
LiDARFormer: A Unified Transformer-based Multi-task Network for LiDAR
Perception

Zixiang Zhou*†1,2, Dongqiangzi Ye†1, Weijia Chen1, Yufei Xie1,
Yu Wang1, Panqu Wang1, and Hassan Foroosh2

1TuSimple
2University of Central Florida

Abstract

There is a recent trend in the LiDAR perception field to-
wards unifying multiple tasks in a single strong network
with improved performance, as opposed to using separate
networks for each task. In this paper, we introduce a new
LiDAR multi-task learning paradigm based on the trans-
former. The proposed LiDARFormer utilizes cross-space
global contextual feature information and exploits cross-
task synergy to boost the performance of LiDAR perception
tasks across multiple large-scale datasets and benchmarks.
Our novel transformer-based framework includes a cross-
space transformer module that learns attentive features be-
tween the 2D dense Bird’s Eye View (BEV) and 3D sparse
voxel feature maps. Additionally, we propose a transformer
decoder for the segmentation task to dynamically adjust
the learned features by leveraging the categorical feature
representations. Furthermore, we combine the segmenta-
tion and detection features in a shared transformer decoder
with cross-task attention layers to enhance and integrate
the object-level and class-level features. LiDARFormer is
evaluated on the large-scale nuScenes and the Waymo Open
datasets for both 3D detection and semantic segmentation
tasks, and it outperforms all previously published methods
on both tasks. Notably, LiDARFormer achieves the state-of-
the-art performance of 76.4% L2 mAPH and 74.3% NDS
on the challenging Waymo and nuScenes detection bench-
marks for a single model LiDAR-only method.

1. Introduction
LiDAR point cloud detection and semantic segmenta-

tion tasks aim to predict the object-level 3D bounding boxes
and point-level semantic labels, which are among the most
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Figure 1: LiDAR Perception Network Designs. LiDAR
detection (a) and segmentation (b) networks typically ex-
tract feature representations on distinct feature maps. While
a recent multi-task network [66] (c) integrates these tasks
into a single network, it often overlooks differences among
feature maps and the higher-level connections between
tasks. Our network (d) utilizes transformer attention to
establish more effectively the transformations between 3D
sparse and 2D dense features. Moreover, the cross-task in-
formation is further shared through class-level and object-
level feature embeddings in the multi-task transformer de-
coder.

fundamental tasks in autonomous vehicle perception. With
the recent release of the large-scale LiDAR point cloud
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datasets [3, 46], there has been a surge of interest in inte-
grating these tasks into a single framework. Current meth-
ods [19, 66] rely on voxel-based networks with sparse con-
volution [63, 14] for leading performance. However, differ-
ent tasks are only connected through sharing the same low-
level features without considering the high-level contextual
information that is highly related among those tasks. On the
other hand, more recent works [44, 48, 60] try to fuse fea-
tures from multiple views that contain both voxel-level and
point-level information. These approaches focus more on
exploiting local point geometric relations to recover fine-
grained details. The problem of efficiently extracting and
sharing global contextual information in LiDAR perception
tasks is still by and large underexplored.

Meanwhile, transformer-based network structures [4, 53,
12, 59, 73] start to exhibit an outstanding performance on
2D image detection and segmentation tasks. Apart from di-
rectly replacing the conventional CNN with the transformer
encoder [16, 71], various methods [4, 80, 12, 28] explore us-
ing the transformer decoder to extract objects or class-level
feature representations, which are served as strong contex-
tual information for feature learning. This transformer de-
coder design is then adopted in recent LiDAR perception
methods [78, 1, 37]. However, the transformer decoders
used for LiDAR detection and segmentation tasks are per-
formed independently on different feature maps and are not
yet unified.

Is it possible to develop a unified transformer-based
multi-task LiDAR perception network with the ability to
learn global context information? To accomplish this goal,
we introduce three novel components in a voxel-based
framework. The first component is a cross-space trans-
former module that enhances the feature mapping between
the 3D sparse voxel space and the 2D dense BEV space.
These two spaces are frequently used to obtain feature rep-
resentations for segmentation and detection tasks, respec-
tively. Second, we propose a transformer-based refinement
module as the segmentation decoder. The module uses a
transformer to extract class feature embeddings and refine
voxel features through bidirectional cross-attention. Lastly,
we propose a multi-task learning structure that combines
segmentation and detection transformer decoders into a uni-
fied transformer decoder. By doing so, the network can
transfer high-level features through cross-task attention, as
depicted in Figure 1. These three innovative components re-
sult in a powerful network, named LiDARFormer, for the
next generation of LiDAR perception.

We evaluate our method on two challenging large-scale
LiDAR datasets: the nuScenes dataset [3] and the Waymo
Open Dataset [46]. Our method sets new state-of-the-art
standards both in detection and semantic segmentation, by
achieving 74.3% NDS on the nuScenes 3D detection and
81.5% mIoU on the nuScenes semantic segmentation. Li-

DARFormer also achieves 76.4% mAPH in the Waymo
Open Dataset detection set, surpassing thus all previous
methods.

Our main contributions are summarized as follows:

• We propose a cross-space transformer module to im-
prove feature learning when transferring features be-
tween sparse voxel features and dense BEV features in
the multi-task network.

• We present the first LiDAR cross-task transformer
decoder that bridges the information learned across
object-level and class-level feature embedding.

• We introduce a transformer-based coarse-to-fine net-
work that utilizes a transformer decoder to extract
class-level global contextual information for the Li-
DAR semantic segmentation task.

