
Under review as submission to TMLR

Change Point Detection on A Separable Model
for Dynamic Networks

Anonymous authors
Paper under double-blind review

Abstract

This paper studies the unsupervised change point detection problem in time series of net-1

works using the Separable Temporal Exponential-family Random Graph Model (STERGM).2

Inherently, dynamic network patterns are complex due to dyadic and temporal dependence,3

and change points detection can identify the discrepancies in the underlying data generat-4

ing processes to facilitate downstream analysis. In particular, the STERGM that utilizes5

network statistics and nodal attributes to represent the structural patterns is a flexible and6

parsimonious model to fit dynamic networks. We propose a new estimator derived from the7

Alternating Direction Method of Multipliers (ADMM) procedure and Group Fused Lasso8

(GFL) regularization to simultaneously detect multiple time points where the parameters9

of a time-heterogeneous STERGM have shifted. Experiments on both simulated and real10

data show good performance of the proposed framework, and an R package CPDstergm is11

developed to implement the method.12

1 Introduction13

Networks are often used to describe relational phenomena that are not limited merely to the attributes of14

individuals as tabular data. In an investigation of the transmission of COVID-19, Fritz et al. (2021) used15

networks to represent human mobility and forecast disease incidents. The analysis of physical connections,16

beyond the health status of individuals, permits policymakers to implement preventive measures effectively17

and allocate healthcare resources efficiently. Yet relations by nature progress in time, and dynamic relational18

phenomena are occasionally aggregated into a static network for analysis. To this end, temporal models for19

dynamic networks are in high demand to study the evolution of relational phenomena.20

In recent decades, a plethora of temporal models has been proposed for dynamic networks analysis. Snijders21

(2001), Snijders (2005), and Snijders et al. (2010) developed a Stochastic Actor-Oriented Model, which is22

driven by the actor’s perspective to make or withdraw ties to other actors in a network. Hoff et al. (2002),23

Sarkar & Moore (2005), Sewell & Chen (2015), and Sewell & Chen (2016) presented latent space models,24

by assuming the edges between actors are more likely when they are closer in the latent Euclidean space.25

Matias & Miele (2017), Ludkin et al. (2018), and Pensky (2019) investigated the dynamic Stochastic Block26

Model (SBM), and Jiang et al. (2020) developed an autoregressive SBM to characterize the evolution of27

communities. Kolar et al. (2010) focused on recovering the latent time-varying graph structures of Markov28

Random Fields from serial observations of nodal attributes. Furthermore, the Exponential-family Random29

Graph Model (ERGM) that uses local forces to shape global structures (Hunter et al., 2008b) is a promising30

model for networks with dependent ties. Hanneke et al. (2010) defined a Temporal ERGM (TERGM), by31

conditioning on previous networks in the network statistics of an ERGM. Desmarais & Cranmer (2012b)32

proposed a bootstrap approach to maximize the pseudo-likelihood of the TERGM and assess uncertainty. In33

general, network evolution concerns the rate at which edges form and dissolve. Demonstrated in Krivitsky34

& Handcock (2014), these two factors can be mutually interfering, making the dynamic models used in the35

literature difficult to interpret. Posing that the underlying reasons that result in dyad formation are different36

from those that result in dyad dissolution, Krivitsky & Handcock (2014) proposed a Separable Temporal37

ERGM (STERGM) to dissect the entanglement with two conditionally independent models.38
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In time series analysis, change point detection plays a central role in identifying the discrepancies in the39

underlying data generating processes over time. In reality, network evolution is usually time-heterogeneous.40

Without taking the structural changes across dynamic networks into consideration, learning from the time41

series may not be meaningful, by confounding the network effects before and after a change occurs. As42

relational phenomena are studied in numerous domains, it is practical for researchers to first localize the43

change points, and then analyze the network effects within stable segments, rather than overlooking the time44

points where the network patterns have substantially changed.45

There has also been an increasing interest in studying the unsupervised change point detection problem46

for dynamic networks. Wang et al. (2013) focused on the Stochastic Block Model time series, and Wang47

et al. (2021) studied a sequence of inhomogeneous Bernoulli networks. Larroca et al. (2021), Marenco et al.48

(2022), and Madrid Padilla et al. (2022) considered a sequence of Random Dot Product Graphs that are both49

dyadic and temporal dependent. Methodologically, Chen & Zhang (2015) and Chu & Chen (2019) developed50

a graph-based approach to delineate the distributional differences before and after a change point, and Chen51

(2019) utilized the nearest neighbor information to detect the changes in an online framework. Zhao et al.52

(2019) proposed a two-step approach that consists of an initial graphon estimation followed by a screening53

algorithm, Song & Chen (2024) exploited the features in high dimensions via a kernel-based method, and54

Chen et al. (2020a) employed embedding methods to detect both anomalous graphs and anomalous vertices.55

Chen et al. (2024) and Athreya et al. (2024) developed a model for network time series based on a latent56

position process, using spectral estimates of the Euclidean mirror to detect first-order change points. Zhang57

et al. (2024) combined Variational Graph Auto-Encoder and Gaussian Mixture Model, and Kei et al. (2025)58

focused on graph representation learning for change point detection in dynamic networks. Moreover, Liu59

et al. (2018) introduced an eigenvector-based method to reveal the change and persistence in the gene60

communities for a developing brain. Bybee & Atchadé (2018) focused on a Gaussian Graphical Model to61

detect the change points in the covariance structure of the Standard and Poor’s 500. Ondrus et al. (2021)62

proposed a factorized binary search method to understand brain connectivity from the functional Magnetic63

Resonance Imaging time series data.64

Allowing for interpretable network statistics to determine the structural changes for the detection, we make65

the following contributions in the proposed framework:66

• To detect multiple change points from a sequence of networks, we fit a time-heterogeneous STERGM67

while penalizing the sum of Euclidean norms of the sequential parameter differences. Essentially,68

we impose a Group Fused Lasso (GFL) regularization on the model parameters, smoothing out69

minor variation and highlighting significant structural changes. An Alternating Direction Method70

of Multipliers (ADMM) procedure is derived to solve the resulting optimization problem.71

• We exploit the practicality of STERGM, which manages dyad formation and dissolution separately,72

to capture the structural changes in network evolution realistically. The flexibility of STERGM and73

the extensive selection of network statistics also boost the power of the proposed method. Moreover,74

we demonstrate the capability of including nodal attributes to detect change points, and an R75

package CPDstergm is developed to implement the proposed method.76

• We simulate dynamic networks to imitate realistic social interactions, and our method can achieve77

greater accuracy on the networks that are both dyadic and temporal dependent. Furthermore, we78

punctually detect the winter and spring vacations with the MIT cellphone data (Eagle & Pentland,79

2006), and we detect three significant financial events during the 2008 worldwide economic crisis80

from the stock market data analyzed by James & Matteson (2015).81

The rest of the paper is organized as follows. In Section 2, we review the STERGM for dynamic networks.82

In Section 3, we present the likelihood-based objective function with Group Fused Lasso regularization, and83

we derive an Alternating Direction Method of Multipliers to solve the optimization problem. In Section 4,84

we discuss change points localization after parameter learning, along with model selection. In Section 5, we85

implement our method on simulated and real data. In Section 6, we conclude our work with a discussion on86

the limitation and potential future developments.87
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2 STERGM Change Point Model88

2.1 Pseudo-likelihood of ERGM89

For a node set N = {1, 2, · · · , n}, we use a network y ∈ Y = {0, 1}n×n to represent the potential relations90

for all pairs (i, j) ∈ Y = N × N . The network y has dyad yij ∈ {0, 1} to indicate the absence or presence91

of a relation between node i and node j. The relations in a network can be either directed or undirected,92

where an undirected network has yij = yji for all (i, j) ∈ Y.93

The probabilistic formulation of an Exponential-family Random Graph Model (ERGM) is94

P (y; θ) = exp[θ⊤g(y)− ψ(θ)] (1)

where g(y), with g : Y → Rp, is a vector of network statistics; θ ∈ Rp is a vector of parameters; exp[ψ(θ)] =95 ∑
y∈Y exp[θ⊤g(y)] is the normalizing constant. The network statistics g(y) may also depend on the nodal96

attributes x. For notational simplicity, we omit the dependence of g(y) on x.97

With a surrogate as in Besag (1974); Strauss & Ikeda (1990); Robins et al. (2007); Van Duijn et al. (2009);
Desmarais & Cranmer (2012b); Hummel et al. (2012), the pseudo-likelihood of ERGM, a product of likelihood
for each dyad yij conditional on the rest of the network y−ij , is

PL(θ) =
∏

(i,j)∈Y

P (yij |y−ij ; θ) =
∏

(i,j)∈Y

[
h
(
θ ·∆gij(y)

)]yij ·
[
1− h

(
θ ·∆gij(y)

)]1−yij (2)

where h(x) = 1/(1 + exp(−x)) ∈ (0, 1) is the sigmoid function with P (yij = 1|y−ij ; θ) = h(θ ·∆gij(y)). The
change statistics ∆gij(y) ∈ Rp denote the change in g(y) when yij changes from 0 to 1, while rest of the
network y−ij remains the same. Then the logarithm of the pseudo-likelihood is given by

l(θ)ERGM =
∑

(i,j)∈Y

{
yij [θ ·∆gij(y)]− log

{
1 + exp[θ ·∆gij(y)]

}}
which is helpful in ERGM parameter estimation. Moreover, the Hessian matrix of −l(θ)ERGM is

H(θ) =
∑

(i,j)∈Y

h
(
θ ·∆gij(y)

)
·
[
1− h

(
θ ·∆gij(y)

)]
·
[
∆gij(y)∆gij(y)⊤].

Since h(θ · ∆gij(y)) ∈ (0, 1) and ∆gij(y)∆gij(y)⊤ ∈ Rp×p is positive semi-definite, the Hessian H(θ) =98

∇2
θ− l(θ)ERGM is also positive semi-definite. In other words, the negative logarithm of the pseudo-likelihood99

is convex with respect to θ ∈ Rp. Next, we introduce the Separable Temporal ERGM (STERGM) used in100

our change point detection model.101

2.2 Pseudo-likelihood of STERGM102

For network time series, network evolution concerns (1) incidence: how often new ties are formed, and (2)103

duration: how long old ties last since they were formed. Pointed out by Donnat & Holmes (2018), Goyal &104

De Gruttola (2020), and Jiang et al. (2020), modeling snapshots of networks often gives limited information105

about the transitions between consecutive networks. To address this concern, Krivitsky & Handcock (2014)106

designed two intermediate networks, formation network and dissolution network, to reflect the incidence and107

duration. In particular, the incidence can be measured by dyad formation, and the duration can be traced108

by dyad dissolution. Many applications on real-world data support the separable mechanism for dynamic109

networks (Broekel & Bednarz, 2018; Uppala & Handcock, 2020; Ando et al., 2025).110

Let yt ∈ Yt = {0, 1}n×n be a network observed at a discrete time point t. The formation network y+,t ∈ Y+,t

is obtained by attaching the edges that formed at time t to yt−1, and Y+,t = {y ∈ Yt : y ⊇ yt−1}. The
dissolution network y−,t ∈ Y−,t is obtained by deleting the edges that dissolved at time t from yt−1, and
Y−,t = {y ∈ Yt : y ⊆ yt−1}. We can also use the notation from Kei et al. (2023) to specify the respective
formation and dissolution networks between time t− 1 and time t as

y+,t
ij = max(yt−1

ij ,yt
ij) and y−,t

ij = min(yt−1
ij ,yt

ij)
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for all (i, j) ∈ Y. In summary, y+,t and y−,t incorporate the dependence on yt−1 through construction, and111

they can be considered as two latent networks recovered from both yt−1 and yt to emphasize the network112

transition from time t− 1 to time t.113

Posing that the underlying factors that result in edge formation are different from those that result in edge114

dissolution, Krivitsky & Handcock (2014) proposed the Separable Temporal ERGM (STERGM) to dissect115

the evolution between consecutive networks. Assuming y+,t is conditionally independent of y−,t given yt−1,116

the time-heterogeneous STERGM for yt conditional on yt−1 is117

T∏
t=2

P (yt|yt−1; θt) =
T∏

t=2
P (y+,t|yt−1; θ+,t)× P (y−,t|yt−1; θ−,t) (3)

with the respective formation and dissolution models:118

P (y+,t|yt−1; θ+,t) = exp[θ+,t · g+(y+,t,yt−1)− ψ+(θ+,t,yt−1)],
P (y−,t|yt−1; θ−,t) = exp[θ−,t · g−(y−,t,yt−1)− ψ−(θ−,t,yt−1)].

119

The parameter θt = (θ+,t,θ−,t) ∈ Rp is a concatenation of θ+,t ∈ Rp1 and θ−,t ∈ Rp2 such that p1 + p2 = p.120

Notably, the normalizing constant in the formation model exp[ψ+(θ+,t,yt−1)] is a sum over all possible121

networks in Y+,t, and the normalizing constant in the dissolution model exp[ψ−(θ−,t,yt−1)] is a sum over122

all possible networks in Y−,t. Since measuring these normalizing constants is computationally intractable123

when the number of nodes n is large (Hunter & Handcock, 2006), many parameter estimation methods124

exploit MCMC sampling (Geyer & Thompson, 1992; Krivitsky, 2017) or Bayesian inference (Caimo & Friel,125

2011; Thiemichen et al., 2016) to circumvent the intractability of the normalizing constants.126

However, for change point detection with a time-heterogeneous model, these parameter estimation meth-
ods remain computationally intensive, making them prohibitive for relatively long sequences of networks.
Hence, extending from the pseudo-likelihood of ERGM in (2), the pseudo-likelihood of a time-heterogeneous
STERGM in (3) is given by

T∏
t=2

PL(yt|yt−1; θt) =
T∏

t=2

∏
(i,j)∈Y

[
h
(
θ+,t ·∆g+

ij(y+,t)
)]y+,t

ij ·
[
1− h

(
θ+,t ·∆g+

ij(y+,t)
)]1−y+,t

ij ×

[
h
(
θ−,t ·∆g−

ij(y−,t)
)]y−,t

ij ·
[
1− h

(
θ−,t ·∆g−

ij(y−,t)
)]1−y−,t

ij

where h(x) = 1/(1 + exp(−x)) ∈ (0, 1) is the sigmoid function. Since y+,t and y−,t inherit the dependence127

on yt−1 by construction, we use the implicit dynamic terms, g+(y+,t) with g+ : Y+,t → Rp1 and g−(y−,t)128

with g− : Y−,t → Rp2 , as discussed in Krivitsky & Handcock (2014). The change statistics ∆g+
ij(y+,t) ∈ Rp1129

denote the change in g+(y+,t) when y+,t
ij changes from 0 to 1, while rest of the y+,t remains the same; the130

change statistics ∆g−
ij(y−,t) ∈ Rp2 denote the change in g−(y−,t) when y−,t

ij changes from 0 to 1, while rest131

of the y−,t remains the same. Similar to (2), the pseudo-likelihood of STERGM is a product of conditional132

likelihood for each dyad in the respective formation and dissolution networks, given the rest of the networks133

and the previous network (Besag, 1975; Strauss & Ikeda, 1990; Cranmer & Desmarais, 2011; Schmid &134

