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Abstract
Incorporating spectral information to enhance
Graph Neural Networks (GNNs) has shown
promising results but raises a fundamental chal-
lenge due to the inherent ambiguity of eigenvec-
tors. Various architectures have been proposed
to address this ambiguity, referred to as spectral
invariant architectures. Notable examples include
GNNs and Graph Transformers that use spectral
distances, spectral projection matrices, or other
invariant spectral features. However, the poten-
tial expressive power of these spectral invariant
architectures remains largely unclear. The goal
of this work is to gain a deep theoretical under-
standing of the expressive power obtainable when
using spectral features. We first introduce a uni-
fied message-passing framework for designing
spectral invariant GNNs, called Eigenspace Pro-
jection GNN (EPNN). A comprehensive analysis
shows that EPNN essentially unifies all prior spec-
tral invariant architectures, in that they are either
strictly less expressive or equivalent to EPNN. A
fine-grained expressiveness hierarchy among dif-
ferent architectures is also established. On the
other hand, we prove that EPNN itself is bounded
by a recently proposed class of Subgraph GNNs,
implying that all these spectral invariant archi-
tectures are strictly less expressive than 3-WL.
Finally, we discuss whether using spectral fea-
tures can gain additional expressiveness when
combined with more expressive GNNs.

1. Introduction
Recent works have demonstrated the promise of using spec-
tral graph features, particularly the eigenvalues and eigen-
vectors of the graph Laplacian or functions thereof, as posi-
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tional and structural encodings in Graph Neural Networks
(GNNs) and Graph Transformers (GTs) (Dwivedi et al.,
2020; Dwivedi & Bresson, 2021; Kreuzer et al., 2021; Ram-
pasek et al., 2022; Kim et al., 2022). These spectral features
encapsulate valuable information about graph connectivity,
inter-node distances, node clustering patterns, and more.
When using eigenvectors as inputs for machine learning
models, a major challenge arises due to the inherent eigenes-
pace symmetry (Lim et al., 2023) — eigenvectors are not
unique. Specifically, for any eigenvector v, −v is also a
valid eigenvector. The ambiguity becomes worse in the case
of repeated eigenvalues; here, any orthogonal transforma-
tion of the basis vectors in a particular eigenspace yields
alternative but equivalent input representations.

To address the ambiguity problem, a major line of recent
works leverages invariant features derived from eigenvec-
tors and eigenvalues to design spectral invariant architec-
tures. Popular choices for such features include eigenspace
projection matrices1 (Lim et al., 2023; Huang et al., 2024),
spectral node distances (e.g., those associated with random
walks or graph diffusion) (Li et al., 2020; Zhang et al.,
2023b; Feldman et al., 2023), or other invariant spectral
characteristics (Wang et al., 2022). All of these features can
be easily integrated into GNNs to enhance edge features or
function as relative positional encoding of GTs. However,
on the theoretical side, while the expressive power of GNNs
has been studied extensively (Xu et al., 2019; Maron et al.,
2019a; Morris et al., 2021; Geerts & Reutter, 2022; Zhang
et al., 2024), there remains little understanding of the impor-
tant category represented by spectral invariant GNNs/GTs.

Current work. The goal of this work is to gain deep insights
into the expressive power of spectral invariant architectures
and establish a complete expressiveness hierarchy. We be-
gin by presenting Eigenspace Projection GNN (EPNN),
a novel GNN framework that unifies the study of all the
aforementioned spectral invariant methods. EPNN is very
simple: it encodes all spectral information for a node pair
(u, v) as a set containing the values of all projection matri-
ces on that node pair, along with the associated eigenvalues.
It then computes and refines node representations using
the spectral information as edge features within a standard
message-passing framework on a fully connected graph.

1See Section 3 for a formal definition of projection matrices.
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Figure 1. Expressive hierarchy for all GNN architectures studied in this paper. Here, the symbol “≡” means that the two GNNs being
compared have the same expressive power; “⊐” means that the latter GNN is strictly more expressive than the former one; “⊒” means
that the latter GNN is either strict more expressive than or as expressive as the former one; “ ̸⊑” means that the latter GNN is (strictly) not
less expressive than the former one. Finally, “incomparable” means that either GNN is (strictly) not more expressive than the other. The
dialog bubbles list literature architectures that can be seen as instantiations of the corresponding GNN class.

Our first theoretical result establishes a tight expressiveness
upper bound for EPNN, showing that it is strictly less expres-
sive than an important class of Subgraph GNNs proposed
in Zhang et al. (2023a), called PSWL. This observation is
intriguing for two reasons. First, it connects spectral invari-
ant GNNs and GTs with the seemingly unrelated research
direction of Subgraph GNNs (Cotta et al., 2021; Bevilacqua
et al., 2022; Frasca et al., 2022; Qian et al., 2022; Zhao et al.,
2022) — a line of research studying expressive GNNs from
a structural and permutation symmetry perspective. Second,
combined with recent results (Frasca et al., 2022; Zhang
et al., 2023a), it implies that EPNN is strictly bounded by
3-WL. As an implication, bounding previously proposed
spectral invariant methods by EPNN would readily indicate
that they are all strictly less expressive than 3-WL.

We then explore how EPNNs are related to GNNs/GTs
that employ spectral distances as positional encoding (Ying
et al., 2021; Mialon et al., 2021; Zhang et al., 2023b; Ma
et al., 2023b; Wang et al., 2022; Li et al., 2020). We prove
that under the general framework proposed in Zhang et al.
(2023b), all commonly used spectral distances give rise to
models with an expressive power bounded by EPNNs. This
highlights an inherent expressiveness limitation of distance-
based approaches in the literature. Moreover, our analysis
underscores the crucial role of message-passing in enhanc-
ing the expressive power of spectral features.

Our next step aims to draw connections between EPNNs
and two important spectral invariant architectures that utilize
projection matrices, known as Basisnet (Lim et al., 2023)
and SPE (Huang et al., 2024). This is achieved by a novel
symmetry analysis for eigenspace projections, which yields
a theoretically-inspired architecture called Spectral IGN.
Surprisingly, we prove that Spectral IGN is as expressive as
EPNN. On the other hand, SPE and BasisNet can be easily
upper bounded by either Spectral IGN or its weaker variant.

Finally, we discuss the potential of using spectral features to
boost the expressive power of higher-order GNNs. We show
using the projection matrices alone does not provide any
additional expressive power advantage when combined with
highly expressive GNNs such as PPGN and k-IGN (Maron
et al., 2019b;a). Nevertheless, we propose a possible solu-
tion towards further expressiveness gains: we hypothesize
that stronger expressivity could be achieved through higher-
order extensions of graph spectra, such as projection tensors.
Overall, our theoretical results characterize an expressive-
ness hierarchy across basis invariant GNNs, distance-based
GNNs, GTs with spectral encoding, subgraph-based GNNs,
and higher-order GNNs. The resulting hierarchy is illus-
trated in Figure 1.

2. Related GNN Models
2.1. Spectrally-enhanced GNNs

In recent years, a multitude of research has emerged to
develop spectrally-enhanced GNNs/GTs, integrating graph
spectral information into either GNN node features or the
subsequent message-passing process. These endeavors can
be categorized into the following three groups.

Laplacian eigenvectors as absolute positional encoding.
One way to design spectrally-enhanced GNNs involves en-
coding Laplacian eigenvectors. This approach treats each
eigenvector as a 1-dimensional node feature and incorpo-
rates the top k eigenvectors as a type of absolute positional
encoding, which can be used to enhance any message-
passing GNNs and GTs (Dwivedi et al., 2020; Dwivedi
& Bresson, 2021; Kreuzer et al., 2021; Rampasek et al.,
2022; Maskey et al., 2022; Dwivedi et al., 2022; Kim et al.,
2022). However, one main drawback of using Laplacian
eigenvectors arises from the ambiguity problem. Such am-
biguity creates severe issues regarding training instability
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and poor generalization (Wang et al., 2022). While this
problem can be partially mitigated through techniques like
randomly flipping eigenvector signs or employing a canon-
ization method (Ma et al., 2023a), it becomes much more
complicated when eigenvalues have higher multiplicities.

Spectral invariant architectures. A better approach would
be to design GNNs that are invariant w.r.t. the choice of
eigenvectors. For example, SignNet (Lim et al., 2023) trans-
forms each eigenvector v to ϕ(v)+ϕ(−v) for some permu-
tation equivariant function ϕ, which guarantees the invari-
ance when all eigenvalues have a multiplicity of 1. In case
of higher multiplicity, BasisNet (Lim et al., 2023) achieves
spectral invariance for the first time by utilizing the projec-
tion matrix. Specifically, given an eigenvalue λ with mul-
tiplicity k, the projection matrix defined as

∑k
i=1 viv

⊤
i is

invariant w.r.t. the choice of (unit) eigenvectors v1, · · · ,vk

as long as they form an orthogonal basis of the eigenspace
associated with λ. Therefore, BasisNet simply feeds the
projection matrix into a permutation equivariant model
ρ : Rn×n → Rn (e.g., 2-IGN (Maron et al., 2019b)) to
generate spectral invariant node features ρ(

∑k
i=1 viv

⊤
i ).

The node features generated for different eigenspaces are
concatenated together. While the authors proved that Basis-
Net can universally represent any graph functions when ρ is
universal (e.g., using n-IGN), the empirical performance is
generally unsatisfactory when employing a practical model
ρ (i.e., 2-IGN). Recently, Huang et al. (2024) further gen-
eralized BasisNet by proposing SPE, which performs a
soft aggregation across different eigenspaces rather than
a hard separation implemented in BasisNet. Specifically,
let v1, · · · ,vn be an orthogonal basis of (unit) eigenvectors
associated with eigenvalues λ1, · · · , λn, respectively; then,
each 1-dimensional node feature generated by SPE has the
form ρ(

∑n
i=1 ψj(λi)viv

⊤
i ), where ψj : R → R is a pa-

rameterized function associated with feature dimension j.
The authors demonstrated that SPE can enhance the stability
and generalization of GNNs, yielding much better empirical
performance compared with BasisNet.

Spectral distances as invariant relative positional encod-
ing. In contrast to encoding Laplacian eigenvectors, an al-
ternative approach to achieving spectral invariance involves
utilizing (spectral) distances. Previous studies have identi-
fied various distances, spanning from the basic shortest path
distance (Feng et al., 2022; Abboud et al., 2022) to more ad-
vanced ones such as PageRank distance, resistance distance,
and distances associated with random walks and graph dif-
fusion (Li et al., 2020; Zhang et al., 2023b; Mialon et al.,
2021; Feldman et al., 2023). Notably, all of these distances
have a deep relation to the graph Laplacian while being
more interpretable than eigenvectors and not suffering from
ambiguity problems. The work of PEG (Wang et al., 2022)
designed an invariant relative positional encoding based on
Laplacian eigenvectors, which can also be treated as a dis-

tance between nodes. Distances can be easily encoded in
GNN models by either serving as edge features in message-
passing aggregations (Wang et al., 2022; Velingker et al.,
2023) or as relative positional encoding in Graph Transform-
ers (Ying et al., 2021; Zhang et al., 2023a; Ma et al., 2023b).