• Our network achieves state-of-the-art 3D detection and
semantic segmentation performances on two popular
large-scale LiDAR benchmarks.

2. Related Work

Voxel-based LiDAR Point Cloud Perception Unlike
most point cloud networks [41, 42, 30, 58, 22, 61, 49, 75]
that directly learn point-level features in outdoor or indoor
point cloud data, LiDAR point cloud perception usually re-
quires transforming the large-scale sparse point cloud into
either a 3D voxel map [77, 81], 2D BEV [64, 27, 74], or
range-view map [47, 18, 56, 57, 38, 15]. Thanks to the de-
velopment of the 3D sparse convolution layer [63, 14] in
point cloud processing, voxel-based methods are becom-
ing dominant in terms of both high performance and effi-
cient runtime. CenterPoint [69] and AFDet [20] adopted
the anchor-free design that detects objects through heatmap
classification. Cylinder3D [81] utilized the cylindrical
voxel partition to extract the voxel-level features. LargeK-
ernel3D [10] showed that the long-range information from
a bigger receptive field can significantly improve the perfor-
mance. LidarMultiNet [66] presented a multi-task learning
network that unifies different LiDAR perception tasks.

Voxel-based methods have to make a trade-off between
accuracy and complexity due to the information loss intro-
duced during the projection or voxelization. To alleviate
the quantization error, some recent methods [48, 44, 68, 60]
propose to fuse features from multi-view feature maps,
combining point-level information with 2D BEV/range-
view and 3D voxel features. PVRCNN [44] and SPV-
NAS [48] used two concurrent point-level and voxel-level
feature encoding branches, where these two features were
connected at each network block. RPVNet [60] further
combined all point, voxel, and range image features in an
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Figure 2: The architecture of LiDARFormer. Our network first transforms the point cloud into a sparse voxel map.
Next, sparse 3D CNN is used to extract voxel feature representation. Between the encoder and the decoder, we use a
Cross-space Transformer (XSF) module to learn long-range information in the BEV map. Additionally, we use a cross-task
transformer decoder (XTF) to extract class-level and object-level feature representations, which are fed into task-specific
heads to generate the detection and segmentation predictions.

encoder-decoder segmentation network through a gated fu-
sion module. In contrast to these methods that focus on fine-
grained features for details, our method aims to enhance
global feature learning in the voxel-based network.

Segmentation Refinement In the image domain, var-
ious methods [29, 82, 8, 72, 70] use multiple stages to
refine the segmentation prediction from coarse to fine.
ACFNet [72] proposed an attentional class feature mod-
ule to refine the pixel-wise features based on a coarse seg-
mentation map. OCR [70] further advanced the idea to use
a bidirectional connection between pixel-wise features and
object-contextual representations to enrich the features. In
comparison, refinement modules have been rarely used in
point cloud semantic segmentation.

Transformer Decoder Transformer [50] structure has
gained huge popularity in recent years. Built on the de-
velopment of 2D transformer backbones [16, 71], various
methods [80, 76, 53, 12, 59, 73] are proposed to tackle the
2D detection and segmentation problems. Depending on
the source of the input, the vision transformers can be cat-
egorized into encoder [71, 76, 59] and decoder [4, 53, 12,
70, 73, 28]. A transformer encoder usually serves as a fea-
ture encoding network to replace the conventional neural
networks, while a transformer decoder is used to extract
class-level or instance-level feature representations for the
downstream tasks. In the LiDAR domain, several detec-
tion methods [39, 65, 36, 43, 1, 40, 32, 78] have started
to integrate the transformer decoder structure into the pre-
vious frameworks. Besides the performance improvement,
the transformer decoder demonstrates great potential for an
end-to-end training [39] and multi-frame [65, 78] / modal-
ity [1, 32] feature fusion. However, studying effective meth-

ods of using a transformer decoder in LiDAR segmenta-
tion is still an underexplored area. In this paper, we pro-
pose a novel class-aware global contextual refinement mod-
ule for LiDAR segmentation based on the transformer de-
coder, while exploiting the synergy between detection and
segmentation decoders.

3. Method
In this section, we present the design of LiDARFormer.

As shown in Figure 2, our framework consists of three parts:
(3.1) A 3D encoder-decoder backbone network using 3D
sparse convolution; (3.2) A Cross-space Transformer (XSF)
module extracting large-scale and context features in the
BEV; (3.3) A Cross-task Transformer (XTF) decoder that
aggregates class-wise and object-wise global contextual in-
formation from voxel and BEV feature maps. Our network
adopts the multi-task learning framework from LidarMulti-
Net [66], but further associates the global features between
segmentation and detection through a shared cross-task at-
tention layer.

3.1. Voxel-based LiDAR Perception

LiDAR point cloud semantic segmentation and object
detection aim to predict pixel-wise semantic labels L =
{li|li ∈ (1 . . .K)}Ni=1 and object bounding boxes O =
{oi|oi ∈ R7}Bi=1 in a point cloud P = {pi|pi ∈ R3+c}Ni=1,
where N denotes the number of points, B and K are the
number of objects and classes. Each point has (3+ c) input
features, i.e. the 3D coordinates (x, y, z), the intensity of
the reflection, LiDAR elongation, timestamp, etc. Each ob-
ject is represented by its 3D location, size and orientation.

