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Abstract

Eliciting reliable human feedback is essential for many machine learning tasks,
such as learning from noisy labels and aligning AI systems with human prefer-
ences. Peer prediction mechanisms incentivize truthful reporting without ground
truth verification by scoring agents based on correlations with peers. Traditional
mechanisms, which ensure that truth-telling maximizes the expected scores in
equilibrium, can elicit honest information while assuming agents’ utilities are
linear functions of their scores. However, in practice, non-linear payment rules
are usually preferred, or agents’ utilities are inherently non-linear.
We propose stochastically dominant truthfulness (SD-truthfulness) as a stronger
guarantee: the score distribution of truth-telling stochastically dominates all other
strategies, incentivizing truthful reporting for a wide range of monotone utility func-
tions. Our first observation is that no existing peer prediction mechanism naturally
satisfies this criterion without strong assumptions. A simple solution—rounding
scores into binary lotteries—can enforce SD-truthfulness, but often degrades sensi-
tivity, a key property related to fairness and statistical efficiency. We demonstrate
how a more careful application of rounding can better preserve sensitivity. Further-
more, we introduce a new enforced agreement (EA) mechanism that is theoretically
guaranteed to be SD-truthful in binary-signal settings and, under mild assump-
tions, empirically achieves the highest sensitivity among all known SD-truthful
mechanisms.

1 Introduction

Information elicitation studies how to design mechanisms that incentivize honest and high-effort
human feedback. In this framework, a principal seeks reliable responses regarding a set of tasks
from strategic agents who are motivated by the designed rewards. For example, AI companies collect
human preferences to align language models via RLHF [Ouyang et al., 2022], and MOOCs use peer
grading to evaluate complex assignments at scale Piech et al. [2013]. A key challenge is designing
scoring mechanisms that accurately assess the informativeness of agents’ reports.

Peer prediction provides an elegant solution for settings where ground truth is unavailable or costly to
obtain, such as in subjective tasks [Miller et al., 2005]. Instead of relying on external validation, peer
prediction scores agents based on the correlation between their reports and those of their peers. The
scoring mechanism is designed to be truthful so that everyone reporting truthfully forms a Bayesian
Nash equilibrium, ensuring that truth-telling maximizes each agent’s expected score.

A key assumption underlying the effectiveness of existing peer prediction mechanisms is that agents’
utility is a linear function of their score. This assumption is reasonable in some cases, such as when
agents are solely motivated by monetary payments, which can be straightforwardly designed as a
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linear transformation of the peer prediction scores. However, in practice, non-linear payment rules
such as threshold bonuses that reward workers only when performance exceeds a cutoff are often
preferred for their budget efficiency and flexibility [Zhang and Schoenebeck, 2023a]. Moreover,
agents’ intrinsic utility functions are sometimes inherently non-linear. For instance, student graders
care more about their final letter grades (e.g., A, B, C) than the real-valued numerical scores assigned
by the mechanism. When agents’ utilities are non-linear functions of their scores, truth-telling is no
longer guaranteed to be an equilibrium strategy.

Motivated by this limitation, we introduce the concept of stochastic dominance-truthful (SD-truthful)
peer prediction mechanisms. This stronger notion of truthfulness requires that an agent’s score distri-
bution, when everyone reports truthfully, first-order stochastically dominates the score distribution
under any unilateral deviation. As a result, SD-truthful mechanisms incentivize truth-telling for
agents with any utility function that is monotone increasing with the score.

1.1 Our Results

Our first observation is that no existing peer prediction mechanism is naturally SD-truthful
under general information structures, i.e., under arbitrary correlations between agents’ signals.
We examine three widely studied mechanisms that compute scores as the average of multiple simple
discrete scores, including Output Agreement (OA), Peer Truth Serum (PTS) [Faltings et al., 2017], and
Correlated Agreement (CA) [Shnayder et al., 2016]. Mechanisms with complex scoring rules—such
as those based on continuous-valued estimates of mutual information Kong and Schoenebeck [2019],
Kong [2020], Schoenebeck and Yu [2020]—are unlikely to satisfy SD-truthfulness. Yet even these
simple mechanisms fail to guarantee SD-truthfulness without strong assumptions on the underlying
information structure.

Our second observation is that achieving SD-truthfulness is easy in principle but challenging to
do well in practice. Given any truthful mechanism M with bounded scores SM ∈ [Sinf , Ssup], we
can define a probability by normalizing the score: λM = SM−Sinf

Ssup−Sinf
∈ [0, 1]. We then score agents

via a binary lottery: S̃M = 1 with probability λM and 0 otherwise. Although this approach, called
the direct rounding reduction, trivially satisfies SD-truthfulness, it greatly reduces sensitivity—an
important property related to the efficiency and ex-post fairness of a mechanism. At a high level,
sensitivity measures how much a mechanism’s score responds to changes in the information contained
in an agent’s reports, normalized by the standard deviation of the scores.

To overcome this limitation, we propose the partition rounding reduction, which helps partially
recover the sensitivity of the original mechanism. The idea is to divide the questions into K disjoint
subsets and apply the original mechanism separately within each subset to compute an individual
score. The final score for an agent is then the average of K i.i.d. individual scores after applying
direct rounding. Intuitively, this approach improves sensitivity by reducing variance through the
aggregation of multiple independent scores.

However, the partition rounding process cannot fully recover the sensitivity of the original mech-
anisms, implying additional room for more sensitive peer prediction mechanisms. We introduce
a novel mechanism called enforced agreement (EA) that is shown to be the most sensitive SD-
truthful mechanism in the binary-signal setting. EA aims to replicate the key advantage of OA—its
high sensitivity—while relaxing the strong assumptions on the information structure required for
SD-truthfulness.

EA works by enforcing a pre-determined empirical distribution of signals. In the binary setting, if
Alice reports 0 on m0 > n0 questions (where n0 is the enforced count), the mechanism randomly flips
m0 − n0 of them to 1. This trick removes agents’ incentive to over-report majority signals, a strategy
that undermines the truthful properties of OA. However, EA is only truthful but not SD-truthful
when signals are non-binary, highlighting an important future challenge in designing high-sensitivity
SD-truthful mechanisms for more complex settings.

Lastly, our empirical results reinforce and complement our theoretical insights. In the binary-
signal setting, we show that even a prior-free implementation of EA—simply enforcing a uniform
distribution—outperforms other SD-truthful mechanisms in most settings, including those that require
prior knowledge. For non-binary-signal settings, the partition rounding reduction of PTS emerges as
the most sensitive SD-truthful mechanism.
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Table 1 summarizes a comparison of SD-truthful (implementations of) peer prediction mechanisms
with respect to the assumptions they require and their sensitivities.1

Mechanisms Requirements for SD-truthfulness
Output Agreement (OA) Self-dominating signal

Enforced Agreement (EA) [This paper] Binary and self-predicting signal
Peer Truth Serum (PTS) [Faltings et al., 2017] Self-predicting signal

Correlated Agreement (CA)[Shnayder et al., 2016] Any signal
Matching Agreement (MA) [Zhang and

Schoenebeck, 2023b] Any signal

Table 1: A Comparison of Discussed Peer Prediction Mechanisms ordered by sensitivity (from high
to low), where PTS, CA, and MA require the partition rounding reduction to achieve SD-truthfulness.

2 Related Work

The idea of peer prediction was proposed by Miller et al. [2005]. As the first discussion, their
mechanism is not detail-free, i.e. the mechanism requires prior knowledge of the information structure
(how agents’ signals are correlated) to obtain truthfulness. There are two ideas to mitigate this
limitation: (i) the single-task mechanism, which elicits the information structure directly from agents
[Prelec, 2004]; and (ii) the multi-task mechanism, which assumes each agent responds to multiple
i.i.d. tasks but only requires eliciting signals rather than predictions [Dasgupta and Ghosh, 2013].

Our study is primarily relevant to the multi-task setting. We categorize multi-task peer prediction
mechanisms into two types: peer agreement mechanisms Dasgupta and Ghosh [2013], Faltings
et al. [2017], Shnayder et al. [2016], Zhang and Schoenebeck [2023b], Agarwal et al. [2017] and
mutual information mechanisms Kong and Schoenebeck [2019], Kong [2020], Schoenebeck and Yu
[2020], Schoenebeck et al. [2021], Kong [2024]. In this paper, we primarily focus on peer agreement
mechanisms, as SD-truthfulness requires the mechanism’s score to take a relatively simple form.
Intuitively, this is because a complex scoring mechanism provides more opportunities for a cheating
strategy to obtain one of the highest scores with a larger probability than truth-telling, which breaks
SD-truthfulness. In Appendix A, we provide a more detailed discussion on why several classic mutual
information mechanisms are not SD-truthful.

The score of a peer agreement mechanism can be viewed as an average of multiple individual scores,
where each individual score takes values from a small finite space, e.g. {0, 1}. For example, output
agreement (OA) scores an agent based on the average number of questions that they agree with
another agent. The first multi-task peer prediction mechanism lies in this category, which can achieve
truthfulness in a binary-signal setting [Dasgupta and Ghosh, 2013]. The correlated agreement (CA)
mechanism generalizes their idea to any finite-signal setting [Shnayder et al., 2016]. The peer truth
serum (PTS) mechanism is a generalization of OA, which relaxes the self-dominating assumption
to self-prediction. In addition, two follow-ups of CA aim to handle heterogeneous agents [Agarwal
et al., 2017] and more general cheating strategies [Zhang and Schoenebeck, 2023b].

Moreover, we note that the idea of rounding peer prediction scores into a binary lottery (see Section 5)
was previously proposed by Miller et al. [2005] to address risk-averse agents. What is new in our
work is the comparative analysis of various rounding reductions based on sensitivity, allowing us to
identify a more effective rounding approach. Furthermore, we formally prove that this idea extends
beyond risk-averse agents and can be applied to any agents with increasing utility functions.

3 Model

We consider the multi-task peer prediction setting where two agents, Alice and Bob, answer the
same n i.i.d. questions. For each question j, the agents receive discrete signals Xa,j , Xb,j ∈ Σ =
{0, . . . , c−1}, drawn from a fixed joint distribution Pr(Xa, Xb). In cases with more than two agents,
we can reduce to the case of two agents by, for any particular agent “Alice”, choosing a random peer
agent “Bob” for scoring.

1MA is an extension of CA, and therefore shares similar requirements and properties.
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Each agent i ∈ {a, b} applies a strategy θi ∈ Θ, which maps from signals to distributions over the
same space ∆Σ. The report on question j is denoted as X̂i,j = θi(Xi,j). We highlight two types of
strategies: the truth-telling strategy τ , which always reports the received signal, and the uninformative
strategy µ, where reports are independent of the input. Examples of uninformative strategies include
always reporting the same signal or randomly reporting signals according to the prior.

A peer prediction mechanism M maps vectors of reports X̂a and X̂b to a score for Alice. Given an
information structure (i.e., the joint distribution over signals) and a mechanism, the score is a random
function of strategies, denoted as SM(θa, θb). The randomness arises from the signals, strategies,
and the mechanism itself. When it is clear from context, we omit the superscript M.

