proceeds by
performing a few iterations of the update (4) with the full
data set. This setting is precisely the large-batch (Ba et al.,
2022; Damian et al., 2022) or “giant step” (Dandi et al.,
2024) regime that has attracted a lot of theoretical interest
recently. Following the approach of these recent works, the
key idea of our analysis is to study whether a single step of
FastICA with a large number of samples n ≍ dθ yields an
estimate w1 that has an overlap with the spike v that does
not vanish with the input dimension.

3.3.1. THE IMPORTANCE OF REGULARISATION

It is instructive to first consider briefly the ideal case of infi-
nite data. The following Proposition 1 shows that FastICA
is able to fully recover the spike v as d → ∞ if we re-
place the empirical average ED with the population average
EP. More interestingly, we show that it is the regularisation
term, originally introduced to speed up convergence (see
Section 2.1), that gives the essential contribution to escape
mediocrity at initialisation.

Proposition 1 (Infinite batch size). Assume that the inputs
are distributed according to the noisy ICA model (5) and
that cG4 ̸= 0 - this holds for the standard contrast functions
in Equation (3). Set α1 := w1 · v, where w1 is the updated
weight vector given by the first iteration of FastICA.
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Then, in the infinite batch-size limit, we have that

α2
1 = 1− o(1).

On the other hand, if the regularisation term is missing and
only the “gradient step” is taken, i.e. the iteration reads
w̃t = E[xG′(wt−1 · x)], then we obtain α2

1 = O(1/d).

3.3.2. FINITE SAMPLES: HARDNESS OF LEARNING

We now provide almost sharp bounds on the sample com-
plexity of FastICA for learning the non-Gaussian feature
v. For the analysis, we follow the recent “one-step” analy-
ses (Ba et al., 2022; Damian et al., 2022; Dandi et al., 2024)
and study the overlap of the spike with the weight obtained
from performing a single step of FastICA with a large batch
of n = dθ samples. More precisely, we provide a lower
bound (positive results) for the amount of signal that can be
weakly recovered given a number of samples on the order of
dk

∗
, where k∗ is the information exponent of the loss, and

precisely k∗ = 4 for the noisy ICA model. In the data-scarce
regime where n = o(dk

∗
), we provide upper bounds (nega-

tive results) on the overlap α = w · v that can be achieved
in a single step of FastICA. We distinguish two cases: either
there is no improvement with respect to the random initiali-
sation, or the upper bound on the amount of signal learned
is dimensionality-dependent, meaning that n = Θ(dk

∗−1)
are still not sufficient to exit from the search phase in the
high-dimensional limit. Yet this regime smoothly bridges
the situation of total ignorance, where nothing is learnt at all,
and recovery of the spike in one step, thanks to a continuous
dependence on the parameter δ.

Theorem 2. (Finite batch size) Let k∗ be the information
exponent of the population loss (2). Consider a number of
samples n = Θ(dk

∗−δ), for δ ∈ [0, 2]. Set α1 := w1 · v,
where w1 is the updated weight vector given by the first
iteration of FastICA. Then,

δ ∈ (1, 2] ⇒ α2
1 = O

(
1
d

)
,

δ ∈ (0, 1] ⇒ α2
1 = O

(
1
dδ

)
,

δ = 0 ⇒ α2
1 ≥ 1− o(1).

We prove Theorem 2 in Appendix D. Even if Theorem 2 is
not specific to the noisy ICA model, and instead applies to
any input model and contrast function satisfying Assump-
tions 1 and 2, it is instructive to look at the special case of
Rademacher prior on the latent variable and standard con-
trast function, Equation (3). In this setting, we have proved
in section C.1 in the appendix that k∗ = 4. Therefore, we
find that n = Θ(d4) is sufficient to perfectly recover the
spike with a single step, up to contributions which vanish
when d goes to infinity, in line with what we see in the ex-
periments of Figure 2. Moreover, if d3 ≲ n ≪ d4, it turns
out that the overlap α1 = w1 · v is bounded by a dimension-
dependent constant, which explains the slow increase of the

overlap in that regime. For quadratic sample complexity,
the gradient in the FastICA update does not concentrate, so
the algorithm does not recover the signal and remains stuck
in the search phase.

Key elements of the proof. The overall ideas of the proof
are similar to those employed in the analysis of the teacher-
student setup of Theorems 1 and 2 from (Dandi et al., 2024),
with the following main differences. First of all, in our unsu-
pervised case, instead of isotropic inputs, the data points are
in general non-Gaussian distributed; as already observed in
Section 2.3, this impacts on the information exponent k∗ of
the population loss. Second, unlike for SGD, the iteration of
FastICA presents both a gradient term and a regularisation
term which is data-dependent (the regularisation “constant”
depends on G′′(w · x), and its analysis is hence just as com-
plex as that of the gradient term). The general strategy is
computing the expectations for both the signal w̃1 · v and
the noise ∥w̃1∥, and then identifying how much data n al-
lows for the concentration of the two quantities. To be able
to compute the expectations, we exploit the orthogonality
properties of Hermite polynomials proved in Corollary 14.
Once concentration of both signal and noise is established,
the positive result corresponds to the signal dominating the
noise, and vice versa for the intermediate regime in the mid-
dle. Conversely, if the signal does not concentrate, n is not
sufficiently large for the overlap to escape from its scaling
at initialisation and first upper bound holds.

3.3.3. DISCUSSION

The almost sharp analysis of the high-dimensional asymp-
totics of FastICA inTheorem 2 is our first main result, and
explains theoretically why FastICA tends to struggle in high
dimensions (Zarzoso et al., 2006; Auddy & Yuan, 2024).
While FastICA is often applied after reducing the dimension
of the inputs using PCA, it should be noted that the scaling
of n ≍ d4 on the noisy ICA model is poor even in moderate
to small dimensions. One non-standard way to escape this
scaling is to use the ad-hoc initialization scheme proposed
recently by Auddy & Yuan (2024), which allows to find an
initialisation that gives ICA a warm start with a non-trivial
overlap given only n ≳ d2 samples. However, there remains
a large gap between the performance of FastICA as it is com-
monly used, and the n ≳ d2 or, more generally speaking,
n ≳ dk

∗/2 bounds we have from low-degree methods, see
(Damian et al., 2024). One may therefore ask whether other
algorithms, and in particular the simple stochastic gradi-
ent descent, may be more efficient at performing ICA, not
least since neural networks trained with stochastic gradient
descent seem to learn ICA-like filters in their first layer
rapidly.
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3.4. Vanilla SGD

In order to take a closer look at feature extraction in the
context of deep neural networks, we analyse SGD as an
alternative algorithm to perform ICA. Consider a set of
n centered and whitened data points D = {xµ}nµ=1. We
sample a new data point at each step. For a suitable learning
rate δ > 0, each iteration of the spherical online SGD, for
w0 ∼ Unif(Sd−1), is defined as{

w̃t = wt−1 +
δ
d ∇sphL(w, xt)

∣∣
w=wt−1

t ≥ 1,

wt = w̃t/∥w̃t∥,

The spherical gradient ∇sph for a function f is given by
∇sphf(w, ·) := (1d − ww⊤)∇wf(w, ·). In the case of the
noisy ICA model model (5), we can directly apply the
analysis performed by Ben Arous et al. (2021), which
guarantees that if n = Ω(d3 log2 d), or more in general
n = Ω(dk

∗−1 log2 d), the spike is “strongly” recovered,
meaning that wn · v → 1 in probability for n going to infin-
ity. Moreover, if n = O(d3), the spike cannot be recovered,
i.e. supt≤n|v · wt| → 0 in probability.

Hence, vanilla online SGD is already faster that FastICA
in the large-batch setting. However, given the information-
theoretic results of Section 2.3, online SGD does not achieve
the optimal performance and there remains a statistical-to-
computational gap.

3.5. Closing the statistical-to-computational gap:
smoothing the landscape

We now show that the statistical-to-computational gap of
SGD on noisy ICA can be closed by running online spherical
SGD on a smoothed loss following the approach of Damian
et al. (2023):

Definition 3. (Damian et al., 2023) For λ ≥ 0 and x ∈ Rd,
the smoothed loss function is Lλ(w, x) := Lλ[G(w · x)],
where the smoothing operator Lλ reads

Lλ[G(w · x)] := Ez∼µw

[
G

(
w + λz

∥w + λz∥ · x
)]

,

if µw is the uniform distribution over Sd−1 conditioned on
being orthogonal to w.