Voxelization We first transform the point cloud



coordinates (x, y, z) into the voxel index {Ii =
(⌊ xi

sx
⌋, ⌊ yi

sy
⌋, ⌊ zi

sz
⌋)}Ni=1, where s is the voxel size. Then,

we use a simple voxel feature encoder, which only con-
tains a Multi-Layer Perceptron (MLP) and maxpooling lay-
ers to generate the sparse voxel feature representation V ∈
RM×C :

Vj = max
Ii=Ij

(MLP(pi)), j ∈ (1 . . .M) (1)

where M is the number of unique voxel indices. We also
generate the ground truth label of each sparse voxel through
majority voting: Lv

j = argmax
Ii=Ij

(li).

Sparse Voxel-based Backbone Network We use a Vox-
elNet [77] as the backbone of our network, where the voxel
features are gradually downsampled to 1

8 of the original size
in the encoder. The sparse voxel features are projected onto
the dense BEV map, followed by a 2D multi-scale feature
extractor to extract the global information. For the detection
task, we attach a detection head to the BEV feature map
to predict the object bounding boxes. For the segmenta-
tion task, the BEV feature is reprojected to the voxel space,
where we use a U-Net decoder to upsample the feature map
back to the original scale. We supervise our model with the
voxel-level label Lv and project the predicted label back to
the point level via a de-voxelization step during inference.

3.2. Cross-space Transformer

As shown in Figure 1, voxel-based LiDAR detection and
segmentation generally require the backbone network to ex-
tract feature representations on the 2D dense BEV space and
3D sparse voxel space, respectively. To overcome the chal-
lenge of merging the features learned from these two tasks,
the previous multi-task network [66] proposed a global con-
text pooling module to directly map the features based on
their location without considering differences in sparsity. In
contrast, we propose a cross-space Transformer module that
utilizes deformable attention to enhance feature extraction
between these spaces to further increase the receptive field.

As shown in Figure 2, we employ a cross-space Trans-
former to 1) convert the sparse voxel features in the last
scale Fsparse

in ∈ RC×M ′
into dense BEV features (Sparse-

to-dense), and 2) convert the dense BEV features from 2D
multi-scale feature extractor Fdense ∈ R(C× D

dz
)× H

dx
× W

dy to
sparse voxel features Fsparse

out ∈ RC×M ′
, where d is the

downsampling ratio and M ′ is the number of valid voxels
in the encoder’s last scale (Dense-to-sparse). The cross-
space Transformer is illustrated in Figure 3. Specifically,
in Figure 3a, Fdense is divided into slices by height as
Fdense

3D ∈ RC× D
dz

× H
dx

× W
dy . Then we take the features from

Fdense
3D at the valid coordinates (u, v, h) of Fsparse

in as query
Q3D to predict Fsparse

out . The deformable attention [80] is
adopted as a self-attention layer to explore global informa-
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Figure 3: Illustration of the Cross-space Transformer
(XSF) module. XSF consists of two parts: a multi-height
deformable self-attention, and a feed-forward network. (a)
convert dense BEV features to sparse voxel features, (b)
convert sparse voxel features to dense BEV features with
two more densify operations.

tion in the dense feature map. Since Fdense lacks height in-
formation, due to the fact that 2D multi-scale feature extrac-
tor mainly focuses on BEV-level information, we develop a
multi-head multi-height attention module to learn features
along all heights: For every reference voxel whose loca-
tion is ξ = (u, v) on the sliced BEV feature map at height
h, the deformable self-attention uses a linear layer to learn
BEV offsets ∆ξ at all heads and heights. The features at
ξ +∆ξ will be sampled from different multi-heights-sliced
BEV feature maps through bilinear interpolation. The out-
put of the multi-height deformable self-attention χ(p) can
be formulated as:

χ(p) =

Nhead∑
i=1

Wi[

Nheight∑
j=1

R∑
r=1

σ(Wijrqp)W
′

i x
j(ξ +∆ξijr)]

(2)
where Nhead is the number of heads, Nheight = D

dz
is

the number of heights, W is learnable weights, R is the
number of sampling points, xj is the multi-heights-sliced
BEV features, qp is the query features at the position ξ, and
σ(Wijrqp) is the attention weight.

Since the Dense-to-sparse cross-space Transformer is
applied after the 2D feature extractor, it will not affect the
learned 2D BEV features, thus has limited impact on in-
creasing the detection performance. To increase the recep-
tive field of the 2D BEV feature extractor, we add a cross-
space Transformer module converting Fsparse

in into dense



BEV features in a similar manner, as shown in Figure 3b. It
equips the BEV feature which will be fed into a 2D multi-
scale feature extractor with more context information.

3.3. Cross-task Transformer Decoder

Although object detection and semantic segmentation
share correlated information, they are usually learned in two
separate network structures. LidarMultiNet [66] demon-
strates that through sharing intermediate feature representa-
tion, both detection and segmentation performance can get
improved. However, no high-level information is shared
during the training of the multi-task network. To further
explore the multi-task learning synergy, we propose to use
a shared transformer decoder to bridge between the class-
level information from segmentation and the object-level
information from detection. In this section, we first present
a novel segmentation decoder that uses class feature em-
bedding to perform dynamic segmentation. Then, we in-
troduce an approach to connect this segmentation decoder
with the conventional detection decoder through cross-task
attention.

Segmentation Transformer Decoder Inspired by the
coarse-to-fine methods [72, 70] in the 2D image segmen-
tation, we propose a class-aware feature refinement mod-
ule to enhance the global information learning for the seg-
mentation task. We use an initial segmentation prediction
to generate the class feature embedding. Then, we use a
transformer with bidirectional cross-attention to refine both
voxel and class feature representations. The class feature
representation is also served as the dynamic kernel in the
later segmentation head.