3.1 Truthful Guarantees

Existing peer prediction mechanisms focus on expected scores, guaranteeing that any deviation from
truth-telling will only reduce the expected score. In this sense, truth-telling forms a Bayesian Nash
Equilibrium. Since our analysis centers on equilibrium behavior, we assume Bob always tells the
truth. Under this assumption, the score assigned by the mechanism reduces to a function of Alice’s
strategy θ, written as SM(θ).

Definition 3.1. A peer prediction mechanism is truthful if E[S(τ)] ≥ E[S(θ)] for any θ ∈ Θ.

A truthful mechanism guarantees that if agents have linear utility in their scores, truth-telling is a
Bayesian Nash Equilibrium—any deviation yields lower expected utility. However, as we argued
earlier, assuming linear utility is often undesirable and, in some cases, unrealistic. Instead, we aim
to design truthful mechanisms for a broader and more reasonable class of utility functions—those
that are simply increasing in score. This motivation naturally leads to the concept of stochastic
dominance.

Definition 3.2. A peer prediciton mechanism is stochastic dominance-truthful (SD-truthful) if the
distribution of S(τ) first-order stochastic dominates (FOSD) the distribution of S(θ) for any θ ∈ Θ,
i.e. Pr(S(τ) ≥ t) ≥ Pr(S(θ) ≥ t) for any t ∈ R.

A standard result in microeconomic theory suggests that S(τ) FOSD S(θ) if and only if E[u(S(τ))] ≥
E[u(S(θ))] for every increasing utility function u [Hadar and Russell, 1969]. Since linear utility
functions are also increasing, every SD-truthful mechanism is also truthful.

3.2 Sensitivity

In practice, an effective scoring mechanism should meaningfully evaluate the information contained in
agents’ reports and reward more informative reports with higher scores. This motivates an additional
design criterion, orthogonal to truthfulness, known as sensitivity [Zhang and Schoenebeck, 2023a].

To motivate the concept of sensitivity, we extend the model to incorporate agents’ effort levels. This
extension captures how the mechanism responds to marginal changes in information at equilibrium,
i.e. how the score varies when all other agents exert full effort while one agent adjusts her effort. In
particular, on each question, we assume Alice exerts effort with probability e ∈ [0, 1], while Bob
always exerts effort and reports truthfully. When Alice exerts effort, the signal pair (Xa, Xb) is drawn
from the joint distribution Pr(Xa, Xb); in the extreme case where Alice exerts no effort, the signals
are independently drawn from the marginals Pr(Xa) Pr(Xb). That is, exerting effort produces a
signal Xa that is correlated with Xb according to the joint distribution, while shirking yields an
uninformative guess drawn from the prior Pr(Xa). After observing the signal, Alice will report
truthfully. Then, Alice’s score under mechanism M becomes a function of e, denoted as SM(e).

Definition 3.3. The sensitivity of a peer prediction mechanism M at effort level e is δM(e) :=
∇E[SM(e)]
std(SM(e))

where ∇ denotes the derivative operator and std denotes the standard deviation.

Sensitivity measures how well a mechanism’s expected score responds to changes in effort—and
thus, changes in information. Consequently, a trivial mechanism that always assigns a score of 1,
though truthful, has zero sensitivity, as its output is unaffected by effort.

Prior work [Zhang and Schoenebeck, 2023a] shows that when the score is normally distributed and
agents are rewarded based on the ranking of scores, sensitivity is a sufficient statistic for budgetary
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efficiency: mechanisms with higher sensitivity can elicit the same equilibrium effort level at a lower
budgetary cost. Moreover, Xu et al. [2024] establish a one-to-one correspondence between sensitivity
and measurement integrity [Burrell and Schoenebeck, 2023], implying that mechanisms with higher
sensitivity generate scores more closely aligned with the true quality of responses. Together, these
findings highlight sensitivity as a practically meaningful and theoretically grounded property of peer
prediction mechanisms, motivating our choice to use it as an additional dimension for comparison.

Our goal is to design SD-truthful mechanisms that also achieve high sensitivity.

4 Prior Mechanisms

To the best of our knowledge, no existing peer prediction mechanism naturally achieves SD-
truthfulness without imposing strong assumptions on the information structure. In this section,
we introduce three exemplary multi-task peer prediction mechanisms and explain why they are not
naturally SD-truthful to motivate our methods.

4.1 Output Agreement (OA)

The output agreement (OA) mechanism scores Alice based on the fraction of questions on which
both agents agree. The final score of OA is the average of n independent binary individual scores,
i.e. SOA = 1

n

∑
i∈[n] S

OA
i where SOA

i = 1 if both agents’ reports agree on question i and 0
otherwise. However, OA encourages over-reporting of the majority signal, which is truthful only
under a strong assumption.

Definition 4.1. Agents’ signals are self-dominating if Pr(Xb = σ|Xa = σ) > Pr(Xb = σ′|Xa = σ)
for any σ′ ̸= σ ∈ Σ.

Proposition 4.2. OA is truthful if agents’ signals are self-dominating.

In fact, OA is also SD-truthful when signals are self-dominating. This is because each individual
score SOA

i takes only two values, meaning that SOA
i (τ) FOSD SOA

i (θ) if and only if Pr(SOA
i (τ) =

1) ≥ Pr(SOA
i (θ) = 1). Furthermore, the average of multiple i.i.d. scores that are each SD-truthful

remains SD-truthful (see Section 5.2). Consequently, for OA, SD-truthfulness reduces to truthfulness.

4.2 Peer Truth Serum (PTS)

Self-dominance is usually considered a strong assumption. [Radanovic et al., 2016] propose the Peer
Truth Serum (PTS) which incentivizes truth-telling under a weaker assumption.2

Definition 4.3. Agents’ signals are self-predicting if Pr(Xb = σ|Xa = σ) > Pr(Xb = σ|Xa = σ′)
for any σ′ ̸= σ ∈ Σ.

PTS assumes a symmetric, publicly known prior R(σ) = Pr(Xa = σ) = Pr(Xb = σ). It repeatedly
samples questions without replacement, and assigns an individual score SPTS

i = 1/R(σ) to Alice if
X̂a,i = X̂b,i = σ, and 0 otherwise. The final score of PTS is the average of all SPTS

i .

Proposition 4.4 ([Faltings et al., 2017]). PTS is truthful if agents’ signals are self-predicting.

Is PTS SD-truthful? The short answer is no. Each individual score SPTS
i takes at most |Σ| + 1

values, with the maximum being Smax = 1/R(σmin), where σmin is the least likely signal un-
der the prior. A necessary condition for PTS to be SD-truthful is that truth-telling maximizes
Pr
(
SPTS
i (τ) = Smax

)
, which is the probability of Alice agreeing with Bob on signal σmin. While

truth-telling, this probability is the joint distribution Pr(Xa = σmin, Xb = σmin). However,
if Alice uses an uninformative strategy µ that always reports σmin, this probability increases to
Pr(Xb = σmin). Therefore, although µ decreases the expected score, its distribution is not stochasti-
cally dominated by truth-telling, meaning that there exists an increasing utility function under which
Alice strictly prefers µ to τ .

2In the binary signal setting, self-prediction is equivalent to positive correlation, which is a strictly weaker
condition than self-dominance.
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4.3 Correlated Agreement (CA)

The correlated agreement (CA) mechanism [Shnayder et al., 2016] takes two questions to compute
an individual score which has three possible values: -1, 0, and 1. Suppose the joint distribution
Pr(Xa, Xb) is known. The CA mechanism first computes the delta matrix ∆σ,σ′ = Pr(Xa =
σ,Xb = σ′) − Pr(Xa = σ) Pr(Xb = σ′), which is the difference between the joint distribution
and the product of marginal distributions. Let T∆(σ, σ

′) = Sign(∆)σ,σ′ be the agreement function
where Sign(x) = 1 if x > 0 and 0 otherwise. Intuitively, T∆(σ, σ

′) = 1 if the pair of signals (σ, σ′)
appears more often on the same question than on distinct questions.

Then, CA repeatedly samples a bonus question j and a penalty question k. For an individual score
SCA
i , Alice gets 1 if both agents agree on j and gets −1 if her response on j agrees with Bob’s

response on k, i.e. SCA
i = T∆(X̂a,j , X̂b,j) − T∆(X̂a,j , X̂b,k). Since each bonus question can be

paired with n− 1 penalties, the final score is the average over n(n− 1) individual scores.

Intuitively, the CA mechanism works by encouraging correlations on the same question and penalizing
correlations on distinct questions. Consequently, if Alice always reports the majority signal, the
frequency of agreements on the bonus question will be identical to the frequency of agreements on the
penalty questions, which results in a score of 0. Prior work shows that when Pr(Xa, Xb) is known
(or accurately estimated), CA is truthful—and in fact, informed truthful [Shnayder et al., 2016].

Is CA SD-truthful? The answer depends on the implementation. The following example illustrates
that the original implementation of CA described above is not SD-truthful.
Example 4.1. Suppose n = 2, so that Alice knows each of the two questions she answers will be
used once as the bonus question and once as the penalty question. Her final score is the average of
two individual scores, each with SCA

i ∈ {−1, 0, 1}. Thus, the final score has five possible values:
SCA ∈ {−1,−0.5, 0, 0.5, 1}. A necessary condition for SD-truthfulness is that Pr(SCA(τ) =
−1) ≤ Pr(SCA(θ) = −1) for any strategy θ. However, we show that this does not hold in general.

Suppose the signals are positively correlated, i.e. T∆ is a diagonal matrix. Alice receives a score of
−1 if and only if she reports different signals on the two questions and Bob disagrees on both. Under
truth-telling, this happens with probability Pr(SCA(τ) = −1) = 2Pr(Xa = 0, Xb = 1)Pr(Xa =
1, Xb = 0). However, if Alice always reports the same signal (e.g., µ(σ) = 0 for any σ), she can
avoid this outcome entirely. Therefore, µ is not stochastically dominated by τ .

This warns that repeatedly using the same question as the bonus or the penalty question will
sabotage the SD-truthfulness of CA.

5 A Rounding Reduction For Stochastically Dominant-Truthfulness

We introduce a straightforward rounding reduction that maps any truthful mechanism to an SD-
truthful one. However, this approach often comes at a huge cost of sensitivity. To address this, we
propose a more refined rounding method that partially restores the original mechanism’s sensitivity.

5.1 Direct Rounding

Consider a peer prediction mechanism M that assigns Alice a score SM with bounded support
SM
sup < ∞ and SM

inf > −∞. In direct rounding, we normalize the score to a probability: λM =
SM−SM

inf

SM
sup−SM

inf

∈ [0, 1]. Alice’s final score S̃M is then determined by a binary lottery: receiving 1 with

probability λM and 0 otherwise.
Proposition 5.1. The direct rounding reduction of a truthful mechanism with bounded scores is
SD-truthful.