The key intuition behind the smoothing operator is that,
thanks to large λ (than scales with the input dimension), it
allows to evaluate the loss function in regions that are far
from the iterate weight wt, collecting non-local signal that
alleviates the flatness of the saddle around α = 0 of L, re-
ducing the length of the search phase; we illustrate the effect
of smoothing on the loss in Figure 6. For implementation
purposes, we give an explicit formula for the smoothed gra-
dient of said loss in Appendix E. Note that the “large steps”
allowed by a large λ help in escaping the search phase.

Damian et al. (2023) showed that smoothing the loss for a
single neuron σ(w · x) with activation function σ : R → R
trained on a supervised task with Gaussian inputs and la-
bels provided by a teacher neuron σ(v · x) reduces the
sample complexity of weak recovery for online SGD from
dk

∗−1 (Ben Arous et al., 2021) down to the optimal dk
∗/2.

Their analysis crucially relies on the fact that teacher and
student have the same activation function σ. For ICA, one
can roughly think of the contrast function as the student
activation function, which will in general have a different in-
formation exponent from the loss function, which depends
also on the likelihood ratio. We therefore generalise the
analysis of Damian et al. (2023) to this mismatched case
and show that the dynamics of smoothed SGD on ICA is
governed by the interplay of the information exponents of
the population loss and the contrast function respectively,
called k∗1 and k∗2 , and that the optimal sample complexity is
reached if and only if k∗1 = k∗2 . This fact follows immedi-
ately from the heuristic analysis performed in Section 3.5.1,
where it is shown that for the optimal λ = d1/4, the ODE
describing the behavior of the overlap α at the beginning of
learning is

α′(t) =
α(t)

dk
∗
1 −k∗

2/2
. (9)

On the noisy ICA model (5), for which k∗1 = 4, we thus find
the following picture. For the standard contrast functions
(Equation (3)), k∗1 ̸= k∗2 = 2, and then smoothed online
SGD does not improve the sample complexity of vanilla
online SGD: the spike is still recovered in a cubic time. In
contrast, if k∗2 = 4, i.e. the information exponents of the
loss and the contrast function are equal, smoothed online
SGD is able to recover the spike in a quadratic time, which
means that smoothing the landscape reduces the sample
complexity of online SGD down to the optimal threshold
suggested by low-degree methods. Even if it would be
clearly necessary a fine-tuning of the contrast function in a
data-dependent way which cannot be performed in practice,
we observe that in our case the fourth-order Hermite poly-
nomial G(s) = h4(s), which for whitening data is nothing
but the excess kurtosis G(s) = s4 − 3, is indeed an optimal
contrast functions. Remarkably, the kurtosis is the most
classical measure of non-Gaussianity that one can find in
the literature (see e.g. Hyvärinen & Oja (2000)) and it has
been employed to study recent developments of FastICA in
(Auddy & Yuan, 2024).

3.5.1. HEURISTIC DERIVATION

We first heuristically derive the sample complexities of The-
orem 4, following Damian et al. (2023). We will use Corol-
lary 13 to deal with expectations of multiple products of
Hermite polynomials appearing due to non-Gaussian inputs.
A crucial quantity is the signal-to-noise SNR since, as shown
in Damian et al. (2023), at the beginning of leaning the over-

7
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Figure 3. Performances of smoothed online SGD and vanilla SGD on the noisy ICA model, for G(s) = h4(s) and
G(s) = − exp

(
−s2/2

)
respectively. Left: In a linear time, nor smoothed and vanilla SGD recover the spike. Middle: In the

quadratic regime, smoothed SGD recovers, although vanilla SGD does not. Right: In the cubic regime, both smoothed and vanilla SGD
recover the spike. Experimental details in Appendix A.3.

lap α := w · v is given by the ODE α′(t) = SNR/α(t)
with

SNR :=
E[g · v]2

E[∥g∥2]
,

where g is the online spherical gradient g := ∇sphLλ(x,w).
We compute how the SNR scales with the dimension of the
inputs d.

Signal Recall the scaling computed by Damian et al.
(2023) for the signal in the case of an even contrast function:

E[g · v] = Θ(αd−(k∗
1−2)/2/λ2),

when α ≤ λd−1/2. Note that it depends on the information
exponent k∗1 of the loss.

Noise We look at the scaling of the noise E[∥g∥]2. By
definition, g = Θ

(
λ−1xLλ(G′(w · x))

)
. Since with high

probability ∥x∥2 = O(d), we study the second moment of
s := Lλ(G′(w · x)). By exploiting the definition of the
smoothing operator and writing the expectation in terms of
the likelihood ratio, we get that, for two replicas z, z′ ∼ µw,

E
[
s2
]
= E

[
E

z,z′

[
G′
(

w + λz√
1 + λ2

· x
)
G′
(

w + λz′√
1 + λ2

· x
)]]

= E
z,z′

(
E
P0

[
G′
( w + λz√

1 + λ2︸ ︷︷ ︸
w1

·x
)
G′
( w + λz′√

1 + λ2︸ ︷︷ ︸
w2

·x
)
ℓ(v · x)

])
.

By expanding G′ and ℓ, we get a Gaussian expectation of a
triple product of Hermite polynomials, whose scaling can
be computed thanks to Lemma 12, recalling that G is even
and then cG

′

0 = 0. In particular, thanks to Corollary 13, we
have

EP0
[G′(w1 · x)G′(w2 · x)ℓ(v · x)] = Θ

(
(w1 · w2)

k∗2−1
)

Since z · z′ = Θ(1/
√
d), we can avoid the dependence

on the replicas by simply choosing λ ≪ d1/4. This

choice corresponds to Equation (15) in Appendix E. Hence,
w1 · w2 = Θ(λ−2). We can conclude that the noise scales

as

E[∥g∥2] = Θ(dλ−2k∗
2 ).

By combining signal and noise, we have that

SNR =
α2

λ4
d−(k∗

1−1) 1

dλ−2k∗
2
= α2λ

2(k∗
2−2)

dk
∗
1−1

.

This implies that, in the case of the optimal λ = d1/4, the
ODE describing the behavior of the overlap α for small
t ≥ 0 is nothing but Equation (9).

Therefore, the number of data points required to reach an
order-one overlap is dk

∗/2, i.e. the optimal one accord-
ing to the fundamental limits of recovery, if and only if
k∗1 = k∗2 and than we have heuristically derived the results
of Theorem 4. The following theorem, which we prove in
Appendix E, makes rigorous the heuristics. It holds for any
input model satisfying Assumption 1, 2, and the following
Assumption 3:

Assumption 3. We assume ℓ ∈ L∞(Rd,P0) and that the
loss (2) is strictly monotonically increasing in α = w · v.

Theorem 4 (Escaping mediocrity). Define k∗1 and k∗2 as the
information exponents of the population loss (2) and the con-
trast function, respectively. Assume that w0 ∼ Unif(Sd−1)
and that the initial overlap α0 := w0 · v is such that
α0 ≳ 1/

√
d. Consider λ ∈ [1, d1/4]. Then, there exist

η ∈ R and n ∈ N, satisfying{
n = O

(
dk

∗
1−1λ−2(k∗2−2) polylog(d)

)
,

η = O
(
d−k

∗
1/2λ2(k∗2−1) polylog(d)

)
such that αn ≥ 1 − d−1/4 with high probability. Here,
αn := wn · v and wn is the estimator given by smoothed
online SGD with ηn = η and λn = λ.
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Figure 4. Performance of FastICA on ImageNet. We plot the difference between the test loss L(t) at step t, and the test loss ⟨L(0)⟩ at
initialisation averaged over twenty initialisations. At linear sample complexity (a), the test loss remains close to its initial values, but it
clearly decreases at quadratic sample complexity (b). (c) Ratio of the fourth moment of projections s∗ of ImageNet patches of the given
width along a Gabor filter obtained via FastICA, and of the fourth moment of projections s0 along a random direction. Different colours
refer to the size of the training set from which the Gabor filters were obtained. Full experimental details in Appendix A.4.