2.2. Expressive GNNs

The expressive power of GNNs has been studied in depth
in the recent few years. Early works (Xu et al., 2019; Mor-
ris et al., 2019) have pointed out a fundamental limitation
of GNNs by establishing an equivalence between message-
passing neural networks and the 1-WL graph isomorphism
test (Weisfeiler & Lehman, 1968). To develop more ex-
pressive models, several studies leveraged high-dimensional
variants of the WL test (Cai et al., 1992; Grohe, 2017). Rep-
resentative models include k-IGN (Maron et al., 2019b),
PPGN (Maron et al., 2019a), and k-GNN (Morris et al.,
2019; 2020). However, these models suffer from severe
computational costs and are generally not suitable in prac-
tice. Currently, one mainstream approach to designing sim-
ple, efficient, practical, and expressive architectures is the
Subgraph GNNs (Cotta et al., 2021; Bevilacqua et al., 2022;
2023; You et al., 2021; Zhang & Li, 2021; Zhao et al., 2022;
Kong et al., 2023). In particular, the expressive power of
Subgraph GNNs as well as their relation to the WL tests are
well-understood in recent studies (Frasca et al., 2022; Qian
et al., 2022; Zhang et al., 2023a; 2024). These results will
be used to analyze spectrally-enhanced GNNs in this paper.

2.3. Expressive power of spectral invariant GNNs

While spectrally-enhanced GNNs have been extensively
studied in the literature, much less is known about their
expressive power. Balcilar et al. (2021); Wang & Zhang
(2022) delved into the expressive power of specific spec-
tral filtering GNNs, but their expressive power is inherently
limited by 1-WL. Another line of works studied the expres-
sive power of the raw spectral invariants (e.g., projection
matrices) in relation to the Weisfeiler-Lehman algorithms
(Fürer, 1995; 2010; Rattan & Seppelt, 2023). However, their
analysis does not consider any aggregation or refinement
procedures over spectral invariants, and thus, it does not
provide explicit insights into the expressive power of the
corresponding GNNs. Lim et al. (2023) proposed a concrete
spectral invariant GNN called BasisNet, but their expres-
siveness analysis still largely focuses on raw eigenvectors
and projection matrices. To our knowledge, none of the
prior works addresses the crucial problem of whether/how
the design of GNN layers contributes to the model’s ex-
pressiveness. In this paper, we will answer this question
by showing that (i) a suitable aggregation procedure can
strictly improve the expressive power beyond raw spectral
features, and (ii) different aggregation schemes can lead to
considerable variations in the models’ expressiveness.
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3. Preliminaries
We use { } and {{ }} to denote sets and multisets, respec-
tively. Given a (multi)set S, its cardinality is denoted as |S|.
In this paper, we consider finite, undirected, simple graphs
with no isolated vertices. Let G = (VG, EG) be a graph
with vertex set VG and edge set EG, where each edge in
EG is represented as a set {u, v} ⊂ VG of cardinality two.
The neighbors of a vertex u ∈ VG is denoted as NG(u) =
{v ∈ VG : {u, v} ∈ EG}, and the degree of u is denoted
as degG(u) = |NG(u)|. Given vertex pair (u, v) ∈ V 2

G, de-
note by atpG(u, v) its atomic type, which encodes whether
u = v, {u, v} ∈ EG, or u and v are not adjacent. Given
vertex tuple u ∈ V k

G , the rooted graph Gu is a graph ob-
tained from G by marking vertices u1, · · · , uk sequentially.
We denote by G the set of all graphs and by Gk the set of all
rooted graphs marking k vertices. It follows that G0 = G.

Graph invariant. Two (rooted) graphs Gu, Hv ∈ Gk are
called isomorphic (denoted by Gu ≃ Hv) if there is a bijec-
tion f : VG → VH such that f(ui) = vi for all i ∈ [k],
and for all vertices w1, w2 ∈ VG, {w1, w2} ∈ EG iff
{f(w1), f(w2)} ∈ EH . A function f defined on graphs
Gk is called a graph invariant if it is invariant under isomor-
phism, i.e., f(Gu) = f(Hv) ifGu ≃ Hv . In the context of
graph learning, any GNN that outputs a graph representation
should be a graph invariant over G0; similarly, any GNN that
outputs a representation for each node/each pair of nodes
should be a graph invariant over G1/G2, respectively.

Graph vectors and matrices. Any real-valued graph in-
variant x defined over G1 corresponds to a graph vector
xG : VG → R when restricting on a specific graph G ∈ G.
Without ambiguity, we denote the elements in xG as xG(u)
for each u ∈ VG, which is equal to x(Gu). Similarly, any
real-valued graph invariant M defined over G2 corresponds
to a graph matrix MG : V 2

G → R when restricting on
G ∈ G, where element MG(u, v) equals to M(Guv). For
ease of reading, we will drop the subscript G when there is
no ambiguity of the graph used in context. One can general-
ize all basic linear algebras from classic vectors/matrices to
those defined on graphs. For example, the matrix product is
defined as (M1M2)(u, v) =

∑
w∈VG

M1(u,w)M2(w, v).
Several basic graph matrices include the adjacency matrix
A, degree matrix D, Laplacian matrix L := D −A, and
normalized Laplacian matrix L̂ := D−1/2LD−1/2. Note
that all these matrices are symmetric.

Graph spectra and projection. Let M be any symmetric
graph matrix (e.g., A, L, or L̂). The graph spectrum is
the set of all eigenvalues of M , which is a graph invariant
over G0. In addition to eigenvalues, the spectral informa-
tion of a graph also includes eigenvectors or eigenspaces,
which contain much more fine-grained information. Unfor-
tunately, eigenvectors have inherent ambiguity and cannot
serve as a valid graph invariant over G1. Instead, we fo-

cus on the eigenspaces characterized by their projection
matrices. Concretely, there is a unique projection matrix
Pi for each eigenvalue λi, which can be obtained via the
eigen-decomposition M =

∑
i∈[m] λiPi, where m is the

number of different eigenvalues. It follows that these pro-
jection matrices are symmetric, idempotent (P 2

i = Pi),
“orthogonal” (PiPj = O for all i ̸= j), and sum to identity
(
∑

i∈[m] Pi = I). There is a close relation between projec-
tion matrix Pi and any orthogonal basis of unit eigenvectors
{zi,1, · · · , zi,Ji

} that spans the eigenspace associated with
λi: specifically, Pi =

∑Ji

j=1 zi,jz
⊤
i,j . The projection matri-

ces naturally define a graph invariant PM over G2:

PM
G (u, v) := {{(λ1,P1(u, v)), · · · , (λm,Pm(u, v))}}.

We call PM the eigenspace projection invariant (associated
with graph matrix M ).

4. Eigenspace Projection Network
This section introduces a simple GNN design paradigm
based on the invariant PM defined above, called Eigenspace
Projection GNN (EPNN). The idea of EPNN is very simple:
PM
G (u, v) essentially encodes the relation between vertices

u and v in graph G and can thus be treated as a form of
“edge feature”. In light of this, one can naturally define a
message-passing GNN that updates the node representation
of each vertex u by iteratively aggregating the representa-
tions of other nodes v along with edge features associated
with (u, v). Formally, consider a K-layer EPNN and denote
by h

(l)
G (u) the node representation of u ∈ VG computed by

an EPNN after the l-th layer. Then, we can write the update
rule of each EPNN layer as follows:

h
(l+1)
G (u) = g(l+1)(h

(l)
G (u),

{{(h(l)
G (v),PM

G (u, v)) : v ∈ VG}}),
(1)

where all node representations h(0)
G (u) are the same at ini-

tialization. Here, g(l+1) can be any parameterized function
representing the (l+1)-th layer. In practice, it can be imple-
mented in various ways such as GIN-based aggregation (Xu
et al., 2019) or Graph Transformers (Ying et al., 2021), and
we highlight that it is particularly suited for Graph Trans-
formers as the graph becomes fully connected with this edge
feature. Finally, after the K-th layer, a global pooling is
performed over all vertices in the graph to obtain the graph
representation POOL({{h(K)

G (u) : u ∈ VG}}).

EPNN is well-defined. First, the graph representation com-
puted by an EPNN is permutation invariant w.r.t. vertices,
as PM is a graph invariant over G2. Second, EPNN does
not suffer from the eigenvector ambiguity problem, as PM

G

is uniquely determined by graph G. Later, we will show
that EPNN can serve as a simple yet unified framework for
studying the expressive power of spectral invariant GNNs.
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4.1. Expressive power of EPNN

The central question we would like to study is: what is the
expressive power of EPNN? To formally study this ques-
tion, this subsection introduces EPWL (Eigenspace Pro-
jection Weisfeiler-Lehman), an abstract color refinement
algorithm tailored specifically for graph isomorphism test.
Compared with Equation (1), in EPWL the node represen-
tation h

(l+1)
G (u) is replaced by a color χ(l+1)

G (u), and the
aggregation function g(l+1) is replaced by a perfect hash
function hash, as presented below:

χ
(l+1)
G (u)=hash(χ

(l)
G (u), {{(χ(l)

G (v),PM
G (u, v)) :v∈VG}}).

(2)
Initially, all node colors χ(0)

G (u) are the same. For each
iteration l, the color mapping χ(l)

G induces an equivalence
relation over vertex set VG, and the relation gets refined with
the increase of l. Therefore, with a sufficiently large number
of iterations l ≤ |VG|, the relations get stable. The graph
representation is then defined to be the multiset of stable
colors. EPWL distinguishes two non-isomorphic graphs iff
the computed graph representations are different. We have
the following result (which can be easily proved following
standard techniques, see e.g., Zhang et al. (2023a)):

Proposition 4.1. The expressive power of EPNN is bounded
by EPWL in terms of graph isomorphism test. Moreover,
with sufficient layers and proper functions g(l), EPNN can
be as expressive as EPWL.