Intuitively, because direct rounding always outputs a Bernoulli score, SD-truthfulness simply implies
that truth-telling should maximize the expected success probability. But the expected success
probability is just the success probability. By our design of λM, the success probability is a linear
function of the final score SM, which proves equivalence between SD-truthfulness and truthfulness.

However, scoring agents via a single binary score is clearly not practical. The following proposition
suggests that direct rounding usually destroys the sensitivity of the original mechanism. Let δM(e)
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and δ̃M(e) be the sensitivity of M and its direct rounding reduction. Additionally, let mM(e) and
stdM(e) be the expected score and the standard deviation.
Proposition 5.2. The sensitivity ratio between a mechanism and its direct rounding is:

δM(e)

δ̃M(e)
=

√(
SM
sup −mM(e)

)
(mM(e)− SM

inf )

stdM(e)
.

This ratio is typically large. For example, the final score of OA is an averaged Binomial
Bin(n,mOA(e)), whose standard deviation is

√
mOA(e)(1−mOA(e))/n. Thus, the sensitivity

ratio between OA and its direct rounding is
√
n. This illustrates a key drawback of direct rounding: it

greatly reduces the sensitivity by eliminating the benefit of averaging over multiple questions.

5.2 Partition Rounding

To reduce variance of and improve sensitivity, we aim to better leverage the information from all n
questions. In particular, if the final score of SM is the average of K independent individual scores
SM
i , we can apply direct rounding to each SM

i and take the average. This motivates the idea of
partition rounding. We first partition the n questions into K disjoint subsets, using each to compute
an individual score. Each score is then directly rounded as in Section 5.1, and the final score ŜM is
the average of the K rounded scores. The following lemma proves the feasibility of this idea.
Lemma 5.3. Let S = 1

K

∑
i∈[K] Si, where the individual scores Si are i.i.d.. Then, S(τ) first-order

stochastically dominates S(θ) if and only if each individual score Si(τ) first-order stochastically
dominates Si(θ).
Proposition 5.4. The partition rounding reduction of a truthful mechanism with bounded scores is
SD-truthful.

We defer the proof of Lemma 5.3, which follows from a straightforward coupling argument, to
Appendix F.3. Proposition 5.4 then follows directly from this lemma and the SD-truthfulness of direct
rounding.

We now show that the partition rounding reduction can partially recover the sensitivity of the original
mechanism. The key observation is that the final score under partition rounding is the average of
a binomial variable, i.e. ŜM(e) = 1

KBin(K,λM(e)), where λM(e) =
mM−SM

inf

SM
sup−SM

inf

with mM being
the expectation of the individual score. Putting this into Definition 3.3 gives us the sensitivity of the
partition rounding reduction

δ̂M(e) =
∇mM(e) ·

√
K√

(mM(e)− SM
inf )

(
SM
sup −mM(e)

) . (1)

The sensitivity of the partition rounding reduction is exactly
√
K times that of the direct rounding

reduction. This means that by using partition rounding, we can recover a substantial portion of the
original mechanism’s sensitivity.

In Appendix B, we present the sensitivities of the partition-rounded versions of the three mechanisms
discussed. We summarize the limitations of these mechanisms below which motivates the design of a
new SD-truthful mechanism introduced in the next section.

• OA is already SD-truthful without rounding and thus has a high sensitivity. However, OA is
SD-truthful only for self-dominating signals.

• PTS requires rounding to ensure SD-truthfulness. Therefore, when the prior of signals is
biased, SPTS

sup becomes large, which in turn leads to a low sensitivity.

• CA uses two questions to compute an individual score, so K = n/2. Furthermore, only
bonus questions contribute to sensitivity, while penalty questions are used to enforce truth-
fulness. This dilutes the sensitivity by half again. Therefore, only 1/4 of the questions count
for the sensitivity of the partition-rounded CA. Hence, even without rounding, the sensitivity
of the partition-rounded CA is only half of that of the original implementation.
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6 The Enforced Agreement Mechanism

This section aims to present a novel mechanism with high sensitivity, which does not require the
above rounding reduction. To motivate our idea, we begin by summarizing the key lessons learned
from the previous discussions.

First, Example 4.1 shows a particular type of strategy that prevents previous mechanisms from being
SD-truthful: reducing/changing the variance of scores, e.g. by always reporting the same signal.
This inspires our enforced agreement (EA) mechanism, where the idea is to control a randomness
level within agents’ reports so that strategic manipulations cannot arbitrarily alter the variance of the
scores.

Second, our analysis of sensitivity in Section 5.2 suggests that a high-sensitivity mechanism requires
a larger number of partitions K and a smaller score range Ssup − Sinf . This insight guides us to use
just one question to compute an individual score (so K = n) and avoid the need for rounding. We
show that EA meets these criteria.

We first prove the SD-truthfulness of EA in the binary-signal setting, and then establish a negative
result explaining why it fails to ensure SD-truthfulness when signals are non-binary. Nonetheless, we
show that EA remains truthful in non-binary settings when the signal structure is known or can be
accurately learned.

6.1 EA in the Binary-signal Setting

We introduce EA in the binary-signal setting and defer the discussion for general settings to the
appendix. The idea of EA is to control the marginal distribution of Alice’s reports. In the binary
setting, the mechanism commits to a target empirical distribution Φ = (n0, n1) where n0 + n1 = n.
The mechanism expects Alice to report signal i on exactly ni out of n questions. If Alice’s actual
distribution ΦXa = (m0,m1) and suppose W.L.O.G. that m0 > n0, the mechanism randomly selects
m0 − n0 of her 0-reports and flips them to 1. After enforcing Φ, Alice is scored using the output
agreement mechanism (OA).

Compared with OA, the enforcement process in EA prevents Alice from benefiting by over-reporting
the majority signal. However, this enforcement introduces dependencies across questions, so the
binary agreement scores are no longer i.i.d., and Lemma 5.3 does not apply. Our main result shows
that EA is SD-truthful when signals are self-prediction (Definition 4.3).
Theorem 6.1. If |Σ| = 2 and signals are self-predicting, the enforced agreement mechanism is
SD-truthful for any Φ.

We defer the detailed proof to the appendix and present the main ideas below. Note that the final
score of the enforced agreement mechanism is the average of n Bernoulli variables, each with a
potentially different success probability. In the binary-signal setting, there are four possible success
probabilities in total—pij = Pr(Xb = j | Xa = i) for i, j ∈ {0, 1}—representing the probability of
Bob observing (and reporting) j on a question conditioned on Alice observing i. A Bernoulli variable
with success probability pij corresponds to a question on which Alice observes i but is flipped to
j either by the mechanism or by Alice herself. Suppose W.L.O.G. that m0 > n0, meaning that the
mechanism will randomly flip m0 − n0 reports of Alice from 0 to 1 under truth-telling. In this case,
the final score of Alice is the average of three binomials:

n · SEA(τ) ∼ Bin(n0, p00) + Bin(m1, p11) + Bin(m0 − n0, p01). (2)
We show that for any untruthful strategy, the resulting final score can be written as:
n · SEA(θ)∼ Bin(n0 − k, p00) + Bin(m1 − k, p11) + Bin(m0 − n0 + k, p01) + Bin(k, p10),

where 0 ≤ k ≤ min(n0,m1). Under the self-prediction condition, p00 > p10 and p11 > p01.
Therefore, any untruthful strategy can only reallocate k samples from two binomial distributions
with higher success probabilities to those with smaller success probabilities. Via a simple coupling
argument, we can see that S(θ) is first-ordered stochastically dominated by S(τ).

Additional results are provided in Appendix C. First, we show that EA is not generally SD-truthful
in the non-binary setting. Strategic signal permutations can produce score distributions that are
not stochastically dominated by truth-telling. However, EA remains truthful when the information
structure is known or well estimated. Moreover, we derive a closed-form expression for the sensitivity-
maximizing Φ, enabling computation of the optimal enforcement from the information structure.
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7 Empirical Evaluations of SD-Truthful Mechanisms

In this section, we empirically compare the sensitivity of the proposed mechanisms across various
settings. The results support our theoretical findings: EA consistently exhibits the highest sensitivity
among SD-truthful mechanisms in the binary-signal setting (except when the signal prior is nearly
uniform).

7.1 Datasets and Experiment Setup

We use two real-world datasets to estimate the information structure between two agents. The first
dataset contains binary labels classifying whether a compound is appropriate or inappropriate to be
synthesized [Baba et al., 2018]. The second dataset collects the annotations of the sentiment of 300
tweets, where the size of the signal space is 4 [Venanzi et al., 2015]. We denote these two information
structures as J1 and J2 respectively, and defer the details to Appendix E.1.

In the main body of the paper, we focus on SD-truthful mechanisms, which include:

• OA (Section 4.1), which is SD-truthful only when signals are self-dominating.
• PTS-partition-round—the partition rounding reduction of PTS (Section 4.2), where we re-weight

every individual score using signal prior and take the average.
• CA-partition-round—the partition rounding reduction of CA (Section 4.3), where we create
K = n/2 partitions of questions and score agents the average of the individual CA score for each
partition after rounding.

• MA-partition-round—the partition rounding reduction of the matching agreement mechanism
(Appendix D).

• EA-prior—EA with enforcement Φ = n · Pr(Xa).
• EA-uniform—EA with Φi = n · 1/|Σ|, ∀i ∈ Σ.
• EA-optimal—EA with the sensitivity-maximizing Φ computed according to Appendix C.3.

For information structures with binary-signal settings, sensitivities can be computed analytically
as shown in Appendix B. For general cases, we estimate sensitivity using a Monte Carlo approach.
In particular, we simulate reports to each of the n questions with both agents exerting full effort
e = 1 and run M to compute the scores. Repeating this process for T = 20,000 times yields T
i.i.d. samples of SM(e). We then compute the score of Alice when she deviates to a lower effort
level at e−∆e = 0.8, and obtain T samples of SM(e−∆e). The sensitivity of at effort e is then
estimated as E[SM(e)]−E[SM(e−∆e)]

∆e · 1
std(SM(e))

.

7.2 The Sensitivity of SD-Truthful Mechanisms

We now compare the sensitivity of the discussed SD-truthful mechanisms. In Figure 1a, we show the
sensitivity when the prior of the binary signal is varied, i.e. Pr[Xa = 0] ∈ [0.1, 0.9], and the number
of questions n = 100.

Figure 1b and 1c present sensitivity as the number of questions n ∈ {10, 20, . . . , 100} increases,
under information structures J1 and J2, respectively. In J2, where |Σ| > 2, EA is no longer
SD-truthful; however, we still include its sensitivity for comparison.
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Figure 1: A Comparison of the Sensitivity of Different Mechanisms.
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We make the following observations. First, although the partition reductions of CA and MA are
SD-truthful for general settings, their sensitivities are dominated by other SD-truthful mechanisms.
This is due to their requirements of the penalty questions, which do not contribute to the sensitivity,
and the fact that they require two questions to compute an individual score.