4. The search phase of FastICA on images
We finally investigate whether FastICA also exhibits an
extended search phase on real data. To that end, we ran
FastICA on patches sampled at random from the ImageNet
data set (Deng et al., 2009). In Figure 4, we show the
difference between the test loss L(t) at step t of FastICA
and the loss ⟨L(0)⟩ averaged over twenty randomly chosen
initial conditions. We find that at linear sample complexity
when n = 2d, Figure 4(a), FastICA is clearly stuck in a
search phase: the loss does not deviate significantly from its
value at initialisation. Meanwhile in the quadratic regime
at n = 2d2, Figure 4(b), FastICA does recover a non-trivial
Gaussian direction from the start, faster than our theory
would suggest.

Where does this non-Gaussian signal come from that
FastICA picks up in the images? A natural idea would be to
suggest that it comes from the third-order cumulant, which
is non-zero for real images in contrast to the spiked cumulant
with Rademacher latent ν. The corresponding information
exponent k∗ = 3 would then suggest that n ≍ dk

∗−1 is the
transitionary regime, where recovery is possible in finite
dimensions. However, since the contrast functions used in
FastICA are symmetric, FastICA is blind to information
carried by odd cumulants. We demonstrate this explicitly
by constructing a latent distribution which has mean zero,
unit variance, a non-trivial third-order cumulant, but zero
fourth-order cumulant, and find that FastICA does not pick
up any signal, see Figure 8. Another potential explanation is
that the latent variables of images are super-exponential, and
follow an approximate Laplace distribution (Wainwright &
Simoncelli, 1999). However, we verified experimentally
that when the latent variable νµ in the noisy ICA model has
a Laplace distribution, Theorem 2 still accurately describes
the sample complexity required for recovery, see Figure 9.
However, the longer tail induces stronger finite-size fluctua-
tions, which might contribute to the success of FastICA at
quadratic sample complexities.

Indeed, we found strong finite-size effects when attempting
to measure the effective signal-to-noise ratio of the non-
Gaussian directions in the images. In the spiked cumulant
model, an empirical measure of signal-to-noise ratio can be
obtained by dividing the fourth moment of the projection of
inputs along the spike, s∗ = v ·x, with the fourth moment of
inputs projected along a random direction s0 = w0 · x. As
a surrogate for the “spike” in real images, we ran FastICA
to obtain clean Gabor filters from n = 2, 3, 4, 5d ImageNet
patches (as detailed in Appendix A.2) and computed the
ratio of the fourth moment of projections s∗ along these
filters with projections s0 along random directions. For the
spiked cumulant with standard Laplace prior, this ratio is
equal to 2. In Figure 4(c), we see that this ratio for images
tends towards an larger value, but we note that the empir-
ical estimate only converges slowly with width, hinting at
important finite-size fluctuations.

5. Concluding perspectives
Despite their simplicity, Independent Component Analysis
yields similar filters as the early layers of deep convolutional
neural networks, and therefore offers an interesting model
to study feature learning from non-Gaussian inputs. Here,
we considered the problem of recovering a single feature en-
coded in the non-Gaussian input fluctuations and established
almost sharp sample complexity thresholds for FastICA and
SGD. Our analysis revealed the poor sample complexity
of FastICA, which might explain some of its problems in
high-dimensional settings, while our experiments suggest
that images have strong enough non-Gaussian features to
compensate for this. Going forward, it will be intriguing to
extend our analysis to models with several non-Gaussian di-
rections, along the lines of Dandi et al. (2024) and Bardone
& Goldt (2024). Finally, developing a model for synthetic
data from which localised, oriented filters can be learnt
looms as an intriguing challenge (Ingrosso & Goldt, 2022;
Lufkin et al., 2024).
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A. Experimental details
In this appendix, we collect detailed information on how we ran the various experiments of this paper.

A.1. Figure 1

(a) We plot the filters of the first convolutional layer of an AlexNet trained on ImageNet using mini-batch size of 128,
momentum of 0.9, weight decay of 10−4, cosine learning rate schedule with initial learning rate of 10−2. We also
trained a DenseNet121 (Huang et al., 2017) and a ResNet18 (He et al., 2016) using the same recipe, but with larger
initial learning rate 10−1.

(b) The Gabor filters were obtained with online SGD performed on 100 000 patches of size 64 × 64 extracted from
ImageNet. We have decided to perform ICA with SGD to use the typical algorithm employed to train deep neural
networks. We perform PCA before running ICA by keeping 600 principal components. The contrast function was
G(s) = − exp

(
−s2/2

)
.

(c) We applied principal component analysis to the same ImageNet patches to obtain the leading principal components, and
plot the eight leading ones from left to right, and top to bottom.

(d) For all three networks trained on ImageNet, we took 50 logarithmically spaced snapshots of the weights during training.
For each snapshot, we extracted the weights for each first-layer convolution and computed the dot-products skµ = wk ·xµ
between the weight of the kth convolution for randomly sampled patches from ImageNet xµ. We normalised the skµ for
each neuron (fixed k) to have variance 1, and computed the excess kurtosis of the resulting skµ. We then averaged over
all the neurons to obtain the curves shown in Figure 1(b).

(e) The snapshots were taken from one of the AlexNet models.

A.2. Figure 2

Here we show the performance of FastICA on the spike cumulant model (5) in three different regimes, in the case of d = 50
and β = 15. The spike v has been sampled uniformly in the sphere Sd−1. The regimes correspond to the batch-sizes
of n = d2, n = d3+δ and n = d4, respectively, for δ = 0.2. Each batch contains n fresh data points sampled from the
distribution of the inputs P. The contrast function is G(s) = − exp

(
−s2/2

)
. We display on the y-axis the overlap wt · v

for t = 0, . . . , 4 (on the x-axis), where wt is the updated weight vector provided by FastICA in the first four step, plus
initialisation w0 ∼ Sd−1 under the constraint that w0 · v = 1/

√
d. An average over 15 runs has been taken.

A.3. Figure 3

Here we show the velocity for recovering the spike of smoothed online SGD in three different regimes: linear, quadratic and
cubic. The noisy ICA model is considered. We use d = 40, β = 15 and a total number of data points of n = 5d3. The
parameter λ is the optimal one, i.e. λ = d1/4. The learning rate is η = 2.9d(−k

∗
1/2)λ(2k∗2−2), where k∗1 = 4 and k∗2 = 2,

since G(s) = − exp
(
−s2/2

)
. The average is made over 30 runs.

A.4. Figure 4

(a) and (b) We perform ICA on patches of ImageNet images with increasing dimensions, and randomly drawn. The
chosen contrast function is G(s) = − exp

(
−s2/2

)
. The standard centering and whitening pre-processing procedure is

performed before running the algorithm.

(c) We first ran FastICA on n = 2, 3, 4, 5d ImageNet image patches to obtain clean Gabor filters, which we used as
surrogates of the spike v. To that end, we used the “canonical preprocessing” of Hyvärinen et al. (2009), meaning we
whitened inputs and ran the FastICA algorithm only in the subspace spanned by the top k principal components (here,
k = 50 for all widths). We then computed the fourth moment of projections s∗ of an independent test set of ImageNet
images along these Gabor filters, and divided this by the fourth moment of projections along random directions s0.

A.5. The “3not4” prior on the latent variable, Figure 8

For this experiment, we run online FastICA as in Figure 2 on a noisy spiked cumulant model, but with a prior over the
latent variable that has mean zero, unit variance, a non-trivial third-order cumulant, but zero fourth-order cumulant. More
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specifically, we consider a latent ν that can take the values −1, 0 and 2 with probabilities 1/3, 1/2 and 1/6.

B. Properties and definitions
B.1. Notation

Throughout we use the standard notations o,O,Θ,Ω, ω for asymptotics. We recall them here for sequences, but they
generalize in the straight forward way in the case of functions.
Let {ak}k∈N, {bk}k∈N be two real valued sequences. Then:

ak ∈ o(bk) ⇐⇒ lim
k→∞

ak
bk

= 0

ak ∈ O(bk) ⇐⇒ ∃C > 0 ∈ R ∀k > k0 |ak| ≤ C|bk|
ak ∈ Θ(bk) ⇐⇒ ∃C1, C2 > 0 ∀k > k0 C1bk ≤ ak ≤ C2bk

ak ∈ Ω(bk) ⇐⇒ ∃C > 0 ∈ R ∀k > k0 |ak| ≥ C|bk|

ak ∈ ω(bk) ⇐⇒ lim
k→∞

|ak|
|bk|

= ∞

Occasionally we use the shorthands an ≪ bn for an = o(bn), an ≲ bn for an = O(bn) and an ≍ bn for an = Θ(bn).