In subsequent analysis, we will bound the expressive power
of EPWL by building relations to the standard Weisfeiler-
Lehman hierarchy. First, it is easy to see that EPWL is
lower bounded by the classic 1-WL defined below:

χ̃
(l+1)
G (u)=hash(χ̃

(l)
G (u), {{(χ̃(l)

G (v), atpG(u, v)) :v∈VG}}),
(3)

where χ̃(l)
G (u) is the 1-WL color of u in graphG after l itera-

tions. This result follows from the fact that the EPWL color
mapping χ(l+1) always induces a finer relation than the 1-
WL color mapping χ̃(l+1), as atpG(u, v) is fully encoded
in PM

G (u, v) (see Lemma A.5). Besides, it is easy to give
1-WL indistinguishable graphs that can be distinguished via
spectral information (see Figure 2). Putting these together,
we arrive at the following conclusion:

Proposition 4.2. For any graph matrix M ∈ {A,L, L̂},
the corresponding EPWL is strictly more expressive than
1-WL in distinguishing non-isomorphic graphs.

On the other hand, the question becomes more intriguing
when studying the upper bound of EPWL. Below, we will
approach the problem by building fundamental connections
between EPWL and an important class of expressive GNNs
known as Subgraph GNNs. The basic form of Subgraph
GNN is very simple: given a graph G, it treats G as a set of

rooted graphs {{Gu : u ∈ VG}} (known as node marking),
independently runs 1-WL for each Gu, and finally merges
their graph representations. We call the above algorithm
SWL, and the refinement rule can be formally written as

χ
S,(l+1)
G (u, v) = hash(χ

S,(l)
G (u, v),

{{(χS,(l)
G (u,w), atpG(v, w)) : w ∈ VG}}).

(4)

where χS,(l)
G (u, v) is the SWL color of vertex v in graph Gu

after l iterations, and the initial color χS,(0)
G (u, v) = I[u =

v] distinguishes the marked vertex u inGu. Recently, Zhang
et al. (2023a); Frasca et al. (2022) significantly generalized
Subgraph GNNs by enabling interactions among different
subgraphs and built a complete design space. Among them,
Zhang et al. (2023a) proposed the PSWL algorithm, which
adds a cross-graph aggregation to SWL as shown below:

χ
PS,(l+1)
G (u, v) = hash(χ

PS,(l)
G (u, v), χ

PS,(l)
G (v, v),

{{(χPS,(l)
G (u,w), atpG(v, w)) : w ∈ VG}}),

(5)

where χPS,(l)
G (u, v) is the PSWL color of (u, v) ∈ V 2

G after
l iterations. We now present our main result, which reveals
a fundamental connection between PSWL and EPWL:

Theorem 4.3. For any graph matrix M ∈ {A,L, L̂}, the
expressive power of EPWL is strictly bounded by PSWL in
distinguishing non-isomorphic graphs.

The proof of Theorem 4.3 is deferred to Appendix A.3,
which is based on the recent graph theory result established
by Rattan & Seppelt (2023). Specifically, given any graph
G and vertices u, v ∈ VG, each projection element Pi(u, v)
in PM is determined by the SWL stable color χS

G(u, v) for
any symmetric “equitable” matrix M defined in Rattan &
Seppelt (2023), and the eigenvalues are also determined
by the SWL graph representation. Notably, all matrices
studied in this paper (e.g., A,L, L̂) are equitable. Based
on this result, one may guess that EPWL can be bounded
by SWL. However, we show this is actually not the case
when further taking the message-passing aggregation into
account. The key technical contribution in our proof is to
relate the refinement procedure in EPWL to the additional
cross-graph aggregation χPS,(l)

G (v, v) in PSWL. To this end,
we show the stable color χPS

G (u, u) is strictly finer than the
stable color χG(u), thus concluding the proof.

Remark 4.4. Based on Theorem 4.3, one can also bound
the expressiveness of EPWL by other popular GNNs in
literature, such as SSWL (Zhang et al., 2023a), Local 2-
GNN (Morris et al., 2020; Zhang et al., 2024), ReIGN(2)
(Frasca et al., 2022), ESAN (Bevilacqua et al., 2022), and
GNN-AK (Zhao et al., 2022), as all these architectures are
more expressive than PSWL (Zhang et al., 2023a). However,
EPWL is incomparable to the vanilla SWL, where we give
counterexamples in Appendix A.8.
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The significance of Theorem 4.3 is twofold. First, it re-
veals a surprising relation between GNNs augmented with
spectral information and the ones grounded in structural
message-passing, which represents two seemingly unrelated
research directions. Our result thus offers insights into how
previously proposed expressive GNNs can encode spectral
information. Second, Theorem 4.3 points out a fundamental
limitation of EPNN. Indeed, combined with the result that
PSWL is strictly bounded by 3-WL (Zhang et al., 2023a;
2024), we obtain the concluding corollary:
Corollary 4.5. For any graph matrix M ∈ {A,L, L̂}, the
expressive power of EPWL is strictly bounded by 3-WL.

5. Distance GNNs and Graph Transformers
In this section, we will show that EPNN unifies all distance-
based spectral invariant GNNs. Here, we adopt the frame-
work proposed in Zhang et al. (2023b), known as General-
ized Distance (GD) GNNs. The aggregation formula of the
corresponding GD-WL can be written as follows:

χ
D,(l+1)
G (u) =hash(χ

D,(l)
G (u),

{{(χD,(l)
G (v), dG(u, v)) : v ∈ VG}}).

(6)

where χD,(l)
G (u) is the GD-WL color of vertex u ∈ VG after

l iterations, and d can be any valid distance metric. By
choosing different distances, GD-WL incorporates various
prior works listed below.

• Shorest-path distance (SPD). This is the most basic
distance metric and has been extensively used in de-
signing expressive GNNs (e.g., Li et al., 2020; Ying
et al., 2021; Abboud et al., 2022; Feng et al., 2022).

• Resistance distance (RD). It is defined to be the ef-
fective resistance between two nodes when treating the
graph as an electrical network where each edge has a re-
sistance of 1Ω. Recently, Zhang et al. (2023b) showed
that incorporating RD can significantly improve the
expressive power of GNNs for biconnectivity prob-
lems such as identifying cut vertices/edges. Besides,
RD has been extensively studied in other areas in the
GNN community, such as alleviating oversquashing
problems (Arnaiz-Rodrı́guez et al., 2022).

• Distances based on random walk. The hitting-time
distance (HTD) between two vertices u and v is defined
as the expected number of steps in a random walk start-
ing from u and reaching v for the first time, which is an
asymmetric distance. Instead, the commute-time dis-
tance (CTD) is defined as the expected number of steps
for a round-trip starting at u to reach v and then return
to u, which is a symmetrized version of HTD. These
distances are fundamental in graph theory and have
been used to develop/understand expressive GNNs
(Velingker et al., 2023; Zhang et al., 2023a).

• PageRank distance (PRD). Given weight sequence
γ0, γ1, · · · , the PageRank distance between vertices u
and v is defined as

∑∞
k=0 γkW

k(u, v), where W =
D−1A is the random walk probability matrix. It is
a generalization of the p-step landing probability dis-
tance, which corresponds to setting γp = 1 and γk = 0
for all k ̸= p. Li et al. (2020) first proposed to use
PRD-WL to boost the expressive power of GNNs.

• Other distances. We also study the (normalized) dif-
fusion distance (Coifman & Lafon, 2006) and the bi-
harmonic distance (Lipman et al., 2010). Due to space
limit, please refer to Appendix A.4 for more details.

Our main result is stated as follows:

Theorem 5.1. For any distance listed above, the expres-
sive power of GD-WL is upper bounded by EPWL with the
normalized graph Laplacian matrix L̂.

The proof of Theorem 4.3 is highly technical and is de-
ferred to Appendix A.4, with several important remarks
made as follows. For the case of SPD, the proof is based
on the key finding that PL̂

G(u, v) determines the shortest
path distance between u and v for any graph G and vertices
u, v ∈ VG. Unfortunately, this property does not trans-
fer to other distances listed above. For general distances,
the reason why EPWL is still more expressive lies in the
entire message-passing process (or color refinement proce-
dure). Concretely, the refinement continuously enriches the
information embedded in node colors χ(l)

G (v), so that the
tuple (χ

(l)
G (u), χ

(l)
G (v),PL̂

G(u, v)) eventually encompasses
sufficient information to determine any distance dG(u, v)
(although PL̂

G(u, v) alone may not determine it). Our proof
thus emphasizes the critical role of message-passing ag-
gregation in enhancing the expressiveness of spectral in-
formation. Note that this is also justified in the proof of
Theorem 4.3, where the message-passing process boosts the
expressive power of EPWL beyond SWL. Moreover, we
emphasize that these distances listed above cannot be well-
encoded when using weaker message-passing aggregations,
as will be elucidated in Section 6.2.

Implications. Theorem 5.1 has a series of consequences.
First, it implies that all the power of distance information
is possessed by EPWL. As an example, we immediately
have the following corollary based on the relation between
distance and biconnectivity of a graph established in Zhang
et al. (2023b), which significantly extends the classic re-
sult that Laplacian spectrum encodes graph connectivity
(Brouwer & Haemers, 2011).

Corollary 5.2. EPWL is fully expressive for encoding graph
biconnectivity properties, such as identifying cut vertices
and cut edges, determining the number of biconnected com-
ponents, and distinguishing graphs with non-isomorphic
block cut-vertex trees and block cut-edge trees.
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Remark 5.3. Corollary 5.2 offers a novel understanding
of the work by Zhang et al. (2023b) on why ESAN can
encode graph biconnectivity, thereby thoroughly unifying
their analysis. Essentially, this is just because ESAN is
more powerful than EPWL (Remark 4.4), and EPWL itself
is already capable of encoding both SPD and RD.
Remark 5.4. Combining Theorems 4.3 and 5.1 resolves an
open question posed by Zhang et al. (2023a), confirming
that PSWL can encode resistance distance.

As a second implication, combined with Corollary 4.5, The-
orem 5.1 highlights a fundamental limitation of all distance-
based GNNs as stated below:
Corollary 5.5. For any distance defined above, the expres-
sive power of GD-WL is strictly bounded by 3-WL.

Distances as positional encoding. Distances have also
found extensive application as positional encoding in GNNs
and GTs. For instance, Graphormer (Ying et al., 2021),
Graphormer-GD (Zhang et al., 2023b), and GraphiT (Mi-
alon et al., 2021) employ various distances as relative posi-
tional encoding in Transformer’s attention layers. Similarly,
GRIT (Ma et al., 2023b) employs multi-dimensional PRD
and a novel attention mechanism to further boost the per-
formance of GTs. The positional encoding devised in PEG
(Wang et al., 2022) can also be viewed as a function of a dis-
tance, with the architecture representing an instantiation of
GD-WL. These architectures are analyzed in Appendix A.7,
where we have the following concluding corollary:
Corollary 5.6. The expressive power of Graphormer,
Graphormer-GD, GraphiT, GRIT, and PEG are all bounded
by EPWL and strictly less expressive than 3-WL.