Second, PTS performs well when the signal prior is nearly uniform, i.e. Pr(Xa = 0) ≈ 0.5.
Intuitively, this is because the rounding factor that enlarges the gap SPTS

sup − SPTS
inf shrinks when

the prior is close to uniform. However, even a slight bias, i.e. |Pr(Xa = 0) − 0.5| > 0.03 causes
PTS-partition-round to be outperformed by EA.

Third, we observe that enforcing the signal prior in EA closely approximates the optimal enforcement.
Remarkably, even EA-uniform, a detail-free version that doesn’t require knowledge of the prior, con-
sistently outperforms PTS-partition-round, which does rely on prior knowledge for SD-truthfulness.

Additionally, we note that the partition-rounding reduction of MA coincides with that of CA when
signals are binary (see Appendix D). Consequently, the blue and red overlap in Figure 1a and 1b.

Due to space constraints, we defer the comparison between partition-rounding reductions and their
original implementations to Appendix E.2. These results further show that high-sensitivity mecha-
nisms perform strongly in practical, incentive-aligned environments, underscoring the importance of
EA.

8 Conclusion and Future Work

This paper initiates the discussions of stochastically dominant-truthful (SD-truthful) peer prediction
mechanisms, which ensure that in equilibrium, the score distribution under truth-telling first-order
stochastically dominates any other strategy. Unlike traditional peer prediction mechanisms, which rely
on linear utility assumptions, SD-truthful mechanisms can preserve truthfulness for any increasing
utility function. We show that existing mechanisms fail to naturally achieve SD-truthfulness and
propose a rounding method to enforce it. However, this process often reduces the sensitivity of the
original mechanism, making it less efficient in practice. Additionally, we introduce the Enforcement
Agreement (EA) mechanism, which is empirically shown to have the highest sensitivity among all
SD-truthful mechanisms in the binary-signal setting—except when the signal prior is nearly uniform.

Future work is needed to investigate more sensitive SD-truthful mechanisms beyond the binary-signal
setting. A promising next step is to explore approximate SD-truthfulness, which allows truth-telling
to lose a small utility for some utility functions. This relaxation could lead to mechanisms with better
sensitivity. Furthermore, SD-truthfulness alone does not ensure that truth-telling maximizes expected
rewards in a tournament (rank-order rewards). Because agents’ scores are correlated, a manipulation
strategy with a dominated score distribution may still raise an agent’s chance of ranking above others
by altering these correlations. An important direction for future work is therefore the design of peer
prediction mechanisms that provide incentive guarantees under tournaments.

Broader Impact

On the positive side, our method enhances the reliability and efficiency of crowdsourced data
collection, which supports more trustworthy machine learning systems and reduces reliance on
expert annotation. However, mechanisms that incentivize effort may unintentionally disadvantage
contributors with limited time, resources, or familiarity with the task, raising fairness concerns.
We aim to mitigate these risks by designing robust, broadly applicable mechanisms and promoting
transparency in their deployment.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Please see abstract and introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: As mentioned several times in the paper, our solution requires a binary-signal
assumption to achieve the strong truthful guarantee proposed in the paper.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification:Please see Section 3 for detailed assumptions and theory. Proofs are left in the
appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The datasets and parameters of our experiments are presented in Section 7
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We provide the code for our experiments in the supplementary material.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Our experiments do not require training. Details of set-up and parameters are
shown in Section 7 and Appendix E.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Our figures are visualizations of analytical results where there is no error, or
averaged using a large number of independent trials so that the error bars are all very close
to zero.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [No]
Justification: Our experiments do not involve dense computing, and can be conducted on
laptops.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: There is no violation of the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We provide a broader impacts section right after the conclusion section.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This work does not release any models or datasets with a high risk of misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We believe all datasets and LLMs used in this paper are properly cited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: This paper releases code used for running the experiments. The code is
documented and provided alongside the submission to ensure reproducibility. No new
datasets or models are introduced; all experiments are based on public or simulated data.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve data collection from human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve data collection from human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: LLMs were not used in the development of the core methods, experiments, or
analysis in this research.

Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

A Continued Related Work: Mutual Information Mechanisms

We review several classic peer prediction mechanisms that evaluate agents by estimating mutual
information, and illustrate why these mechanisms fail to achieve SD-truthfulness. First, proposed by
Kong and Schoenebeck [2019], we can estimate the empirical point-wise joint distribution between
X̂a,· and X̂b,·, using pairs of reports from two agents, (X̂a,j , X̂b,j)j∈[n]. Note that because questions
are i.i.d., we can use reports from all questions to estimate the same distribution. Then, plugging the
learned empirical joint distribution into an f -divergence operator returns a (biased) estimate of the f
point-wise mutual information. The following is the score for the f -mutual information mechanism
[Kong and Schoenebeck, 2019]:

SfMI = Df

(
Pr
(
X̂a,·, X̂b,·

)
∥Pr

(
X̂a,·

)
Pr
(
X̂b,·

))
.

However, because the estimation is biased, the f -mutual information mechanism is only asymptoti-
cally truthful, meaning that it requires an infinite number of i.i.d. questions to satisfy Definition 3.1.
When the number of tasks is small, there is a non-zero probability that truth-telling is not the best
response. For example, if Alice observes “yes” on all her questions, which happens with a positive
probability, then she knows that truth-telling will always result in a score of 0 regardless of Bob’s
responses. This is because the estimated point-wise joint distribution is the same as the product
of marginal distributions. However, by misreporting “no” on some questions, she has a non-zero
probability of receiving a positive score. In comparison, such deviations are discouraged under the
enforced agreement (EA) mechanism because the mechanism will randomly flip the responses on
behalf of the agent (see Section 6).

Several follow-up works, such as the Determinant Mutual Information (DMI) mechanism by Kong
[2020] and the pairing mechanism by Schoenebeck and Yu [2020], propose different ideas to
estimate the mutual information. However, they are still not SD-truthful. Consider the strategy from
Example 4.1, where Alice always reports “yes.” Under both DMI and the pairing mechanism, this
strategy always yields a score of zero. In contrast, similar to the CA mechanism, there is a positive
probability that truth-telling may result in a negative score. Thus, this constant-reporting strategy is
not dominated by truth-telling under these mutual information-based mechanisms whose score can
take negative values.

B Sensitivity of Prior Mechanisms Under Partition Rounding

We now map the exemplary mechanisms discussed in Section 4 into the partition rounding framework.
In particular, we specify the key parameters K, Sinf , Ssup, and mi(e) for each mechanism. Consider
an information structure with joint distribution J , and the marginal distribution of Alice and Bob
being Ma and M b, respectively. Furthermore, let Mσ,σ′ = Ma

σM
b
σ′ denote the product of marginal

distributions.
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Output Agreement An individual score of OA, SOA
i , is 1 if both agents agree on a question i and

0 otherwise. Therefore, OA is the partition rounding reduction of itself with K = n, Sinf = 0, and
Ssup = 1. By definition, when Alice exerts effort, agents’ signals on the same question is sampled
from the joint distribution J ; while if Alice does not exert effort, she will sample a signal from the
prior, meaning that agents’ signals on the same question is sampled from M . The expectation of an
individual score at the effort level e is thus
mOA

i (e) = e · Pr(Xa,i = Xb,i) + (1− e) · Pr(µ(Xa,i) = µ(Xb,i)) = e · tr(J) + (1− e) · tr(M).

This means that the derivative of the expected score w.r.t. effort e is

∇mOA
i (e) = tr(J −M) = tr(∆),

where ∆ is the difference between the joint distribution and the product of marginal distributions,
and tr(·) represents the trace of a matrix, i.e. the sum of the diagonal entries.

Peer Truth Serum Similar to OA, each partition of PTS is composed of a single question so that
K = n, Sinf = 0, and Ssup = 1

Ma
σmin

where σmin is the signal occurs with the smallest probability in
prior. The expected individual score is

mPTS
i (e) =

∑
σ∈Σ

e · Jσ,σ
Ma

σ

+ (1− e) ·M b
σ = 1 + e ·

∑
σ∈Σ

∆σ,σ

Ma
σ

; ∇mPTS
i (e) =

∑
σ∈Σ

∆σ,σ

Ma
σ

.

Correlated Agreement The CA mechanism requires two questions to compute an individual
score, meaning that K = n/2. By Proposition F.1 and Lemma 5.3, when the signal space is
binary, scoring Alice using SCA =

∑
i∈[K] S

CA
i without rounding is SD-truthful. However, when

|Σ| > 2, we have to use the partition rounding reduction of CA to obtain SD-truthful where
Sinf = −1 and Ssup = 1. On the bonus question, the probability of receiving a score of 1 is given by∑

σ,σ′ (e · Jσ,σ′ + (1− e) ·Mσ,σ′)T∆(σ, σ
′). On the penalty question, the probability of penalizing

a score of 1 is given by
∑

σ,σ′ (e ·Mσ,σ′ + (1− e) ·Mσ,σ′)T∆(σ, σ
′). Combining these,

mCA
i (e) = e ·

∑
σ,σ′∈Σ

∆σ,σ′ T∆(σ, σ
′) = e ·

∑
σ,σ′∈Σ

(∆σ,σ′)+; ∇mCA
i (e) =

∑
σ,σ′∈Σ

(∆σ,σ′)+,

where (x)+ = x if x > 0 and 0 otherwise. Putting these parameters into Equation (1) returns the
sensitivity of the partition rounding reduction for CA. However, note that by Proposition F.1, we do
not need to round the individual CA scores when |Σ| = 2. This motivates a variant of an SD-truthful
implementation of CA that may have a slightly larger sensitivity in the binary-signal setting. We will
introduce and test this implementation in Section 7.

We summarize the limitations of the above three SD-truthful mechanisms.

• OA does not require the partition rounding reduction to achieve SD-truthfulness and thus
is likely to have a high sensitivity. However, OA is SD-truthful only when signals are
self-dominating.

• PTS requires rounding to ensure SD-truthfulness. The normalizing factor 1
Ma

σmin

implies
that PTS will be less sensitive when the prior distribution of signals is biased.

• For the CA mechanism, only bonus questions contribute to the sensitivity of the mechanism,
while penalty questions are used to enforce truthfulness. However, CA requires two questions
to compute a single individual score, which means K = n/2.3 Therefore, even without
rounding, e.g. when |Σ| = 2, the number of effective questions is only one half of the
available questions. Moreover, the rounding process divides each score by a factor of 2,
which further harms the sensitivity of the mechanism.

C The Enforced Agreement Mechanism (Continued)

C.1 Arbitrary Signal Space

Unfortunately, we show that the above idea does not generalize beyond the binary-signal setting.
For a general setting with |Σ| = c, the enforced agreement mechanism can be characterized by an

3We emphasize that increasing K by rerunning partitions is not SD-truthful (Example 4.1).
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enforced marginal distribution Φ = (n0, . . . , nc−1) and an enforcement rule that ensures an agent’s
reports to follow Φ.