B.2. Probability notions

We recall the properties of the space of squared integrable functions with respect to the standard normal distribution P0:

Definition 5 (Gaussian scalar product). Given f, g : Rd → R, we define the L2-scalar product as

⟨f, g⟩P0
:= Ex∼P0

[f(x)g(x)] .

The space L2(Rd,P0) contains all the measurable functions f : Rd → R such that ||f ||2 := ⟨f, f⟩P0 < ∞.

Note that this space with the product defined above is an Hilbert space, and the set of the Hermite polynomials (see next
section) is an orthogonal basis.

Definition 6 (Sub-Gaussianity). Let Z be a real valued random variable, we say that Z is sub-Gaussian if it has finite
sub-Gaussian norm, defined as:

||Z||ψ/2 := inf
{
t > 0 | E[exp

(
Z2/t2

)
] ≤ 2

}
For more details on sub-Gaussian distributions we refer to (Vershynin, 2018), Section 2.5.

We also need to introduce the space L∞(Rd,P0) as the space of essentially bounded functions, with finite || · ||∞ norm,
defined as:

||f ||∞ := inf {C > 0 | P0(|f(x)| ≤ C) = 1}

Note that the likelihood ratio ℓ = dP
dP0

for model (5) belongs to this space as soon as the tails of ν decrease faster than a
standard Gaussian. For instance all the distributions with bounded support are included.

We often refer to the notion of events that happen with high probability, defined as follows.

Definition 7 (Events happening with high probability events). The sequence of events {Ed}d∈N happens with high probability
if for every k ≥ 0, there exists dk such that for d ≥ dk

1− P (Ed) ≤
1

dk

B.3. Hermite polynomials

In this section we group some facts about Hermite polynomials that will be needed for the subsequent proofs. For a
comprehensive overview on the topic we refer to (McCullagh, 2018).
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Definition 8 (Hermite expansion). Consider a function f : R → R that is square integrable with respect to the standard
normal distribution p(x) = (1/

√
2π) e−x

2/2. Then there exists a unique sequence of real numbers {ck}k∈N called Hermite
coefficients such that

f(x) =

∞∑
k=0

ck
k!
hk(x) and ck(x) := Ex∼N (0,1)[f(x)hk(x)],

where hi is the i-th probabilist’s Hermite polynomial.

Definition 9 (Information exponent). Given any function f for which the Hermite expansion exists, its information exponent
k∗ = k∗(f) is the smallest index k ≥ 1 such that ck ̸= 0.

Lemma 10 (Expectations of Triple and Quadruple products). For any i, j, k ∈ N, we have

I∗3 (i, j, k) := Ex∼N (0,1)[hi(x)hj(x)hk(x)] =
i! j! k!( i+ j − k

2

)
!
( i+ k − j

2

)
!
(j + k − i

2

)
!

if the denominator exists, that is if i+ j + k is even and the sum of any two of i, j and k is strictly less than the third, or zero
otherwise. What’s more, fix the indices m1,m2,m3,m4 ∈ N and order them such that m1 ≥ m2 ≥ m3 ≥ m4.
Define M := (m1 +m2 +m3 +m4)/2.
Then, given m := min(m3,m4) and I∗4 (m1,m2,m3,m4) := Ex∼N (0,1d)[hm1(x)hm2(x)hm3(x)hm4(x)], we have

I∗4 (m1,m2,m3,m4) =

m∑
ν=0

(m3 +m4 − 2ν)!m1!m2!m3!m4

(M −m3 −m4 − ν)!(M −m1 − ν)!(M −m2 − ν)!(m3 − ν)!(m4 − ν)!ν!

if M ∈ 2N and the denominator exists. Otherwise, I∗4 (m1,m2,m3,m4) = 0.

Lemma 11. Consider w1, w2 ∈ Sd−1 and set α = w1 · w2. Then, for any i, j ∈ N

Ex∼N (0,1d)[hi(w1 · x)hj(w2 · x)] = i!αi δij .

To extend this orthogonality property to triple an quadruple products of Hermite polynomials, we use the same technique as
in (Buet-Golfouse, 2015)
Lemma 12 (Orthogonality property). Fix i, j, k ∈ N. Set I3 := Ex∼N (0,1d)[hi(w1 · x)hj(w2 · x)hk(w3 · x)]. Consider
three different spikes w1, w2, w3 ∈ Sd−1 and set ρ := w1 · w2, τ := w1 · w3 and η := w2 · w3. Then, we have

I3 =

j∑
ℓ=0

i!j!k!

(j − ℓ)!2
( i+ j − k

2

)
!
( i+ k − j

2

)
!
(k − j + 2ℓ− i

2

)
!

ρℓτk−j+ℓ(η − τρ)j−ℓ

if the denominator exists, and I3 = 0 otherwise.

Proof. We start by writing w2 as sum of its projection along the first spike w1 and its part in the orthogonal space, that is
w2 = ρw1 +

√
1− ρ2u, where u ∈ Sd−1 and u · w1 = 0. Then, clearly, w2 · x = ρy1 +

√
1− ρ2yu, where y1 := w1 · x

and yu := u · x.
We can do the same for the third spike, that is w3 = τw1+

√
1− τ2u′, where u′ ∈ Sd−1 and u′ ·w1 = 0. Define yu′ = u′ ·x.

We can now exploit the fact that any Hermite polynomial of a sum can be written as the sum of Hermite polynomials in the
following way, that is for any m ∈ N we have that hm(αz1+

√
1− α2z2) =

∑m
n=0

(
m
n

)
αn(

√
1− α2)m−nhℓ(z1)hm−n(z2),

for any α ∈ [0, 1]. By applying this formula to w2 and w3, we get

I3 =

j,k∑
ℓ,ℓ′=0

(
j

ℓ

)(
k

ℓ′

)
ρℓτ ℓ

′
(
√

1− ρ2)j−ℓ(
√

1− τ2)k−ℓ
′
E[hi(y1)hℓ(y1)hℓ′(y1)]︸ ︷︷ ︸

(1)

E[hj−ℓ(yu)hk−ℓ′(yu′)︸ ︷︷ ︸
(2)

]

where we have used the fact that y1 is independent from yu and yu′ since w1 · u = w2 · u′ = 0. Then, in view of Lemma 10
and Lemma 11, we have

(1) =
i!ℓ!ℓ′!( i+ ℓ− ℓ′

2

)
!
( i+ ℓ′ − ℓ

2

)
!
(ℓ+ ℓ′ − i

2

)
!

and (2) = (j − ℓ)!(u · u′)j−ℓδj−ℓ=k−ℓ.
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Hence, imposing that ℓ′ = k − j − ℓ, we obtain

I3 =

j∑
ℓ=0

i!j!k!

(j − ℓ)!
( i+ j − k

2

)
!
( i+ k − j

2

)
!
(k − j + 2ℓ− i

2

)
!

ρℓτk−j+ℓ[
√
1− ρ2

√
1− τ2 (u · u′)]j−ℓ

when the denominator exists and it vanishes otherwise. Therefore, the thesis follows from the fact that we have
u · u′ =

η − τρ
√
1− τ2

√
1− ρ2

.

Corollary 13. Assume that ℓ is a probability distribution and that G ∈ C1(R) is even. Then, if w1, w2, w3 ∈ Sd−1 and
w1 ̸= w2 ̸= w3, we obtain that

Ex∼N (0,1d)[G
′(w1 · x)G′(w2 · x)ℓ(w3 · x)] = Θ(w1 · w

k∗2−1
2 ).

Proof. By considering the Hermite expansion of G′ and ℓ, it clearly follows that

Ex∼N (0,1d)[G
′(w1 · x)G′(w2 · x)ℓ(w3 · x)] =

∞∑
i,j,k=0

cG
′

i cG
′

j cℓk
i!j!k!