6. Spectral Invariant Graph Network
To gain an in-depth understanding of the expressive power of
EPNN, in this section we will switch our attention to a more
principled perspective by studying how to model spectral in-
variant GNNs based on the symmetry of projection matrices.
Consider a graph G with vertex set VG = {1, · · · , n}. We
can group all spectral information ofG into a 4-dimensional
tensor P ∈ Rm×n×n×2, where Pi,u,v,1 = λi encodes the
i-th eigenvalue and Pi,u,v,2 = Pi(u, v) encodes the (u, v)-
th element of the projection matrix Pi associated with λi.
From this representation, one can easily figure out the sym-
metry group associated with P, which is the product group
Sm × Sn of two permutation groups Sm and Sn represent-
ing two independent symmetries — eigenspace symmetry
and graph symmetry. For any element (σ, τ) ∈ Sm × Sn, it
acts on P in the following way:

[(σ, τ) · P]i,u,v,j = Pσ−1(i),τ−1(u),τ−1(v),j . (7)

We would like to design a GNN model f that is invari-
ant under Sm × Sn, i.e., f((σ, τ) · P) = f(P) for all

(σ, τ) ∈ Sm × Sn. Interestingly, this setting precisely cor-
responds to a specific case of the DSS framework proposed
in Maron et al. (2020); Bevilacqua et al. (2022). This of-
fers a theoretically inspired approach to designing powerful
invariant architectures, as we will detail below.

6.1. Spectral IGN

In the DSS framework, the neural network f is formed by
stacking a series of equivariant linear layers L(i) interleaved
with elementwise non-linear activation ϕ, culminating in
final pooling layers:

f =M ◦ ϕ ◦ g ◦ ϕ ◦ L(K) ◦ ϕ ◦ · · · ◦ ϕ ◦ L(1), (8)

where each L(l) : Rm×n×n×dl−1 → Rm×n×n×dl is equiv-
ariant w.r.t. Sm × Sn, i.e., for all (σ, τ) ∈ Sm × Sn,

L(l)((σ, τ) · X) = (σ, τ) · L(l)(X) ∀X ∈ Rm×n×n×dl−1 ;

g : Rm×n×n×dK → RdK is an invariant pooling layer (e.g.,
average pooling or max pooling), and M : RdK → RdK+1

is a multi-layer perceptron. Here, the key question lies in
designing linear layers L(l) equivariant to the product group
Sm×Sn. Maron et al. (2020) theoretically showed that L(l)

can be decomposed in the following way:

[L(l)(X)]i = L̃
(l)
1 (Xi) + L̃

(l)
2

∑
i∈[m]

Xi

 , (9)

where L̃(l)
1 , L̃

(l)
2 : Rn×n×dl−1 → Rn×n×dl are two linear

functions equivariant to the graph symmetry modeled by
Sn. This decomposition is significant as the design space of
equivariant linear layers for graphs has been fully character-
ized in Maron et al. (2019b), known as 2-IGN. We thus call
our model (Equations (8) and (9)) Spectral IGN.

The central question we would like to study is: what is the
expressive power of Spectral IGN? Surprisingly, we have
the following main result:
Theorem 6.1. The expressive power of Spectral IGN is
bounded by EPWL. Moreover, with sufficient layers and
proper network parameters, Spectral IGN is as expressive
as EPWL in distinguishing non-isomorphic graphs.

The proof of Theorem 6.1 is given in Appendix A.5. It
offers an interesting and alternative view for theoretically
understanding the EPNN designing framework and justify-
ing its expressiveness. Moreover, the connection to Spectral
IGN allows us to bridge EPNN with important architectural
variants as we will discuss in the next subsection.
Remark 6.2. We remark that there is a variant of Spectral
IGN, where the pooling layer g is decomposed into two pool-
ing layers via g = g(2)◦ϕ◦g(1) with g(1) : Rm×n×n×dK →
Rn×n×dK and g(2) : Rn×n×dK → RdK pooling layers for
symmetry groups Sm and Sn, respectively. This variant has
the same expressive power and Theorem 6.1 still holds.
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6.2. Siamese IGN

Let us consider an interesting variant of Spectral IGN,
dubbed Siamese IGN (Maron et al., 2020), where the net-
work processes each eigenspace Pi (i ∈ [m]) independently
using a “Siamese” 2-IGN without aggregating over different
eigenspaces. This corresponds to replacing Equation (9) by
[L(l)(X)]i = L̃(l)(Xi) with L̃(l) : Rn×n×dl−1 → Rn×n×dl

a 2-IGN layer. Siamese IGN is interesting because it is a
special type of Spectral IGN that is invariant to a strictly
larger group formed by the wreath product Sm ≀ Sn (see
Maron et al., 2020; Wang et al., 2020). Moreover, it is
closely related to a prior architecture called BasisNet (Lim
et al., 2023, see Appendix A.6 for a detailed description),
as BasisNet also processes each eigenspace independently
without interaction. To elaborate on this connection, con-
sider a variant of Siamese IGN, dubbed Weak Spectral IGN,
which is obtained from Siamese IGN by decomposing the
pooling layer according to Remark 6.2. Note that unlike
Siamese IGN, Weak Spectral IGN is no longer invariant to
group Sm ≀ Sn. We have the following result:

Proposition 6.3. Let the top graph encoder used in BasisNet
be a 1-layer message-passing GNN. Then, the expressive
power of BasisNet is bounded by Weak Spectral IGN.

On the other hand, a more fundamental question lies in the
relation between Siamese IGN, Weak Spectral IGN, and
Spectral IGN. Our main result states that there are strict
expressivity gaps between them:

Theorem 6.4. Siamese IGN is strictly less expressive than
Weak Spectral IGN. Moreover, Weak Spectral IGN is strictly
less expressive than Spectral IGN.

Discussions with BasisNet. (i) Combined with previous
results, one can prove that EPNN is strictly more expressive
than BasisNet2. This result is particularly striking, as EPNN
only stores node representations while BasisNet stores a
representation for each 3-tuple (i, u, v) ∈ [m]× VG × VG,
whose memory complexity scales like O(|VG|3). (ii) Com-
bined with Corollary 4.5, we conclude that the expressive
power of BasisNet is also strictly bounded by 3-WL.

Discussions with SPE. We next turn to the SPE architecture
(Huang et al., 2024). Surprisingly, while SPE was origi-
nally designed to improve the stability and generalization
of spectral invariant GNNs (see Section 2.1), we found the
soft aggregation across different eigenspaces simultaneously
enhances the network’s expressive power. Indeed, we have:

Proposition 6.5. When 2-IGN is used to generate node fea-
tures in SPE and the top graph encoder is a message-passing
GNN, the expressive power of the whole SPE architecture is
as expressive as Spectral IGN.

2This holds when using multi-layer message-passing graph
encoder by following the construction in Theorem 6.4.

Proposition 6.5 theoretically justifies the design of SPE.
Combined with previous results, we conclude that SPE is
strictly more expressive than BasisNet when using the same
2-IGN backbone, while being strictly bounded by 3-WL.

Delving more into the gap. We remark that the gap between
Siamese IGN and Spectral IGN is not just theoretical; it
also reveals significant limitations of the siamese design in
practical aspects. Specifically, we identify that both Siamese
IGN and Weak Spectral IGN cannot fully encode any graph
distance listed in Section 5 (even the basic SPD), as stated
in the following theorem:

Theorem 6.6. For any distance listed in Section 5, there
exist two non-isomorphic graphs which GD-WL can distin-
guish but Weak Spectral IGN (applied to matrix L̂) cannot.

On the other hand, we have proved that EPNN applied to ma-
trix L̂ is more powerful than GD-WL. This contrast reveals
the crucial role of allowing interaction between eigenspaces
for enhancing model’s expressiveness.

6.3. Extending to higher-order spectral invariant GNNs

The DSS framework presented in Section 6.1 is quite gen-
eral. In principle, any Sn-equivariant graph layer E can be
used to build a GNN model f invariant to Sm×Sn. This can
be achieved by making L̃(l)

1 , L̃
(l)
2 in Equation (9) two instan-

tiations of E. In this subsection, we will study higher-order
spectral invariant GNNs where the used graph encoders are
beyond 2-IGN. We consider two standard settings for choos-
ing highly expressive graph encoders: the k-IGN and the
k-order Folklore GNN (Maron et al., 2019b;a; Azizian et al.,
2021). We call the resulting models Spectral k-IGN and
Spectral k-FGNN, respectively. Unfortunately, our results
are negative for all of these higher-order spectral invariant
GNNs:

Proposition 6.7. For all k > 2, Spectral k-IGN is as expres-
sive as k-WL. Similarly, for all k ≥ 2, Spectral k-FGNN is
as expressive as k-FWL.

We give a proof in Appendix A.7. Combined with the
results that k-IGN is already as expressive as k-WL and
k-FGNN is already as expressive as k-FWL (Maron et al.,
2019a; Azizian et al., 2021; Geerts & Reutter, 2022), we
conclude that commonly-used spectral information does not
help when combined with highly powerful GNN designs.

Discussions on higher-order spectral features. The above
negative result further inspires us to think about the follow-
ing question: is it still possible to use spectral information to
enhance the expressive power of higher-order GNNs? Here,
we offer some possible directions towards this goal. The
crux here is to use higher-order spectral features. Specif-
ically, all the spectral information considered in previous
sections (e.g., distance or projection matrices) is at most
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2-dimensional. Can we generalize these spectral features
into multi-dimensional tensors? This is indeed possible: for
example, a simple approach is to use symmetric powers
of a graph (also called the token graph), which has been
widely studied in literature (Audenaert et al., 2007; Alzaga
et al., 2010; Barghi & Ponomarenko, 2009; Fabila-Monroy
et al., 2012). The k-th symmetric power of graph G, de-
noted by G{k}, is the graph formed by vertex set VG{k} :=
{S ⊂ VG : |S| = k} and edge set EG{k} := {{S1, S2} :
S1, S2 ∈ VG{k} , S1△S2 ∈ EG}. Here, each element in
VG{k} is a multiset of cardinality k, and two multisets are
connected if their symmetric difference is an edge. In this
way, one can easily define higher-order spectral information
(λi,Pi) ∈ R× Rn2k

based on PM
G{k} = {(λi,Pi)}mi=1 (the

eigenspace projection invariant associated with the k-th to-
ken graph), e.g., by setting Pi(u1, · · · , uk, v1, · · · , vk) =
Pi({{u1, · · · , uk}}, {{v1, · · · , vk}}). The higher-order spec-
tral information can then serve as initial features of any
higher-order GNN that computes representations for each
vertex tuple, such as 2k-IGN.