Let Alice’s report vector X̂a have an empirical marginal distribution ΦX̂a
= (m̂0, . . . , m̂c−1). The

enforcement rule can be characterized as a c× c matrix ρ
(
X̂a

)
(or simply ρ if there is no confusion),

such that ρi,j denotes the number of randomly selected questions on which Alice reports i and
is flipped to j by the mechanism. By construction, ρi,j ∈ Z≥0 for any i, j ∈ Σ. Furthermore,∑

i ρi,j = nj for any j ∈ Σ and
∑

j ρi,j = m̂i for any i ∈ Σ.

Suppose Alice’s signal vector Xa has a marginal distribution Φa = (m0, . . . ,mc−1). Under the
enforcement rule, while reasoning the distribution the of EA score, every (randomized) strategy can
be characterized by (a mixture of) manipulation matrix. The entry ϑi,j of a manipulation matrix
denotes the number of randomly selected questions where Alice observes i but is flipped to j either
by the mechanism or by herself. Similarly, ϑi,j ∈ Z≥0 for any i, j ∈ Σ,

∑
i ϑi,j = nj for any

j ∈ Σ, and
∑

j ϑi,j = mi for any i ∈ Σ. In particular, let ϑτ (ρ) denote the manipulation matrix
corresponding to truth-telling under the enforcement rule ρ.

Given a manipulation matrix ϑ, the final score of Alice is thus the average of c2 binomials:

SEA(θ) ∼ 1

n

∑
i,j∈Σ

Bin(ϑi,j , pij),

where pij = Pr(Xb = j | Xa = i) is the conditioned probability of agents’ signals.

To obtain SD-truthfulness, we have to construct an enforcement rule ρ such that for any p (under some
assumptions), any Xa, and any feasible ϑ, the random variable SEA(θ) is first-order stochastically
dominated by SEA(τ). This is particularly challenging when c is large because ϑ has c2 − 2c+ 1
degrees of freedom, yet we must identify a ρ such that ϑτ (ρ) dominates any other ϑ.

Three signals We show that even for the three-signal setting, EA is SD-truthful only under a very
special type of information structure.

Definition C.1. Agents’ signals are uniformly self-predicting if Pr(Xb = i | Xa = i) > Pr(Xb =
i | Xa = j) = Pr(Xb = i | Xa = k) for any j ̸= i and k ̸= i.

Consider the following enforcement rule:

• Alice over-reports one signal. If m̂i ≥ ni while m̂j ≤ nj for any j ̸= i, the enforcement
rule will randomly select nj − m̂j questions on which Alice reports i and flip them to j for
j ∈ Σ and j ̸= i.

• Alice over-reports two signals. If m̂j < nj while m̂i ≥ ni for any i ̸= j, the enforcement
rule will randomly select m̂i − ni questions on which Alice reports i and flip them to j for
i ∈ Σ and i ̸= j.

This enforcement rule flips the minimum number of reports to enforce Φ and thus is named the
minimal enforcement rule, denoted as ρ∗.

Proposition C.2. If |Σ| = 3 and signals are self-predicting, the enforcement agreement mechanism is
SD-truthful for any Φ if and only if it applies the minimal enforcement rule and signals are uniformly
self-predicting.

We defer the proof to Appendix F.5. Our results imply that achieving SD-truthfulness using the
EA mechanism is infeasible for arbitrary information structures beyond the binary-signal setting.
Investigating alternative approaches, such as mechanism designs that leverage additional structure in
the information space or stronger assumptions on agent strategies, remains an interesting direction
for future work.

C.2 Truthfulness of EA

Although the EA mechanism is not SD-truthful when |Σ| > 2, we show that it is still possible to
obtain truthfulness as long as the information structure is known.
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Given a report vector of Alice X̂a with an empirical distribution ΦX̂a
= (m̂0, . . . , m̂c−1), EA will

apply the IP enforcement rule by solving the following integer programming.

max
ϑ

∑
i,j∈Σ

ϑi,j pij

s.t.
∑
i∈Σ

ϑi,j = nj , ∀j ∈ Σ,∑
j∈Σ

ϑi,j = m̂i, ∀i ∈ Σ,

ϑi,j ∈ Z≥0, ∀i, j ∈ Σ.

Suppose the optimal solution is ϑ∗(X̂a). The mechanism will then randomly select ϑ∗(X̂a)i,j
questions on which X̂a = i and flip them to j, for any i, j ∈ Σ. After the enforcement step, Alice
will be scored based on the output agreement mechanism.
Proposition C.3. For any enforcement Φ and information structure, if Pr(Xb | Xa) is known, the
enforcement agreement mechanism with the IP enforcement rule is truthful.

The proof is straightforward. Note that to prove truthfulness, it is sufficient to show that truth-telling
maximizes the expected score which is

∑
i,j∈Σ ϑτ

i,j pij . Because the mechanism will manipulate
agents’ reports in an optimal way by solving the above integer programming, no strategy can achieve
a higher expected score than truth-telling.

Note that when |Σ| = 2 and signals are self-predicting, the optimal solution to the above IP does
not depend on the information structure pij . In particular, the IP enforcement rule always flips the
over-reported signal to enforce n0 zeros and n− n0 ones and does not flip any of the under-reported
signal. This echos Theorem 6.1 which suggests the EA mechanism is SD-truthful in the binary-signal
setting without the knowledge of p.
Remark C.4 (Connection to Peer Truth Serum Faltings et al. [2017]). As illustrated in Section 4.2,
PTS can be viewed as an output agreement mechanism (Section 4.1) where the score for agreement
is weighted inversely by each signal’s prior. This re-weighting shifts the probability of agreement
from the joint distribution Pr(Xa, Xb), which demands self-dominating signals to ensure truthful
reporting, to the conditional distribution Pr(Xb | Xa), which requires self-predicting signals.

In contrast, EA avoids using the prior Pr(Xa) by controlling the marginal distribution of Alice’s
reports. This approach similarly transforms the probability of agreement from the joint to the
conditional distribution. However, the enforcement process creates additional incentive issues when
the signal space is large which requires complete knowledge of the underlying information structure.
Consequently, if |Σ| = 2 and signals are self-predicting, EA can obtain a stronger truthful guarantee
(SD-truthfulness) without any prior knowledge; but for |Σ| > 2, it requires more extensive structural
information to guarantee truthfulness.

C.3 The Optimal Enforcement

We have established that when signals are binary and self-predicting, EA with any enforcement Φ
is SD-truthful. In this subsection, we examine how the choice of enforcement, Φ = (n0, n − n0),
influences the sensitivity of EA, and in particular, what is the sensitivity-maximizing enforcement.

Fixing an information structure, the expected score given by EA, SEA(n0, e), can be viewed as a
function of the number of questions where the answers are enforced to zero, n0, and Alice’s effort
level, e. We first present an intermediate result suggesting that the standard deviation of SEA is
independent of n0. This implies that the enforcement affects the sensitivity of EA only through
∇E[SEA(e)].
Lemma C.5. For a fixed information structure, std

(
SEA(n0, e)

)
is independent of n0,

i.e. std
(
SEA(n0, e)

)
= std

(
SEA(n′

0, e)
)

for any n0, n
′
0 ∈ {0, 1, . . . , n}.

We next analyze how the derivative of the expected score depends on the choice of enforcement.
We find that the sensitivity-maximizing enforcement n0 is determined by a quantile of a binomial
distribution with success probability Pr(Xa = 0), where the quantile depends on the information
structure.
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Proposition C.6. If |Σ| = 2 and signals are self-predicting, the sensitivity-maximizing enforcement
of the EA mechanism Φ = (n0, n− n0) satisfies that

n0 = max

{
k ∈ {0, 1, . . . , n} : F (k) <

η′00 − η′01
η′00 − η′01 + η′11 − η′10

}
,

where F (k) =
∑k

i=0

(
n
i

)
Pr(Xa = 0)i(1 − Pr(Xa = 0))n−i is the c.d.f. of a binomial random

variable with success probability Pr(Xa = 0), and η′ij = Pr(Xb = j | Xa = i)− Pr(Xb = j).

We defer the proofs of Lemma C.5 and Proposition C.6 to Appendix F.6.

D The Matching Agreement Mechanism

The matching agreement mechanism is a follow-up of the correlated agreement mechanism aiming to
address more complex cheating strategies Zhang and Schoenebeck [2023b]. Similar to CA, which
determines “agreement” using the delta matrix (see Section 4.3), MA determines “agreement” using
a different method depending on the information structure.

Definition D.1. Let Γ be a |Σ| × |Σ| × |Σ| tensor where

Γσ1,σ2,σ3 = Pr(Xa = σ1 | Xb = σ2)− Pr(Xa = σ1 | Xb = σ3).

The agreement function is thus TΓ = Sign(Γ), i.e. TΓ (σ1, σ2, σ3) = 1 if Γσ1,σ2,σ3
> 0, and 0

otherwise.

Next, the mechanism randomly samples a bonus question j and a penalty question k uniformly at ran-
dom. An individual score computed using these two questions is thus SMA

i = TΓ(X̂a,j , X̂b,j , X̂b,k).
In words, the matching agreement mechanism awards Alice a score of 1 if, when predicting her
response on question b, the posterior conditioned on Bob’s response to the same question provides a
better prediction than the posterior conditioned on Bob’s response on a different question q. Similar
to CA, each bonus question can be paired with n− 1 penalty questions. Therefore, the final score of
MA is the average of n · (n− 1) individual scores.

The Sensitivity of MA Under the Partition Rounding Reduction We further investigate the
sensitivity of the MA mechanism under the partition reduction. The MA mechanism requires two
questions to compute an individual score, implying that K = n/2. Clearly, Sinf = 0 and Ssup = 1
by definition. By Equation (1), to compute the sensitivity, we only need to compute the expected
individual score mi(e) and its derivative. When Alice exerts full effort, the probability of obtaining a
score of 1 can be computed as follows:

mMA
i (1) =

∑
σ1,σ2,σ3

Pr(Xa,j = σ1, Xb,j = σ2, Xb,k = σ3) · TΓ (σ1, σ2, σ3)

=
∑

σ1,σ2,σ3

Jσ1,σ2M
b
σ3

· TΓ (σ1, σ2, σ3)

=
1

2

∑
σ1,σ2,σ3

Jσ1,σ2
M b

σ3
· TΓ (σ1, σ2, σ3) +

1

2

∑
σ1,σ2,σ3

Jσ1,σ3
M b

σ2
· TΓ (σ1, σ3, σ2)

=
1

2
+

1

2

∑
σ1,σ2,σ3

(
Jσ1,σ2M

b
σ3

− Jσ1,σ3M
b
σ2

)
· TΓ (σ1, σ2, σ3)

(Note that TΓ (σ1, σ2, σ3) = 1− TΓ (σ1, σ3, σ2).)