Hunter, 2023). Moreover, the logarithm of the pseudo-likelihood of the time-heterogeneous STERGM is135

l(θ) =
T∑

t=2

∑
(i,j)∈Y

{
y+,t

ij [θ+,t ·∆g+
ij(y+,t)]− log

{
1 + exp[θ+,t ·∆g+

ij(y+,t)]
}

+

y−,t
ij [θ−,t ·∆g−

ij(y−,t)]− log
{

1 + exp[θ−,t ·∆g−
ij(y−,t)]

}} (4)

where θ = (θ2, . . . ,θT )⊤ ∈ Rτ×p with τ = T − 1.136

Empirically, for change point detection, the pseudo-likelihood of STERGM is preferable to the true likelihood137

for the following three reasons. First, the dyadic dependency in y+,t and y−,t is mitigated by conditioning138

on the previous network yt−1 and by separately modeling through the formation and dissolution processes.139
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Specifically, conditional on yt−1
ij = 1, the y+,t

ij = max(yt−1
ij ,yt

ij) can only be 1; while conditional on yt−1
ij = 0,140

the y−,t
ij = min(yt−1

ij ,yt
ij) can only be 0. This design explicitly restricts the states of dyads by partitioning141

network evolution into formation and dissolution processes, thereby reducing the dyadic dependence within142

y+,t and y−,t. Hence, conditioning on the previous network which already captures the structural depen-143

dencies, the pseudo-likelihood of STERGM becomes a reasonable surrogate. Second, the primary objective144

in change point detection is to localize substantial structural changes over time, rather than to recover the145

coefficient estimates for network effect interpretation. In the former case, the pseudo-likelihood of STERGM146

remains adequate, as large parameter shifts can still be reliably identified, even if the estimates are subject147

to mild bias by using a common approximation to the true likelihood. Third, we adopt the logarithm of148

the pseudo-likelihood to particularly avoid using MCMC sampling or Bayesian inference, which is compu-149

tationally challenging for the optimization problem defined in Section 3. Instead, the pseudo-likelihood of150

STERGM improves the scalability of the estimation procedure, and the sigmoid function that involves the151

pre-computed change statistics permits efficient calculation of the gradients and Hessians for iterative param-152

eter updates. In summary, the pseudo-likelihood of STERGM provides both computational feasibility and153

effectiveness to facilitate change point detection in dynamic networks, an advantage that the true likelihood154

cannot offer at scale.155

Now we consider the change points to be detected in terms of the parameters in STERGM. Let {Bk}K+1
k=0 ⊂

{2, . . . , T} be a collection of ordered change points with 2 = B0 < B1 < · · · < BK < BK+1 = T such that

θBk = θBk+1 = · · · = θBk+1−1, k = 0, . . . ,K,

θBk ̸= θBk+1 , k = 0, . . . ,K − 1, and θBK+1 = θBK .

Our goal is to recover the collection {Bk}K
k=1 from a sequence of observed networks {yt}T

t=1 where the number156

of change points K is also unknown. Intuitively, the consecutive parameters θt and θt+1 are similar when157

no change occurs, but one or more components in θBk+1 ∈ Rp can be different from θBk ∈ Rp after a change158

happens. For this setting, we present our method in the next section.159

3 STERGM with Group Fused Lasso160

3.1 Optimization Problem161

Inspired by Vert & Bleakley (2010) and Bleakley & Vert (2011), we propose the following estimator for our162

change point detection problem:163

θ̂ = arg min
θ

−l(θ) + λ
τ−1∑
i=1

∥θi+1,· − θi,·∥2

di
(5)

where l(θ) is formulated by (4). The term λ > 0 is a tuning parameter for the Group Fused Lasso penalty,164

and the term d ∈ Rτ−1
+ is a position dependent weight such that di =

√
τ/[i(τ − i)] for i ∈ [1, τ − 1].165

Intuitively, the inverse of di assigns a greater weight at the time point that is far from the beginning and166

the end of a time span, as the end points are usually not of interest for change point detection.167

The Group Fused Lasso penalty expressed as the sum of Euclidean norms encourages sparsity of the param-168

eter differences, while enforcing multiple components in θi+1,j − θi,j across j = 1, . . . , p to change at the169

same group i. This is a grouping effect that cannot be achieved with the ℓ1 penalty of the differences. Along170

with the user-specified network statistics in STERGM, the sequential parameter differences learned from the171

observed networks with (5) can reflect the magnitude of structural changes over time. By penalizing the sum172

of sequential differences between the STERGM parameters, the proposed framework focuses on capturing173

significant structural changes while smoothing out minor variations.174

Figure 1 gives an overview of the proposed framework. The shaded circles on the top denote the sequence of175

observed networks as time passes from left to right. The dashed circles in the middle denote the sequences176

of formation networks y+,t and dissolution networks y−,t recovered from the observed networks. Note that177

each observed network is utilized multiple times to extract useful information that emphasizes the transition178
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y1

y+,2

y−,2

y2

y+,3

y−,3

y3

y+,4

y−,4

y4 yT −1

y+,T

y−,T

yT

θ2 θ3 θ4 θT

Sequence of T observed networks

Sequence of T − 1 learned parameters

. . .

. . .
∥θ3 − θ2∥2 ∥θ4 − θ3∥2

Figure 1: An illustration of change point model with STERGM.

between consecutive time steps. We learn the parameters denoted by the dotted circles at the bottom, while179

monitoring the sequential parameter differences.180

To solve the problem in (5), we first introduce a slack variable z ∈ Rτ×p and rewrite the original problem181

as a constrained optimization problem:182

θ̂ = arg min
θ

−l(θ) + λ

τ−1∑
i=1

∥zi+1,· − zi,·∥2

di

subject to θ = z.

(6)

Let u ∈ Rτ×p be the scaled dual variable. The augmented Lagrangian can be expressed as183

Lα(θ, z,u) = −l(θ) + λ

τ−1∑
i=1

∥zi+1,· − zi,·∥2

di
+ α

2 ∥θ − z + u∥2
F −

α

2 ∥u∥
2
F (7)

where α ∈ R+ is another penalty parameter for the augmentation term.184

Fused Lasso regularization has been widely used for one-dimensional change point detection problems (Levy-185

leduc & Harchaoui, 2007; Rojas & Wahlberg, 2014; Lin et al., 2017). Following Bleakley & Vert (2011), we186

make the change of variables (γ,β) ∈ R1×p × R(τ−1)×p to formulate the augmented Lagrangian in (7) as a187

Group Lasso regression problem (Yuan & Lin, 2006; Friedman et al., 2010; Alaíz et al., 2013), where188

γ = z1,· and βi,· = zi+1,· − zi,·

di
∀i ∈ [1, τ − 1]. (8)

Reversely, the matrix z ∈ Rτ×p can also be collected by

z = 1τ,1γ + Xβ

where X ∈ Rτ×(τ−1) is a designed matrix with Xi,j = dj for i > j and 0 otherwise. Plugging γ and β into189

(7), we have190

Lα(θ,γ,β,u) = −l(θ) + λ

τ−1∑
i=1
∥βi,·∥2 + α

2 ∥θ − 1τ,1γ −Xβ + u∥2
F −

α

2 ∥u∥
2
F . (9)
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Thus we derive the following Alternating Direction Method of Multipliers (ADMM) procedure to solve (6):

θ(a+1) = arg min
θ

−l(θ) + α

2 ∥θ − z(a) + u(a)∥2
F , (10)

γ(a+1),β(a+1) = arg min
γ,β

λ

τ−1∑
i=1
∥βi,·∥2 + α

2 ∥θ
(a+1) − 1τ,1γ −Xβ + u(a)∥2

F , (11)

u(a+1) = θ(a+1) − z(a+1) + u(a), (12)

where a denotes the current ADMM iteration. Once the update (11) is completed within an ADMM iteration,191

we collect z(a+1) = 1τ,1γ(a+1) + Xβ(a+1) until the next decomposition of z. We recursively implement the192

three updates until a convergence criterion is satisfied. By adapting the idea from Boyd et al. (2011), we193

have the following result for the proposed ADMM procedure:194

Proposition 1. Denote the respective primal and dual residuals at the ath ADMM iteration as

r
(a)
primal =

√√√√ 1
τ × p

τ∑
i=1

p∑
j=1

(θ(a)
ij − z

(a)
ij )2 and r

(a)
dual =

√√√√ 1
τ × p

τ∑
i=1

p∑
j=1

(z(a)
ij − z

(a−1)
ij )2.

Assume the updates (10) and (11) attain minimum at each ADMM iteration. Then the primal residual195

r
(a)
primal → 0 and dual residual r(a)

dual → 0 as a→∞.196

The proof is provided in Appendix A. Next, we discuss the updates (10) and (11) in detail.197

3.2 Updating θ198

In this section, we derive the Newton-Raphson method for learning θ in the update (10). We choose to use
the Newton-Raphson method because it is more efficient than gradient descent: the Newton-Raphson method
utilizes second-order information to adaptively determine the step size, leading to quadratic convergence and
more stable updates (Galántai, 2000). Specifically, to implement the Newton-Raphson method in a compact
form, we vectorize θ ∈ Rτ×p as #»

θ = vecτp(θ) ∈ Rτp×1, and we construct the following matrices:

∆t =
(

∆+,t

∆−,t

)
and H =

∆2

. . .
∆T

 .

The matrices ∆+,t ∈ RE×p1 and ∆−,t ∈ RE×p2 abbreviate the respective change statistics ∆g+
ij(y+,t) and199

∆g−
ij(y−,t) that are ordered by the dyads. The dimension of ∆t is thus 2E×p, where the quantity E = n×n200

is due to vectorization, and the double in the number of rows is due to the separability of STERGM. In201

practice, the matrix H ∈ R2τE×τp that consists of the change statistics for t = 2, . . . , T is calculated before202

the implementation of ADMM.203

For the Hessian matrix, we also need to calculate #»µ = h(H · #»

θ ) ∈ R2τE×1 where h(x) = 1/(1 + exp(−x))
is the element-wise sigmoid function with h′(x) = h(x)(1 − h(x)). Furthermore, we construct the following
matrices:

W t =
(

W +,t

W −,t

)
and W =

W 2

. . .
W T


where W +,t = diag(µ+,t

ij (1 − µ+,t
ij )) ∈ (0, 1/4)E×E with µ+,t

ij = h(θ+,t · ∆g+
ij(y+,t)) ∈ (0, 1). The matrix204

W −,t ∈ RE×E is defined similarly except for notational difference.205

The Newton-Raphson method to iteratively update the parameter #»

θ ∈ Rτp×1 for the proposed framework206

is implemented as follows:207

#»

θ c+1 = #»

θ c −
(
H⊤W H + αIτp

)−1 ·
(
−H⊤( #»y − #»µ) + α( #»

θ c − #»z (a) + #»u(a))
)

(13)

7
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where c denotes the current Newton-Raphson iteration. The derivations are provided in Appendix B. The208

diagonal matrix W with diagonal entries between 0 and 1, along with a quadratic form of the matrix209

H, shows that the matrix H⊤W H is positive semi-definite. The identity matrix Iτp inherited from the210

augmentation term ∥θ−z+u∥2
F in (10) ensures the Hessian matrix H⊤W H +αIτp is not only invertible but211

also positive definite. Thus the objective function in (10) is strongly convex with respect to the parameter212

θ and a unique global minimum is guaranteed to exist. Once the Newton-Raphson method is concluded213

within an ADMM iteration, we fold the updated vector #»

θ back into a matrix as θ(a+1) = vec−1
τ,p( #»

θ ) ∈ Rτ×p
214

before implementing the update in (11), which is discussed next.215

3.3 Updating γ and β216

In this section, we derive the update in (11), which is equivalent to solving a Group Lasso problem. We217

decompose the matrix z to work with γ and β instead, and the objective function is convex with respect to218

these parameters. With ADMM, the updates on γ and β do not require the network data and the change219

statistics, but the updates primarily rely on the θ learned from the update (10).220

By adapting the derivation from Vert & Bleakley (2010) and Bleakley & Vert (2011), the matrix β ∈ R(τ−1)×p
221

can be updated in a block coordinate descent manner. Specifically, the block coordinate descent method to222

update βi,· for each block i = 1, . . . , τ − 1 is implemented as follows:223

βi,· ←
1

αX⊤
·,iX·,i

(
1− λ

∥si∥2

)
+

si (14)

where (·)+ = max(·, 0) and

si = αX⊤
·,i(θ(a+1) + u(a) − 1τ,1γ −X·,−iβ−i,·).

The derivations are provided in Appendix C, and the convergence of the procedure is monitored by the
Karush-Kuhn-Tucker (KKT) conditions:

λ
βi,·

∥βi,·∥2
− αX⊤

·,i(θ(a+1) + u(a) − 1τ,1γ −Xβ) = 0 ∀βi,· ̸= 0,

∥−αX⊤
·,i(θ(a+1) + u(a) − 1τ,1γ −Xβ)∥2 ≤ λ ∀βi,· = 0.

Subsequently, for any β ∈ R(τ−1)×p, the minimum in γ ∈ R1×p is achieved at

γ = (1/τ)11,τ · (θ(a+1) + u(a) −Xβ).

Once the update (11) is concluded within an ADMM iteration, we collect z = 1τ,1γ + Xβ and proceed to224

update the scaled dual variable u ∈ Rτ×p with (12).225

4 Model Selection and Change Point Localization226

In this section, we discuss additional details for change point detection with STERGM. The proposed method227

uses network statistics including nodal attributes, and the estimator is consistent under certain assumptions.228

Moreover, we can use Bayesian information criterion to perform model selection, and we provide a data-driven229

threshold for change point localization.230

4.1 Network Statistics and Nodal Attributes231

As a probability distribution over dynamic networks, STERGM allows us to generate different networks that232

share similar structural patterns with the observed networks, by using a carefully designed MCMC sampling233

algorithm (Besag, 2001; Snijders, 2002; Krivitsky, 2017). Hence, in a dynamic network modeling problem234

with STERGM, network statistics are often chosen to signify the underlying process producing the observed235

networks or to capture important network effects interpreting for a research question.236
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In the change point detection problem with STERGM, network statistics are chosen to determine the types237

of structural changes that are searched for by the researchers. The R library ergm (Handcock et al., 2022)238

provides an extensive list of network statistics that boost the power of the proposed method. Since the239

underlying reasons that result in edge formation are usually different from those that result in edge dissolu-240

tion, the choices of network statistics in the formation model can be different from those in the dissolution241

model. Moreover, we permit the inclusion of nodal attributes in network statistics, a capability that many242

change point detection methods for dynamic networks do not provide. For an in-depth discussion of network243

statistics in an ERGM framework, see Handcock et al. (2003), Hunter & Handcock (2006), Snijders et al.244

(2006), Hunter et al. (2008a), Morris et al. (2008), Robins et al. (2009), and Blackburn & Handcock (2022).245

4.2 Error Bound under Structured Sparsity246

For our change point detection framework with Group Fused Lasso regularization, we provide the following247

estimation error bounds by adapting the idea from Negahban et al. (2012).248

Proposition 2. Denote θ∗ ∈ Rτ×p as the true parameter and suppose that ∥θ∗∥∞ ≤M/2 for some M > 0.
Let θ̂ ∈ Rτ×p be the minimizer of the objective function in (5), subject to the constraint ∥θ∥∞ ≤ M/2.
Define the set of true change points as

S =
{
i ∈ {1, . . . , τ − 1} : θ∗

i+1,· ̸= θ∗
i,·
}
.