Given an initial semantic segmentation score y =
{predj |predj ∈ [0, 1]K}Mj=1, and its encoded feature rep-
resentation F ∈ RM×C , where M is the number of valid
predictions, we generate the class feature embedding ε =

{εk|k ∈ {1 . . .K}} as follows: εk =
∑M

j=1 predj [k]·Fj∑M
j=1 predj [k]

. In

our cross-task transformer, we use a coarse prediction and
its corresponding BEV features to initialize the class feature
embedding. The class feature embedding ε encapsulates the
class center information based on the coarse segmentation
result of each scan. Assuming that points from the same
class have similar or correlated features in the encoded fea-
ture embedding, the learned class features can help the net-
work distinguish the edge points that are ambiguous in the
segmentation head.

Similar to [70], we propose to use a transformer de-
coder to further extract the class feature embedding and re-
fine the original voxel features simultaneously through bidi-
rectional cross-attention. As shown in Figure 4, our trans-
former structure has two parallel branches for the voxel fea-
ture V ∈ RM×C and the class feature ε ∈ RK×C .

We use a standard transformer decoder [50], containing a
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Figure 4: Cross-task Transformer (XTF). The segmenta-
tion and detection decoders share a self-attention layer to
transfer the cross-task features. In the segmentation de-
coder, we use a bidirectional cross-attention to refine voxel
features based on the aggregated class feature embedding.
For simplicity, the skip connection and the layer norm are
ignored in this figure.

multi-head self-attention layer, a multi-head cross-attention
layer, and a feed-forward layer, to extract class features us-
ing ε as the initial query embedding. In the cross-attention
layer, query Qc is the linear projection of ε, while key Kv

and value Vv are the linear projection of V . It can be for-
mulated as :

CrossAtt(V → ε) = Softmax(
QcKT

v√
C

)Vv. (3)

Next, we use an inverse transformer decoder to transfer
the encoded class features back to the voxel features. It is
infeasible to use self-attention in the voxel branch due to the
huge size of the voxels. Conversely, query Qv is from the
linear projection of V , key Kc, and value Vc are the linear
projection of the output ε′ in the class branch:

CrossAtt(ε′ → V) = Softmax(
QvKT

c√
C

)Vc. (4)

The output voxel feature V ′ is then concatenated to the
original features Vr = (V,V ′) for the segmentation head.

Dynamic Kernel Conventional segmentation networks
use a segmentation head that consists of convolution or lin-
ear layers to reduce the channel size of a voxel feature to
the number of classes to make the prediction. The weights
learned in the segmentation head are shared among differ-
ent frames. Therefore the segmentation head is hard to ad-
just to the varying conditions of scenes. Following the new
trend in the image instance segmentation [54, 53, 12, 28],
we directly use the learned class feature embedding ε′ as



the kernel to generate the semantic logits S = Φ(Vr)·ε′T√
C

∈
RM×K , where Φ is the convolution layer that reduces the
channel size of the voxel feature to C.

Cross-task Attention As shown in Figure 4, we adopt
the detection transformer decoder from the well-studied
CenterFormer [78], which represents the object-level fea-
ture as center query embedding initialized from BEV cen-
ter proposals. We initialize the class feature embedding ε
using the BEV feature. Class and center features are con-
catenated and then sent into a shared transformer decoder,
where the information between detection and segmentation
tasks are transferred to each other through a cross-task self-
attention layer. Due to the memory limitation, the class and
center feature aggregate features separately from the voxel
and BEV feature maps, respectively.

4. Experiments

In this section, we present the experimental results of our
proposed method on two large-scale public LiDAR point
cloud datasets: the nuScenes dataset [3] and the Waymo
Open Dataset[46], both of which have 3D object bounding
boxes and pixel-wise semantic label annotations. We also
provide a detailed ablation study of the improvements and
in-depth analysis of our model. More details and visualiza-
tion are included in the supplementary materials.

4.1. Datasets

The NuScenes dataset is a large-scale autonomous driv-
ing dataset developed by Motional. It contains 1000 scenes
of 20s video data, each of them captured by a 20Hz
Velodyne HDL-32E Lidar sensor with 32 vertical beams.
NuScenes provides annotations of object bounding boxes
and pixel-wise semantic labels at each keyframe sampled
at 2 Hz. 16 classes are used for the semantic segmenta-
tion evaluation. 10 foreground object (“thing”) classes with
ground truth bounding box labels are used for the object
detection task. For the nuScenes detection task, mean Aver-
age Precision (mAP) and NuScenes Detection Score (NDS)
are used as the metrics. For semantic segmentation, mean
Intersection over Union (mIoU) is used as the metric.

The Waymo Open Dataset (WOD) contains around
2000 scenes of 20s video data that is collected at 10Hz by a
64-line LiDAR sensor. Even though WOD provides object
bounding box annotation for every frame, it only has the
semantic annotation in some key frames sampled at 2Hz.
WOD has semantic labels for 23 classes and uses the stan-
dard mIoU as the evaluation metric. For the object bound-
ing box annotation, 3 classes of vehicles, pedestrians, and
cyclists are calculated into the 3D detection metrics. Aver-
age Precision Weighted by Heading (APH) is used as the
main detection evaluation metric. The ground truth objects
are categorized into two levels of difficulty, LEVEL 1 (L1)

is assigned to the examples that have more than 5 LiDAR
points and not in the L2 category, while LEVEL 2 (L2) is
assigned to examples that have at least 1 LiDAR point and
at most 5 points or are manually labeled as hard. The pri-
mary metric mAPH L2 is computed by considering both L1
and L2 examples.