=
1

2
+

1

2

∑
σ1,σ2,σ3

M b
σ2
M b

σ3
Γσ1,σ2,σ3 TΓ (σ1, σ2, σ3)

=
1

2
+

1

2

∑
σ1,σ2,σ3

M b
σ2
M b

σ3
(Γσ1,σ2,σ3

)+

where (x)+ = x if x > 0 and 0 otherwise.
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When Alice exerts no effort,

mMA
i (0) =

∑
σ1,σ2,σ3

Pr(X̂a,j = σ1, Xb,j = σ2, Xb,k = σ3) · TΓ (σ1, σ2, σ3)

=
∑

σ1,σ2,σ3

Ma
σ1
M b

σ2
M b

σ3
· TΓ (σ1, σ2, σ3)

=
1

2

∑
σ1,σ2,σ3

Ma
σ1
M b

σ2
M b

σ3
· TΓ (σ1, σ2, σ3) +

1

2

∑
σ1,σ2,σ3

Ma
σ1
M b

σ2
M b

σ3
· TΓ (σ1, σ3, σ2)

=
1

2
+

1

2

∑
σ1,σ2,σ3

(
Ma

σ1
M b

σ2
M b

σ3
−Ma

σ1
M b

σ2
M b

σ3

)
· TΓ (σ1, σ2, σ3)

(Note that TΓ (σ1, σ2, σ3) = 1− TΓ (σ1, σ3, σ2).)

=
1

2

The expected score while exerting effort e is a convex combination of mMA
i (1) and

mMA
i (0), i.e. mMA

i (e) = 1
2 + e

2

∑
σ1,σ2,σ3

M b
σ2
M b

σ3
(Γσ1,σ2,σ3)

+, and ∇mMA
i (e) =

1
2

∑
σ1,σ2,σ3

M b
σ2
M b

σ3
(Γσ1,σ2,σ3

)+.

When signals are binary, we find that MA reduces to CA.

Lemma D.2. When signals are binary,
∑

σ1,σ2,σ3
M b

σ2
M b

σ3
(Γσ1,σ2,σ3)

+ =
∑

σ1,σ2
(∆σ1,σ2

)+.

Proof. First note that by definition, Γσ1,σ2,σ3
= 0 when σ2 = σ3. Therefore, when signals are binary,∑

σ1,σ2,σ3

M b
σ2
M b

σ3
(Γσ1,σ2,σ3

)+ =
∑
σ1,σ2

M b
σ2
M b

1−σ2
(Γσ1,σ2,1−σ2

)+

=
∑

σ1,σ2,σ3

M b
σ2
M b

σ3
(Γσ1,σ2,σ3

)+

=
∑
σ1,σ2

(Jσ1,σ2M
b
1−σ2

− Jσ1,1−σ2M
b
σ2
)+

=
∑
σ1,σ2

(Jσ1,σ2
(1−M b

σ2
)− ((Ma

σ1
− Jσ1,σ2

) M b
σ2
)+

(Signals are binary.)

=
∑
σ1,σ2

(Jσ1,σ2 −Ma
σ1
M b

σ2
)+

=
∑
σ1,σ2

(∆σ1,σ2
)+

An immediate consequence of Lemma D.2 is that the expected score under MA is a linear transfor-
mation of the expected score under CA. This further implies that the partition rounding reductions of
MA and CA has the same sensitivity under the binary-signal setting.

Proposition D.3. When signals are binary, δMA(e) = δCA(e) under the partition rounding reduc-
tion.

Proof. By Lemma D.2, we know that

mMA
i (e) =

1

2
+

e

2

∑
σ1,σ2,σ3

M b
σ2
M b

σ3
(Γσ1,σ2,σ3

)+ =
1

2
+

e

2

∑
σ1,σ2

(∆σ1,σ2)
+ =

1

2
+

1

2
mCA

i (e),

∇mMA
i (e) =

1

2
∇mCA

i (e).
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By Equation (1),

δMA(e) =
∇mMA

i (e) ·
√

n/2√(
mMA

i (e)− SMA
inf

) (
SMA
sup −mMA

i (e)
)

=
1
2∇mCA

i (e) ·
√
n/2√(

1
2m

MA
i (e) + 1

2

) (
1
2 − 1

2m
MA
i (e)

)
=

∇mCA
i (e) ·

√
n/2√(

mMA
i (e) + 1

) (
1−mCA

i (e)
)

= δCA(e).

E Experiments (Continue)

All codes for our experiments are provided in https://github.com/DavidXu999/
Stochastically-Dominant-Peer-Prediction.

E.1 Information Structure

For Section 7.2, we consider two real-world crowdsourcing datasets, each having a signal space of
size |Σ1| = 2 and |Σ2| = 4. The information structure between a pair of agents can be characterized
by a Dawid-Skene model Dawid and Skene [1979]. In particular, each task has an underlying ground
truth ω that is i.i.d. sampled from a prior distribution W . Conditioning on ω, each agent receives a
signal σ according to conditioned distribution Γ, where Γi,j = Pr[σ = j | ω = i].

In the first dataset [Baba et al., 2018], 18 agents each labels whether a compound is appropriate or
inappropriate to be synthesized. The prior of the ground truth and the conditioned signal distribution
are

W1 =
[
0.613 0.387

]
, Γ1 =

[
0.905 0.095
0.283 0.717

]
.

In the second dataset Venanzi et al. [2015], 110 agents provide the annotations of the sentiment of 300
tweets. There are four ground truth labels and four possible signals where the information structure is

w2 =
[
0.196 0.241 0.247 0.316

]
, Γ2 =

0.770 0.122 0.084 0.024
0.091 0.735 0.130 0.044
0.033 0.062 0.866 0.039
0.068 0.164 0.099 0.669

 .

E.2 The Sensitivity of Original Implementations

How much does the partition rounding reduction harm the sensitivity? We compare the partition
rounding reduction implementations of CA, MA, and PTS with their original implementations in
Figure 2. To be clear, other than the implementations considered in Section 7, we consider the
following implementation of the mechanisms.

• PTS corresponds to the peer truth serum mechanism introduced in Section 4.2, which is
truthful but not SD-truthful.

• CA corresponds to the original implementation of the Correlated Agreement mechanism
described in Section 4.3, which is truthful but not SD-truthful.

• CA-partition represents the implementation where we get K = n/2 partitions of ques-
tions and score agents the average of the individual CA score for each partition (without
normalization). By Proposition F.1, CA-partition is SD-truthful when signals are binary.

• MA corresponds to the original implementation of the Matching Agreement mechanism
described in Appendix D, which is truthful but not SD-truthful.
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(c) Mechanisms shown in Section 7 under J2
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(d) Other Mechanisms under J2

Figure 2: A Comparison of the Sensitivity of Different Mechanisms.

We observe that, relative to the original implementations (solid lines), the partition-rounding reduc-
tions (dashed lines) consistently exhibit lower sensitivity. This observation further demonstrates the
superior sensitivity of EA mechanisms, as it has the property of SD-truthfulness in the binary setting
with no need for partition rounding reduction.

F Additional Proofs

F.1 The CA Mechanism

We first show that a single draw of the CA score is SD-truthful when |Σ| = 2.

Proposition F.1. When |Σ| = 2, instead of taking the average, the mechanism that scores agents
using an individual CA score SCA

i is SD-truthful.4

Proof of Proposition F.1. We first show that the agreement function T∆ is an identity matrix if and
only if signals are self-predicting. For simplicity, let Jσ,σ′ = Pr(Xa = σ,Xb = σ′) be the joint
distribution, and let Ma

σ = Pr(Xa = σ) and M b
σ = Pr(Xb = σ) be the marginal distribution of

Alice and Bob respectively. The delta matrix can be written as

∆σ,σ = Jσ,σ −Ma
σ M b

σ

= Jσ,σ −Ma
σ (Jσ,σ + Jσ′,σ)

= Jσ,σ Ma
σ′ − Jσ′,σ Ma

σ

= Ma
σ Ma

σ′ (Pr(Xb = σ | Xa = σ)− Pr(Xb = σ | Xa = σ′)) .

4When |Σ| ≥ 3, counter-examples exist showing that scoring agents with SCA
i is no longer SD-truthful for

general information structure.
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∆σ,σ′ = Jσ,σ′ −Ma
σ M b

σ′

= Jσ,σ′ −Ma
σ (Jσ,σ′ + Jσ′,σ′)

= Jσ,σ′ Ma
σ′ − Jσ′,σ′ Ma

σ

= Ma
σ Ma

σ′ (Pr(Xb = σ′ | Xa = σ)− Pr(Xb = σ′ | Xa = σ′)) .

Next, we reason about the distribution of scores under different strategies. Note that a single draw of
the CA score can be −1, 0, or 1. Therefore, to prove SD-truthfulness for a single draw of the CA
score, it is sufficient to show that Pr

(
SCA
i (τ) = 1

)
≥ Pr

(
SCA
i (θ) = 1

)
and Pr

(
SCA
i (τ) = −1

)
≤

Pr
(
SCA
i (θ) = −1

)
for any strategy θ. When signals are binary, there are only three types of

untruthful strategy: 1) always reporting 0, 2) always reporting 1, and 3) always flipping 0 to 1 and 1
to 0. Any other strategy is a mixture of truth-telling and these strategies. Now, we show that all of
these strategies are stochastically dominated by truth-telling by discussing two cases.

When signals are self-predicting, i.e. Pr(Xb = σ | Xa = σ) − Pr(Xb = σ | Xa = σ′) > 0, the
distribution of SCA

i is

Pr
(
SCA
i (τ) = 1

)
= J0,0 M b

1 + J1,1 M b
0 ,

Pr
(
SCA
i (τ) = −1

)
= J0,1 M b

0 + J1,0 M b
1 .

Because Bob’s signal is self-predicting, Pr
(
SCA
i (τ) = 1

)
> Pr

(
SCA
i (τ) = −1

)
. Let θf be the

strategy where Alice always flips the signals.

Pr
(
SCA
i (θf ) = 1

)
= J0,1 M b

0 + J1,0 M b
1 = Pr

(
SCA
i (τ) = −1

)
,

Pr
(
SCA
i (θf ) = −1

)
= J0,0 M b

1 + J1,1 M b
0 = Pr

(
SCA
i (τ) = 1

)
.

This means that SCA
i (θf ) is dominated by SCA

i (τ).

Let µ be the strategy where Alice always reports the same signal.

Pr
(
SCA
i (µ) = 1

)
= Pr

(
SCA
i (µ) = −1

)
= M b

0 M b
1 .

Therefore,

Pr
(
SCA
i (τ) = 1

)
− Pr

(
SCA
i (µ) = 1

)
= J0,0 M b

1 + J1,1 M b
0 −M b

0 M b
1

= J0,0 M b
1 + J1,1 M b

0 −M b
0 (J0,1 + J1,1)

= J0,0 M b
1 − J0,1 M b

0

= M b
0 M b

1 (Pr(Xa = 0 | Xb = 0)− Pr(Xb = 0 | Xa = 1)

> 0

Similarly, we can observe that Pr
(
SCA
i (τ) = −1

)
< Pr

(
SCA
i (µ) = −1

)
.

The analysis for the case when signals are not self-predicting, i.e. T∆(σ, σ
′) = 1 if and only if σ ̸= σ′,

is analogous.

Next, we show that when |Σ| = 3, counterexamples exist showing that truth-telling does not FOSD
every untruthful strategy.
Example F.1. Consider the following joint distribution:

J =

(
0.02 0.01 0.02
0.2 0.4 0.25
0.00 0.05 0.05

)
.