Suppose the loss function L(θ) := −l(θ) satisfies the Restricted Strong Convexity condition:

L(θ∗ + ∆) ≥ L(θ∗) + ⟨∇L(θ∗),∆⟩+ k

2∥∆∥
2
F ,

for all perturbations ∆ ∈ Rτ×p that satisfy the structured sparsity condition:249 ∑
i/∈S

∥∆i+1,· −∆i,·∥2

di
≤ α

∑
i∈S

∥∆i+1,· −∆i,·∥2

di
. (15)

for some constants k > 0 and α > 0. Also, assume that with probability at least 1 − δ, the restricted dual
norm of the gradient satisfies

∥∇L(θ∗)∥∗ ≤
λ

2
where the restricted dual norm ∥·∥∗ is taken with respect to the Total Variation (TV) norm ∥·∥TV as

∥∇L(θ∗)∥∗ = sup
∆:∥∆∥TV≤1,∥∆∥∞≤1

⟨∇L(θ∗),∆⟩ and ∥∆∥TV =
τ−1∑
i=1

∥∆i+1,· −∆i,·∥2

di
.

Then if the estimation error ∆̂ := θ̂ − θ∗ ∈ Rτ×p also satisfies the structured sparsity condition in (15), it
follows with probability at least 1− δ that the mean squared error is bounded as

1
τp
∥θ̂ − θ∗∥2

F ≤
1
τp

max


6λ
k

(1 + α) ·
√∑

i∈S

d−2
i

2

,
2λM
k

 .

The proof is provided in Appendix D. Specifically, the Restricted Strong Convexity assumption ensures
that L(θ) exhibits sufficient curvature when the estimation error ∆̂ has most of its total variation aligned
with the true change points. The restricted dual norm condition on ∇L(θ∗) controls the influence of noise,
preventing stochastic fluctuations from suggesting spurious jumps in the estimated parameters. Together,
these conditions facilitate a bound that reflects the estimator’s sensitivity to the signal structure and noise
level. Moreover, when α, κ and M satisfy α, κ,M ≍ 1, and

1
τp

(
λ2
∑
i∈S

d−2
i + λ

)
→ 0,

9
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we obtain that our estimator is consistent for estimating θ∗ in terms of the mean squared error:
1
τp
∥θ̂ − θ∗∥2

F → 0.

While previous works have developed error bounds for Total Variation and Fused Lasso estimators (Rojas &250

Wahlberg, 2014; Hütter & Rigollet, 2016; Lin et al., 2017), we focus on the Group Fused Lasso regularization251

applied to the parameters of STERGM for dynamic networks.252

4.3 Model Selection253

In practice, to determine the optimal set of change points over multiple STERGMs learned with different254

tuning parameter λ, we can use Bayesian information criterion (BIC) to perform model selection. Consider255

the STERGM with learned θ̂ and fixed λ, we have256

BIC(θ̂, λ) = −2l(θ̂) + log(TNnet)× p× Seg(θ̂, λ). (16)

For a list of λ, we choose the set of change points obtained from the STERGM with the lowest BIC value.257

Different from the number of nodes n, the network size Nnet is
(

n
2
)

for an undirected network and 2×
(

n
2
)

for258

a directed network. In general, for a dyadic dependent network, the effective network size is often smaller259

than Nnet and it may be difficult to quantify the effective size (Hunter et al., 2008a). In a node clustering260

problem for a static network, Handcock et al. (2007) used the number of observed edges to quantify the261

effective network size. In this work, we use Nnet to consider a greater value as the network size, since the262

procedure is to select a model with the lowest BIC value. Furthermore, the term Seg(θ̂, λ) in (16) gives the263

number of segments between change points {B̂k}K̂+1
k=0 that are learned with a particular λ value. In other264

words, Seg(θ̂, λ) = K̂ + 1, where K̂ is the number of detected change points.265

4.4 Data-driven Threshold266

Intuitively, the location of a change point is the time step where the parameter of STERGM at time t differs
from that at time t − 1. To this end, we can calculate the parameter difference between consecutive time
points in θ̂ ∈ Rτ×p as

∆θ̂i = ∥θ̂i+1,· − θ̂i,·∥2 ∀i ∈ [1, τ − 1]
and declare a change point when a parameter difference is greater than a threshold.267

Though researchers can choose an arbitrary threshold for ∆θ̂ based on the sensitivity of the detection, in this268

work we provide a data-driven threshold with the following procedures. First we standardize the parameter269

differences ∆θ̂ as270

∆ζ̂i = ∆θ̂i −median(∆θ̂)
sd(∆θ̂)

∀i ∈ [1, τ − 1]. (17)

The ∆ζ̂ ∈ Rτ−1 in (17) can be considered as the change magnitude in networks over time. Then the threshold271

based on the parameters learned from the data is constructed as272

ϵthr = mean(∆ζ̂) + Z1−α × sd(∆ζ̂) (18)

where Z1−α is the (1−α)% quantile of the standard Normal distribution. We declare a change point B when273

∆ζ̂B > ϵthr. The data-driven threshold in (18) is intuitive, as the standardized parameter differences at the274

change points are greater than those values in between the change points, derived from the Group Fused275

Lasso penalty. When tracing in a plot over time, the values ∆ζ̂ can exhibit the magnitude of structural276

changes, in terms of the network statistics specified in the STERGM.277

5 Simulated and Real Data Experiments278

In this section, we evaluate the proposed method on simulated and real data. For real data where ground
truth is unknown, we align the detected change points with real world events for interpretation. For simulated

10
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data where ground truth is known, we use the following metrics to compare the performance of the proposed
and competitor methods. The first metric is the absolute error |K̂ −K| where K̂ and K are the numbers of
detected and true change points, respectively. The second metric is the one-sided Hausdorff distance:

d(Ĉ|C) = max
c∈C

min
ĉ∈Ĉ
|ĉ− c|,

where Ĉ and C are the respective sets of detected and true change points. We also report the metric d(C|Ĉ).
When Ĉ = ∅, we define d(Ĉ|C) =∞ and d(C|Ĉ) =∞. The third metric described in van den Burg & Williams
(2020) is the coverage of a partition G by another partition G′, defined as

C(G,G′) = 1
T

∑
A∈G
|A| · max

A′∈G′

|A ∩ A′|
|A ∪ A′|

with A,A′ ⊆ [1, T ]. The G and G′ are collections of intervals between consecutive change points for the279

respective true and detected change points. These three metrics are chosen to reflect a progression in eval-280

uation difficulty: the absolute error assesses the number of detected change points, the one-sided Hausdorff281

distance captures the largest deviation in change point location, and the coverage metric measures alignment282

over the full time span, requiring a comprehensive match between the true and detected segments.283

5.1 Simulation Study284

We simulate dynamic networks from three particular models to imitate realistic patterns. First, we use the285

Stochastic Block Model (SBM) to attain that participants with similar attributes tend to form communities,286

and we impose a time-dependent mechanism in the network generation process. Second, we simulate dynamic287

networks from STERGM, which separately takes into account how relations form and dissolve over time,288

as their underlying reasons are usually different. Third, we utilize the Random Dot Product Graph Model289

(RDPGM), where edge formation is driven by the similarity in latent positions between nodes, and we allow290

these latent positions to evolve over time.291

For each specification, we let the time span T = 100 and the number of nodes n = {50, 100, 200}. The292

K = 3 true change points are located at t = {26, 51, 76}, and the K + 1 = 4 intervals in the partition G293

are A1 = {1, . . . , 25}, A2 = {26, . . . , 50}, A3 = {51, . . . , 75}, and A4 = {76, . . . , 100}. In each specification,294

we report the means and standard deviations over 15 Monte Carlo trials for different evaluation metrics.295

Specifically, to detect change points with the proposed method, we initialize the penalty parameter α = 10,296

and we let the tuning parameter λ = 10b with b ∈ {0, 1, 2, 3, 4}. For each λ, we run A = 200 iterations of297

ADMM and the stopping criterion in (56) uses ϵtol = 10−7. Within each ADMM iteration, we run C = 20298

iterations of the Newton-Raphson method, and D = 20 iterations for the Group Lasso update. The stopping299

criteria for the Newton-Raphson method is ∥ #»

θ c+1 −
#»

θ c∥2 < 10−3. To construct the data-driven threshold300

in (18), we use the 0.9 quantile of the standard Normal distribution. Additional details about the model301

specifications are provided in Appendix E. Throughout, the network statistics are calculated directly from302

the R library ergm (Handcock et al., 2022), and the formulations are provided in Appendix F.303

We compare our proposed method against four competing methods: gSeg (Chen & Zhang, 2015), kerSeg304

(Song & Chen, 2024), CPDrdpg (Madrid Padilla et al., 2022), and CPDnbs (Wang et al., 2021). The gSeg305

method utilizes a graph-based scan statistic and the kerSeg method employs a kernel-based scan statistic306

to assess distributional differences between two segments before and after a candidate change point. The307

CPDrdpg method identifies change points by estimating the latent positions of nodes using a Random Dot308

Product Graph Model (RDPGM) and by constructing a nonparametric CUSUM statistic that accounts309

for temporal dependence. The CPDnbs method integrates sample splitting with wild binary segmentation310

(WBS) and detects change points by maximizing the inner product between two CUSUM statistics derived311

from the split samples. In particular, the gSeg and kerSeg methods are available in the respective R libraries312

gSeg (Chen et al., 2020b) and kerSeg (Song & Chen, 2022). The CPDrdpg and CPDnbs methods are both313

available in the R library changepoints (Xu et al., 2022).314

For gSeg, we use the minimum spanning tree to construct the similarity graph, and we use the original315

edge-count scan statistic to test the null hypothesis that there is no change point within a time span. The316
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significance level is set to α = 0.05. For kerSeg, we use the kernel-based scan statistic fGKCP1 and we set the317

significance level α = 0.001. Since gSeg and kerSeg are general methods for change point detection, we use318

networks (nets.) and network statistics (stats.) as two types of input data for comparison. For CPDrdpg,319

we let the number of intervals for wild binary segmentation (WBS) be W = 50, and we let the number of320

leading singular values of an adjacency matrix in the scaled PCA algorithm be d = 5 to fit a RDPGM. For321

CPDnbs, we let the number of intervals for WBS be W = 15 and we set the threshold for detection to the322

order of n log2(T ) as suggested by Wang et al. (2021). Throughout, we use these chosen settings, since they323

produce higher coverage metrics C(G,G′) for the competitors across different scenarios on average. Changing324

the above settings can improve their performance on some specifications, while severely jeopardizing their325

performance on other specifications.326

Scenario 1: Stochastic Block Model (SBM)327

In this scenario, we use Stochastic Block Model (SBM) to generate dynamic networks. As in Madrid Padilla
et al. (2022), we construct two probability matrices P ,Q ∈ [0, 1]n×n and they are defined as

Pij =
{

0.5, i, j ∈ Bl, l ∈ [3],
0.3, otherwise,

and Qij =
{

0.45, i, j ∈ Bl, l ∈ [3],
0.2, otherwise,

where B1,B2,B3 are evenly sized clusters that form a partition of {1, . . . , n}. We then construct a sequence
of matrices Et for t = 1, . . . , T such that

Et
ij =

{
Pij , t ∈ A1 ∪ A3,

Qij , t ∈ A2 ∪ A4.

Lastly, the networks are generated with ρ ∈ {0.0, 0.5, 0.9} as a time-dependent mechanism. For any ρ and
t = 1, . . . , T − 1, we let y1

ij ∼ Bernoulli(E1
ij) and

yt+1
ij ∼

{
Bernoulli

(
ρ(1−Et+1

ij ) + Et+1
ij

)
, yt

ij = 1,
Bernoulli

(
(1− ρ)Et+1

ij

)
, yt

ij = 0.

When ρ = 0, the probability to draw an edge for dyad (i, j) at time t + 1 remains the same. This imposes328

a time-independent condition for a sequence of generated networks. On the contrary, when ρ > 0, the329

probability to draw an edge for dyad (i, j) becomes greater at time t+ 1 when there exists an edge at time330

t, and the probability becomes smaller when there does not exist an edge at time t.331

Figure 2 exhibits examples of generated networks at particular time points. Visually, Scenario 1 produces332

adjacency matrices with block structures, and mutuality is an important pattern in these networks. Hence,333

to detect the change points with our method, we use two network statistics, edge count and mutuality, in334

both formation and dissolution models. For gSeg and kerSeg, besides dynamic networks {yt}T
t=1, we also use335

the two network statistics {g(yt)}T
t=1 as another specification. The CPDrdpg and CPDnbs methods directly336

use the networks as input data. Tables 1, 2, and 3 display the means and standard deviations of evaluation337

metrics for different specifications.338

As expected, the CPDrdpg, CPDnbs, and kerSeg methods can achieve good performance in terms of the339

covering metric C(G,G′) when ρ = 0, since the time-independent setting aligns with the assumptions of340

these competitor methods. However, their performances are worsened when ρ > 0. In particular, when341

the networks in the sequence are time-dependent, the gSeg, kerSeg, and CPDnbs methods can effectively342

detect the true change points, as the one-sided Hausdorff distances d(Ĉ|C) are small. Yet the reversed one-343

sided Hausdorff distance d(C|Ĉ) and the absolute error |K̂ −K| suggest that they tend to detect excessive344

number of change points as the sequences of networks become noisier under the time-dependent condition.345

Moreover, the kerSeg method can achieve a good performance when the temporal dependency is moderate346

with ρ = 0.5. The CPDrdpg method remains robust when the temporal dependency is strong with ρ = 0.9,347

and the performance improves as the number of nodes increases. Regardless of the temporal dependence,348

our CPDstergm method, on average, achieves smaller absolute error, smaller one-sided Hausdorff distances,349

and greater coverage of interval partitions, outperforming the competitor methods.350
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Figure 2: Examples of adjacency matrices generated from SBM with ρ = 0.5 and n = 100. In the first row,
from left to right, each plot corresponds to the network at t = 25, 50, 75 respectively. In the second row,
from left to right, each plot corresponds to the network at t = 26, 51, 76 respectively (the change points). In
each display, a red dot indicates one and zero otherwise.

Table 1: Means (standard deviations) of evaluation metrics for dynamic networks simulated from the Stochas-
tic Block Model with ρ = 0.0. The best coverage metric is bolded.

ρ n Method |K̂ −K| ↓ d(Ĉ|C) ↓ d(C|Ĉ) ↓ C(G,G′) ↑

0.0 50

CPDstergm 0.2 (0.6) 0.8 (0.4) 1.7 (2.7) 95.99%
CPDrdpg 0.3 (0.8) 2.2 (1.2) 3.6 (3.6) 89.32%
CPDnbs 0.1 (0.3) 3.3 (5.8) 1.8 (0.8) 92.17%
gSeg (nets.) 2.8 (0.4) Inf (na) Inf (na) 9.08%
kerSeg (nets.) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 100%
gSeg (stats.) 2.1 (0.4) Inf (na) Inf (na) 43.68%
kerSeg (stats.) 0.1 (0.3) 0.1 (0.3) 0.3 (0.8) 99.67%

0.0 100

CPDstergm 0.7 (1.3) 0.8 (0.4) 5.0 (6.4) 91.34%
CPDrdpg 0.3 (0.6) 1.3 (0.6) 2.3 (2.3) 92.33%
CPDnbs 0.1 (0.4) 3.3 (5.7) 2.5 (2.6) 90.46%
gSeg (nets.) 2.9 (0.3) Inf (na) Inf (na) 3.20%
kerSeg (nets.) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 100%
gSeg (stats.) 1.9 (0.6) Inf (na) Inf (na) 45.55%
kerSeg (stats.) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 100%

0.0 200

CPDstergm 0.2 (0.4) 0.8 (0.4) 2.7 (3.9) 95.33%
CPDrdpg 0.1 (0.3) 1.0 (0.0) 1.5 (1.8) 92.85%
CPDnbs 0.1 (0.3) 3.3 (5.7) 1.9 (0.4) 91.40%
gSeg (nets.) 2.9 (0.4) Inf (na) Inf (na) 6.01%
kerSeg (nets.) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 100%
gSeg (stats.) 1.9 (0.6) Inf (na) Inf (na) 42.28%
kerSeg (stats.) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 100%
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Table 2: Means (standard deviations) of evaluation metrics for dynamic networks simulated from the Stochas-
tic Block Model with ρ = 0.5. The best coverage metric is bolded.