Ex∼N (0,1d) [hi(w1 · x)hj(w2 · x)hk(w3·)]︸ ︷︷ ︸
(⋆)

, (10)

where, in view of Lemma 12, when ρ := w1 · w2, τ := w1 · w3 and η := w2 · w3, it holds that

E[(⋆)] =
j∑
t=0

i!j!k!

(j − t)!2
( i+ j − k

2

)
!
( i+ k − j

2

)
!
(k − j + 2t− i

2

)
!

ρtτk−j+t(η − τρ)j−t (11)

and then

E
x∼N (0,1d)

[G′(w1 · x)G′(w2 · x)ℓ(w3 · x)] =
∞∑

i,j,k=0

j∑
t=0

coeff ρtτk−j+t(η − τρ)j−t,

where

coeff =
cG

′

i cG
′

j cℓk

(j − t)!2
( i+ j − k

2

)
!
( i+ k − j

2

)
!
(k − j + 2t− i

2

)
!

.

We can compute the way this sum scales with the dimension by recalling that since ℓ is a probability distribution, we
have cℓ0 = 1. However, since G is even, cG

′

0 = cG1 = 0. The smallest indices such that the sum does not vanish are then
k = 0 and i = j = k∗2 − 1. Then, it turns out that the only term which survives in the sum when k = 0 is the one with
t = k∗2 − 1. Therefore, up to checking that the other terms in the sum are dominated by the addendum corresponding to
k = 0, i, j = k∗2 − 1 and t = k∗2 − 1, we have

E
x∼N (0,1d)

[G′(w1 · x)G′(w2 · x)ℓ(w3 · x)] = Θ(ρk
∗
2−1).

Corollary 14 (used formulas with same argument). Fix k = 1 and i, j ∈ N. Consider I3 given by 12 in the case of w3 = w2.
Then,

I3 = Ex∼N (0,1)[hi(w1)hj(w2)h1(w1)] =
i!j!( i+ j − 1

2

)
!
( i+ 1− j

2

)
!
(j + 1− i

2

)
!
ρj ,

when the denominator exists and I3 = 0 otherwise.
Moreover, for any i, j, k, t ∈ N, consider I4 := Ex∼N (0,1)[hi(w1 ·x)hj(w1 ·x)hk(w2 ·x)ht(w3 ·x)], with w1, w2, w3 ∈ Sd−1.
Then,

I4 =

k∑
ℓ=0

(−1)k−ℓ
(
k

ℓ

)(
t

t− k + ℓ

)
ρkτ t I∗4 (i, j, ℓ, t− k + ℓ),

where I∗4 is defined in Lemma 10 and the indeces i, j, ℓ and t− k + ℓ are ordered.
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Proof. The first part is obtained by repeating the proof of Lemma 12 with w2 = ρw1 +
√

1− ρ2u, for u ∈ Sd−1 and
u · w1 = 0, and using the fact that Ex∼N (0,1d)[hj−ℓ(u · x)] = δj−ℓ.
For the second part, it is sufficient to repeat the usual procedure by decomposing both w2 and w3 such that
w2 = ρw1 +

√
1− ρ2u and w3 = τw1 +

√
1− τ2u′ for u, u′ ∈ Sd−1 and w1 · w2 = w1 · w3 = 0. Then, the the-

sis follows from the second part of Lemma 12.

C. Measures of non-Gaussianity for ICA
Whether the population loss has to be (globally) maximized or minimized with respect to the weight vector w ∈ Sd−1

depends on the data distribution and the choice of the contrast function G. Therefore, we briefly comment on this, by
referring to (Hyvärinen & Oja, 2000) and (Hyvärinen et al., 2001) for more details. What does maximising non-Gaussianity
mean? Equivalently: what is a suitable measure for non-Gaussianity? A standard approach is to choose the negentropy as a
measure of the non-Gaussianity of the random vector x ∼ P, i.e.

J(x) := H(xGauss)−H(x),

where H(x) := −EP[log(x)] and xGauss ∼ P0. We assume that x has zero mean and that its covariance matrix is the
identity. The negentropy, being a Kullback-Leibler divergence, is always non-negative. However, to compute J one needs to
access the density of the random vector x, which is usually unknown and not easy to approximate. Hence, the classical
approach is to approximate negentropy indirectly. In Section 5 of (Hyvärinen et al., 2001), the authors show that the
negentropy can be approximated by

L̃(w) = (E [G(w · x)]− E [G(xGauss)])
2

where G is even and does not grow too fast because of reasons of numerical stability. Typically, G is one of the contrast
functions from Equation (3). Note that this optimization problem is slightly different from Equation (1) (which is the setting
considered in practice, as mentioned in (Hyvärinen & Oja, 2000)). The reason why it is convenient to remove the square is
clear as soon as the Hermite expansion Equation (14) is performed, together with the fact E [G(xGauss)] = cG0 c

ℓ
0:

L̃(w) = (L(w)− E [G(xGauss)])
2

=

(
cG0 c

ℓ
0 +

cGk∗c
ℓ
k∗

k!
αk

∗
+ o(αk

∗
)− cG0 c

ℓ
0

)2

=

(
cGk∗c

ℓ
k∗

k!

)2

α2k∗ + o(α2k∗)

hence the information exponent of this loss function is doubled with respect to L worsening the sample complexity for the
search phase (geometrically, this can be seen as the square “flattening” the loss around the origin).

The removal of the square comes with the side effect that it is not sufficient to just minimize the loss, since the sign becomes
relevant: G needs to me maximised in case of platykurtic data since the cumulants of the data are smaller than the gaussian
ones, so E[G(w · x)]− E[G(xgauss)] < 0, and conversely needs to be minimized in case of leptokurtic data distributions.

C.1. Details on the noisy ICA model model

Here we expand the population loss (2) in the specific case where the inputs are distributed according to the spike cumulant
model (5). We can expand the likelihood ratio ℓ in series of Hermite polynomials in the sense of Definition 8, and write

ℓ(v · x) =
∞∑
j=0

cℓj
j!
hj(v · x).

Note that due to the symmetry of ν, cℓ2j+1 = 0 for any j ∈ N. Moreover, due to the whitening matrix, also cℓ2 = 0; so, apart
from cℓ0 = 1, the smallest non-zero coefficient is cℓ4, the one corresponding to first non-trivial cumulant, i.e. the kurtosis.
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Using the orthogonality identity for Hermite polynomials (Lemma 11 in Appendix B.3), we get

L(w) = EP0
[G(w · x) ℓ(v · x)]

=

∞∑
i,j≥0

cGi c
ℓ
j

i!j!
EP0 [hi(w · x)hj(v · x)]

= cG0 c
ℓ
0 +

cG4 c
ℓ
4

4!
α4 + o(α4)

where α = w · v is the only order parameter of the system. For this calculation, we have assumed that cG4 ̸= 0, which holds
for the contrast functions in Equation (3). This implies that the inference problem of detecting the spike v has information
exponent k∗ = 4, in the sense of Definition 8 in Appendix B.3.
Note also that, for this specific data distribution, ℓ can be computed explicitly, that is

ℓ(y) = Eν

[√
1 + β exp

(
−1 + β

2

(
ν − β

1 + β
v

)2

+
1

2

)]
. (12)

For more details regarding this computation, we refer to Szekely et al. (2024).

D. FastICA
In Figure 5 we show numerically that the large fluctuations seen in Figure 2 (middle) hold for various values of ϵ. We run
FastICA on the noisy ICA model with size batch d3+ϵ, for ϵ = 0.2, 0.5, 0.8. We plot αv = v · w in the first four iterations,
plus the overlap at initialisation.

We prove now Proposition 1, which guarantees that the second order term in the iteration of FastICA does not only speed up
the convergence of the algorithm, but helps in escaping the search phase too: indeed, when it is not present, the recovered
signal after the first giant step scales as the random weight initialisation, i.e. α2

1 = (v · w1)
2 = O(1/d). However, when

the iteration of FastICA is complete, the relevant direction is learned in one single step, if the size-batch is infinite and the
dimension of the inputs diverge.