The marginal distribution of Alice and Bob are

Ma = (0.05, 0.85, 0.1) and M b = (0.22, 0.46, 0.32) .
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The product of marginal distribution and the corresponding agreement function are

∆ =

 0.009 −0.013 0.004

0.013 0.009 −0.022

−0.022 0.004 0.018

 , T∆ =

1 0 1

1 1 0

0 1 1

 .

When Alice reports truthfully, the probability of obtaining a score of 1, i.e. obtaining a score of 1 on
the bonus question and obtaining a score of 0 on the penalty question, is given by

Pr(SCA
i (τ) = 1) = (J0,0 + J0,2) ·M b

1︸ ︷︷ ︸
Alice reports 0

+(J1,0 + J1,1) ·M b
2︸ ︷︷ ︸

Alice reports 1

+(J2,1 + J2,2) ·M b
0︸ ︷︷ ︸

Alice reports 0

= 0.2324.

However, when Alice plays a strategy µ that always reports 0, the probability of obtaining a score of
1 is given by

Pr(SCA
i (µ) = 1) = (M b

0 +M b
2) ·M b

1 = 0.2474 > Pr(SCA
i (τ) = 1).

Therefore, µ is not first-order stochastically dominated by τ .

F.2 The Direct Rounding Reduction

Proof of Proposition 5.2. By definition, the sensitivity of a mechanism with score S(e) at effort level
e is

δM(e) =
∇mM(e)

stdM(e)
.

The direct rounding of SM(e), denoted as S̃M(e), is a Bernoulli variable with success probability
E[λM] =

mM(e)−SM
inf

SM
sup−SM

inf

. Therefore,

∇E
[
S̃M(e)

]
=

1

SM
sup − SM

inf

· ∇mM(e)

std
(
S̃M(e)

)
=
√
E[λM] (1− E[λM]) =

1

SM
sup − SM

inf

·
√
(mM(e)− SM

inf )
(
SM
sup −mM(e)

)
⇒ δ̃M(e) =

∇mM(e)√
(mM(e)− SM

inf )
(
SM
sup −m(e)

) . (3)

F.3 The Partition Rounding Reduction

Proof of Lemma 5.3. Let Si(τ) and Si(θ) be the random variable of each individual score under
truth-telling and strategy θ, respectively. Si(τ) (and Si(θ)) is i.i.d. because questions are assumed to
be i.i.d. and strategies are task-independent. We want to show

Si(τ) ⪰FOSD Si(θ) ⇔ S(τ) ⪰FOSD S(θ).

Forward Direction. Suppose Si(τ) ⪰FOSD Si(θ) for any θ. By definition, this means for each
individual score, we can find a coupling such that whenever Si(θ) = si, Si(τ) = s′i ≥ si. Applying
this coupling for every individual score and taking the average gives us a coupling for S(τ) and S(θ):
whenever S(θ) =

∑
i∈[K] si, S(τ) =

∑
i∈[K] s

′
i ≥

∑
i∈[K] si in the coupling. Therefore, in this

coupling, Pr(S(θ) ≤ t) ≥ Pr(S(τ) ≤ t) for any t ∈ [K · Sinf ,K · Ssup] where Sinf and Ssup are
the infimun and supremum of each Si, respectively. This completes the proof for the sufficiency.

Reverse Direction. We prove the contrapositive of the statement: if Si(τ) does not first-order
stochastic dominates Si(θ), then S(τ) does not first-order stochastic dominates S(θ). By the failure
of FOSD for the individuals, there exists some threshold t1 and (by the i.i.d. assumption) every i
such that Fτ (t1) > Fθ(t1), where Fτ and Fθ denote that c.d.f. for Si(τ) and Si(θ) respectively. Let
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F k
τ and F k

θ be the c.d.f. of the sum of k i.i.d. individual scores, i.e.
∑

i∈[k] Si(τ) and
∑

i∈[k] Si(θ)

respectively. We want to find a tK such that FK
τ (tK) > FK

θ (tK). Then, because S is a linear scaling
(by 1/K) of the sum, the inequality transfers directly to the averages.

We prove this via an inductive argument:

• Base case (K = 1): by assumption, there exists a t1 such that Fτ (t1) > Fθ(t1).

• Inductive step: suppose that for K − 1 there exists some threshold tK−1 such that

FK−1
τ (tK−1) > FK−1

θ (tK−1).

Now, consider the K-fold convolution. Note that the convolution of discrete distributions is
a weighted sum of the individual c.d.f..

FK
τ (tK) =

∑
s

Pr

 ∑
i∈[K−1]

Si(τ) = s

 Fτ (tK − s),

and similarly for FK
θ (tK). By the base case and the induction assumption, we can set

tK = tK−1 + t1 so that FK
τ (tK) > FK

θ (tK). This means that there exists a threshold
t = tK/K so that

Pr
(
S(τ) ≤ t

)
> Pr

(
S(θ) ≤ t

)
.

This completes the proof of the necessity.

F.4 EA in the Binary-signal Setting

Proof of Theorem 6.1. Suppose Alice observes m0 zeros and m1 ones on n questions while the
enforced empirical distribution is Φ = (n0, n1). Alice’s strategy and Φ thus determines the number
of i.i.d. samples from each of the four binomials.

To prove SDT, we have to show that truth-telling results in a score distribution that first-order
stochastic dominates the score distribution under any other strategy. Suppose W.L.O.G. that m0 > n0

and the mechanism will randomly flip Alice’s reports on m0 − n0 questions from 0 to 1. If Alice
reports truthfully, there are n0 questions where Alice reports 0 and will be scored 1 if Bob also reports
0; there are m1 questions where Alice reports 1 and will be scored 1 if Bob also reports 1; and there
are m0 − n0 questions where Alice observes 0 but her reports are flipped to 1 which means that
she will be scored 1 if Bob reports 1 on those questions. Therefore, the final score of Alice can be
expressed as

n · S(τ) ∼ Bin(n0, p00) + Bin(m1, p11) + Bin(m0 − n0, p01). (4)

To show that S(τ) dominates S(θ) for any strategy θ, it is sufficient to focus on deterministic
strategies. Suppose xi,j is the number of questions that Alice observes i but reports j for i, j ∈ {0, 1}.
First note that x0,0 + x0,1 = m0 and x1,0 + x1,1 = m1. Then, we argue that it is sufficient to focus
on strategies that satisfy x0,0 + x1,0 = n0 and x0,1 + x1,1 = n1. Otherwise, the mechanism will
enforce Φ on behalf of Alice which is identical for Alice to flip her signals by herself. Fixing any Φ
and ΦXa , the above four constraints suggest that there is only one free variable in x, meaning that
there is only one possible way to cheat—altering x0,0 ∈ {0, . . . , n0}.

Now, we show that reporting x0,0 = n0 is the best strategy—reporting any x0,0 results in a score
distribution dominated by reporting x0,0 = n0. Also, note that truth-telling is one of the strategies
that has x0,0 = n0. Let x0,0 = n0 − k where k ≥ 0. Then, the final score of Alice and be expressed
as

n · S(θ)∼ Bin(n0 − k, p00) + Bin(m1 − k, p11) + Bin(m0 − n0 + k, p01) + Bin(k, p10). (5)

Compared with the truth-telling score distribution in Equation (2), any untruthful reporting can be
viewed as subtracting k samples from Bin(n0, p00) and draw k more samples from Bin(k, p10);
subtracting k samples from Bin(m1, p11) and draw k more samples from Bin(m0 − n0 + k, p01).
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When signals are self-predicting, p00 > p10 and p11 > p01. We can construct a coupling to show
that S(θ) is dominated by S(τ). In particular, for the k questions whose scores are sampled from
Bin(k, p10), we couple them with k out of the n0 samples from S(θ)∼ Bin(n0 − k, p00); for the
n0 − k questions whose scores are sampled from ∼ Bin(n0 − k, p00), we couple them with the
remaining n0 − k samples from ∼ Bin(n0 − k, p00); we do the same for the other two Binomial
distributions. Under this coupling, it is clear that making x0,0 as large as possible will have the
dominating score distribution, which happens while truth-telling.

F.5 EA in the Three-signal Setting

Proof of Proposition C.2.

Sufficiency. We prove the sufficiency by discussing two cases. First, suppose W.L.O.G. that
m0 ≥ n0, m1 ≤ n1, and m2 ≤ n2. Under the minimal enforcement rule, the manipulation matrix
corresponds to truth-telling is

ϑτ (ρ∗) =

[
n0 n1 −m1 n2 −m2

0 m1 0
0 0 m2

]
.

When we score an arbitrary report vector X̂a, it is sufficient to consider its manipulation matrix ϑ.
Therefore, we want to show that ϑτ will result in a score distribution that first-order stochastically
dominates the score distribution of any other feasible ϑ. Note that there are 9 variables in a 3 × 3
matrix and 5 constraints: the sum of variables in row i is mi and the sum of variables in column j is
nj while only 5 of these 6 constraints are independent. This means that any manipulation matrix be
characterized by 4 independent variables denoted as t1, . . . t4 ≥ 0.

ϑ =

[
n0 − t1 − t2 n1 −m1 + t1 + t4 − t3 n2 −m2 + t2 + t3 − t4

t1 m1 − t1 − t4 t4
t2 t3 m2 − t2 − t3

]
.

The variables t1, . . . t4 must satisfy the constraints ensuring that every entry in ϑ remains non-negative.

The final score of truth-telling is given by the average of n Bernoulli variables where ϑτ (ρ∗)i,j of
these variables are sampled from Bernoulli(pi,j). Similarly, the final score corresponding to the
manipulation matrix ϑ is the average of n Bernoulli variables where ϑθ

i,j of them are sampled from
Bernoulli(pi,j).

Our goal is to construct a coupling of these Bernoulli variables such that, for any given ΦXa
, Φ,

and t1, . . . , t4, each variable under truth-telling with manipulation matrix ϑτ (ρ∗) has a weakly
higher probability of success than its coupled counterpart under ϑ. We denote this coupling by
Zτ
i,j

k−→ Zθ
i′,j′ to indicate that we pair k Bernoulli variables associated with ϑτ (ρ∗)—each drawn from

Bernoulli(pij)—with k Bernoulli variables associated with ϑ—each drawn from Bernoulli(pi′j′).
Our coupling is: Zτ

0,0
n0−t1−t2−−−−−−→ Zθ

0,0 Zτ
1,1

t1+t4−−−→ Zθ
0,1 Zτ

2,2
t2+t3−−−→ Zθ

0,2

Zτ
0,0

t1−→ Zθ
1,0 Zτ

1,1
m1−t1−t4−−−−−−−→ Zθ

1,1 Zτ
0,2

t4−→ Zθ
1,2

Zτ
0,0

t2−→ Zθ
2,0 Zτ

0,1
t3−→ Zθ

2,1 Zτ
2,2

m2−t2−t3−−−−−−−→ Zθ
2,2

 .