Several works have pointed out the strong expressive power
of higher-order spectral features. Audenaert et al. (2007)
verified that the spectra of the 3rd symmetric power are al-
ready not less expressive than 3-WL. Moreover, Alzaga et al.
(2010); Barghi & Ponomarenko (2009) upper bounds the
expressive power of the spectra of the k-th symmetric power
by 2k-FWL. These results imply that using higher-order
projection tensors is a promising approach to further boost-
ing the expressive power of higher-order GNNs. We leave
the corresponding architectural design and expressiveness
analysis as an open direction for future study.

7. Experiments
In this section, we empirically evaluate the expressive power
of various GNN architectures studied in this paper. We adopt
the BREC benchmark (Wang & Zhang, 2023), a comprehen-
sive dataset for comparing the expressive power of GNNs.
We focus on the following GNNs that are closely related to
this paper: (i) Graphormer (Ying et al., 2021) (a distance-
based GNN that uses SPD, see Section 5); (ii) NGNN
(Zhang & Li, 2021) (a variant of subgraph GNN, see Sec-
tion 4.1); (ii) ESAN (Bevilacqua et al., 2022) (an advanced
subgraph GNN that adds cross-graph aggregations, see Sec-
tion 4.1); (iv) PPGN (Maron et al., 2019a) (a higher-order
GNN, see Section 6.3); (v) EPNN (this paper). We follow
the same setup as in Wang & Zhang (2023) in both training
and evaluation. For all baseline GNNs, the reported num-
bers are directly borrowed from Wang & Zhang (2023); For
EPNN, we run the model 10 times with different seeds and
report the average performance3.

3Our code can be found in the following github repo:
https://github.com/LingxiaoShawn/EPNN-Experiments

Table 1. Empirical performance of different GNNs on BREC.
Model WL class Basic Reg Ext CFI Total

Graphormer SPD-WL 26.7 10.0 41.0 10.0 19.8
NGNN SWL 98.3 34.3 59.0 0 41.5
ESAN GSWL 96.7 34.3 100.0 15.0 55.2
PPGN 3-WL 100.0 35.7 100.0 23.0 58.2
EPNN EPWL 100.0 35.7 100.0 5.0 53.8

The results are presented in Table 1. From these results, one
can see that the empirical performance of EPNN matches its
theoretical expressivity in our established hierarchy. Con-
cretely, EPNN performs much better than Graphormer (SPD-
WL) and NGNN (SWL), while underperforming ESAN
(GS-WL) and PPGN (3-WL).

8. Conclusion
This paper investigates the expressive power of spectral
invariant GNNs and related models. It establishes an expres-
siveness hierarchy between current models using a unifying
framework we propose. We also draw a surprising con-
nection to a recently proposed class of highly expressive
GNNs, demonstrating that specific instances from this class
(e.g., PSWL) upper bound all spectral invariant GNNs. This
implies spectral invariant GNNs are strictly less expressive
than the 3-WL test. Furthermore, we show spectral projec-
tion features and spectral distances do not provide additional
expressivity benefits when combined with more powerful
high-order architectures. We give a graphical illustration of
all of these results in Figure 1.

Open questions. There are still several promising direc-
tions that are not fully explored in this paper. First, an
interesting question lies in how the choice of graph matrix
M affects the expressive power of spectral invariant GNNs.
We suspect that using (normalized) Laplacian matrix can
be more beneficial than using the adjacency matrix, and the
former is strictly more expressive. We have given implicit
evidence showing that EPNN with matrix L̂ can encode all
distances studied in this paper; however, we were unable
to demonstrate the same result for other graph matrices.
Besides, another important open question is the expressive
power of higher-order spectral features, such as the one
obtained by using token graphs. It is still unknown about
a tight lower/upper bound of their expressive power in re-
lation to higher-order WL tests. Moreover, investigating
the refinements over higher-order spectral features and the
corresponding GNNs could be a fantastic open direction.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.
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A. Proofs
This section presents all the missing proofs in this paper. First, Appendix A.1 defines basic concepts and introduces our
proof technique that will be frequently used in subsequent analysis. Then, Appendix A.2 gives several basic results and
proves Proposition 4.2. The formal proofs of our main theorems, including Theorems 4.3, 5.1 and 6.1 and Proposition 6.3,
are presented in Appendices A.3 to A.6, respectively. Discussion with other architectures, such as GRIT, PEG, Spectral
PPGN, and Spectral k-IGN are presented in Appendix A.7. Finally, Appendix A.8 reveals the gaps between each pair of
architectures in our paper, leading to the proofs of Theorems 6.4 and 6.6.

A.1. Preliminary

We first introduce some basic terminologies and concepts for general color refinement algorithms.

Color mapping. Any graph invariant over Gk is called a k-dimensional color mapping. We use Mk to denote the family
of all k-dimensional color mappings. For a color mapping χ ∈ Mk, our interest lies not in the specific values of the
function (say χG(u) for some u ∈ V k

G), but in the equivalence relations among different values. Formally, each color
mapping χ ∈ Mk defines an equivalence relation

χ∼ between rooted graphs Gu, Hv marking k vertices, where Gu χ∼ Hv

iff χG(u) = χH(v). For any graph G ∈ G, the equivalence relation
χ∼ induces a partition QG(χ) over the set V k

G .

Given two color mappings χ1, χ2 ∈ Mk, we say χ1 is equivalent to χ2, denoted as χ1 ≡ χ2, ifGu χ1∼ Hv ⇐⇒ Gu χ2∼ Hv

for all graphs G,H ∈ G and vertices u ∈ V k
G , v ∈ V k

H . One can see that “≡” forms an equivalence relation over Mk. We
say χ1 is finer than χ2, denoted as χ1 ⪯ χ2, if Gu χ1∼ Hv =⇒ Gu χ2∼ Hv for all graphs G, H and vertices u ∈ V k

G ,
v ∈ V k

H . One can see that “⪯” forms a partial relation on Mk. We say χ1 is strictly finer than χ2, denoted as χ1 ≺ χ2, if
χ1 ⪯ χ2 and χ1 ̸≡ χ2.

Color refinement. A function T : Mk → Mk′ that maps from one color mapping to another is called a color transformation.
Throughout this paper, we assume that all color transformations are order-preserving, i.e., for all χ1, χ2 ∈ Mk, T (χ1) ⪯
T (χ2) if χ1 ⪯ χ2. An order-preserving color transformation T : Mk → Mk is further called a color refinement if
T (χ) ⪯ χ for all χ ∈ Mk. For any color refinement T , we denote by T t the t-th function power of T , i.e., the function
composition T ◦ · · · ◦ T with t occurrences of T . Note that if T is a color refinement, so is T t for all t ≥ 0.

Given two color transformations T1, T2 : Mk → Mk′ , we say T1 is as expressive as T2, denoted by T1 ≡ T2, if
T1(χ) ≡ T2(χ) for all χ ∈ Mk. We say T1 is more expressive than T2, denoted by T1 ⪯ T2, if T1(χ) ⪯ T2(χ) for all
χ ∈ Mk. We say T1 is strictly more expressive than T2, denoted by T1 ≺ T2, if T1 is more expressive than T2 and not
as expressive as T2. As will be clear in our subsequent proofs, the expressive power of GNNs is compared through an
examination of their color transformations.

For any color refinement T : Mk → Mk, we define the corresponding stable refinement T∞ : Mk → Mk as follows.

For any χ ∈ Mk, define the color mapping T∞(χ) such that Gu T∞(χ)∼ Hv iff Gu T t(χ)∼ Hv where t ≥ 0 is the
minimum integer satisfying QG(T

t(χ)) = QG(T
t+1(χ)) and QH(T t(χ)) = QH(T t+1(χ)). Note that T∞ is well-defined

since t always exists (one can see that QG(T
t(χ)) = QG(T

t+1(χ)) and QH(T t(χ)) = QH(T t+1(χ)) holds for all
t ≥ max(|VG|k, |VH |k) when T is a color refinement), and it is easy to see that T∞ is a color refinement. We call T∞

stable because (T ◦ T∞)(χ) ≡ T∞(χ) holds for all χ ∈ Mk, i.e., T ◦ T∞ ≡ T∞.

A color refinement algorithm A is formed by the composition of a stable refinement T∞ : Mk → Mk with a color
transformation U : Mk → M0, called the pooling transformation. It can be formally written as A := U ◦ T∞. Below, we
will derive several useful properties for general color refinement algorithms. These properties will be frequently used to
compare the expressive power of different algorithms.

Proposition A.1. Let T1, T2 : Mk1
→ Mk2

, U1, U2 : Mk2
→ Mk3

be color transformations. If T1 ⪯ T2 and U1 ⪯ U2,
then U1 ◦ T1 ⪯ U2 ◦ T2.

Proof. Since T1 ⪯ T2, T1(χ) ⪯ T2(χ) holds for all χ ∈ Mk1
. Since U2 is order-preserving, U2(T1(χ)) ⪯ U2(T2(χ))

holds for all χ ∈ Mk1 . Finally, since U1 ⪯ U2, U1(T1(χ)) ⪯ U2(T1(χ)) holds for all χ ∈ Mk1 . Combining the above
inequalities yields the desired result.

Proposition A.2. Let T1 : Mk1 → Mk1 and T2 : Mk2 → Mk2 be color refinements, and let U1 : Mk0 → Mk1 and
U2 : Mk1 → Mk2 be color transformations. If T2 ◦ U2 ◦ T∞

1 ◦ U1 ≡ U2 ◦ T∞
1 ◦ U1, then U2 ◦ T∞

1 ◦ U1 ⪯ T∞
2 ◦ U2 ◦ U1.
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Proof. If T2 ◦U2 ◦T∞
1 ◦U1 ≡ U2 ◦T∞

1 ◦U1, then by definition of stable refinement, T∞
2 ◦U2 ◦T∞

1 ◦U1 ≡ U2 ◦T∞
1 ◦U1.

Since T∞
1 is a refinement, U2 ◦ T∞

1 ◦ U1 ⪯ T∞
2 ◦ U2 ◦ U1 according to Proposition A.1. We thus obtain the desired

result.

Corollary A.3. Let T1, T2 : Mk → Mk be color refinements. Then, T1 ⪯ T2 implies that T2 ◦ T∞
1 ≡ T∞

1 .

Proof. Since T1 ⪯ T2, T1◦T∞
1 ⪯ T2◦T∞

1 by Proposition A.1. Namely, T∞
1 ⪯ T2◦T∞

1 . On the other hand, T2◦T∞
1 ⪯ T∞

1

since T2 is a color refinement. Combined the two directions yields the desired result.

The above two propositions will play a crucial role in our subsequent proofs. Below, we give a simple example to
illustrate how these results can be used to give a proof that a GNN model M1 is more expressive than another model
M2. Suppose T1, T2 : Mk → Mk are color refinements corresponding to one GNN layer of M1 and M2, respectively,
and let U : Mk → M0 be the color transformation corresponding to the final pooling layer in M1 and M2. Then,
the color refinement algorithms associated with M1 and M2 can be represented by U ◦ T∞

1 and U ◦ T∞
2 , respectively.