ρ n Method |K̂ −K| ↓ d(Ĉ|C) ↓ d(C|Ĉ) ↓ C(G,G′) ↑

0.5 50

CPDstergm 0.0 (0.0) 1.0 (0.0) 1.0 (0.0) 98.04%
CPDrdpg 1.3 (1.7) 2.5 (1.4) 7.5 (5.9) 81.47%
CPDnbs 1.6 (0.6) 3.3 (3.2) 11.4 (1.1) 73.54%
gSeg (nets.) 12.9 (1.8) 0.0 (0.0) 19.3 (0.7) 27.20%
kerSeg (nets.) 6.3 (1.4) 0.0 (0.0) 16.5 (2.6) 45.87%
gSeg (stats.) 1.7 (1.1) 42.7 (20.2) 7.9 (7.8) 50.92%
kerSeg (stats.) 0.7 (0.8) 0.0 (0.0) 5.3 (7.1) 95.13%

0.5 100

CPDstergm 0.0 (0.0) 1.0 (0.0) 1.0 (0.0) 98.04%
CPDrdpg 0.3 (0.6) 1.4 (0.5) 2.8 (3.1) 91.07%
CPDnbs 1.8 (0.7) 2.9 (2.9) 12.2 (1.1) 72.17%
gSeg (nets.) 12.5 (1.1) 0.0 (0.0) 19.3 (0.7) 27.60%
kerSeg (nets.) 6.1 (1.0) 0.0 (0.0) 15.0 (2.1) 46.40%
gSeg (stats.) 1.7 (0.7) Inf (na) Inf (na) 53.18%
kerSeg (stats.) 0.9 (0.6) 0.0 (0.0) 8.1 (7.3) 93.67%

0.5 200

CPDstergm 0.0 (0.0) 1.0 (0.0) 1.0 (0.0) 98.04%
CPDrdpg 0.0 (0.0) 1.0 (0.0) 1.0 (0.0) 93.32%
CPDnbs 1.8 (0.7) 3.2 (3.6) 11.8 (0.9) 71.43%
gSeg (nets.) 12.2 (0.6) 0.0 (0.0) 19.1 (0.5) 27.87%
kerSeg (nets.) 4.5 (0.7) 0.0 (0.0) 13.8 (1.7) 52.00%
gSeg (stats.) 1.6 (0.7) Inf (na) Inf (na) 54.36%
kerSeg (stats.) 0.5 (0.6) 0.0 (0.0) 4.4 (6.1) 96.33%

Table 3: Means (standard deviations) of evaluation metrics for dynamic networks simulated from the Stochas-
tic Block Model with ρ = 0.9. The best coverage metric is bolded.

ρ n Method |K̂ −K| ↓ d(Ĉ|C) ↓ d(C|Ĉ) ↓ C(G,G′) ↑

0.9 50

CPDstergm 0.0 (0.0) 1.0 (0.0) 1.0 (0.0) 98.04%
CPDrdpg 1.1 (1.4) 2.5 (1.1) 8.4 (5.7) 83.13%
CPDnbs 1.3 (0.6) 2.7 (2.6) 10.7 (2.6) 76.38%
gSeg (nets.) 12.4 (1.1) 0.0 (0.0) 19.1 (0.5) 27.67%
kerSeg (nets.) 11.1 (0.7) 0.0 (0.0) 18.9 (0.6) 31.53%
gSeg (stats.) 6.2 (3.8) 6.6 (14.8) 16.7 (4.8) 57.38%
kerSeg (stats.) 4.1 (1.7) 0.0 (0.0) 15.1 (3.4) 72.67%

0.9 100

CPDstergm 0.0 (0.0) 1.0 (0.0) 1.0 (0.0) 98.04%
CPDrdpg 0.1 (0.3) 1.6 (0.8) 1.9 (1.6) 92.14%
CPDnbs 1.4 (0.6) 2.5 (2.1) 10.4 (2.5) 76.44%
gSeg (nets.) 12.4 (0.9) 0.0 (0.0) 19.0 (0.0) 27.67%
kerSeg (nets.) 11.9 (0.3) 0.0 (0.0) 19.0 (0.0) 28.27%
gSeg (stats.) 5.3 (2.3) 3.8 (9.0) 18.7 (3.0) 62.81%
kerSeg (stats.) 3.7 (1.2) 0.0 (0.0) 17.1 (3.5) 73.27%

0.9 200

CPDstergm 0.0 (0.0) 1.0 (0.0) 1.0 (0.0) 98.04%
CPDrdpg 0.0 (0.0) 1.0 (0.0) 1.0 (0.0) 93.19%
CPDnbs 1.3 (0.6) 2.5 (2.1) 10.3 (2.5) 77.38%
gSeg (nets.) 12.3 (1.0) 0.0 (0.0) 19.1 (0.3) 27.73%
kerSeg (nets.) 12.0 (0.0) 0.0 (0.0) 18.9 (0.3) 28.00%
gSeg (stats.) 7.4 (2.4) 0.9 (1.8) 17.9 (3.8) 57.61%
kerSeg (stats.) 4.8 (1.7) 0.0 (0.0) 16.7 (4.9) 66.87%
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Another aspect worth mentioning is the usage of the network statistics in two competitor methods. The351

performance of gSeg and kerSeg methods, in terms of the covering metric C(G,G′), improves significantly352

when we change the input data from networks to network statistics, which demonstrates the potential of353

using network level summary statistics to represent the enormous amount of individual relations.354

Scenario 2: Separable Temporal ERGM355

In this scenario, we employ time-homogeneous STERGMs (Krivitsky & Handcock, 2014) between change
points to generate sequences of dynamic networks, using the R package tergm (Krivitsky & Handcock,
2022). For the following three specifications, we gradually increase the complexity of the network patterns,
by adding more network statistics in the data generating process. First we use two network statistics, edge
count and mutuality, in both formation and dissolution models to let p = 4. The parameters are

θ+,t,θ−,t =
{
−1, −2, −1, −2, t ∈ A1 ∪ A3,

−1, 1, −1, −1, t ∈ A2 ∪ A4.

Next, we include the number of triangles in both formation and dissolution models to let p = 6. The
parameters are

θ+,t,θ−,t =
{
−2, 2, −2, −1, 2, 1, t ∈ A1 ∪ A3,

−1.5, 1, −1, 2, 1, 1.5, t ∈ A2 ∪ A4.

Finally, we include the homophily for gender, an attribute assigned to each node, in both formation and
dissolution models to let p = 8. The parameters are

θ+,t,θ−,t =
{
−2, 2, −2, −1, −1, 2, 1, 1, t ∈ A1 ∪ A3,

−1.5, 1, −1, 1, 2, 1, 1.5, 2, t ∈ A2 ∪ A4.

The nodal attributes, xi ∈ {Female,Male} for i ∈ [n], are fixed across time t in the generation process.356

Figure 3 exhibits examples of generated networks at particular time points. Specifically, Scenario 2 produces357

adjacency matrices that are sparse, which is often the case in reality. For comparison, to detect change358

points with our method, we use the network statistics that generate the networks in both formation and359

dissolution models. For gSeg and kerSeg methods, besides using the networks as one specification, we also360

use the same network statistics that generate the simulated networks as another specification. The CPDrdpg361

and CPDnbs methods directly use the networks as input data. Tables 4, 5, and 6 display the means and362

standard deviations of evaluation metrics for different specifications.363

For p = 4, the performance of the kerSeg method in terms of the covering metric C(G,G′) improves signifi-364

cantly when we substitute the input data from networks to network statistics. The CPDrdpg and CPDnbs365

methods can also achieve good performance when the dyadic dependency is weak. However, for p = 6, the366

competitor methods tend to detect excessive number of change points, when the simulated networks are367

highly dyadic dependent due to the inclusion of the transitivity. Using network statistics as input can no368

longer improve the performance of gSeg and kerSeg, in contrast to Scenario 1 where the dyadic dependency369

is relatively mild. Nevertheless, our CPDstergm method, which dissects the network evolution using for-370

mation and dissolution processes, can achieve a good performance when the simulated networks are both371

temporal and dyadic dependent. Lastly, for p = 8, the performance of CPDrdpg and CPDnbs methods does372

not deteriorate, and that of the CPDrdpg method improves as the number of nodes increases. Notably,373

our method permits the inclusion of nodal attributes to facilitate change point detection, a feature that374

many existing methods for dynamic graphs do not offer. On average, our method produces smaller absolute375

error, smaller one-sided Hausdorff distances, and greater coverage of interval partitions, outperforming the376

competitor methods at different levels of dyadic dependency.377

Scenario 3: Random Dot Product Graph Model (RDPGM)378

In this scenario, we simulate dynamic networks using the Random Dot Product Graph Model (Young &
Scheinerman, 2007; Athreya et al., 2018). At time point t = 1, we generate two latent positions Xt

i ,Z
t
i ∈ Rd
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Figure 3: Examples of adjacency matrices generated from STERGM with p = 6 and n = 100. In the first
row, from left to right, each plot corresponds to the network at t = 25, 50, 75 respectively. In the second row,
from left to right, each plot corresponds to the network at t = 26, 51, 76 respectively (the change points). In
each display, a red dot indicates one and zero otherwise.

Table 4: Means (standard deviations) of evaluation metrics for dynamic networks simulated from the
STERGM with p = 4. The best coverage metric is bolded.

p n Method |K̂ −K| ↓ d(Ĉ|C) ↓ d(C|Ĉ) ↓ C(G,G′) ↑

4 50

CPDstergm 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 100%
CPDrdpg 0.0 (0.0) 1.5 (0.7) 1.5 (0.7) 92.48%
CPDnbs 0.1 (0.3) 3.7 (5.7) 2.3 (1.0) 87.67%
gSeg (nets.) 1.6 (1.0) 23.1 (7.0) 13.1 (8.3) 45.62%
kerSeg (nets.) 2.6 (0.7) 0.0 (0.0) 13.5 (4.3) 80.53%
gSeg (stats.) 2.0 (0.4) 48.1 (13.4) 4.2 (7.0) 50.26%
kerSeg (stats.) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 100%

4 100

CPDstergm 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 100%
CPDrdpg 0.1 (0.3) 1.0 (0.0) 1.3 (1.3) 92.86%
CPDnbs 0.1 (0.3) 3.5 (5.7) 2.0 (0.0) 88.13%
gSeg (nets.) 1.5 (1.2) 20.5 (6.5) 15.5 (7.3) 45.21%
kerSeg (nets.) 2.7 (0.5) 0.0 (0.0) 16.2 (2.9) 76.87%
gSeg (stats.) 2.3 (0.5) Inf (na) Inf (na) 40.42%
kerSeg (stats.) 0.1 (0.4) 0.2 (0.4) 0.6 (1.1) 99.21%

4 200

CPDstergm 0.0 (0.0) 0.3 (0.5) 0.3 (0.5) 99.48%
CPDrdpg 0.0 (0.0) 1.0 (0.0) 1.0 (0.0) 93.19%
CPDnbs 0.1 (0.3) 4.1 (6.1) 2.7 (2.6) 87.08%
gSeg (nets.) 1.5 (1.4) 22.7 (6.3) 15.6 (7.3) 46.82%
kerSeg (nets.) 2.5 (0.6) 0.0 (0.0) 15.3 (3.0) 76.60%
gSeg (stats.) 2.0 (0.9) Inf (na) Inf (na) 37.35%
kerSeg (stats.) 0.1 (0.3) 0.0 (0.0) 1.0 (2.6) 99.33%
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Table 5: Means (standard deviations) of evaluation metrics for dynamic networks simulated from the
STERGM with p = 6. The best coverage metric is bolded.

p n Method |K̂ −K| ↓ d(Ĉ|C) ↓ d(C|Ĉ) ↓ C(G,G′) ↑

6 50

CPDstergm 0.0 (0.0) 1.1 (0.3) 1.1 (0.3) 94.20%
CPDrdpg 1.2 (1.7) 6.0 (5.5) 8.0 (4.9) 75.61%
CPDnbs 1.5 (0.5) 4.3 (2.3) 11.3 (1.0) 75.64%
gSeg (nets.) 13.1 (1.2) 0.0 (0.0) 19.4 (1.1) 27.47%
kerSeg (nets.) 10.1 (1.0) 1.5 (1.1) 18.5 (1.5) 35.82%
gSeg (stats.) 15.3 (1.2) 1.5 (0.6) 20.6 (0.6) 25.18%
kerSeg (stats.) 9.7 (1.2) 3.3 (1.3) 19.4 (1.8) 35.28%

6 100

CPDstergm 0.0 (0.0) 1.1 (0.4) 1.1 (0.4) 93.95%
CPDrdpg 0.9 (1.0) 4.9 (1.7) 8.6 (3.8) 77.59%
CPDnbs 1.4 (0.5) 4.9 (2.2) 10.9 (1.0) 73.84%
gSeg (nets.) 12.0 (0.0) 0.0 (0.0) 19.0 (0.0) 28.00%
kerSeg (nets.) 10.2 (0.9) 0.5 (0.5) 18.1 (1.1) 36.13%
gSeg (stats.) 14.9 (3.2) 2.8 (4.9) 20.5 (0.6) 25.09%
kerSeg (stats.) 8.1 (1.2) 5.2 (1.6) 17.9 (1.8) 38.32%

6 200

CPDstergm 0.1 (0.3) 1.0 (0.0) 2.1 (4.4) 97.06%
CPDrdpg 0.3 (0.6) 2.4 (0.8) 3.3 (2.3) 91.08%
CPDnbs 1.4 (0.5) 4.3 (1.9) 11.9 (0.5) 75.58%
gSeg (nets.) 12.0 (0.0) 0.0 (0.0) 19.0 (0.0) 28.00%
kerSeg (nets.) 10.0 (0.7) 0.9 (0.4) 18.1 (0.9) 36.17%
gSeg (stats.) 5.5 (6.6) 28.6 (22.2) 20.4 (0.9) 31.91%
kerSeg (stats.) 8.7 (1.0) 3.4 (0.8) 18.9 (0.4) 42.86%

Table 6: Means (standard deviations) of evaluation metrics for dynamic networks simulated from the
STERGM with p = 8. The best coverage metric is bolded.