Proof of Proposition 1 (Infinite batch size). We start by recalling that, up to normalisation, the first iteration of FastICA in
the population limit, i.e. for a batch of infinite size, reads

w̃1 = E[xG′(w0 · x)]− E[G′′(w0 · x)]w0,

where the weight vector at initialisation w0 is uniformly drawn in the unit sphere in Rd. Here, we have considered the
complete iteration, with both the first order and the second order terms. Since we assume we are in a high dimensional regime,
we have that the overlap between the initialisation and the spike that we want to recover scales as α0 := w0 · v = Θ(1/

√
d).

We want to prove that, after the first step, the spike has been totally learned when d → +∞, namely

α2
1 := (w1 · v)2 = 1− o(1).

To do so, we can expand in the series of Hermite polynomials the squared overlap

α2
1 =

π2
1

∥w̃1∥
, with π1 := w̃1 · v (13)

at a sufficiently high order. First of all, we take into account the first and the second order terms f := xG′(w0 · x) and
g := G′′(w0 · x)w0 and compute their expectations with respect to the data distribution.
We compute E[f ] by noticing that f ∈ Rd can be written as the sum of a spherical gradient and a derivative along the
direction of the initialisation, in the following sense: if L(w, x) := G(w · x), we have that

f = (1d − w0w
⊤
0 )∇wL(w, x)

∣∣∣
w=w0

+ w0w
⊤
0 ∇wL(w, x)

∣∣∣
w=w0

= ∇sphL(w, x)
∣∣∣
w=w0︸ ︷︷ ︸

(⋆)1

+w0w
⊤
0 ∇wL(w, x)

∣∣∣
w=w0︸ ︷︷ ︸

(⋆)2

.
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Figure 5. Performance of FastICA on the spiked cumulant model for various sample complexity regimes. We run the standard
FastICA updates (4) on data drawn from a noisy ICA model (5). At each step of the algorithm, we draw a new batch of size n = d3+ε

with ε = 0.2, 0.5, 0.8. We plot the overlap between the planted non-Gaussian direction v and the estimate w produced by FastICA.
Theorem 2 confirms this picture for a general data model.

This splitting has to be done since we need unit vectors to be allowed to apply the orthogonality formulas in Section B. By
using the likelihood ratio trick, we get

E[(⋆)1] =E
[

∂

∂w
G(w · x)

∣∣∣
w=w0

]
= Ex∼N (0,1d)

[
∂

∂w
G(w · x)

∣∣∣
w=w0

ℓ(v · x)
]

=
∂

∂w
Ex∼N (0,1d)

( ∞∑
i=0

cGi
i!
hi(w · x)

) ∞∑
j=0

cℓj
j!
hj(w · x)

∣∣∣
w=w0


=

∂

∂w

∞∑
i,j=0

cGi c
ℓ
j

i!j!
Ex∼N (0,1d)[hi(w · x)hj(w · v)]

∣∣∣
w=w0

=
∂

∂w

∞∑
k=0

cGk c
ℓ
k

k!
αk0

∣∣∣
w=w0

= v⊥w0

( ∞∑
k=1

cGk c
ℓ
k

(k − 1)!
αk−1
0

)
= v⊥w0

( ∞∑
k=k∗

cGk c
ℓ
k

(k − 1)!
αk−1
0

)

where v⊥w0 := v − α0w0 is the projection of the spike in the space orthogonal to w0. Moreover, recall that k∗ is the
information exponent of the population loss (2), in the sense of Definition 9. In the case of the spiked model defined in
Section 2.2, we already know that k∗ = 4. We keep the terms up to the sixth-order of expansion. Hence,

E [(⋆)1] = v⊥w0

(
cG4 c

ℓ
4

3!
α3
0 +

cG6 c
ℓ
6

5!
α5
0

)
+ o(α6

0).

On the other hand, also have to take into account the component of the gradient in the direction of the initialization. For this
second part, we get

E[(⋆)2] =w0 E
[
d

dλ
L(λw0, x)

∣∣∣
λ=1

]
= w0 E [G′(w0 · x)(w0 · x)]

=w0 E [G′(w0 · x)h1(w0 · x)ℓ(v · x)]

=w0

∞∑
i,j=0

cG
′

i cℓj
i!j!

Ex∼N (0,1d) [hi(w0 · x)h1(w0 · x)hj(v · x)] .

By using Corollary 14 we can expand up to six order, obtaining

E[(⋆)2] = w0

(
cG2 c

ℓ
0 +

cG4 c
ℓ
0

3!
α4
0 +

cG6 c
ℓ
4

4!
α4
0 +

cG6 c
ℓ
6

5!
α6
0 +

cG8 c
ℓ
6

6!
α6
0

)
+ o(α6

0).
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In conclusion, summing up the two contributions we simply have

E[f ] = v⊥w0

(
cG4 c

ℓ
4

3!
α3
0 +

cG6 c
ℓ
6

5!
α5
0

)
+ w0

(
cG2 c

ℓ
0 +

cG4 c
ℓ
0

3!
α4
0 +

cG6 c
ℓ
4

4!
α4
0 +

cG6 c
ℓ
6

5!
α6
0 +

cG8 c
ℓ
6

6!
α6
0

)
+ o(α6

0).

Therefore, it remains to compute E[g]. To do so, it is sufficient to expand G′′ in series of Hermite polynomials to obtain

E[g] = w0

∞∑
k=0

cG
′′

k cℓk
k!

αk0 = w0

(
cG2 c

ℓ
0 +

cG6 c
ℓ
4

4!
α4
0 + cG2 c

ℓ
0 +

cG8 c
ℓ
6

6!
α6
0

)
+ o(α6

0).

Now that we have expanded both E[f ] and E[g] up to sixth order, after a long but simple calculation, we can conclude by
writing

π2
1 = ∥w̃1∥2 =

(cG4 c
ℓ
4)

2

3!2
α6
0 + o(α6

0) =⇒ α2
1 = 1− o(1).

This computation has shown that if the first step could possibly be infinitely large, then FastICA would perfectly learn the
spike up to contributions which vanish when d → ∞.

We observe now that happens when the iteration of FastICA consists only in the gradient term. The different update would
be given by w̃1 = E[xG′(w0 · x)]. In this case, it is not needed to expand up to sixth-order, since we can easily see that α2

1

scales as bad as the random initialisation. In particular,

π2
1 = (cG2 c

ℓ
0)

2α2
0 + o(α2

0), ∥w̃1∥2 = (cG2 c
ℓ
0)

2 + o(1) =⇒ α2
1 = α2

0 + o(α2
0) = O

(1
d

)
.

We are now going to prove Theorem 2, which makes explicit the sample complexity required to learn the spike in a single
step with a large, although finite, amount of data points. Recall that, given n samples, the FastICA iteration reads

w̃t =
1

n

n∑
ν=1

xν G′(wt−1 · xν)−
1

n

n∑
ν=1

G′′(wt−1 · xν)wt−1.

Proof of Theorem 2 (Finite batch-size). Define f := 1
n

∑n
ν=1 x

ν G′(w0 · xν) and g := 1
n

∑n
ν=1 x

ν G′′(w0 · xν)w0. The
key ideas of this strategy are borrowed from the proof of Theorem 1 and 2 in Dandi et al. (2024), where they consider a
teacher-student setup and Gaussian inputs. First of all, we compute the expectations of π1 = w̃1 · v and ∥w̃1∥2. After that,
we look at how much data we need to obtain concentration for both the quantities, namely what is the scaling for n such that
π1 and ∥w̃1∥2 are approximated, up to a sufficiently small error, by their expectations. Then, we get the scaling for α2

1 by
simply computing the ratio between E[π1]

2 and E[∥w̃1∥2].