4.2. Experiment Setup

We used the AdamW optimizer with the one-cycle
scheduler to train our model for 20 epochs. Most experi-
ments are conducted on 8 Nvidia A100 GPUs with batch
size 16. For the multi-task training experiments on WOD,
we used batch size 8 because of the GPU memory lim-
its. We used the voxel size of [0.1, 0.1, 0.2] for nuScenes
datasets, and [0.1, 0.1, 0.15] for Waymo Open Dataset. For
the segmentation task, we used a combination of cross-
entropy loss and Lovasz loss [2] to optimize our network.
For the detection task, we followed [69] to use the com-
mon center heatmap classification loss and bounding box
regression loss. We added an auxiliary loss on the output
voxel features or BEV features to supervise the segmenta-
tion prediction, which is used to initialize the class feature
embedding. All losses are fused by multi-task uncertainty
weighting strategy [25]. We concatenated the points from
the previous 9 scans to the current point cloud in nuScenes,
and 2 scans in WOD. Standard data augmentation strat-
egy [51, 66] were applied when training the model. More
network and training details are included in the supplemen-
tary materials.

4.3. Main Results

We present the detection and segmentation benchmark
results on both nuScenes and WOD. All results of other
methods in the test set are from the literature, where most
of them apply test-time augmentation (TTA) or an ensem-
ble method to increase the performance. In addition to
our multi-task network, we also provide the results of the
segmentation-only variation of our model, which is trained
only with the segmentation transformer decoder.

NuScenes In Table 1 and Table 2, we compare LiDAR-
Former with other state-of-the-art methods on the test set
of nuScenes. LiDARFormer reaches the top performance
of 81.5% mIoU, 71.5% mAP, and 74.3% NDS for a sin-
gle model result. Notably, the results of the detection task
outperform all previous methods by a large margin, espe-
cially for the mAP metric. Although the segmentation per-
formance of LiDARFormer is only 0.1% higher than Lidar-
MultiNet, LiDARFormer does not require a second stage
and can be trained end-to-end by comparison. To fairly
compare with other methods without the effect of test-time
augmentation, we also demonstrate the performance on the
validation set of nuScenes in Table 3. Our segmentation-
only LiDARFormer achieves a 81.7% mIoU performance



Table 1: Detection results on the test
split of nuScenes. “TTA” means test-time
augmentation.

Model Ref mAP NDS
CBGS [79] arXiv 2019 52.8 63.3
CenterPoint [69] CVPR 2021 58.0 65.5
HotSpotNet [5] ECCV 2020 59.3 66.0
Object DGCNN [55] NeurIPS 2021 58.7 66.1
AFDetV2 [23] AAAI 2022 62.4 68.5
Focals Conv [9] CVPR 2022 63.8 70.0
TransFusion-L [1] CVPR 2022 65.5 70.2
LargeKernel3D [10] CVPR 2023 65.3 70.5
SphereFormer [66] CVPR 2023 65.5 70.7
LidarMultiNet [66] AAAI 2023 67.0 71.6
MDRNet-TTA [24] arXiv 2022 67.2 72.0
LargeKernel3D-TTA [10] CVPR 2023 68.8 72.8
FocalFormer3D-TTA [11] ICCV 2023 70.5 73.9
LiDARFormer 68.9 72.4
LiDARFormer-TTA 71.5 74.3

Table 2: Segmentation results on the
test split of nuScenes.

Model Ref mIoU
PolarNet [74] CVPR 2020 69.8
PolarStream [6] NeurIPS 2021 73.4
JS3C-Net [62] AAAI 2021 73.6
Cylinder3D [81] CVPR 2021 77.2
AMVNet [33] arXiv 2020 77.3
SPVNAS [48] ECCV 2020 77.4
Cylinder3D++ [81] CVPR 2021 77.9
AF2S3Net [13] CVPR 2021 78.3
GASN [67] ECCV 2022 80.4
SPVCNN++ [48] ECCV 2020 81.1
LidarMultiNet [66] AAAI 2023 81.4
LiDARFormer 81.0
LiDARFormer-TTA 81.5

Table 3: Results on the val split of
nuScenes. *: Reported by [81].

Model mIoU mAP NDS
RangeNet++ [38] 65.5* - -
PolarNet [74] 71.0* - -
SalsaNext [15] 72.2* - -
AMVNet [33] 77.2 - -
Cylinder3D [81] 76.1 - -
RPVNet [60] 77.6 - -
SphereFormer [26] 78.4
CBGS [79] - 51.4 62.6
CenterPoint [69] - 57.4 65.2
TransFusion-L [1] - 60.0 66.8
BEVFusion-L [34] - 64.7 69.3
LidarMultiNet [66] 82.0 63.8 69.5
LiDARFormer seg only 81.7 - -
LiDARFormer 82.7 66.6 70.8

Table 4: Detection L2 mAPH results on the test split of WOD. “L”
and “CL” denote LiDAR-only and camera & LiDAR fusion methods.
Second best results are underlined.