p n Method |K̂ −K| ↓ d(Ĉ|C) ↓ d(C|Ĉ) ↓ C(G,G′) ↑

8 50

CPDstergm 0.4 (0.6) 3.7 (5.5) 5.1 (3.8) 86.32%
CPDrdpg 1.3 (1.1) 9.4 (7.1) 11.3 (5.4) 70.72%
CPDnbs 1.3 (0.6) 4.9 (4.2) 11.8 (0.6) 75.57%
gSeg (nets.) 13.5 (1.2) 0.0 (0.0) 19.7 (1.2) 27.07%
kerSeg (nets.) 10.4 (1.5) 1.5 (1.2) 19.1 (1.8) 36.58%
gSeg (stats.) 14.6 (2.2) 2.7 (1.7) 19.9 (1.2) 27.10%
kerSeg (stats.) 9.3 (1.3) 4.8 (1.9) 18.5 (1.8) 36.23%

8 100

CPDstergm 0.0 (0.0) 1.9 (1.2) 1.9 (1.2) 92.65%
CPDrdpg 0.8 (1.3) 7.1 (3.1) 9.0 (3.6) 73.13%
CPDnbs 1.3 (0.5) 5.1 (3.2) 12.0 (0.0) 75.51%
gSeg (nets.) 12.0 (0.0) 0.0 (0.0) 19.0 (0.0) 28.00%
kerSeg (nets.) 9.6 (1.2) 1.3 (1.3) 18.0 (1.1) 37.31%
gSeg (stats.) 12.9 (1.3) 3.3 (2.4) 19.9 (0.7) 28.56%
kerSeg (stats.) 8.7 (1.4) 5.9 (2.2) 18.4 (1.7) 35.78%

8 200

CPDstergm 0.0 (0.0) 1.0 (0.0) 1.0 (0.0) 94.45%
CPDrdpg 0.7 (1.0) 4.2 (2.0) 5.7 (2.2) 85.59%
CPDnbs 1.4 (0.5) 5.3 (3.1) 11.1 (1.0) 73.38%
gSeg (nets.) 12.0 (0.0) 0.0 (0.0) 19.0 (0.0) 28.00%
kerSeg (nets.) 9.1 (0.6) 0.0 (0.0) 16.9 (1.0) 38.13%
gSeg (stats.) 14.1 (0.9) 1.1 (0.8) 19.6 (0.5) 26.15%
kerSeg (stats.) 8.8 (1.0) 2.9 (0.4) 17.6 (0.5) 38.60%
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for each node i ∈ [n] from a multivariate Normal distribution as X1
i ,Z

1
i ∼ N (1, Id). For subsequent time

points, the latent positions evolve according to the following autoregressive process:

Xt+1
i = ρXt

i + (1− ρ)ϵt
i, Zt+1

i = ρZt
i + (1− ρ)ϵt

i, t = 1, . . . , T − 1,

where ϵt
i ∼ N (0, Id). Throughout, we set ρ = 0.9 to induce the temporal dependence, and we normalize

the resulting latent positions at each time point. Next, to incorporate structural patterns in the dynamic
networks, we generate two weight matrices U ,V ∈ Rd×d, where each entry is sampled independently as

Ur,s ∼ Uniform(0, 1/16), Vr,s ∼ Uniform(1/16, 2/16), ∀ r, s ∈ {1, . . . , d},

and the weight matrices remain fixed within the corresponding time segments between consecutive change
points. Lastly, at each time point t, the adjacency matrix yt ∈ {0, 1}n×n is generated as

yt
ij ∼

{
Bernoulli(Xt

i
⊤

UZt
j), t ∈ A1 ∪ A3,

Bernoulli(Xt
i

⊤
V Zt

j), t ∈ A2 ∪ A4.

The latent dimension d is varied across simulation settings with d ∈ {10, 15, 20}.379

Figure 4 presents examples of generated networks at specific time points. In particular, Scenario 3 produces380

adjacency matrices that are sparse, and no specific network pattern can be noticed. To detect change points381

with the proposed method, we use two network statistics, edge count and mutuality, in both formation and382

dissolution models, since the networks are generated based on the similarity in latent positions between383

nodes. For gSeg and kerSeg methods, besides dynamic networks, we also use these two network statistics as384

another specification. The CPDrdpg and CPDnbs methods directly use the networks as input data. Tables385

7, 8, and 9 display the means and standard deviations of evaluation metrics for different specifications.386

1 34 67 100

1
34

67
10

0

1 34 67 100

1
34

67
10

0

1 34 67 100

1
34

67
10

0

1 34 67 100

1
34

67
10

0

1 34 67 100

1
34

67
10

0

1 34 67 100

1
34

67
10

0

Figure 4: Examples of adjacency matrices generated from RDPGM with d = 15 and n = 100. In the first
row, from left to right, each plot corresponds to the network at t = 25, 50, 75 respectively. In the second row,
from left to right, each plot corresponds to the network at t = 26, 51, 76 respectively (the change points). In
each display, a red dot indicates one and zero otherwise.

The weight matrices, generated from the Uniform distributions with small support, induce sparsity in the387

simulated networks, posing challenges for both the proposed and competitor methods. Although all methods388

are able to detect the true change points, they also tend to identify additional change points that deviate389
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substantially from the ground truth, as reflected by high absolute errors and large one-sided Hausdorff390

distances. Moreover, as the networks are generated from latent positions that differ by nodes, we observe a391

degradation in the performance of gSeg and CPDnbs when the latent dimension d grows, partly due to the392

increased complexity of the underlying network structures. In contrast, the performance of kerSeg, which uses393

network statistics as input, and that of CPDrdpg, which aligns closely with the data generating mechanism,394

improve when the latent dimension d increases. Similarly, the proposed CPDstergm method demonstrates395

robustness to different latent dimensions and the performance improves with larger network sizes. On the396

other hand, the gSeg and kerSeg methods show substantial gains when applied to network statistics instead397

of dynamic networks. The proposed CPDstergm method, which also utilizes network statistics, outperforms398

the competitor methods, indicating its adaptability to sparse and temporal dependent networks.399

Table 7: Means (standard deviations) of evaluation metrics for dynamic networks simulated from the
RDPGM with d = 10. The best coverage metric is bolded.

d n Method |K̂ −K| ↓ d(Ĉ|C) ↓ d(C|Ĉ) ↓ C(G,G′) ↑

10 50

CPDstergm 1.8 (1.1) 1.1 (0.9) 13.1 (5.5) 81.61%
CPDrdpg 2.0 (1.1) 5.7 (5.0) 18.3 (2.2) 72.82%
CPDnbs 1.0 (0.5) 5.2 (3.4) 10.2 (3.3) 76.71%
gSeg (nets.) 3.0 (0.0) Inf (na) Inf (na) 0.00%
kerSeg (nets.) 4.2 (1.4) 3.3 (4.4) 16.0 (3.1) 61.06%
gSeg (stats.) 2.4 (1.3) 16.9 (17.3) 19.7 (1.1) 64.26%
kerSeg (stats.) 2.5 (1.5) 6.0 (5.5) 19.5 (2.0) 73.06%

10 100

CPDstergm 0.4 (0.5) 0.9 (0.4) 6.5 (7.5) 93.34%
CPDrdpg 1.9 (1.0) 6.6 (4.6) 17.7 (2.3) 71.83%
CPDnbs 1.0 (0.8) 5.3 (4.1) 9.5 (4.1) 77.52%
gSeg (nets.) 2.9 (0.4) Inf (na) Inf (na) 5.87%
kerSeg (nets.) 7.1 (1.1) 1.5 (3.8) 17.8 (2.0) 46.90%
gSeg (stats.) 4.1 (2.2) 10.5 (10.9) 20.4 (1.0) 60.88%
kerSeg (stats.) 4.9 (1.5) 0.8 (1.7) 19.3 (2.3) 68.43%

10 200

CPDstergm 0.0 (0.0) 1.0 (0.0) 1.0 (0.0) 96.36%
CPDrdpg 2.3 (0.7) 5.6 (2.5) 18.7 (2.2) 71.59%
CPDnbs 1.5 (0.7) 6.5 (3.4) 11.4 (2.7) 70.36%
gSeg (nets.) 2.7 (0.6) Inf (na) Inf (na) 13.66%
kerSeg (nets.) 8.1 (1.8) 0.1 (0.4) 18.5 (1.4) 43.41%
gSeg (stats.) 4.9 (1.3) 7.3 (3.9) 20.1 (0.3) 62.78%
kerSeg (stats.) 5.4 (1.3) 2.2 (3.9) 20.1 (1.5) 61.71%

5.2 Time Comparison400

In this section, we compare the computation times of different methods across varying node sizes, and the401

results are provided in Table 10. We focus on three representative configurations where the change point402

detection performance is comparable across methods, as shown in Section 5.1. The reported computation403

times in seconds reflect the total runtime over three simulated network time series. It is worth noting404

that some competing methods exhibit shorter runtime when they fail to detect the correct change points405

and terminate early. Although the proposed method requires more computation time, it achieves better406

performance on average compared to the competitors.407

5.3 MIT Cellphone Data408

The Massachusetts Institute of Technology (MIT) cellphone data (Eagle & Pentland, 2006) consists of human409

interactions via cellphone activity, among n = 96 participants for a duration of T = 232 days. The data were410

taken from 2004-09-15 to 2005-05-04, which covers the winter and spring vacations in the MIT academic411
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Table 8: Means (standard deviations) of evaluation metrics for dynamic networks simulated from the
RDPGM with d = 15. The best coverage metric is bolded.

d n Method |K̂ −K| ↓ d(Ĉ|C) ↓ d(C|Ĉ) ↓ C(G,G′) ↑

15 50

CPDstergm 1.7 (1.0) 1.9 (3.9) 14.7 (2.7) 80.38%
CPDrdpg 2.4 (0.6) 1.6 (0.6) 16.9 (1.9) 75.90%
CPDnbs 1.5 (0.7) 6.0 (4.1) 11.3 (1.7) 70.88%
gSeg (nets.) 3.0 (0.0) Inf (na) Inf (na) 0.00%
kerSeg (nets.) 5.3 (1.4) 3.3 (4.5) 18.7 (1.8) 56.01%
gSeg (stats.) 2.6 (1.8) 25.8 (27.7) 19.9 (0.5) 54.73%
kerSeg (stats.) 3.2 (1.1) 2.7 (5.2) 20.3 (2.1) 76.76%

15 100

CPDstergm 0.9 (0.6) 1.0 (0.0) 11.1 (6.5) 88.32%
CPDrdpg 1.1 (0.8) 4.0 (5.6) 15.5 (1.8) 79.18%
CPDnbs 1.6 (0.8) 7.1 (3.6) 10.8 (2.0) 68.99%
gSeg (nets.) 3.0 (0.0) Inf (na) Inf (na) 0.00%
kerSeg (nets.) 6.5 (1.6) 2.7 (5.7) 17.9 (2.0) 47.57%
gSeg (stats.) 4.0 (2.2) 10.4 (15.8) 20.0 (1.2) 63.45%
kerSeg (stats.) 4.3 (1.3) 0.1 (0.3) 20.6 (2.4) 74.23%

15 200

CPDstergm 0.1 (0.3) 1.0 (0.0) 2.1 (4.4) 95.65%
CPDrdpg 1.7 (0.9) 4.3 (4.7) 15.6 (1.4) 76.17%
CPDnbs 1.9 (0.7) 7.9 (2.8) 11.8 (0.6) 66.32%
gSeg (nets.) 2.8 (0.4) Inf (na) Inf (na) 8.91%
kerSeg (nets.) 7.9 (1.9) 3.0 (5.3) 18.8 (1.7) 41.86%
gSeg (stats.) 4.2 (2.0) 9.1 (16.5) 18.9 (0.7) 61.83%
kerSeg (stats.) 4.5 (1.2) 0.2 (0.6) 20.0 (2.6) 72.44%

Table 9: Means (standard deviations) of evaluation metrics for dynamic networks simulated from the
RDPGM with d = 20. The best coverage metric is bolded.

d n Method |K̂ −K| ↓ d(Ĉ|C) ↓ d(C|Ĉ) ↓ C(G,G′) ↑

20 50

CPDstergm 1.1 (0.7) 5.6 (8.4) 15.9 (2.1) 79.76%
CPDrdpg 2.6 (1.0) 1.5 (0.8) 16.8 (1.3) 73.88%
CPDnbs 1.5 (0.8) 8.4 (2.3) 11.8 (0.6) 66.97%
gSeg (nets.) 2.9 (0.3) Inf (na) Inf (na) 3.19%
kerSeg (nets.) 5.3 (1.4) 2.8 (4.5) 16.7 (2.1) 58.03%
gSeg (stats.) 3.1 (1.8) 21.8 (30.1) 19.9 (0.5) 58.70%
kerSeg (stats.) 3.0 (1.2) 0.4 (1.1) 17.3 (3.1) 79.34%

20 100

CPDstergm 1.2 (0.7) 0.9 (0.3) 15.7 (4.4) 87.37%
CPDrdpg 1.6 (0.9) 3.0 (4.9) 16.3 (1.0) 78.92%
CPDnbs 1.7 (0.8) 8.3 (3.0) 11.6 (1.2) 66.22%
gSeg (nets.) 2.9 (0.3) Inf (na) Inf (na) 6.18%
kerSeg (nets.) 7.5 (1.3) 1.0 (2.6) 18.3 (1.6) 44.46%
gSeg (stats.) 2.9 (2.8) 26.4 (25.4) 19.7 (0.6) 50.98%
kerSeg (stats.) 3.1 (1.1) 0.0 (0.0) 18.2 (3.1) 81.13%

20 200

CPDstergm 0.7 (0.5) 1.0 (0.0) 11.3 (6.9) 89.83%
CPDrdpg 1.8 (0.4) 1.2 (0.6) 16.9 (1.0) 80.81%
CPDnbs 1.7 (0.7) 8.3 (3.5) 11.8 (0.4) 67.29%
gSeg (nets.) 2.8 (0.4) Inf (na) Inf (na) 9.54%
kerSeg (nets.) 8.9 (0.7) 0.0 (0.0) 18.3 (2.0) 39.80%
gSeg (stats.) 3.9 (2.3) 16.8 (21.0) 20.1 (1.3) 54.09%
kerSeg (stats.) 4.1 (0.9) 0.0 (0.0) 17.0 (3.0) 73.33%
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Table 10: Time comparison in seconds across different methods and node sizes.
SBM (ρ = 0) STERGM (p = 4) RDPGM (d = 20)

Method & Node 50 100 50 100 50 100
CPDstergm 15.033 39.833 17.085 39.293 29.607 40.065
CPDrdpg 2.899 6.289 2.961 6.271 3.352 6.690
CPDnbs 0.308 1.124 0.310 1.078 0.338 1.436
gSeg (nets.) 0.112 0.238 0.183 0.509 0.088 0.221
kerSeg (nets.) 3.971 4.303 4.707 4.922 5.957 7.877
gSeg (stats.) 2.698 7.244 2.321 6.071 1.276 1.960
kerSeg (stats.) 6.290 10.893 6.207 10.066 6.161 7.119

calendar. For participants i and j, a connected edge yt
ij = 1 indicates that they had made at least one phone412

call on day t, and yt
ij = 0 otherwise.413

As the data portrays human interactions, we use the number of edges, isolates, and triangles to represent414

the occurrence of connections, the sparsity of social networks, and the transitive association of friendship,415

respectively. For gSeg and kerSeg methods, we use these three network statistics {g(yt)}T
t=1 as input data,416

since they produce more informative results than using the dynamic networks {yt}T
t=1. The CPDrdpg and417