Under this coupling, every diagonal variable Zθ
i,i is coupled with Zτ

i,i which is drawn from the same
Bernoulli distribution. Furthermore, every non diagonal variable Zθ

i,j is either coupled with Zτ
i,i

which has a larger success probability because of self-prediction, or coupled with Zτ
k,j which has the

same success probability because signals are uniformly self-predicting.

The proof of the second case is analogous. suppose W.L.O.G. that m0 > n0, m1 > n1, and m2 < n2.
Under the minimal enforcement rule, the manipulation matrix corresponds to truth-telling is

ϑτ =

[
n0 0 m0 − n0

0 n1 m1 − n1

0 0 m2

]
. (6)
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Any feasible manipulation matrix can be written as

ϑθ =

[
n0 − t1 − t2 t4 m0 − n0 + t1 + t2 − t4

t1 n1 − t3 − t4 m1 − n1 + t3 + t4 − t1
t2 t3 m2 − t2 − t3

]
. (7)

We construct the following coupling. If t1 ≥ t4, we apply the term in red; while if t1 < t4, we apply
the term in blue. Zτ

0,0
n0−t1−t2−−−−−−→ Zθ

0,0 Zτ
1,1

t4−→ Zθ
0,1 Zτ

2,2
t2−→ Zθ

0,2, Z
τ
1,2

t1−t4−−−→ Zθ
0,2

Zτ
0,0

t1−→ Zθ
1,0 Zτ

1,1
n1−t3−t4−−−−−−→ Zθ

1,1 Zτ
2,2

t3−→ Zθ
1,2, Z

τ
0,2

t4−t1−−−→ Zθ
1,2

Zτ
0,0

t2−→ Zθ
2,0 Zτ

1,1
t3−→ Zθ

2,1 Zτ
2,2

m2−t2−t3−−−−−−−→ Zθ
2,2

 .

Under the same argument, we can observe that every Zθ
i,j is coupled with a Zτ

i′,j′ with a weakly
larger success probability. This completes the proof of sufficiency.

Necessity. We first show that if the mechanism’s enforcement rule is not minimal, it is not SD-truthful.
For a non-minimal enforcement rule, there must exist a report vector X̂a and an enforced histogram Φ

such that if Alice reports X̂a truthfully, there exists a diagonal value in the corresponding manipulation
matrix that can be increased without breaking the constraints. In other words, there exists a strategy
θ whose corresponding manipulation matrix is ϑθ and a column j such that ϑθ

j,j > ϑτ
j,j . Then, the

strategy θ is not dominated by truth-telling even when signals are uniformly self-predicting. This is
because by playing θ, Alice can move ϑθ

j,j − ϑτ
j,j samples from Bernoulli(pij) or Bernoulli(pkj) to

Bernoulli(pjj) where i, k ̸= j. For self-predicting signals, pjj is the largest column value.

Next, we show that if signals are not uniformly self-predicting, the enforced agreement mechanism is
not SD-truthful even when the enforcement rule is minimal. We can easily find a counterexample
by comparing Equation (6) with Equation (7). Suppose W.L.O.G. that ϑτ

0,2 < ϑτ
1,2, then Alice can

set t1 = t2 = t3 = 0 and t4 = max(n1,m0 − n0) in which case she can move t4 samples from
Bernoulli(p0,2) to Bernoulli(p1,2), resulting a score distribution that dominates truth-telling. This
completes the proof of necessity.

F.6 The Optimal Enforcement

Proof of Lemma C.5. Suppose Alice observes 0 on m0 out of the n questions and observes 1 on the
remaining n−m0 questions. There are two cases.

First, when m0 ≤ n0, the final score of Alice is the average of the following three type of questions:

• m0 questions where Alice observes 0 and receives a score of 1 if Bob also reports 0.

• n− n0 questions where Alice observes 1 and receives a score of 1 if Bob also reports 1.

• n0 −m0 questions where Alice observes 1 but receives a score of 1 if Bob reports 0.

When Alice exerts full effort (e = 1), Bob’s reports (which match his signals) follow the conditional
probability distribution pij = Pr(Xb = j | Xa = i). In contrast, when Alice exerts no effort (e = 0),
her signals are uninformative about Bob’s signals, and thus her belief about Bob’s reports follows
the marginal distribution M b

i = Pr(Xb = i). Therefore, conditioned on Alice observing 0 in m0

questions, the score defined by EA follows the sum of three binomials:

n · SEA(n0, e = 1 | m0 ≤ n0) ∼ Bin(m0, p00) + Bin(n− n0, p11) + Bin(n0 −m0, p10),

n · SEA(n0, e = 0 | m0 ≤ n0) ∼ Bin(m0,M
b
0) + Bin(n− n0,M

b
1) + Bin(n0 −m0,M

b
0).

Note that for any question, the probability of Alice observing 0 while exerting effort is the marginal
distribution Pr(Xa = 0), which is identical to the probability of observing 0 while exerting no effort.
This implies that under our definition of effort, the probability of Alice observing 0 on m0 questions
does not depend on the effort. Let ρ0 =

∑
j∈[n](1−Xa,j) be the number of questions where Alice

observes 0. The probability that Alice observes 0 on m0 questions is

Pr (ρ0 = m0) =

(
n

m0

)
(Ma

0 )
m0(1−Ma

0 )
n−m0 .
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Consequently, when m0 ≤ n0, Alice’s score, conditioned on observing 0 in m0 ≤ n0 questions
(which occurs with probability Pr (ρ0 = m0)), follows the distribution:

n · SEA(n0, e | m0 ≤ n0) ∼Bin
(
m0, e p00 + (1− e) M b

0

)
+Bin

(
n− n0, e p11 + (1− e) M b

1

)
+Bin

(
n0 −m0, e p10 + (1− e) M b

0

)
.

In the second case, where m0 > n0, the final score of Alice is the average of the following three type
of questions:

• n0 questions where Alice observes 0 and receives a score of 1 if Bob also reports 0.

• n−m0 questions where Alice observes 1 and receives a score of 1 if Bob also reports 1.

• m0 − n0 questions where Alice observes 0 but receives a score of 1 if Bob reports 1.

By the analogous arguments, we know that Alice’s score, conditioned on observing 0 in m0 > n0

questions, follows the distribution:

n · SEA(n0, e | m0 > n0) ∼Bin
(
n0, e p00 + (1− e) M b

0

)
+Bin

(
n−m0, e p11 + (1− e) M b

1

)
+Bin

(
m0 − n0, e p01 + (1− e) M b

1

)
.

Putting everything together,

SEA(n0, e) ∼
n0∑

m0=0

Pr (ρ0 = m0)·SEA(n0, e | m0 ≤ n0)+

n∑
m0=n0+1

Pr (ρ0 = m0)·SEA(n0, e | m0 > n0)

(8)

Now, we show that the standard deviation of SEA(n0, e) is independent of n0. For simplicity, let
ηij = e pij + (1 − e) M b

j . Note that ηi0 + ηi1 = e (pi0 + pi1) + (1 − e) (M b
0 + M b

1) = 1.
Furthermore, the variance of a binomial with parameters n, p is np(1 − p). When m0 ≤ n0, the
variance of the final score is
var
(
n · SEA(n0, e | m0 ≤ n0)

)
= m0 η00 (1− η00) + (n− n0) η11 (1− η11) + (n0 −m0) η10 (1− η10)

= m0 η00 (1− η00) + (n−m0) η11 (1− η11).

Similarly, when m0 > n0,
var
(
n · SEA(n0, e | m0 > n0)

)
= n0 η00 (1− η00) + (n−m0) η11 (1− η11) + (m0 − n0) η01 (1− η01)

= m0 η00 (1− η00) + (n−m0) η11 (1− η11).

Therefore, conditioned on observing 0 on m0 questions, the standard deviation
std
(
SEA(n0, e | m0)

)
=

√
m0 η00 (1− η00) + (n−m0) η11 (1− η11) is independent of

n0. Consequently, the standard deviation of the final score, averaging over m0, is also independent of
n0.

Proof of Proposition C.6. By Lemma C.5, the standard deviation of the EA mechanism is indepen-
dent of the enforcement Φ. Therefore, the enforcement that maximizes the sensitivity is the one that
maximizes the derivative of the expected score w.r.t. effort e. By Equation (8), the score given by EA
can be expressed as the average of many binomial variables. Note that the expectation of a binomial
variable with parameter (n, p) is n · p. We thus have

n · E
[
SEA(n0, e | m0 ≤ n0)

]
= m0η00 + (n− n0) η11 + (n0 −m0) η10

n · E
[
SEA(n0, e | m0 > n0)

]
= n0η00 + (n−m0) η11 + (m0 − n0) η01,

where ηij = e pij + (1− e) M b
j . The derivative of ηij w.r.t. e is thus η′ij = pij −M b

j .

We aim to find the n0 that maximizes
∂E
[
SEA(n0, e)

]
∂e

=

n0∑
m0=0

Pr (ρ0 = m0) · (m0 η′00 + (n− n0) η
′
11 + (n0 −m0) η

′
10)

+

n∑
m0=n0+1

Pr (ρ0 = m0) · (n0 η′00 + (n−m0) η
′
11 + (m0 − n0) η

′
01) .
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Let n0 increase by 1:

∂E
[
SEA(n0 + 1, e)

]
∂e

=

n0+1∑
m0=0

Pr (ρ0 = m0) · (m0 η′00 + (n− n0 − 1) η′11 + (n0 + 1−m0) η
′
10)

+

n∑
m0=n0+2

Pr (ρ0 = m0) · ((n0 + 1) η′00 + (n−m0) η
′
11 + (m0 − n0 − 1) η′01) .

Therefore, the marginal return of increasing n0 is given by

d∇SEA(n0) =
∂E
[
SEA(n0 + 1, e)

]
∂e

−
∂E
[
SEA(n0, e)

]
∂e

=

n0∑
m0=0

Pr (ρ0 = m0) · (η′10 − η′11) +

n∑
m0=n0+1

Pr (ρ0 = m0) · (η′00 − η′01) .

Note that

η′10 − η′11 = p10 −M b
0 − p11 +M b

1

= −2(p11 −M b
1) (p01 = 1− p11, and M b

0 = 1−M b
1 .)

= −2(p11 − (Ma
0 p01 +Ma

1 p11))

= −2(p11 (1−Ma
1 )− p01M

a
0 )

= −2 Ma
0 (p11 − p01)

< 0 (By self-prediction.)

Similarly, we can show that η′00 − η′01 > 0.

Therefore, when n0 = 0, d∇SEA(0) > 0, and when n0 = n, d∇SEA(n) < 0. Furthermore,
d∇SEA(n0) decreases in n0. The sensitivity-maximizing n0 is thus the largest integer such that
d∇SEA(n0) > 0. Let F (k) =

∑k
m0=0 Pr (ρ0 = m0).

d∇SEA(n0) > 0

⇔ F (n0) (η
′
10 − η′11) + (1− F (n0)) (η

′
00 − η′01) > 0

⇔ F (n0) <
η′00 − η′01

η′00 − η′01 + η′11 − η′10
.
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