From now on, we consider n = Θ(dk
∗−δ), for δ ∈ [0, 2]. In order to compute the expectation of π1, we can use the

calculation performed in the proof of Proposition 1 to obtain

E[π1] = v · E[f − g] = v · 1
n

n∑
ν=1

(E[xνG′(w0 · xν)]− E[G′′(w0 · xν)w0])

=
cGk∗c

ℓ
k∗

(k∗ − 1)!
αk

∗−1
0 + o(αk

∗−1
0 ),

where the last inequality is obtained by following the steps of Proposition 1 without explicitly using that k∗ = 4. Indeed,

v · E[f ] = cℓ0c
G
2 α0 +

cGk∗c
ℓ
k∗

(k∗ − 1)!
αk

∗−1
0 + o(αk

∗−1
0 ) and v · E[g] = cℓ0c

G
2 α0 + o(αk

∗−1
0 ).
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We now have to compute E[∥w1∥2] = E[∥f∥2] + E[∥g∥2]− 2E[f · g]. Since

E[∥g∥2] = 1

n2
E
[ n∑
ν,ν′=1

(xν · xν
′
)G′(w0 · xν)G′(w0 · xν

′
)

]

=
1

n2
E
[ n∑
ν ̸=ν′

(xν · xν
′
)G′(w0 · xν)G′(w0 · xν

′
)

]
+

1

n2
E
[ n∑
ν=1

∥xν∥2 G′(w0 · xν)2
]

=
n(n− 1)

n2
∥E[g]∥2 + 1

n
E
[
∥x∥2 G′(w0 · x)2

]
and it is possible to do the same calculation for E[∥f∥2] and E[f · g], we get that

E[∥w̃1∥2] =
n(n− 1)

n2

(
∥E[g]∥2 + ∥E[f ]∥2 − 2E[g] · E[f ]

)
+

1

n

(
E[∥x∥2G′(w0 · x)2] + E[G′′(w0 · x)]− 2E[(x · w0)G

′(w0 · x)G′′(w0 · x)]
)
.

(14)

We can compute the scaling for the last three terms by using Lemma 12. On the other hand, the scaling for each of the first
three terms is obtained by expanding E[f ] and E[g] up to sixth-order and repeating the same calculation of Proposition 1
while avoiding the evaluation k∗ = 4. We get that, for any n, we have

E[∥w1∥2] =
n(n− 1)

n2

(
(cGk∗cℓk∗)2

(k∗ − 1)!2
α
2(k∗−1)
0

)
+

1

n

[
d

( ∑
k∈2N+1

cG
′

k cℓk
k!

)
+O(dαk∗

0 ) +

(∑
k∈2N

cG
′′

k cℓk
k!

)
+O(αk∗

0 )− 2cG
′′

0 cG
′

1 cℓ0 +O(1)

]

=
(cGk∗cℓk∗)2

(k∗ − 1)!2
α
2(k∗−1)
0 − 1

n2

(
(cGk∗cℓk∗)2

(k∗ − 1)!2
α
2(k∗−1)
0

)
+

1

n

[
d

( ∑
k∈2N+1

cG
′

k cℓk
k!

)
+O(dαk∗

0 )

+

(∑
k∈2N

cG
′′

k cℓk
k!

)
+O(α4

0)− 2cG
′′

0 cG
′

1 cℓ0 +O(1)

]
.

Hence, we start to keep into account the different choices of δ ∈ [0, 2]. Recall that n = Θ(dk
∗−δ). We need to know that is

the addendum which dominates in the previous formula, depending on k∗. By looking at the scaling of each addendum, one
can see that there are two possible regimes, which correspond to the two cases α2(k∗−1)

0 ≶ d/n. In particular, when δ = 0,
the signal coming from the contribution of the first line in (14) dominates. More precisely, we get that

δ ∈ (0, 2] ⇒ E[∥w1∥2] = Θ
( d
n

)
,

δ = 0 ⇒ E[∥w1∥2] =
(cGk∗c

ℓ
k∗)

2

(k∗ − 1)!2
α
2(k∗−1)
0 + o(α

2(k∗−1)
0 ).

Hence, we have the scaling of the expectations of π1 and ∥w1∥2. It is left to see how much data samples are required to
approximate well these expectations with high probability, i.e. for which sample complexity π1 and ∥w1∥2 concentrate.
Thanks to Assumptions 1, 2 and 3, the proof is analogous to the one in Section B.4 from (Dandi et al., 2024), leading to:

|π1 − E[π1]| ≤ |f · v − E[f · v]|+ |g · v − E[g · v]| = O
( log(n)√

n

)
.

and

|∥w1∥2 − E[∥w1∥2]| ≤ |∥f∥2 − E[∥f∥2]|+ |∥g∥2 − E[∥g∥2]|+ 2 |f · g − E[f · g]|

= O

(
d log(n)

6

n
√
n

+
log(d)

6

n
√
d

+
log(n)

2

n
+

log(n)
k∗

d(k∗−1)/2
√
n

)
.
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Negative results: We start by analysing what happens when δ ∈ (0, 2]. We have with high probability that

∥w1∥2 ≥ |E[∥w1∥2]| − |E[∥w1∥2]− ∥w1∥2| = Θ
( d
n

)
−O

(
d log(n)6

n
√
n

+
log(d)6

n
√
d

+
log(n)2

n
+

log(n)k
∗

d(k∗−1)/2
√
n

)
which implies that

∥w1∥2 = Ω

(
d

n

)
.

Moreover, with high probability,

|π1| ≤ |E[π1]|+ |E[π1]− π1| = O
( 1

d(k∗−1)/2

)
+O

(
log(n)√

n

)
⇒ π1 = O

( 1

d(k∗−1)/2

)
+O

(
log(n)√

n

)
.

We have to split the reasoning in two cases.

Case 1 : If δ ∈ (0, 1], with high probability π1 = O
( 1

d(k∗−1)/2

)
and then

α2
1 =

π2
1

∥w1∥2
=

O

(
1

dk∗−1

)
Ω

(
d

n

) =

O

(
1

dk∗−1

)
Ω

(
dδ

dk∗−1

) = O
( 1

δδ

)
.

It means that the overlap at step one is bounded by above by a quantity which vanishes when the dimension of the inputs d
goes to infinity, which is definitely a bad news for learning in high dimensions with FastICA. Note however that this case
bridges smoothly the cases δ = 0 and the case δ = 1, which correspond to dk

∗−1, i.e. the regime in which online SGD is
able to learn.

Case 2: If δ = [1, 2], the reason why FastICA does not learn is not an adverse ration between two random, although concen-
trated, quantities. In this case, the number of samples is not enough to reach concentration for π1, that is π1 = O

(
log(n)√

n

)
.

Therfore,

α2
1 =

π2
1

∥w1∥2
=

O

(
polylog(n)

n

)
Ω

(
d

n

) = O

(
polylog(d)

d

)
.

The latter negative result is qualitatively different from the previous one, since it is due to the lack of concentration of
π1. The spike is not recovered at all, meaning that the scaling of α1 is as bad as the one provided by the random weights
initialisation.

Positive result: Let’s consider δ = 0, which means that we employee an extensive number of data points, namely
n = Θ(dk

∗
). Then,

∥w1∥2 ≤ |E[∥w1∥2]|+ |E[∥w1∥2]− ∥w1∥2| =
(cGk∗c

ℓ
k∗)

2

(k∗ − 1)!2
α
2(k∗−1)
0 + o(α

2(k∗−1)
0 ).

On the other hand, we also have the following lower bound:

|π1| ≥ |E[π1]| − |E[π1]− π1| =
∣∣∣∣ cGk∗c

ℓ
k∗

(k∗ − 1)!
αk

∗−1
0

∣∣∣∣− o(αk
∗−1

0 ).

In conclusion, we get

α2
1 =

π2
1

∥w1∥2
≥

(cGk∗c
ℓ
k∗)

2

(k∗ − 1)!2
α
2(k∗−1)
0 − o(α

2(k∗−1)
0 )

(cGk∗c
ℓ
k∗)

2

(k∗ − 1)!2
α
2(k∗−1)
0 + o(α

2(k∗−1)
0 )

= 1− o(1),

meaning that in this regime, when d → +∞, the relevant direction is perfectly recovered by the first iteration of FastICA.
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Figure 6. Benefit of smoothing the loss depending on different values of the parameter λ: We show the smoothed loss Lλ[G(w · x)]
for different scalings of the smoothing parameter λ. We can see the loss is most flat around the origin without smoothing, while increasing
the smoothing parameter makes the loss more peaked around the origin, making it easier to escape the origin. See Appendix E for details.