CPDnbs methods directly use the dynamic networks as input data.418

In addition, as the proposed CPDstergm method supports the usage of node level covariates, we define a419

nodal attribute xi ∈ {High-Activity,Low-Activity} for each node i ∈ [n], based on its cumulative activity420

over time. Specifically, we calculate the total degree of each node across the time span, and classify nodes421

as ‘High-Activity’ if their cumulative degree exceeds the median, and ‘Low-Activity’ otherwise. The four422

network statistics, edges, isolates, triangles, and homophily for activeness, are used in both formation and423

dissolution models of our method. Figure 5 displays the change magnitude ∆ζ̂ of Equation (17) and the424

detected change points from the proposed and competitor methods. Moreover, Table 11 provides a list of425

potential nearby events that align with the detected change points, and Figure 6 displays a raster plot of426

active edges over time, as a visual validation to the detected change points.427

The two shaded areas in Figure 5 correspond to the winter and spring vacations in the MIT 2004-2005428

academic calendar, and our method can punctually detect the pattern change in the contact behaviors. The429

competitor methods can also detect the beginning of the winter vacation, but their results on the spring430

vacation are deviated. Visually, the substantial reduction of interactions in Region I and the subtle shifts431

in Region II of Figure 6 support the change points detected by the proposed method, aligning with the432

largest spike for the winter vacation (2004-12-17) and the smaller spike for the spring vacation (2005-03-24)433

in Figure 5. Furthermore, we detect a few spikes in the middle of October 2004, which correspond to the434

annual sponsor meeting that happened on 2004-10-21. About two-thirds of the participants have prepared435

and attended the annual sponsor meeting, and the majority of their time has contributed to achieve project436

goals throughout the week (Eagle & Pentland, 2006). The drastic shifts in Region III of Figure 6 also reveal437

the frequent changes in the network patterns during the sponsor meeting week.438

Table 11: Potential nearby events that align with the detected change points (CP) of our method.
Detected CP Potential nearby events
2004-10-13 Preparation for the sponsor meeting
2004-10-24 2004-10-21 (Sponsor meeting)
2004-11-16 2004-11-17 (Last day to cancel subjects)
2004-12-17 2004-12-18 to 2005-01-02 (Winter vacation)
2005-03-24 2005-03-21 to 2005-03-25 (Spring vacation)
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Figure 5: Visualization of the change magnitude ∆ζ̂ and the detected change points from our method for
the MIT cellphone data. The detected change points from the competitor methods (blue bars) are also
displayed. The two shaded areas correspond to the winter and spring vacations in the MIT 2004-2005
academic calendar. The data-driven threshold (red horizontal line) is calculated by (18) with Z0.975.
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Figure 6: Raster plot of the MIT cellphone data. Each black tile represents an active edge between a pair of
nodes at a given time point. The red vertical lines indicate change points detected by the proposed method,
and the blue shaded regions highlight notable changes in network interaction patterns.
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5.4 Stock Market Data439

The stock market data consists of the weekly log returns of 29 stocks included in the Dow Jones Industrial440

Average (DJIA) index, and it is available in the R package ecp (James & Matteson, 2015). We consider the441

data from 2007-01-01 to 2010-01-04, which covers the 2008 worldwide economic crisis. Moreover, we focus442

on using the negative correlations among stock returns to detect the systematic anomalies in the financial443

market. First, we use a sliding window of width 4 to calculate the correlation matrices of the weekly log444

returns. We then truncate the correlation matrices by setting those entries which have negative values as 1,445

and the remaining as 0. In the T = 158 constructed networks, a connected edge yt
ij = 1 indicates the log446

returns of stocks i and j are negatively correlated over the four-week period that ends at week t.447

As a network statistic, the number of triangles signifies the volatility of the stock market, since the three448

stocks are mutually negatively correlated. In other words, the more triangles in a network, the more op-449

posite movements among the stock returns, suggesting a large fluctuation in the financial market. On450

the contrary, when the number of triangles is low, the majority of the stock returns either increase or de-451

crease at the same time, suggesting a stable trend in the market. In addition, we define a nodal attribute452

xi ∈ {Hedging-Prone,Market-Following} for each stock i ∈ [n], based on it cumulative degree over time.453

Specifically, stocks with total degree above the median are labeled as ‘Hedging-Prone’, reflecting defensive454

behavior relative to the market, while the remaining stocks are labeled as ‘Market-Following’, indicating455

synchronized movement with the broader market. For the proposed method, we use three network statistics,456

edges, triangles, and homophily for risk orientation, in both formation and dissolution models. For the457

competitor methods, we use dynamic networks as input data, since they produce more reasonable results458

than using the network statistics. Figure 7 displays the change magnitude ∆ζ̂ of Equation (17) and the459

detected change points from the proposed and competitor methods. Table 12 provides a list of potential460

nearby events that align with the detected change points, and Figure 8 displays a raster plot of active edges461

over time, as visual validation to the detected change points.462
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Figure 7: Visualization of the change magnitude ∆ζ̂ and the detected change points from our method for the
stock market data. The detected change points from the competitor methods (blue bars) are also displayed.
The data-driven threshold (red horizontal line) is calculated by (18) with Z0.975.

As expected, the stock market is volatile between 2007 and 2009. The competitors have detected excessive463

number of change points, aligning with the smaller spikes in ∆ζ̂ of Figure 7. Those change points could be464

detected by our method, if we manually lower the threshold to adjust the sensitivity. Since the networks465
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are constructed using a sliding window, a detected change point indicates the pattern change occurs amid466

the four-week time horizon. As supporting evidence to the three detected change points in Table 12, the467

New Century Financial Corporation was the largest U.S. subprime mortgage lender in 2007, and the Lehman468

Brothers was one of the largest investment banks. Their bankruptcies caused by the collapse of the mortgage469

industry severely fueled the worldwide financial crisis, which also led the Dow Jones Industrial Average to470

the bottom. In Figure 8, Region I shows a substantial increase in edge density following the collapse of471

New Century Financial Corporation, indicating heightened volatility in the stock market. As fewer edges472

suggest stable trend, Region II captures the market downturn following the bankruptcy of Lehman Brothers.473

Finally, Region III shows a rebound in market activity, as edge density rises after the Dow Jones Industrial474

Average reaches its lowest point, suggesting the beginning of a recovery phase.475

Table 12: Potential nearby events that align with the detected change points (CP) of our method.
Detected CP Potential nearby events
2007-04-23 2007-04-02 (New Century Financial Corporation filed for bankruptcy)
2008-10-06 2008-09-15 (Lehman Brothers filed for bankruptcy)
2009-04-20 2009-03-09 (Dow Jones Industrial Average bottomed)
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Figure 8: Raster plot of the stock market data. Each black tile represents an active edge between a pair of
nodes at a given time point. The red vertical lines indicate change points detected by the proposed method,
and the blue shaded regions highlight notable changes in network interaction patterns.

6 Discussion476

In this work, we study the change point detection problem in time series of networks, which serves as a477

prerequisite for dynamic network analysis. Essentially, we fit a time-heterogeneous STERGM while penalizing478

the sum of Euclidean norms of the parameter differences between consecutive time steps. The objective479

function with Group Fused Lasso penalty is solved via Alternating Direction Method of Multipliers, and we480

adopt the pseudo-likelihood of STERGM to expedite parameter estimation.481

The STERGM (Krivitsky & Handcock, 2014) used in our method is a flexible model to fit dynamic networks482

with both dyadic and temporal dependence. It manages dyad formation and dissolution separately, as the483

24



Under review as submission to TMLR

underlying reasons that induce the two processes are usually different in reality. Furthermore, the ERGM484

suite (Handcock et al., 2022) provides an extensive list of network statistics to capture the structural changes,485

and we develop an R package CPDstergm to implement the proposed method.486

Several improvements to our change point detection framework are possible. Relational phenomena by nature487

have degrees of strength, and dichotomizing valued networks into binary networks may introduce biases for488

analysis (Thomas & Blitzstein, 2011). To this end, we can extend the STERGM with a valued ERGM489

(Krivitsky, 2012; Desmarais & Cranmer, 2012a; Caimo & Gollini, 2020) to facilitate change point detection490

in dynamic valued networks. Moreover, the number of participants and their attributes are subject to change491

over time. It is necessary for a change point detection method to adjust the network sizes as in Krivitsky et al.492

(2011), and to adapt the time-evolving nodal attributes by incorporating the Exponential-family Random493

Network Model (ERNM) as in Fellows & Handcock (2012) and Fellows & Handcock (2013). In addition,494

the proposed framework can be extended to detect change points in dynamic multilayer networks (Wang495

et al., 2025), where different types of interactions for a fixed set of nodes are observed simultaneously. Lastly,496

recent advances in contrastive learning (Ermshaus et al., 2023; Puchkin & Shcherbakova, 2023) present a497

novel and promising direction for developing adaptive and data-driven approaches to change point detection498

in dynamic networks.499
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A ADMM Convergence710

In this section, we provide the proof for Proposition 1. Consider the constrained optimization problem

θ̂ = arg min
θ

−l(θ) + λ

τ−1∑
i=1

∥zi+1,· − zi,·∥2

di

subject to θ − z = 0.

The Lagrangian can be expressed as711

L(θ, z,ρ) = f(θ) + g(z) + tr[ρ⊤(θ − z)] (19)

and the augmented Lagrangian can be expressed as712

Lα(θ, z,ρ) = f(θ) + g(z) + tr[ρ⊤(θ − z)] + α

2 ∥θ − z∥2
F (20)

where

f(θ) = −l(θ) ≥ 0, g(z) = λ

τ−1∑
i=1

∥zi+1,· − zi,·∥2

di
≥ 0,

and ρ ∈ Rτ×p is the Lagrange multiplier.713

Let (θ∗, z∗,ρ∗) be the optimal point of the Lagrangian L(θ, z,ρ) in Equation (19). Also, let

pk = f(θk) + g(zk)

where k is the current ADMM iteration. Denote rk+1 = θk+1 − zk+1 ∈ Rτ×p as the primal residual in the
matrix form. Since L(θk+1, zk+1,ρ∗) = pk+1 + tr[(ρ∗)⊤rk+1], and L(θ∗, z∗,ρ∗) ≤ L(θk+1, zk+1,ρ∗), we
have

p∗ ≤ pk+1 + tr[(ρ∗)⊤rk+1]
p∗ − pk+1 ≤ tr[(ρ∗)⊤rk+1]. (21)

Note that the dual update of ADMM procedure for the optimization problem in (20) is ρk+1 = ρk +αrk+1,
so ρk = ρk+1 − αrk+1. Since θk+1 = arg minθ Lα(θ, zk,ρk), the optimal condition gives

0 ∈ ∂f(θk+1) + ρk + α(θk+1 − zk). (22)

Substituting the ρk in (22) with ρk+1 − αrk+1, and then adding and subtracting αzk+1 to the right hand
side of (22), we have

0 ∈ ∂f(θk+1) + (ρk+1 − αrk+1) + α(θk+1 − zk) + αzk+1 − αzk+1

0 ∈ ∂f(θk+1) + ρk+1 − αrk+1 + α
(
θk+1 − zk+1 + (zk+1 − zk)

)
0 ∈ ∂f(θk+1) + ρk+1 − αrk+1 + α

(
rk+1 + (zk+1 − zk)

)
0 ∈ ∂f(θk+1) + ρk+1 + α(zk+1 − zk).

This implies that θk+1 minimizes the objective function

f(θ) + tr
[(

ρk+1 + α(zk+1 − zk)
)⊤

θ
]

and714

f(θk+1) + tr
[(

ρk+1 + α(zk+1 − zk)
)⊤

θk+1] ≤ f(θ∗) + tr
[(

ρk+1 + α(zk+1 − zk)
)⊤

θ∗]. (23)

Similarly, since zk+1 = arg minz Lα(θk+1, z,ρk), the optimal condition gives

0 ∈ ∂g(zk+1)− ρk − α(θk+1 − zk+1). (24)

31



Under review as submission to TMLR

Substituting the ρk in (24) with ρk+1 − αrk+1, we have

0 ∈ ∂g(zk+1)− (ρk+1 − αrk+1)− αrk+1

0 ∈ ∂g(zk+1)− ρk+1.

This implies that zk+1 minimizes the objective function

g(z)− tr[(ρk+1)⊤z]

and715

g(zk+1)− tr[(ρk+1)⊤zk+1] ≤ g(z∗)− tr[(ρk+1)⊤z∗]. (25)

Adding the two Inequalities (23) and (25) together, we have

f(θk+1) + g(zk+1)− f(θ∗)− g(z∗) ≤ tr
[(

ρk+1 + α(zk+1 − zk)
)⊤(θ∗ − θk+1)

]
+ tr[(ρk+1)⊤(zk+1 − z∗)]

pk+1 − p∗ ≤ tr
[(

ρk+1 + α(zk+1 − zk)
)⊤(θ∗ − θk+1)

]
+ tr[(ρk+1)⊤(zk+1 − z∗)].

(26)

Separating and grouping the terms on the right hand side in (26), we have

pk+1 − p∗ ≤ tr
[
(ρk+1)⊤(θ∗ − θk+1)

]
+ tr

[
α(zk+1 − zk)⊤(θ∗ − θk+1)

]
+ tr[(ρk+1)⊤(zk+1 − z∗)]

pk+1 − p∗ ≤ tr
[
(ρk+1)⊤(θ∗ − z∗ − (θk+1 − zk+1)

)]
+ tr

[
α(zk+1 − zk)⊤(θ∗ − θk+1)

]
pk+1 − p∗ ≤ −tr

[
(ρk+1)⊤rk+1]+ tr

[
α(zk+1 − zk)⊤(θ∗ − θk+1)

]
(27)

where θ∗ − z∗ = 0 and θk+1 − zk+1 = rk+1. Moreover, note that

rk+1 = θk+1 − zk+1 − (θ∗ − z∗)
rk+1 = (θk+1 − θ∗)− (zk+1 − z∗)
−rk+1 = (θ∗ − θk+1) + (zk+1 − z∗)

(θ∗ − θk+1) = −rk+1 − (zk+1 − z∗).