Concretely, denote by χ0 the initial color mapping in the two algorithms, e.g., the constant mapping where χ0
G(u) is

the same for all Gu ∈ Gk. It follows that the graph representation of a graph G computed by the two algorithms is
[U(T1(χ

0))](G) and [U(T2(χ
0))](G), respectively. Then, The statement “M1 is more expressive than M2” means that

[U(T1(χ
0))](G) = [U(T1(χ

0))](H) =⇒ [U(T2(χ
0))](G) = [U(T2(χ

0))](H) for all graphs G,H ∈ G.

To prove that M1 is more expressive than M2, it suffices to prove that T2 ◦ T∞
1 is as expressive as T∞

1 . Indeed, this is
actually a simple consequence of Propositions A.1 and A.2. If T2 ◦ T∞

1 is as expressive as T∞
1 , then T∞

1 is more expressive
than T∞

2 (Proposition A.2), and thus U ◦ T∞
1 is more expressive than U ◦ T∞

2 (Proposition A.1), yielding the desired result.

A.2. Basic results

This subsection proves several basic results for EPWL. We begin by proving that EPWL is strictly more expressive than 1-WL
(Proposition 4.2). We will first restate Proposition 4.2 using the color refinement terminologies defined in Appendix A.1.
We need the following color transformations:

• EPWL color refinement. Define TEP,M : M1 → M1 such that for any color mapping χ ∈ M1 and rooted graph Gu,

[TEP,M (χ)]G(u) = hash(χG(u), {{(χG(v),PM
G (u, v)) : v ∈ VG}}). (10)

• 1-WL color refinement. Define TWL : M1 → M1 such that for any color mapping χ ∈ M1 and rooted graph Gu,

[TWL(χ)]G(u) = hash(χG(u), {{(χG(v), atpG(u, v)) : v ∈ VG}}). (11)

• Global pooling. Define TGP : M1 → M0 such that for any color mapping χ ∈ M1 and graph G,

[TGP(χ)](G) = hash({{χG(u) : u ∈ VG}}). (12)

Equipped with the above color transformations, Proposition 4.2 is equivalent to the following:

Proposition A.4. For any graph matrix M ∈ {A,L, L̂}, TGP ◦ T∞
EP,M ⪯ TGP ◦ T∞

WL.

Based on Propositions A.1 and A.2, it suffices to prove that TEP,M ⪯ TWL.

Lemma A.5. For any graph matrix M ∈ {A,L, L̂}, PM ⪯ atp. Here, the atomic type operator atp ∈ M2 is regarded as
a 2-dimensional color mapping. This readily implies that TEP,M ⪯ TWL.

Proof. It suffices to prove that, for any two graphs G,H ∈ G and vertices u, v ∈ VG, x, y ∈ VH , if PM
G (u, v) = PM

H (x, y),
then (a) u = v ⇐⇒ x = y; (b) {u, v} ∈ EG ⇐⇒ {x, y} ∈ EH .

Item (a) simply follows from the fact that u = v iff
∑

(λ,P (u,v))∈PM
G (u,v) P (u, v) = 1 (by definition of eigen-

decomposition). Item (b) simply follows from the fact that {u, v} ∈ EG iff
∑

(λ,P (u,v))∈PM
G (u,v) λP (u, v) ̸= 0 and

u ̸= v (which holds for all matrices M ∈ {A,L, L̂}).
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Figure 2. A pair of counterexample graphs
that are indistinguishable by 1-WL but can
be distinguished via EPWL.

Strict sepatation. It is easy to give a pair of counterexample graphs G,H
that are indistinguishable by 1-WL but can be distinguished via EPWL. We
give such a pair of graphs in Figure 2. One can check that the two graphs has
difference set of eigenvalues no matter what graph matrix M ∈ {A,L, L̂} is
used in EPWL.

We next show that EPWL is more expressive than spectral positional encoding
using Laplacian eigenvectors. We will prove the following result:

Proposition A.6. Given any graph matrix M ∈ {A,L, L̂} and any initial color mapping χ0 ∈ M, let χ1 = TEP,M (χ0)
be the EPWL color mapping after the first iteration. Then, for any graphs G,H ∈ G and vertices u ∈ VG, x ∈ VH , if
χ1
G(u) = χ1

H(v), then PM
G (u, u) = PM

H (x, x).

Proof. Let G,H ∈ G and vertices u ∈ VG, x ∈ VH satisfy that χ1
G(u) = χ1

H(v). Then,

{{(χ0
G(v),PM

G (u, v)) : v ∈ VG}} = {{(χ0
H(y),PM

H (x, y)) : y ∈ VH}}. (13)

Note that for any u, v ∈ VG and x, y ∈ VH , if PM
G (u, v) = PM

H (x, y), then u = v ⇐⇒ x = y (Lemma A.5). Therefore,
Equation (13) implies that PM

G (u, u) = PM
H (x, x).

A.3. Proof of Theorem 4.3

This subsection aims to prove Theorem 4.3. We will first restate Theorem 4.3 using the color refinement terminologies
defined in Appendix A.1. We need the following color transformations:

• EPWL color refinement. Define TEP,M : M1 → M1 such that for any color mapping χ ∈ M1 and rooted graph Gu,

[TEP,M (χ)]G(u) = hash(χG(u), {{(χG(v),PM
G (u, v)) : v ∈ VG}}). (14)

• SWL color refinement. Define TS : M2 → M2 such that for any color mapping χ ∈ M2 and rooted graph Guv ,

[TS(χ)]G(u, v) = hash(χG(u, v), {{(χG(u,w), atpG(v, w)) : w ∈ VG}}). (15)

• PSWL color refinement. Define TPS : M2 → M2 such that for any color mapping χ ∈ M2 and rooted graph Guv ,

[TPS(χ)]G(u, v) = hash(χG(u, v), χG(v, v), {{(χG(u,w), atpG(v, w)) : w ∈ VG}}). (16)

• Global refinement. Define TGu, TGv : M2 → M2 such that for any color mapping χ ∈ M2 and rooted graph Guv ,

[TGu(χ)]G(u, v) = hash(χG(u, v), {{χG(u,w) : w ∈ VG}}), (17)
[TGv(χ)]G(u, v) = hash(χG(u, v), {{χG(w, v) : w ∈ VG}}). (18)

• Diagonal refinement. Define TDu, TDv : M2 → M2 such that for any color mapping χ ∈ M2 and rooted graph Guv ,

[TDu(χ)]G(u, v) = hash(χG(u, v), χG(u, u)), (19)
[TDv(χ)]G(u, v) = hash(χG(u, v), χG(v, v)). (20)

• Node marking refinement. Define TNM : M2 → M2 such that for any color mapping χ ∈ M2 and rooted graph
Guv ,

[TNM(χ)]G(u, v) = hash(χG(u, v), I[u = v]). (21)

• Lift transformation. Define T↑ : M1 → M2 such that for any color mapping χ ∈ M1 and rooted graph Guv ,

[T↑(χ)]G(u, v) = χG(v). (22)

• Subgraph pooling. Define TSP : M2 → M1 such that for any color mapping χ ∈ M2 and rooted graph Gu,

[TSP(χ)]G(u) = hash({{χG(u, v) : v ∈ VG}}). (23)
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• Global pooling. Define TGP : M1 → M0 such that for any color mapping χ ∈ M1 and graph G,

[TGP(χ)](G) = hash({{χG(u) : u ∈ VG}}). (24)

Note that TPS ⪯ TS, TPS ⪯ TGu, and TPS ⪯ TDv. Equipped with the above color transformations, Theorem 4.3 is equivalent
to the following:
Theorem A.7. For any graph matrix M ∈ {A,L, L̂}, TGP ◦ TSP ◦ T∞

PS ◦ TNM ◦ T↑ ⪯ TGP ◦ T∞
EP,M .

We will decompose the proof into a set of lemmas. First, we leverage a recent breakthrough in graph theory established by
Rattan & Seppelt (2023). We restate their result in our context as follows.
Definition A.8. Define a family of graph matrices E as follows, called equitable matrices:

a) Base matrices: the identify matrix I , all-one matrix J , adjacency matrix A, degree matrix D are all equitable;

b) Algebraic property: for any equitable matrices M1,M2 ∈ E, M1 +M2, cM1,M1M2 ∈ E, where c ∈ C can be any
constant.

c) Spectral property: for any M ∈ E and λ ∈ C, let PM
λ be the projection onto the eigenspace spanned by the

eigenvectors of M with eigenvalue λ (PM
λ = O if λ is not an eigenvalue of M ). Then, PM

λ ∈ E.

Based on Definition A.8, we readily have the following proposition:
Proposition A.9. The Laplacian matrix L and the normalized Laplacian matrix L̂ are equitable.

Rattan & Seppelt (2023) proved the following main result:
Theorem A.10. For any M ∈ E, T∞

S (TNM(χ
C)) ⪯ M , where χC ∈ M2 is the constant color mapping.

Corollary A.11. For any symmetric equitable matrix M ∈ E and initial color mapping χ0 ∈ M1, (T∞
PS ◦TNM ◦T↑)(χ0) ⪯

PM .

Proof. For any symmetric equitable matrix M ∈ E and any λ ∈ R, PM
λ ∈ E holds by Definition A.8(c). Therefore,

Theorem A.10 implies that T∞
S (TNM(χ

C)) ⪯ PM
λ , i.e., T∞

PS(TNM(χ
C)) ⪯ PM

λ . Next, note that PM
λ ̸= O iff λ is an

eigenvalue of M . Therefore, the graph invariant ∆ over G2 defined by ∆G(u, v) = I[λ is an eigenvalue of M ] satisfies that
(TGu ◦TDv ◦TGu ◦T∞

PS ◦TNM)(χC)) ⪯ ∆. Since TGu ◦TDv ◦TGu ◦T∞
PS ≡ T∞

PS (based on the facts TPS ⪯ TGu and TPS ⪯ TDv

and Corollary A.3), we have T∞
PS(TNM(χ

C)) ⪯ ∆. By considering all λ ∈ R, we obtain that T∞
PS(TNM(χ

C)) ⪯ PM . Finally,
noting that T∞

PS ◦ TNM is order-preserving and T↑(χ0) ⪯ χC, we have (T∞
PS ◦ TNM ◦ T↑)(χ0) ⪯ PM for all χ0 ∈ M1.

We are now ready to prove Theorem A.7.