Model Ref Modal Frame Veh. Ped. Cyc. Mean
M3DETR [21] WACV 2022 L 1 70.0 52.0 63.8 61.9
PV-RCNN++ [45] arXiv 2022 L 1 73.5 69.0 68.2 70.2
CenterPoint++ [69] CVPR 2021 L 3 75.1 72.4 71.0 72.8
SST 3f [17] CVPR 2022 L 3 72.7 73.5 72.2 72.8
AFDetV2 [23] AAAI 2022 L 2 73.9 72.4 73.0 73.1
DeepFusion [31] CVPR 2022 CL 5 75.7 76.4 74.5 75.5
MPPNet [7] ECCV 2022 L 16 76.9 75.9 74.2 75.7
CenterFormer [78] ECCV 2022 L 16 78.3 77.4 73.2 76.3
BEVFusion [34] ICRA 2023 CL 3 77.5 76.4 75.1 76.3
LiDARFormer L 3 77.5 77.2 74.6 76.4

Table 5: Results on val split of WOD. *: From our
reproduction.

Model Ref Frame mIoU L2 mAPH
PolarNet [74] CVPR 2020 1 61.6* -
Cylinder3D [81] CVPR 2021 1 66.6* -
SphereFormer [26] CVPR 2023 - 69.9 -
PV-RCNN++ [45] IJCV 2022 1 - 68.6
AFDetV2-Lite [23] AAAI 2022 1 - 68.8
CenterPoint++ [69] CVPR 2021 3 - 71.6
FlatFormer [35] CVPR 2023 3 - 72.0
SST [17] CVPR 2022 3 - 72.4
DSVT [52] CVPR 2023 3 - 75.5
CenterFormer [78] ECCV 2022 8 - 73.7
MPPNet [7] ECCV 2022 16 - 74.9
LidarMultiNet [66] AAAI 2023 3 71.9 75.2
LiDARFormer seg only - 3 71.3 -
LiDARFormer - 3 72.2 76.2

while full LiDARFormer further improves the mIoU to
82.7% with the SOTA detection performance NDS 70.8%.
Our method surpasses all previous state-of-the-art methods,
which matches our result in the test set.

Waymo Open Dataset Table 4 shows the detection re-
sults of LiDARFormer on the test set of WOD. LiDAR-
Former achieves the state-of-the-art performance of 76.4%
L2 mAPH, outperforming even the camera-LiDAR fusion
methods and methods that use a much greater number of
frames. Lastly, we report the validation results on Waymo
Open Dataset in Table 5. We reproduce the result of Polar-
Net and Cylinder3D based on their released code for com-
parison. Our segmentation-only LiDARFormer achieves a
71.3% mIoU performance on the validation set. Our multi-
task model also outperforms the previous best multi-task
network by 0.3% on the segmentation task. For the more
competitive detection task, our method reaches the best L2
mAPH result of 76.2%.

4.4. Ablation Study

Effect of Transformer Structure on Segmentation
Task Table 6 shows the effectiveness of each proposed com-

ponent in our method when trained only for the segmen-
tation task. We use the network described in 3.1 as our
baseline model. This simple design already can achieve
competitive performance compared to other current state-
of-the-art methods. After adding the segmentation trans-
former decoder, the mIoU increases by 1.7% and 0.3% in
nuScenes and WOD, respectively. By concatenating points
from previous frames to the current frame, the result further
increases by 2.5% and 0.6%. The cross-space transformer
also can improve the mIoU by 0.9% and 0.1%, respectively.

Effect of the Unified Multi-task Transformer Decoder
Table 7 demonstrates the improvements achieved by our
proposed transformer decoder in the multi-task network.
We use the 1st-stage results of LidarMultiNet [66] as our
baseline. Adding an individual transformer decoder to ei-
ther the detection or segmentation branch results in im-
proved performance in both tasks, as our multi-task network
has a shared backbone, allowing improvement in one task
to contribute to feature representation learning. Our pro-
posed shared transformer decoder yields superior overall
performance by introducing cross-task attention learning.
The cross-space transformer module further improves per-



Table 6: The ablation of mIoU improvement of each compo-
nent on the nuScenes and WOD val split when trained only
for the segmentation task. XSF and STD stand for cross-
space transformer and segmentation transformer decoder.

Baseline (3.1) STD Multi-frame XSF nuScenes WOD
✓ 76.6 70.3
✓ ✓ 78.3 (+1.7) 70.6 (+0.3)
✓ ✓ ✓ 80.8 (+4.2) 71.2 (+0.9)
✓ ✓ ✓ ✓ 81.7 (+5.1) 71.3 (+1.0)

Table 7: The ablation of the improvement of shared trans-
former decoder on the nuScenes val split when jointly
trained with detection task.

XTFBaseline [66] Seg Det XSF mIoU mAP NDS

✓ 81.8 65.2 70.0
✓ ✓ 82.1 (+0.3) 65.4 (+0.2) 70.2 (+0.2)
✓ ✓ 82.4 (+0.6) 65.9 (+0.7) 70.3 (+0.3)
✓ ✓ ✓ 82.6 (+0.8) 66.0 (+0.8) 70.2 (+0.2)
✓ ✓ ✓ ✓ 82.7 (+0.9) 66.6 (+1.4) 70.8 (+0.8)

Table 8: Panoptic segmentation result on nuScenes val
split.

stage PQ SQ RQ mIoU
LidarMultiNet [66] 2-stage 81.8 90.8 89.7 83.6
LiDARFormer 1-stage 81.8 90.7 89.9 84.1

Table 9: Design choice of the segmentation decoder on the
nuScenes val split.

LiDARFormer seg only result without XSF (mIoU) 80.8
w/o voxel to class attention 80.4 (-0.4)
w/o class to voxel attention 80.1 (-0.7)
w/o dynamic kernel 80.3 (-0.5)
w/o class embedding initialization 80.5 (-0.3)

formance, particularly for the detection task. We also eval-
uate the panoptic segmentation performance of our multi-
task network in Table 8. Even without a second stage ded-
icated to panoptic segmentation, our model achieves com-
petitive results compared to the previous best method, Li-
darMultiNet. This demonstrates the ability of our multi-task
transformer decoder to generate more compatible results for
both tasks.