Substituting the term (θ∗ − θk+1) in Inequality (27), we have

pk+1 − p∗ ≤ −tr
[
(ρk+1)⊤rk+1]+ tr

[
α(zk+1 − zk)⊤(− rk+1 − (zk+1 − z∗)

)]
pk+1 − p∗ ≤ −tr

[
(ρk+1)⊤rk+1]− tr

[
α(zk+1 − zk)⊤rk+1]− tr

[
α(zk+1 − zk)⊤(zk+1 − z∗)

]
. (28)

Then adding Inequalities (21) and (28), we have

0 ≤ tr[(ρ∗)⊤rk+1]− tr
[
(ρk+1)⊤rk+1]− tr

[
α(zk+1 − zk)⊤rk+1]− tr

[
α(zk+1 − zk)⊤(zk+1 − z∗)

]
0 ≤ tr[(ρ∗ − ρk+1)⊤rk+1]− tr

[
α(zk+1 − zk)⊤rk+1]− tr

[
α(zk+1 − zk)⊤(zk+1 − z∗)

]
0 ≥ 2tr[(ρk+1 − ρ∗)⊤rk+1] + 2tr

[
α(zk+1 − zk)⊤rk+1]+ 2tr

[
α(zk+1 − zk)⊤(zk+1 − z∗)

]
(29)

where (29) followed as we multiply the inequality by two and change the sign on both sides.716

Now we consider the expansion of the first term on the right hand side in Inequality (29). Substituting the
ρk+1 with the dual update ρk+1 = ρk + αrk+1, we have

2tr[(ρk+1 − ρ∗)⊤rk+1] (30)
= 2tr[(ρk + αrk+1 − ρ∗)⊤rk+1]
= 2tr[(ρk − ρ∗)⊤rk+1] + 2tr[α(rk+1)⊤(rk+1)]
= 2tr[(ρk − ρ∗)⊤rk+1] + α∥rk+1∥2

F + α∥rk+1∥2
F . (31)
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Since ρk+1 = ρk + αrk+1, we also have rk+1 = 1
α (ρk+1 − ρk). Substituting the rk+1 in the first two terms

of (31) and expanding the matrix multiplications, the expression in (30) proceeds as

2tr[(ρk+1 − ρ∗)⊤rk+1]

= 1
α

tr[2(ρk − ρ∗)⊤(ρk+1 − ρk)] + α
1
α2 tr[(ρk+1 − ρk)⊤(ρk+1 − ρk)] + α∥rk+1∥2

F

= 1
α

tr[(ρk+1)⊤ρk+1 − 2(ρ∗)⊤ρk+1 + 2(ρ∗)⊤ρk − (ρk)⊤ρk] + α∥rk+1∥2
F

= 1
α

tr[(ρk+1)⊤ρk+1 − 2(ρ∗)⊤ρk+1 + 2(ρ∗)⊤ρk − (ρk)⊤ρk + (ρ∗)⊤ρ∗ − (ρ∗)⊤ρ∗] + α∥rk+1∥2
F

= 1
α

tr
{[

(ρk+1)⊤ρk+1 − 2(ρ∗)⊤ρk+1 + (ρ∗)⊤ρ∗]− [(ρk)⊤ρk − 2(ρ∗)⊤ρk + (ρ∗)⊤ρ∗]}+ α∥rk+1∥2
F

= 1
α

(
∥ρk+1 − ρ∗∥2

F − ∥ρk − ρ∗∥2
F

)
+ α∥rk+1∥2

F . (32)

Next we consider the expansion of the second and third terms on the right hand side in Inequality (29), with
an additional term α∥rk+1∥2

F . By adding and subtracting α∥zk+1 − zk∥2
F , we have

α∥rk+1∥2
F + 2tr

[
α(zk+1 − zk)⊤rk+1]+ 2tr

[
α(zk+1 − zk)⊤(zk+1 − z∗)

]
(33)

= α∥rk+1∥2
F + αtr

[
2(zk+1 − zk)⊤rk+1]+ 2tr

[
α(zk+1 − zk)⊤(zk+1 − z∗)

]
+ α∥zk+1 − zk∥2

F − α∥zk+1 − zk∥2
F

= α
{
∥rk+1∥2

F + tr
[
2(zk+1 − zk)⊤rk+1]+ ∥zk+1 − zk∥2

F

}
− α∥zk+1 − zk∥2

F + 2tr
[
α(zk+1 − zk)⊤(zk+1 − z∗)

]
= α∥rk+1 + (zk+1 − zk)∥2

F − α∥zk+1 − zk∥2
F + 2tr

[
α(zk+1 − zk)⊤(zk+1 − z∗)

]
(34)

Since zk+1 − z∗ = (zk+1 − zk) + (zk − z∗), we substitute the zk+1 − z∗ in the third term of (34) so that
(33) proceeds as

α∥rk+1∥2
F + 2tr

[
α(zk+1 − zk)⊤rk+1]+ 2tr

[
α(zk+1 − zk)⊤(zk+1 − z∗)

]
= α∥rk+1 + (zk+1 − zk)∥2

F − α∥zk+1 − zk∥2
F + 2tr

{
α(zk+1 − zk)⊤[(zk+1 − zk) + (zk − z∗)]

}
= α∥rk+1 + (zk+1 − zk)∥2

F − α∥zk+1 − zk∥2
F + αtr

{
(zk+1 − zk)⊤[2(zk+1 − zk) + 2(zk − z∗)]

}
= α∥rk+1 + (zk+1 − zk)∥2

F + αtr
{

(zk+1 − zk)⊤[(zk+1 − zk) + 2(zk − z∗)]
}
. (35)

Since zk+1 − zk = (zk+1 − z∗) − (zk − z∗), we sequentially substitute the zk+1 − zk in (35) so that (33)
proceeds as

α∥rk+1∥2
F + 2tr

[
α(zk+1 − zk)⊤rk+1]+ 2tr

[
α(zk+1 − zk)⊤(zk+1 − z∗)

]
= α∥rk+1 + (zk+1 − zk)∥2

F + αtr
{

(zk+1 − zk)⊤[(zk+1 − z∗)− (zk − z∗) + 2(zk − z∗)]
}

= α∥rk+1 + (zk+1 − zk)∥2
F + αtr

{
(zk+1 − zk)⊤[(zk+1 − z∗) + (zk − z∗)]

}
= α∥rk+1 + (zk+1 − zk)∥2

F + αtr
{

[(zk+1 − z∗)− (zk − z∗)]⊤[(zk+1 − z∗) + (zk − z∗)]
}

= α∥rk+1 + (zk+1 − zk)∥2
F + α

[
∥zk+1 − z∗∥2

F − ∥zk − z∗∥2
F

]
. (36)

Combining the results from (32) and (36) to substitute the corresponding terms on the right hand side of
Inequality (29), we have

2tr[(ρk+1 − ρ∗)⊤rk+1] + 2tr
[
α(zk+1 − zk)⊤rk+1]+ 2tr

[
α(zk+1 − zk)⊤(zk+1 − z∗)

]
≤ 0

1
α

(
∥ρk+1 − ρ∗∥2

F − ∥ρk − ρ∗∥2
F

)
+ α∥rk+1 + (zk+1 − zk)∥2

F + α
[
∥zk+1 − z∗∥2

F − ∥zk − z∗∥2
F

]
≤ 0

1
α
∥ρk+1 − ρ∗∥2

F + α∥zk+1 − z∗∥2
F −

1
α
∥ρk − ρ∗∥2

F − α∥zk − z∗∥2
F + α∥rk+1 + (zk+1 − zk)∥2

F ≤ 0. (37)
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Define
V k = 1

α
∥ρk − ρ∗∥2

F + α∥zk − z∗∥2
F ≥ 0.

Then Inequality (37) can be expressed as

V k+1 − V k ≤ −α∥rk+1 + (zk+1 − zk)∥2
F

V k+1 − V k ≤ −α
(
∥rk+1∥2

F + 2tr[(rk+1)⊤(zk+1 − zk)] + ∥zk+1 − zk∥2
F

)
V k+1 − V k ≤ −α∥rk+1∥2

F − α∥zk+1 − zk∥2
F − 2αtr[(rk+1)⊤(zk+1 − zk)]. (38)

Recall that zk+1 minimizes g(z)− tr[(ρk+1)⊤z] and zk minimizes g(z)− tr[(ρk)⊤z]. Then

g(zk+1)− tr[(ρk+1)⊤zk+1] ≤ g(zk)− tr[(ρk+1)⊤zk]

and
g(zk)− tr[(ρk)⊤zk] ≤ g(zk+1)− tr[(ρk)⊤zk+1].

Adding the above two inequalities, we have

tr[(ρk)⊤zk+1] + tr[(ρk+1)⊤zk]− tr[(ρk+1)⊤zk+1]− tr[(ρk)⊤zk] ≤ 0
tr[(ρk)⊤(zk+1 − zk)] + tr[(ρk+1)⊤(zk − zk+1)] ≤ 0

−tr[(ρk+1 − ρk)⊤(zk+1 − zk)] ≤ 0.

Recall ρk+1 − ρk = αrk+1. Then
−αtr[(rk+1)⊤(zk+1 − zk)] ≤ 0.

Back to Inequality (38), we can see that

V k+1 − V k ≤ −α∥rk+1∥2
F − α∥zk+1 − zk∥2

F

also hold. Since V k ≥ 0 and717

V k+1 ≤ V k − α
(
∥rk+1∥2

F + ∥zk+1 − zk∥2
F

)
, (39)

we know that V k is a bounded by below decreasing sequence.718

By iterating (39), we have

α

∞∑
k=0

(
∥rk+1∥2

F + ∥zk+1 − zk∥2
F

)
≤ V 0

which implies the primal residual ∥rk+1∥2
F = ∥θk+1 − zk+1∥2

F → 0 and dual residual ∥zk+1 − zk∥2
F → 0 as

k →∞. Similarly, for

rk
primal =

√√√√ 1
τ × p

τ∑
i=1

p∑
j=1

(θk
ij − zk

ij)2 and rk
dual =

√√√√ 1
τ × p

τ∑
i=1

p∑
j=1

(zk
ij − zk−1

ij )2,

we have rk
primal → 0 and rk

dual → 0 as k →∞. This concludes the proof for Proposition 1.719

B Newton-Raphson Method for Updating θ720

In this section, we derive the gradient and Hessian for the Newton-Raphson method to update θ. The
first-order derivative of l(θ) with respect to θ+,t ∈ Rp1 , the parameter in the formation model at a particular
time point t, is

∇θ+,t l(θ) =
∑

(i,j)∈Y

{
y+,t

ij ∆g+
ij(y+,t)−

exp[θ+,t ·∆g+
ij(y+,t)]

1 + exp[θ+,t ·∆g+
ij(y+,t)]

∆g+
ij(y+,t)

}
=

∑
(i,j)∈Y

(y+,t
ij − µ+,t

ij ) ·∆g+
ij(y+,t)
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where µ+,t
ij = h(θ+,t ·∆g+

ij(y+,t)) ∈ (0, 1). The h(x) = 1/(1+exp(−x)) is the element-wise sigmoid function.721

Likewise, the first-order derivative of l(θ) with respect to θ−,t ∈ Rp2 , the parameter in the dissolution model722

at a particular time point t, is similar except for notational difference.723

Denote the objective function in Equation (10) as Lα(θ). To update the parameters θ ∈ Rτ×p in a compact
form, we first vectorize it as #»

θ = vecτp(θ) ∈ Rτp×1. The matrices z ∈ Rτ×p and u ∈ Rτ×p are also vectorized
as #»z = vecτp(z) ∈ Rτp×1 and #»u = vecτp(u) ∈ Rτp×1. With the constructed matrices H ∈ R2τE×τp, the
gradient of Lα(θ) with respect to #»

θ is

∇ #»
θ Lα(θ) = −H⊤( #»y − #»µ) + α

( #»

θ − #»z (a) + #»u(a))
where #»µ = h(H · #»

θ ) ∈ (0, 1)2τE×1.724

Furthermore, the second order derivative of l(θ) with respect to θ+,t ∈ Rp1 is725

∇2
θ+,t l(θ) =

∑
(i,j)∈Y

−µ+,t
ij (1− µ+,t

ij )[∆g+
ij(y+,t)∆g+

ij(y+,t)⊤]
726

and the second order derivative of l(θ) with respect to θ−,t ∈ Rp2 is similar except for notational difference.
Thus, with the constructed matrices H ∈ R2τE×τp and W ∈ (0, 1/4)2τE×2τE , the Hessian of Lα(θ) with
respect to #»

θ ∈ Rτp×1 is
∇2

#»
θ
Lα(θ) = H⊤W H + αIτp

where Iτp is the identity matrix. By using the Newton-Raphson method, the #»

θ ∈ Rτp×1 is updated as

#»

θ c+1 = #»

θ c −
(
H⊤W H + αIτp

)−1 ·
(
−H⊤( #»y − #»µ) + α( #»

θ c − #»z (a) + #»u(a))
)

where c denotes the current Newton-Raphson iteration. Note that both W and #»µ are also calculated based727

on #»

θ c. The constructed formation and dissolution network data is vectorized in the form of #»y ∈ {0, 1}2τE×1
728

to align with the dyad order of the matrix H ∈ R2τE×τp.729

C Group Lasso for Updating β730

In this section, we provide the derivation to update β, which is equivalent to solving a Group Lasso problem
(Yuan & Lin, 2006). Denote the objective function in (11) as Lα(γ,β). When βi,· ̸= 0, the first-order
derivative of Lα(γ,β) with respect to βi,· is

∂

∂βi,·
Lα(γ,β) = λ

βi,·

∥βi,·∥2
− αX⊤

·,i(θ(a+1) + u(a) − 1τ,1γ −X·,iβi,· −X·,−iβ−i,·)

where X·,i ∈ Rτ×1 is the ith column of matrix X ∈ Rτ×(τ−1) and βi,· ∈ R1×p is the ith row of matrix731

β ∈ R(τ−1)×p. Setting the gradient to 0, we have732

βi,· =
(
αX⊤

·,iX·,i + λ

∥βi,·∥ 2

)−1
si (40)

where
si = αX⊤

·,i(θ(a+1) + u(a) − 1τ,1γ −X·,−iβ−i,·).

Taking the Euclidean norm of (40) on both sides and rearrange the terms, we have

∥βi,·∥2 = (αX⊤
·,iX·,i)−1(∥si∥2 − λ).

Plugging ∥βi,·∥2 into (40), the solution of βi,· is

βi,· = 1
αX⊤

·,iX·,i

(
1− λ

∥si∥2

)
si.
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When βi,· = 0, the subgradient v of ∥βi,·∥2 needs to satisfy ∥v∥2 ≤ 1. Since

0 ∈ λv − αX⊤
·,i(θ(a+1) + u(a) − 1τ,1γ −X·,−iβ−i,·),

we have v = λ−1si and we obtain the condition that βi,· becomes 0 if ∥si∥2 ≤ λ. Therefore, to update βi,·
for each i = 1, . . . , τ − 1, we can iteratively apply the following equation:

βi,· ←
1

αX⊤
·,iX·,i

(
1− λ

∥si∥2

)
+

si

where (·)+ = max(·, 0). The matrix X ∈ Rτ×(τ−1) is constructed from the position dependent weight733

d ∈ Rτ−1.734

D Error Bound under Structured Sparsity735

In this section, we provide the proof for Proposition 2. Denote θ∗ ∈ Rτ×p as the true parameter and suppose
that ∥θ∗∥∞ ≤M/2 for some M > 0. Let θ̂ ∈ Rτ×p be the minimizer of the objective function in (5), subject
to the constraint ∥θ∥∞ ≤M/2. Since θ̂ minimizes the penalized objective, we have

L(θ̂) + λ

τ−1∑
i=1

∥θ̂i+1,· − θ̂i,·∥2

di
≤ L(θ∗) + λ

τ−1∑
i=1

∥θ∗
i+1,· − θ∗

i,·∥2

di

L(θ̂)− L(θ∗) ≤ λ
τ−1∑
i=1

∥θ∗
i+1,· − θ∗

i,·∥2 − ∥θ̂i+1,· − θ̂i,·∥2

di
(41)

where L(θ) := −l(θ).736

Define the estimation error as ∆̂ := θ̂ − θ∗ ∈ Rτ×p. Using the triangle inequality ∥a + b∥2 ≥ ∥b∥2 − ∥a∥2
with a = ∆̂i+1,· − ∆̂i,· and b = θ∗

i+1,· − θ∗
i,· such that a + b = θ̂i+1,· − θ̂i,·, we obtain:

∥θ̂i+1,· − θ̂i,·∥2 ≥ ∥θ∗
i+1,· − θ∗

i,·∥2 − ∥∆̂i+1,· − ∆̂i,·∥2

∥∆̂i+1,· − ∆̂i,·∥2 ≥ ∥θ∗
i+1,· − θ∗

i,·∥2 − ∥θ̂i+1,· − θ̂i,·∥2 (42)

for i = 1, · · · , τ − 1. Applying Inequality (42) to the right-hand side of (41), we obtain

L(θ̂)− L(θ∗) ≤ λ
τ−1∑
i=1

∥∆̂i+1,· − ∆̂i,·∥2

di
. (43)

Now, we define the set of true change points as

S =
{
i ∈ {1, . . . , τ − 1} : θ∗

i+1,· ̸= θ∗
i,·
}
.