Proof of Theorem A.7. Note that TSP ◦TNM ◦T↑ is a color refinement, and thus T∞
EP,M ◦TSP ◦TNM ◦T↑ ⪯ T∞

EP,M . To prove
that TGP ◦TSP ◦T∞

PS ◦TNM ◦T↑ ⪯ TGP ◦T∞
EP,M , it suffices to prove that TSP ◦T∞

PS ◦TNM ⪯ T∞
EP,M ◦TSP ◦TNM according to

Proposition A.1. Moreover, based on Proposition A.2, it suffices to prove that TEP,M ◦ TSP ◦ T∞
PS ◦ TNM ≡ TSP ◦ T∞

PS ◦ TNM.

Let χ0 ∈ M2 be any initial color mapping and let χ = T∞
PS(TNM(χ0)). Pick any graphs G,H and vertices u ∈ VG, x ∈ VH

such that [TSP(χ)]G(u) = [TSP(χ)]H(x), i.e.,

{{χG(u, v) : v ∈ VG}} = {{χH(x, y) : y ∈ VH}}. (25)

Invoking Corollary A.11 obtains that

{{(χG(u, v),PM
G (u, v)) : v ∈ VG}} = {{(χH(x, y),PM

H (x, y)) : y ∈ VH}}. (26)

Since TPS ⪯ TDv, based on Corollary A.3 we have TDv ◦ T∞
PS ≡ T∞

PS , i.e., χ ≡ TDv(χ). Therefore,

{{(χG(v, v),PM
G (u, v)) : v ∈ VG}} = {{(χH(y, y),PM

H (x, y)) : y ∈ VH}}. (27)

Since TPS ⪯ TGu, we similarly have χ ≡ TGu(χ). Therefore,

{{({{χG(v, w) : w ∈ VG}},PM
G (u, v)) : v ∈ VG}} = {{({{χH(y, z) : z ∈ VH}},PM

H (x, y)) : y ∈ VH}}. (28)

Combining with Equations (25) and (28), we have TEP,M (TSP(χ)) ≡ TSP(χ). Finally, noting that χ0 is arbitrary, we
conclude that TEP,M ◦ TSP ◦ T∞

PS ◦ TNM ≡ TSP ◦ T∞
PS ◦ TNM.
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A.4. Proof of Theorem 5.1

This subsection aims to prove Theorem 5.1. We will first restate Theorem 5.1 using the color refinement terminologies
defined in Appendix A.1. Similarly to Appendix A.3, we define the following color transformations:

• EPWL color refinement. Define TEP,M : M1 → M1 such that for any color mapping χ ∈ M1 and rooted graph Gu,

[TEP,M (χ)]G(u) = hash(χG(u), {{(χG(v),PM
G (u, v)) : v ∈ VG}}). (29)

• GD-WL color refinement. Define TGD,M : M1 → M1 such that for any color mapping χ ∈ M1 and rooted graph
Gu,

[TGD,M (χ)]G(u) = hash(χG(u), {{(χG(v),MG(u, v)) : v ∈ VG}}). (30)

• Global pooling. Define TGP : M1 → M0 such that for any color mapping χ ∈ M1 and graph G,

[TGP(χ)](G) = hash({{χG(u) : u ∈ VG}}). (31)

Theorem 5.1 is equivalent to the following:

Theorem A.12. For any graph distance matrix M listed in Section 5, TGP ◦ T∞
EP,L̂

⪯ TGP ◦ T∞
GD,M .

In this subsection, let χC ∈ M1 be the constant color mapping and let χ = T∞
EP,L̂

(χC). Define a color mapping χ̄ ∈ M2

such that χ̄G(u, v) =
(
χG(u), χG(v),PL̂

G(u, v)
)

for all graph G and vertices u, v ∈ VG. The following proposition will
play a central role in our subsequent proofs:

Proposition A.13. For any graph matrix M , if χ̄ ⪯ M , then TGP ◦ T∞
EP,L̂

⪯ TGP ◦ T∞
GD,M .

Proof. Based on Propositions A.1 and A.2, it suffices to prove that TGD,M ◦ T∞
EP,L̂

≡ T∞
EP,L̂

. Pick any χ0 ∈ M1 and let

χ′ = T∞
EP,L̂

(χ0). Since χ′ ≡ TEP,L̂(χ
′), we have

χ′
G(u) = χ′

H(y) =⇒ χ′
G(u) = χ′

H(y) ∧ {{(χ′
G(v),PL̂

G(u, v)) : v ∈ VG}} = {{(χ′
H(y),PL̂

H(x, y)) : y ∈ VH}}

=⇒ {{(χ′
G(u), χ

′
G(v),PL̂

G(u, v)) : v ∈ VG}} = {{(χ′
H(x), χ′

H(y),PL̂
H(x, y)) : y ∈ VH}}

for all graphs G,H ∈ G and vertices u ∈ VG, x ∈ VH . Moreover, since χ′ ⪯ χ and χ̄ ⪯ M , we have

χ′
G(u) = χ′

H(y) =⇒ {{(χ′
G(v),MG(u, v)) : v ∈ VG}} = {{(χ′

H(y),MH(x, y)) : y ∈ VH}}

for all graphs G,H ∈ G and vertices u ∈ VG, x ∈ VH . Therefore, χ′ ≡ TGD,M (χ′). Finally, by noting that χ′ = T∞
EP,L̂

(χ0)

and χ0 is arbitrary, we obtain that TGD,M ◦ T∞
EP,L̂

≡ T∞
EP,L̂

, as desired.

We next present several basic facts about EP-WL stable colors χ.

Proposition A.14. For any graphs G,H ∈ G and vertices u ∈ VG, x ∈ VH , if χG(u) = χH(x), then

a) degG(u) = degH(x);

b) PL̂
G(u, u) = PL̂

H(x, x).

Proof. Since TEP,M ⪯ TWL (Lemma A.5), we have χ ⪯ T∞
WL(χ

C). Item (a) follows from the fact that the 1-WL stable
color can encode the vertex degree, i.e., T∞

WL(χ
C) ⪯ deg. To prove item (b), note that χ ⪯ χ1, where χ1 is defined in

Proposition A.6. Therefore, item (b) readily follows from Proposition A.6.

Below, we will separately consider each of the distances listed in Section 5.

Lemma A.15. Let M be the shortest path distance matrix. Then, χ̄ ⪯ M .
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Proof. We will prove a stronger result that PL̂ ⪯ M . Note that there is a relation between M and the normalized adjacency
matrix Â := D−1/2AD−1/2 = I − L̂, which can be expressed as follows:

MG(u, v) = min{i ∈ N : Âi
G(u, v) > 0} ∀G ∈ G, u, v ∈ VG. (32)

The above relation can be interpreted as follows: Âi
G(u, v) =

∑
pi(u,v)

ω(pi(u, v)) where pi(u, v) ranges over all

walks of length i from u to v, and ω(pi(u, v)) := (degG(u) degG(v))
−1/2

(
Πi−1

j=1 degG(wi)
)−1

for a walk pi(u, v) =
(u,w1, · · · , wi−1, v), which is always positive.

Based on the property of eigen-decomposition, we have

Âi
G(u, v) =

∑
(λ,PG(u,v))∈PÂ

G

λiPG(u, v) =
∑

(λ,PG(u,v))∈PL̂
G(u,v)

(1− λ)iPG(u, v). (33)

This implies that MG(u, v) can be purely determined by PL̂
G(u, v), i.e., PL̂ ⪯ M .

Lemma A.16. Let M be the resistance distance matrix. Then, χ̄ ⪯ M .

Proof. We first consider the case of connected graphs. We leverage a celebrated result established in Klein & Randic (1993),
which builds connections between resistance distance and graph Laplacian. Specifically, for any connected graph G ∈ G
and vertices u, v ∈ VG,

MG(u, v) = L†(u, u) +L†(v, v)− 2L†(u, v), (34)

where † denotes the matrix Moore–Penrose inversion. Substituting L = D1/2L̂D1/2 into Equation (34), we obtain

MG(u, v) = (degG(u))
−1L̂†(u, u) + (degG(v))

−1L̂†(v, v)− 2(degG(u) degG(v))
−1/2L̂†(u, v), (35)

Moreover, we have L̂† =
∑

i:λi ̸=0 λ
−1
i Pi where

∑
i λiPi is the eigen-decomposition of L̂. Combining all these relations,

one can see that MG(u, v) is purely determined by the tuple (degG(u),degG(v),PL̂
G(u, u),PL̂

G(v, v),PL̂
G(u, v)). Based on

Proposition A.14, χG(u) determines degG(u) and PL̂
G(u, u), and χG(v) determines degG(v) and PL̂

G(v, v). Consequently,
χ̄ ⪯ M .

We next consider the general case where the graph G is disconnected. In this case, L is a block diagonal matrix. It is
straightforward to see that

MG(u, v) =

{
L†(u, u) +L†(v, v)− 2L†(u, v) if u and v are in the same connected component,
∞ otherwise. (36)

Since we have proved that PM can encode the shortest path distance (Lemma A.15), PL̂
G(u, v) can encode whether u and v

are in the same connected component. So we still have χ̄ ⪯ M .

Lemma A.17. Let M be the hitting-time distance matrix. Then, χ̄ ⪯ M .

Proof. Without loss of generality, we only consider connected graphs as in Lemma A.16. According to the definition of
hitting-time distance, for any connected graph G ∈ G and vertices u, v ∈ VG, we have the following recursive relation:

MG(u, v) =

{
0 if u = v,
1 + 1

degG(u)

∑
w∈NG(u) MG(u, v) otherwise. (37)

Now define a new graph matrix
H̃ = 11⊤ +D−1A(H̃ − diag(H̃)) (38)

where diag(H̃) is the diagonal matrix obtained from H̃ by zeroing out all non-diagonal elements of H̃ . It follows that
M = H̃ − diag(H̃).

We first calculate diag(H̃). Left-multiplying Equation (38) by 1⊤A yields that

1⊤AH̃ = 1⊤A11⊤ + 1⊤AD−1A(H̃− diag(H̃)) = 1⊤A11⊤ + 1⊤A(H̃− diag(H̃)),
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where we use the fact that 1⊤AD−1 = 1⊤. Therefore, 1⊤Adiag(H̃) = 1⊤A11⊤, namely, H̃G(u, u) =
2|EG|(degG(u))−1.