E. Smoothing the landscape
For implementation purposes, we start by writing the formula for the spherical gradient of the smoothed loss, that is

∇sphLλ(w, x) = ∇sphLλ(G(w · x)) = x Ez1

[
G′
(
w · x+ λz1∥P⊥

w x∥√
1 + λ2

)(
1√

1 + λ2
− λz1(w · x)

∥P⊥
w x∥

√
1 + λ2

)]
,

where z1 is one of the components, for example the first one, of a random vector z ∼ Unif(Sd−2). This formula can be
obtained by following the proof of Lemma 9 in (Damian et al., 2023). Note that we need to compute the spherical gradient
in order to write the iteration of smoothed online SGD.

We now briefly comment on the benefit of smoothing the loss landscape, which is given by taking into account the expectation
of the contrast function evaluated in the dot product between the (normalized) vector w + λz and the vector of the inputs x,
instead of evaluating the loss in s = w · x. The smoothing operator is defined in Definition 3. Recall that z is a vector of
white noise and note that in Theorem 4 the parameter λ is large, namely it scales with the dimension d of the inputs. The key
intuition behind the smoothing operator is that, thanks to large λ, it allows to evaluate the loss function in regions that are far
from the updated weights wt, collecting non-local signal that alleviates the flatness of the saddle of the loss function at the
beginning of learning, reducing the length of the search phase. In Figure 6 we plot the smoothed loss function, in the cases
of λ = d1/4, λ = d1/8 and λ = 0. The first case corresponds to the optimal value of λ, that is, the one for which the optimal
thresholds of Theorem 4 are obtained. The latter case corresponds to the absence of smoothing. It can be interesting to recall
that for λ ≫ d1/4 we have the “noise’ which dominates the “signal’, in the sense of Equation (15), where the admissible
values of λ are chosen. For the plots in Figure 6 we have used n = 104 number of samples, d = 10 and G(s) = −h4(s).

In the following section we will go through the rigorous argument that formalizes the heuristic derivation presented in
Section 3.5.1.

E.1. Proof

We prove now Theorem 4, which provides the timescales for recovering the relevant direction with smoothed online SGD.
Since the Gaussian version of this theorem has already been proved in (Damian et al., 2023), we will only emphasise the
main differences between the Gaussian and non-Gaussian case, which are mainly due to the presence of the (bounded)
likelihood ratio and the fact that the analysis cannot take into account only the information exponent k∗2 of the contrast
function, but also the information exponent of the population loss, and those in general are not equal. However, we will
conclude that smoothed online SGD obtains the optimal sample complexity only in the matched case, which is for k∗1 = k∗2 .

Proof of Theorem 4 (Escaping mediocrity). The proof is made of two parts. The first part is dedicated to the computation
of the scaling for the two main quantities that take part in the iteration of smoothed online SGD, i.e. the signal and the
noise. The first part ends when we have collected all the ingredients to prove an analogue of the thesis of Lemma 15 in
(Damian et al., 2023), which for us is given by (17). This formula guarantees that the overlap between the spike and the
updated weight vector given by smoothed online SGD is precisely the sum of the previous overlap, the signal, the noise and
a suitable martingale term. The second part is dedicated to the application of standard arguments in probability theory (for
the case of vanilla and smoothed SGD see e.g. (Ben Arous et al., 2021) and (Damian et al., 2023) respectively), from which
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it is straight forward to conclude that at some point, i.e. for a certain number of used data points, SGD reaches a regime in
which the signal dominates the noise and the spike is recovered.

Signal: We start by studying the scaling of the population (spherical) gradient ∇sphLλ(w). This scaling will depend on the
information exponent k∗1 of the population loss. To do so, consider the expansion as series of Hermite polynomials of the
population loss

L(w) =
∞∑

k≥k∗1

cGk c
ℓ
k

k!
αk,

where k∗1 is its information exponent. In Lemma 8 of (Damian et al., 2023) it is shown that we can apply the smoothing
operator to each term and obtain that, for any k ≥ 0,

Lλ(αk) ≈ sk(α, λ), with sk(α, λ) :=
1

(1 + λ2)k/2


αk α2 ≥ λ2

d ,

(λ
2

d )k/2 α2 ≤ λ2

d and k is even,
α(λ

2

d )(k−1)/2 α2 ≤ λ2

d and k is odd.

By computation, we can obtain that the population (spherical) gradient is ∇sphLλ(w) = (v − αw)cλ(α), with

cλ(α) :=
∑
k≥k∗1

cGk c
ℓ
k

k!

d

dα
Lλ(αk).

The scalar product of this population gradient term and the relevant direction, i.e. v · ∇sphLλ(w) = (1−α2)cλ(α), is called
signal. It can be proved, like in Lemma 10 of (Damian et al., 2023), that

cλ(α) ≈
sk∗1−1(α, λ)√

1 + λ2
.

Noise: Now we take a look at the noise term. Fix u ∈ Sd−1, with u ⊥ w. Recall that we are using the notation
g = ∇sphLλ(w, x). Since we have assumed that the likelihood ratio ℓ is bounded (e.g. as the case of inputs drawn according
to the noisy ICA model (5)), we get

E
[
(u · g)2

]
= Ex∼N (0,1d)

[
(u · g)2ℓ(v · x)

]
≤ ∥ℓ∥∞ Ex∼N (0,1d)

[
(u · g)2

]
(15)

≲
min

(
1 + λ2,

√
d
)−(k∗2−1)

1 + λ2
≲ (1 + λ2)−k

∗
2 , (16)

where we have used the fact that λ ∈ [1, d1/4] and Corollary 1 in (Damian et al., 2023). In the last inequality, thanks to the
choice λ ∈ [1, d1/4], we using the fact that

min
(
1 + λ2,

√
d
)−(k∗2−1)

=
(
1 + λ2

)−(k∗2−1)

Note that we have obtain an explicit dependence on the information exponent k∗2 of the contrast function. We can estimate
now the second moment of the smoothed spherical gradient, i.e. E[∥g∥2], which we call noise. To do so, recall that g is a
spherical gradient and then of course g ⊥ w. To get an upper bound on the scaling of the noise, it is sufficient to fix an
orthonormal basis in Rd such that e1 = w. Then,

E[∥g∥2] =
d∑
i=2

E
[
(ei · g)2

]
≲ dO((1 + λ2)−k

∗
2 ).

Now that we have the desired upper bound, it is possible to compute the scaling for the expectation of some p- moments of
∥g∥2, for p-sufficiently large. This corresponds to Corollary 2 in (Damian et al., 2023).

By considering both the scaling of the signal and the noise, we can now state the non-Gaussian version of Lemma 15 in

(Damian et al., 2023), which tells us that if αt+1 := v ·wt+1 and wt+1 :=
wt + ηgt
∥wt + ηgt∥

, we obtain that with high probability

αt+1 = αt + η(1− α2
t )cλ(αt) + Zt +O(E[∥gt∥2]). (17)
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where {Zt}t∈N is a martingale term with zero mean defined as

Zt := η (gt · v)− E [η (gt · v)] + rt − E [rt]

and

rt := [αt + η (gt · v)]

(
1√

1 + η2||gt||2
− 1

)
.

Hence, at each step of smoothed online SGD, the updated overlap between the new weight vector and the spike is nothing
but the previous overlap plus a martingale term, the signal - whose scaling depends on k∗1 - and the noise - whose scaling
depends on k∗2 . We have reached the setting of Lemma 16 of (Damian et al., 2023). From here on, the proof can be concluded
by applying the argument that translates the signal and noise estimated into sample complexities, introduced in the setting of
vanilla online SGD by (Ben Arous et al., 2021). The proofs of Lemma 16 and Lemma 17 from (Damian et al., 2023) can be
repeated straight forwardly, leading to the required sample complexities for recovering the spike.

F. Additional numerics

Figure 7. Performance of FastICA on noisy ICA model with Rademacher prior on the latent without resampling the training data
at each step. Parameters: input dimension d = 25, signal-to-noise ratio β = 5, online learning.
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Figure 8. Performance of online FastICA on noisy ICA model with the “3not4” prior on the latent variable. Under this prior, the
latent has mean zero, unit variance, a non-trivial third-order cumulant, but zero fourth-order cumulant; see Appendix A.5 for details.
Parameters: input dimension d = 25, signal-to-noise ratio β = 5, online learning.

Figure 9. Performance of online FastICA on noisy ICA model with Laplace prior on the latent. Parameters: input dimension d = 25,
signal-to-noise ratio β = 5, online learning.
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