Suppose the loss function L(θ) satisfies the Restricted Strong Convexity condition:737

L(θ∗ + ∆) ≥ L(θ∗) + ⟨∇L(θ∗),∆⟩+ k

2∥∆∥
2
F (44)

for all perturbations ∆ ∈ Rτ×p that satisfy the structured sparsity condition:738 ∑
i/∈S

∥∆i+1,· −∆i,·∥2

di
≤ α

∑
i∈S

∥∆i+1,· −∆i,·∥2

di
(45)

for some constants k > 0 and α > 0.739
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Assume the estimation error ∆̂ := θ̂ − θ∗ ∈ Rτ×p satisfies (45). Then from Inequality (43), we have

L(θ̂)− L(θ∗) ≤ λ
(∑

i∈S

∥∆̂i+1,· − ∆̂i,·∥2

di
+
∑
i/∈S

∥∆̂i+1,· − ∆̂i,·∥2

di

)

L(θ̂)− L(θ∗) ≤ λ · (1 + α)
∑
i∈S

∥∆̂i+1,· − ∆̂i,·∥2

di
(46)

where (46) follows by the condition in (45).740

Moreover, since ⟨∇L(θ∗), ∆̂⟩ ≥ −|⟨∇L(θ∗), ∆̂⟩| and θ∗ + ∆̂ = θ̂, it follows from the Restricted Strong
Convexity condition in (44) that:

L(θ∗ + ∆̂)− L(θ∗) ≥ k

2∥∆̂∥
2
F + ⟨∇L(θ∗), ∆̂⟩

L(θ̂)− L(θ∗) ≥ k

2∥∆̂∥
2
F − |⟨∇L(θ∗), ∆̂⟩|

λ · (1 + α)
∑
i∈S

∥∆̂i+1,· − ∆̂i,·∥2

di
≥ k

2∥∆̂∥
2
F − |⟨∇L(θ∗), ∆̂⟩| (47)

where (47) follows by (46).741

Next, we denote the Total Variation (TV) norm ∥·∥TV, for a matrix A ∈ Rτ×p, as

∥A∥TV :=
τ−1∑
i=1

∥Ai+1,· −Ai,·∥2

di
≥ 0

where {di}τ−1
i=1 > 0 are the position dependent weights. Denote a constraint set C as

C =
{

A ∈ Rτ×p : ∥A∥TV ≤ 1, ∥A∥∞ ≤ 1
}
.

Then we define a restricted dual norm ∥·∥∗, for a matrix B ∈ Rτ×p, as

∥B∥∗ := sup
A∈C
⟨B,A⟩.

Let
c := max

{
∥∆̂∥TV, ∥∆̂∥∞

}
≥ 0 and ∆̃ = 1

c
∆̂.

Note that

∥∆̃∥TV = 1
c
∥∆̂∥TV ≤

1
c
· c = 1,

∥∆̃∥∞ = 1
c
∥∆̂∥∞ ≤ 1

c
· c = 1,

so ∆̃ ∈ C and
⟨∇L(θ∗), ∆̃⟩ ≤ sup

∆̃∈C
⟨∇L(θ∗), ∆̃⟩ = ∥∇L(θ∗)∥∗.

Furthermore, we have

|⟨∇L(θ∗), ∆̂⟩| = c · |⟨∇L(θ∗), ∆̃⟩|
≤ c · ∥∇L(θ∗)∥∗

≤ ∥∇L(θ∗)∥∗ ·max{∥∆̂∥TV, ∥∆̂∥∞}
≤ ∥∇L(θ∗)∥∗ ·max{∥∆̂∥TV, M} (48)
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where ∥∆̂∥∞ ≤ ∥θ∗∥∞ + ∥θ̂∥∞ ≤M/2 +M/2 = M .742

We now assume that
∥∇L(θ∗)∥∗ ≤

λ

2
holds with probability at least 1− δ. Then from (48), we obtain

|⟨∇L(θ∗), ∆̂⟩| ≤ λ

2 ·max{∥∆̂∥TV, M}

≤ λ

2 ·max
{

τ−1∑
i=1

∥∆̂i+1,· − ∆̂i,·∥2

di
,M

}

≤ λ

2 ·max
{∑

i∈S

∥∆̂i+1,· − ∆̂i,·∥2

di
+
∑
i/∈S

∥∆̂i+1,· − ∆̂i,·∥2

di
,M

}

≤ λ

2 ·max
{

(1 + α)
∑
i∈S

∥∆̂i+1,· − ∆̂i,·∥2

di
,M

}
(49)

≤ λ

2 ·
{

(1 + α)
∑
i∈S

∥∆̂i+1,· − ∆̂i,·∥2

di
+M

}
(50)

where (49) follows by the condition in (45), and (50) follows by max(a, b) ≤ a+ b for a, b ≥ 0.743

Substituting (50) into (47), we have

k

2∥∆̂∥
2
F −

λ

2 ·
{

(1 + α)
∑
i∈S

∥∆̂i+1,· − ∆̂i,·∥2

di
+M

}
≤ λ · (1 + α)

∑
i∈S

∥∆̂i+1,· − ∆̂i,·∥2

di

k

2∥∆̂∥
2
F −

λ

2 · (1 + α)
∑
i∈S

∥∆̂i+1,· − ∆̂i,·∥2

di
− λ

2M ≤ λ · (1 + α)
∑
i∈S

∥∆̂i+1,· − ∆̂i,·∥2

di

k

2∥∆̂∥
2
F ≤

3
2λ(1 + α)

∑
i∈S

∥∆̂i+1,· − ∆̂i,·∥2

di
+ λ

2M. (51)

Note that
∑

i∈S∥∆̂i+1,· − ∆̂i,·∥2
2 ≤ ∥∆̂∥2

F . Then with Cauchy-Schwarz inequality, we have

∑
i∈S

∥∆̂i+1,· − ∆̂i,·∥2

di
≤
√∑

i∈S

1
d2

i

·
√∑

i∈S

∥∆̂i+1,· − ∆̂i,·∥2
2

≤
√∑

i∈S

d−2
i · ∥∆̂∥F . (52)

Substituting (52) into (51), we have

k

2∥∆̂∥
2
F ≤

3
2λ(1 + α) ·

√∑
i∈S

d−2
i · ∥∆̂∥F

+ λ

2M

k∥∆̂∥2
F ≤ 3λ(1 + α) ·

√∑
i∈S

d−2
i · ∥∆̂∥F + λM. (53)

Note that for a, b > 0, we have a+ b ≤ max(2a, 2b). Then from (53), we have

k∥∆̂∥2
F ≤ max

6λ(1 + α) ·
√∑

i∈S

d−2
i · ∥∆̂∥F , 2λM

 .
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This implies that either

k∥∆̂∥2
F ≤ 6λ(1 + α) ·

√∑
i∈S

d−2
i · ∥∆̂∥F (54)

or

k∥∆̂∥2
F ≤ 2λM. (55)

In the first case with (54), we have

∥∆̂∥2
F ≤

6λ
k

(1 + α) ·
√∑

i∈S

d−2
i

2

.

In the second case with (55), we have

∥∆̂∥2
F ≤

2λM
k

.

Combining the two cases, we have

∥∆̂∥2
F ≤ max


6λ
k

(1 + α) ·
√∑

i∈S

d−2
i

2

,
2λM
k

 .

Thus,

1
τp
∥θ̂ − θ∗∥2

F ≤
1
τp

max


6λ
k

(1 + α) ·
√∑

i∈S

d−2
i

2

,
2λM
k

 .

This concludes the proof for Proposition 2.744

E Practical Guidelines745

As in Boyd et al. (2011), we also update the penalty parameter α for the augmentation term to improve
convergence and to reduce reliance on its initial choice. Specifically, after the completion of an ADMM
iteration, we calculate the respective primal and dual residuals:

r
(a)
primal =

√√√√ 1
τ × p

τ∑
i=1

p∑
j=1

(θ(a)
ij − z

(a)
ij )2 and r

(a)
dual =

√√√√ 1
τ × p

τ∑
i=1

p∑
j=1

(z(a)
ij − z

(a−1)
ij )2

at the ath ADMM iteration. We update the penalty parameter α and the scaled dual variable u with the746

following schedule:747

α(a+1) = 2α(a), u(a+1) = 1
2u(a) if r

(a)
primal > 10× r(a)

dual,

α(a+1) = 1
2α

(a), u(a+1) = 2u(a) if r
(a)
dual > 10× r(a)

primal.

748

Moreover, since STERGM is a probability distribution for the dynamic networks, in this work we stop749

ADMM learning until750 ∣∣∣∣ l(θ(a+1))− l(θ(a))
l(θ(a))

∣∣∣∣ ≤ ϵtol (56)

where ϵtol is a tolerance for the stopping criteria. By convention, we also implement two post-processing751

steps to finalize the detected change points {B̂k}K
k=1. When the spacing between consecutive change points752
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is less than a threshold or B̂k − B̂k−1 < δspc, we keep the detected change point with greater ∆ζ̂ value to753

avoid clusters of nearby change points. Furthermore, as the endpoints of a time span are usually not of754

interest, we discard the change point B̂k that is less than a threshold δend and greater than T − δend. In755

Section 5, we set δspc = 5, and we set δend = 5 and δend = 10 for the simulated and real data experiments,756

respectively.757

The algorithm to solve (6) via ADMM is presented in Algorithm 1. The complexity of an iteration for the758

Newton-Raphson method is O(τ2p2) and that for the block coordinate descent method is O(τ(τ − 1)p). In759

general, the complexity of Algorithm 1 is at least of order O(A[Cτ2p2 + Dτ(τ − 1)p]), where A, C, and D760

are the respective numbers of iterations for ADMM, Newton-Raphson, and Group Lasso.761

Algorithm 1 Group Fused Lasso STERGM
1: Input: initialized parameters θ(1), γ(1), β(1), u(1), tuning parameter λ, penalty parameter α, number of

iterations for ADMM, Newton-Raphson, and Group Lasso A,C,D, vectorized network data #»y , network
change statistics H

2: for a = 1, · · · , A do
3:

#»

θ = vecτp(θ(a)), #»z (a) = vecτp(1τ,1γ(a) +Xβ(a)), #»u(a) = vecτp(u(a))
4: for c = 1, · · · , C do
5: Let #»

θ c+1 be updated according to (13)
6: end for
7: θ(a+1) = vec−1

τ,p( #»

θ c+1)
8: Set γ̃ = γ(a) and β̃ = β(a)

9: for d = 1, · · · , D do
10: Let β̃d+1

i,· be updated according to (14) for i = 1, · · · , τ − 1
11: γ̃d+1 = (1/τ)11,τ · (θ(a+1) + u(a) −Xβ̃d+1)
12: end for
13: γ(a+1) = γ̃d+1, β(a+1) = β̃d+1

14: z(a+1) = 1τ,1γ(a+1) + Xβ(a+1)

15: u(a+1) = θ(a+1) − z(a+1) + u(a)

16: end for
17: θ̂ ← θ(a+1)

18: Output: learned parameters θ̂

To understand the role of two specific components in our framework, we conduct an ablation study on (1)762

the adaptive update of the penalty parameter α ∈ R+ for the augmentation term, and (2) the use of position763

dependent weights d ∈ Rτ−1
+ in the Group Fused Lasso penalty. Under the same settings as in Section 5.1,764

Table 13 reports the performance across different scenarios. While enabling either adaptive α or weighted765

d alone yields good performance, enabling both simultaneously produces similar results. Given that the766

differences in performance across configurations are modest, it is recommended to enable both components767

for the proposed method. This choice provides a robust and automated approach that leverages the benefits768

of adaptive optimization and time-aware regularization, without requiring further determination.769

F Network Statistics in Experiments770

In this section, we provide the formulations of the network statistics used in the simulation and real data771

experiments. The network statistics of interest are chosen from the extensive list in ergm (Handcock et al.,772

2022), an R library for network analysis. Tables 14 displays the formulations of network statistics used in773

the respective formation and dissolution models of our method for t = 2, . . . , T and the formulations of774

network statistics used in the competitor methods for t = 1, . . . , T . The formulations are referred to directed775

networks, and those for undirected networks are similar.776

40



Under review as submission to TMLR

Table 13: Means (standard deviations) of evaluation metrics for dynamic networks across different scenario
with n = 100, varying the use of position dependent weights and adaptive penalty updates.

Scenario Weighted d Adaptive α |K̂ −K| ↓ d(Ĉ|C) ↓ d(C|Ĉ) ↓ C(G,G′) ↑

SBM
(ρ = 0.0)

✗ ✓ 0.7 (0.6) 0.9 (0.3) 7.7 (6.3) 91.45%
✓ ✗ 0.7 (1.3) 0.8 (0.4) 5.0 (6.4) 91.34%
✓ ✓ 0.7 (1.3) 0.8 (0.4) 5.0 (6.4) 91.34%

STERGM
(p = 6)

✗ ✓ 0.0 (0.0) 1.3 (0.6) 1.3 (0.6) 93.71%
✓ ✗ 0.0 (0.0) 1.1 (0.3) 1.1 (0.3) 93.95%
✓ ✓ 0.0 (0.0) 1.1 (0.4) 1.1 (0.4) 93.95%

RDPGM
(d = 10)

✗ ✓ 0.2 (0.4) 0.9 (0.3) 3.9 (6.3) 94.78%
✓ ✗ 0.2 (0.4) 0.9 (0.3) 4.1 (6.8) 95.37%
✓ ✓ 0.4 (0.5) 0.9 (0.0) 6.5 (7.5) 93.34%

Table 14: Network statistics and formulations.
Network Statistics Formulation

g+(y+,t)

Edge Count
∑

ij y+,t
ij

Mutuality
∑

i<j y+,t
ij y+,t

ji

Triangles
∑

ijk y+,t
ij y+,t

jk y+,t
ik +

∑
ij<k y+,t

ij y+,t
jk y+,t

ki

Homophily
∑

ij y+,t
ij × 1(xi = xj)

Isolates
∑

i 1
(
degin(y+,t, i) = 0 ∧ degout(y+,t, i) = 0

)
g−(y−,t)

Edge Count
∑

ij y−,t
ij

Mutuality
∑

i<j y−,t
ij y−,t

ji

Triangles
∑

ijk y−,t
ij y−,t

jk y−,t
ik +

∑
ij<k y−,t

ij y−,t
jk y−,t

ki

Homophily
∑

ij y−,t
ij × 1(xi = xj)

Isolates
∑

i 1
(
degin(y−,t, i) = 0 ∧ degout(y−,t, i) = 0

)
g(yt)

Edge Count
∑

ij yt
ij

Mutuality
∑

i<j yt
ijyt

ji

Triangles
∑

ijk yt
ijyt

jkyt
ik +

∑
ij<k yt

ijyt
jkyt

ki

Homophily
∑

ij yt
ij × 1(xi = xj)

Isolates
∑

i 1
(
degin(yt, i) = 0 ∧ degout(yt, i) = 0

)
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