4.5. Analysis

Analysis of the Segmentation Decoder We compare the
segmentation-only performance of our method using differ-
ent transformer designs in Table 9. Removing either way
of the cross-attention leads to an inferior result. The dy-
namic kernel design outperforms the traditional segmenta-
tion head by 0.8%. Furthermore, the performance is 0.3%
lower without using an auxiliary segmentation head to ini-
tialize the class embedding.

Analysis of Cross-space Transformer Table 10 illus-
trates the effectiveness of the Cross-Space Transformer
(XSF) module in both detection and segmentation tasks, as
compared to the direct mapping method. If we replace XSF
with additional convolution layers of similar parameter size,
the segmentation performance decreases by 0.8%. How-
ever, when we only replace the sparse-to-dense XSF in the
multi-task model, the segmentation performance remains

Table 10: The ablation of XSF on the nuScenes val split.
S→D and D→S denote sparse-to-dense (3b) and dense-to-
sparse (3a) XSFs.

S→D D→S Add Convs mIoU mAP NDS
Segmentation Only

✓ ✓ 81.7 - -
✓ 80.9 (-0.8) - -

Multi-task
✓ ✓ 82.7 66.6 70.8

✓ ✓ 82.8 (+0.1) 66.0 (-0.6) 70.5 (-0.3)

Direct Mapping Cross-space Transformer

Figure 5: Visualization of the learned offsets. We show-
case the features of a car’s 3D voxels (blue) and their corre-
sponding deformable offsets (red) that were learned in our
XSF module. For a better visual representation, we only
highlight the offsets with high attention scores.

largely unaffected, while detection performance shows a
significant decline. This finding suggests that the dense-to-
sparse and sparse-to-dense XSFs contribute differently to
the detection and segmentation tasks.

In Figure 5, we provide a visualization of the deformable
offsets in our cross-space transformer. When using the pre-
vious direct mapping method for sparse voxels, only the fea-
tures in the same position are used for transferring features
between 3D and 2D space. This method may not utilize
some useful features learned in the dense 2D BEV map. In
contrast, our method is capable of aggregating related fea-
tures across a wider range.

5. Conclusion
In this paper, we present LiDARFormer, a novel and

effective paradigm for multi-task LiDAR perception. Our



method offers a novel way of strengthening voxel feature
representation and enables joint learning of detection and
segmentation tasks in a more elegant and effective manner.
Although we have designed LiDARFormer for LiDAR-only
input, our transformer XSF and XTF can extend to learn
multi-modality and temporal features simply through cross-
attention layers. Similarly, XSF can apply multi-scale fea-
ture maps in the deformable attention module to further ex-
tract the contextual information with larger receptive fields.
LiDARFormer sets a new state-of-the-art performance on
the competitive nuScenes and Waymo detection and seg-
mentation benchmarks. We believe that our work will in-
spire more innovative future research in this field.

A. Network Details
Voxel Feature Encoder We adopt the same design as

[74] to encode the point cloud into a voxel feature map.
First, we group points within each voxel together and
append 6 additional features to the point features P ∈
R3+c+6, i.e. the center of corresponding voxel (xv, yv, zv)
and the offset to the center (x − xv, y − yv, z − zv). Next,
we use 4 stacked layers of MLP to transform the point fea-
ture to a high dimensional space, followed by a sparse max
pooling layer to extract voxel feature representation in each
valid voxel. The channel size is [64, 128, 256, 256] in each
MLP.

XSF structure We apply 2 stacked transformer blocks,
each with 4 heads of deformable self-attention. We use a
channel size of 64 in each head of Dense-to-Sparse XSF
and a channel size of 32 in each head of Sparse-to-Dense
XSF. The channel size of the FFN is 256 in both XSFs. We
use pre-norm rather than post-norm in each layer.

XTF structure We use 3 stacked transformer decoder
layers, each with 4 heads of self-attention and cross-
attention. We use a channel size of 32 in each head and
channel size of 64 in the FFN.

B. More Discussions
More Analysis of XSF In Table 11, we show the results

of adopting different types of query in the dense-to-sparse
XSF. The features in the BEV feature map at valid voxels
serve as queries in our LiDARFormer. Voxel query refers to
taking the features from a sparse feature map at valid voxels
while embedding query means treating the embeddings of
the valid coordinates as queries. The performance slightly
drops by 0.3% and 0.4% respectively, which may be due to
the BEV features from the 2D multi-scale feature extractor
containing more contextual information.

Runtime and Model Size We evaluated the runtime and
model size of LiDARFormer on Nvidia A100 GPU. Fig-
ure 6 demonstrates that a multi-task network can signifi-
cantly reduce latency by sharing backbone networks. Our

Det + Seg

LidarMultiNet

LiDARFormer

0 75 150 225 300

Backbone + Heads Transformer Decoder 2nd Stage XSF

270 ms

163 ms

168 ms

CenterFormer Cylinder3D

Figure 6: Inference Latency Comparison. The nota-
tion “Det + Seg” refers to the combination of latencies
from the previous SOTA detection and segmentation meth-
ods. Specifically, we chose CenterFormer [78] and Cylin-
der3D [81] because they share similar backbone network
structures with our approach. All methods were evaluated
on Nvidia A100 GPU.

Table 11: The ablation of different query types adopted in
the dense-to-sparse XSF on the nuScenes val split.

LiDARFormer seg only result (mIoU) 81.7
Voxel Query 81.4 (-0.3)
Embedding Query 81.3 (-0.4)

Table 12: Comparison of different class feature embedding
initialization methods.

Initialization Method mAP NDS mIoU
BEV 66.6 70.8 82.7
Voxel 66.4 70.5 82.9

approach has similar latency to the previous 2-stage multi-
task network but outperforms it in an end-to-end 1-stage
network design. Additionally, LiDARFormer employs
fewer parameters (77M) than the LidarMultiNet (131M).

Class Feature Embedding Initialization In our cross-
task transformer decoder, we initialize the class feature em-
bedding using a coarse prediction and its BEV features. As
shown in Table 12, if we change the initialization to use
voxel features, the performance of LiDARFormer will in-
crease in the segmentation task but will decrease in the de-
tection task.

Analysis of Cross-task Transformer We compare the
segmentation prediction of our model to the baseline model
without our proposed transformer module. As shown in
Figure 7, we notice that the improvement usually takes
place in the discontinuous area, e.g. points from one ob-
ject are predicted to have labels of different classes.

Polar Coordinate PolarNet [74] and Cylinder3D[81]
have shown the potential of polar feature representation on
the LiDAR segmentation problem. It mimics the scan pat-
tern of the LiDAR sensor to balance the point distribution
across different ranges of voxels. Contrary to their finding,
the experiment on Waymo Open Dataset shows the perfor-



Ground Truth LidarMultiNet LiDARFormer

Figure 7: Visualization of the improvement of our model on the nuScenes val split. With our proposed cross-space and
cross-task transformer module, our approach generates more accurate labels in the previously uncertain area. Best viewed in
color.

Table 13: Segmentation results of each class on the test split of nuScenes. We underline the best performance in each
category.
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PolarNet [74] 69.8 80.1 19.9 78.6 84.1 53.2 47.9 70.5 66.9 70.0 56.7 96.7 68.7 77.7 72.0 88.5 85.4
PolarStream [6] 73.4 71.4 27.8 78.1 82.0 61.3 77.8 75.1 72.4 79.6 63.7 96.0 66.5 76.9 73.0 88.5 84.8
JS3C-Net [62] 73.6 80.1 26.2 87.8 84.5 55.2 72.6 71.3 66.3 76.8 71.2 96.8 64.5 76.9 74.1 87.5 86.1
Cylinder3D [81] 77.2 82.8 29.8 84.3 89.4 63.0 79.3 77.2 73.4 84.6 69.1 97.7 70.2 80.3 75.5 90.4 87.6
AMVNet [33] 77.3 80.6 32.0 81.7 88.9 67.1 84.3 76.1 73.5 84.9 67.3 97.5 67.4 79.4 75.5 91.5 88.7
SPVNAS [48] 77.4 80.0 30.0 91.9 90.8 64.7 79.0 75.6 70.9 81.0 74.6 97.4 69.2 80.0 76.1 89.3 87.1
Cylinder3D++ [81] 77.9 82.8 33.9 84.3 89.4 69.6 79.4 77.3 73.4 84.6 69.4 97.7 70.2 80.3 75.5 90.4 87.6
AF2S3Net [13] 78.3 78.9 52.2 89.9 84.2 77.4 74.3 77.3 72.0 83.9 73.8 97.1 66.5 77.5 74.0 87.7 86.8
GASN [67] 80.4 85.5 43.2 90.5 92.1 64.7 86.0 83.0 73.3 83.9 75.8 97.0 71.0 81.0 77.7 91.6 90.2
SPVCNN++ [48] 81.1 86.4 43.1 91.9 92.2 75.9 75.7 83.4 77.3 86.8 77.4 97.7 71.2 81.1 77.2 91.7 89.0
LidarMultiNet [66] 81.4 80.4 48.4 94.3 90.0 71.5 87.2 85.2 80.4 86.9 74.8 97.8 67.3 80.7 76.5 92.1 89.6
LiDARFormer 81.0 83.5 39.8 85.7 92.4 70.8 91.0 84.0 80.7 88.6 73.7 97.8 69.0 80.9 76.9 91.9 89.0
LiDARFormer-TTA 81.5 84.4 40.8 84.7 92.6 72.7 91.0 84.9 81.7 88.6 73.8 97.9 69.3 81.4 77.4 92.4 89.6

mance on mIoU has a 1.4% drop when we transform our
baseline model to the polar coordinate with a similar voxel
size. We conjecture that it is because we already use a
relatively small voxel size, which does not induce a huge
imbalance of points accumulation in the close-range voxel.
Conversely, polar coordinates suffer more distortion in the
distant voxels, leading to inferior performance.

Class-wise Segmentation Results on nuScenes In Ta-
ble 13, we show the class-wise performance of LiDAR-
Former on the test set of nuScenes. The best segmentation
results of each class are scattered among the top five meth-

ods. This is due to the learning competition among different
classes. For example, better performance in “motorcycle”
class will cause a drop in “bicycle” class. How to deal with
the competition between similar classes is still an unsolved
problem.

C. Qualitative Results

We illustrate the qualitative results of LiDARFormer on
nuScenes and WOD in Figure 8, 9. Our method can gener-
ate accurate semantic predictions in diverse environments.



Figure 8: Visualization of the detection and segmentation results on nuScenes.

Figure 9: Visualization of the detection and segmentation results on Waymo Open Dataset.
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