We next compute the full matrix M . Based on Equation (38), we have

(I −D−1A)M = 11⊤ − diag(H̃). (39)

Left-multiplying Equation (39) by D leads to the fundamental equation

LM = D11⊤ − 2|EG|I. (40)

When the graph G is connected, the eigenspace of L associated with eigenvalue λ = 0 only has one dimension, and any
eigenvector b satisfying Lb = 0 has the form b = c1 for some c. This implies that all solutions to Equation (40) has the
form

M = L†DJ + JS − 2|EG|L† (41)

where S is a diagonal matrix and J = 11⊤. Noting that diag(M) = O, we have O = diag(L†DJ) + diag(JS) −
2|EG|diag(L†). Since diag(JS) = S for any diagonal matrix S and Jdiag(L†DJ) = JDL†, we final obtain

M = L†DJ + J
(
2|EG|diag(L†)− diag(L†DJ)

)
− 2|EG|L†

= L†DJ − JDL† + 2|EG|Jdiag(L†)− 2|EG|L†.
(42)

Below, we will prove that χ̄ ⪯ M . Noting that L† = D−1/2L̂†D−1/2, we have

M = D−1/2L̂†D1/2J − JD1/2L̂†D−1/2 + 2|EG|JD−1/2diag(L̂†)D−1/2 − 2|EG|D−1/2L̂†D−1/2. (43)

Equivalently, for any graph G ∈ G and vertices u, v ∈ VG,

MG(u, v) = D
−1/2
G (u, u)

∑
w∈VG

L̂†
G(u,w)D

1/2
G (w,w)−D

−1/2
G (v, v)

∑
w∈VG

L̂†
G(w, v)D

1/2
G (w,w)

+ 2|EG|L̂†
G(v, v)D

−1
G (v, v)− 2|EG|D−1/2

G (u, u)L̂†
G(u, v)D

−1/2
G (v, v).

(44)

From the above equation, one can see that MG(u, v) is fully determined by the following tuple:(
|EG|,degG(u),degG(v), L̂

†
G(v, v), L̂

†
G(u, v), {{(L̂

†
G(u,w),degG(w)) : w ∈ VG}}, {{(L̂†

G(w, v),degG(w)) : w ∈ VG}}
)
.

According to the eigen-decomposition, L̂† =
∑

i:λi ̸=0 λ
−1
i Pi where

∑
i λiPi is the eigen-decomposition of L̂. Therefore,

L̂† ⪯ PL̂. Besides, based on Proposition A.14 we have that degG(u) is determined by χG(u), degG(v) is determined by
χG(v), and PL̂

G(v, v) is determined by χG(v). It follows that |EG| is determined by χG(u), because by χ ≡ TEP,L̂(χ) we
have for all graphs G,H ∈ G and vertices u ∈ VG, x ∈ VH ,

χG(u) = χH(x) =⇒ {{χG(v) : v ∈ VG}} = {{χH(y) : y ∈ VH}}
=⇒ {{degG(v) : v ∈ VG}} = {{degH(y) : y ∈ VH}}
=⇒ |EG| = |EH |.

We next prove that {{(L̂†
G(u,w),degG(w)) : w ∈ VG}} is determined by χG(u). Again by using χ ≡ TEP,L̂(χ), we have

for all graphs G,H ∈ G and vertices u ∈ VG, x ∈ VH ,

χG(u) = χH(x) =⇒ {{(χG(v),PL̂
G(u, v)) : v ∈ VG}} = {{(χH(y),PL̂

H(x, y)) : y ∈ VH}}

=⇒ {{(degG(v), L̂
†
G(u, v)) : v ∈ VG}} = {{(degH(y), L̂†

H(x, y)) : y ∈ VH}}.

Using the same analysis and noting that M †
G(w, v) = M †

G(v, w) for any symmetric matrix M , we can prove that
{{(L̂†

G(w, v),degG(w)) : w ∈ VG}} is determined by χG(v). Combining all these relations leads to the conclusion that
χ̄ ⪯ M .
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Corollary A.18. Let M be the commute-time distance matrix. Then, χ̄ ⪯ M .

Proof. This is a simple consequence of Lemma A.17. Denoting by H the hitting-time distance matrix, we have M =

H +H⊤. Since χ̄ ⪯ H , χ̄ ⪯ H⊤ (because PL̂
G(u, v) = PL̂

G(v, u) for any graph G and vertices u, v ∈ VG). Therefore,
χ̄ ⪯ M .

Lemma A.19. Let M be the PageRank distance matrix associated with weight sequence γ0, γ1, · · · . Then, χ̄ ⪯ M .

Proof. By definition of PageRank distance, M =
∑∞

k=0 γk(D
−1A)k. Let

∑
i λiPi be the eigen-decomposition of L̂.

Then, Â = D−1/2AD−1/2 = I − L̂ =
∑

i(1− λi)Pi. Therefore,

(D−1A)k = D−1/2ÂkD1/2 =
∑
i

(1− λi)
kD−1/2PiD

1/2. (45)

Plugging the above equation into the definition of PageRank distance, we have for any graph G ∈ G and vertices u, v ∈ VG,

MG(u, v) =
∑
i

( ∞∑
k=0

γk(1− λi)
k

)
Pi(u, v)(degG(u))

−1/2(degG(v))
1/2. (46)

One can see that MG(u, v) is purely determined by the tuple (degG(u),degG(v),PL̂
G(u, v)). Based on Proposition A.14,

χG(u) determines degG(u) and χG(v) determines degG(v). Consequently, χ̄ ⪯ M .

We next study the (normalized) diffusion distance. Consider the continuous graph diffusion process defined as follows.
Given time t ≥ 0, let pt

G(u) be the probability “mass” of particles at position u. The particles will move following the
differential equation given below:

d

dt
pt = Tpt, (47)

where T is the transition matrix. For example, when T = AD−1 − I , the differential equation essentially characterizes
a random walk diffusion process. In this paper, we consider the normalized diffusion distance, which corresponds to
T = Â− I = −L̂. Given hyperparameter τ ≥ 0, denote by (p|Gu)τ be the probability “mass” vector at time τ with the
initial configuration (p|Gu)0(u) = 1 and (p|Gu)0(v) = 0 for all v ̸= u. Then, the diffusion distance matrix M is defined as

MG(u, v) = ∥(p|Gu)τ − (p|Gv )τ∥2 . (48)

Lemma A.20. Let M be the normalized diffusion distance defined above. Then, χ̄ ⪯ M .

Proof. Since Equation (47) is a linear differential equation, we can solve it and obtain (p|Gu)τ = exp(τT )(p|Gu)0.
Therefore,

MG(u, v) =
∥∥exp(τT )

(
(p|Gu)0 − (p|Gv )0

)∥∥
2
, (49)

where exp(T ) is the matrix exponential of T . Equivalently,

M2
G(u, v) =

(
(p|Gu)0 − (p|Gv )0

)⊤
exp(2τT )

(
(p|Gu)0 − (p|Gv )0

)
. (50)

Let
∑

i λiPi be the eigen-decomposition of L̂. Then, exp(2τT ) = exp(−2τL̂) =
∑

i exp(−2τλi)Pi. Therefore,

M2
G(u, v) =

∑
i

exp(−2τλi)(Pi(u, u) + Pi(v, v)− 2Pi(u, v)). (51)

This implies that MG(u, v) is purely determined by the tuple (PL̂
G(u, u),PL̂

G(v, v),PL̂
G(u, v)). We conclude that χ̄ ⪯ M

by using Proposition A.14.

We finally study the biharmonic distance.

Lemma A.21. Let M be the biharmonic distance defined in Lipman et al. (2010). Then, χ̄ ⪯ M .
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Proof. Without loss of generality, we only consider connected graphs. According to Wei et al. (2021), the biharmonic
distance for a connected graph can be equivalently written as

MG(u, v) = (L2)†(u, u) + (L2)†(v, v)− 2(L2)†(u, v). (52)

The subsequent proof is almost the same as in Lemma A.16 and we omit it for clarity.

A.5. Proof of Theorem 6.1

This section aims to prove Theorem 6.1. Below, we will decompose the proof into three parts. First, we will describe the
color refinement algorithm corresponding to Spectral IGN, which is equivalent to Spectral IGN in terms of distinguishing
non-isomorphic graphs. Then, we will prove that this color refinement algorithm is more expressive than EPWL using the
color refinement terminologies defined in Appendix A.1. Finally, we will prove the other direction, i.e., EPWL is more
expressive than the color refinement algorithm of Spectral IGN, thus concluding the proof of Theorem 6.1.

Color refinement algorithm for Spectral IGN. To define the algorithm, we first need to extend several concepts defined
in Appendix A.1 to incorporate eigenvalues. Formally, let ΛM be the graph spectrum invariant representing the set of
eigenvalues for graph matrix M , i.e., ΛM (G) := {λ : λ is an eigenvalue of MG} for G ∈ G. Define

GPM

k := {(Gu, λ) : Gu ∈ Gk, λ ∈ ΛM (G)}. (53)

We can then define color mappings over GPM

k . Formally, a function χ defined over domain GPM

k is called a color mapping if
χ(Gu, λ) = χ(Hv, µ) holds for all (Gu, λ), (Hv, µ) ∈ GPM

k satisfying Gu ≃ Hv and λ = µ. Without ambiguity, we will
use the notation χG(λ,u) to refer to χ(Gu, λ) for (Gu, λ) ∈ GPM

k . Define MPM

k to be the family of all color mappings
over GPM

k . We can similarly define equivalence relation “≡” and partial relation “⪯” between color mappings in MPM

k . In
addition, the color transformation can also be extended in a similar manner.

Throughout this section, we use the notation χPM ∈ MPM

2 to represent the initial color mapping in Spectral IGN, which is
defined as χPM

G (λ, u, v) = (λ,PM
λ (u, v)) for all (Guv, λ) ∈ GPM

2 , where PM
λ is the projection matrix associated with

eigenvalue λ. We then define the following color transformations:

• 2-IGN color refinement. Define TIGN : M2 → M2 such that for any color mapping χ ∈ M2 and Guv ∈ G2,

[TIGN(χ)]G(u, v) = hash(χG(u, v), χG(u, u), χG(v, v), χG(v, u), δuv(χG(u, u)),

{{χG(u,w) : w ∈ VG}}, {{χG(w, u) : w ∈ VG}},
{{χG(v, w) : w ∈ VG}}, {{χG(w, v) : w ∈ VG}},
{{χG(w,w) : w ∈ VG}}, {{χG(w, x) : w, x ∈ VG}},
δuv({{χG(u,w) : w ∈ VG}}), δuv({{χG(w, u) : w ∈ VG}}),
δuv({{χG(w,w) : w ∈ VG}}), δuv({{χG(w, x) : w, x ∈ VG}})).

(54)

Here, the function δuv satisfies that δuv(c) = c if u = v and δuv(c) = 0 otherwise (0 is a special element that differs
from all χG(u, v)). One can see that Equation (54) has 15 aggregations inside the hash function, which matches the
number of orthogonal bases for a 2-IGN layer (Maron et al., 2019b).

• Spectral pooling. Define TSP : MPM

2 → M2 such that for any color mapping χ ∈ MPM

2 and Guv ∈ G2,

[TSP(χ)]G(u, v) = hash({{χG(λ, u, v) : λ ∈ ΛM (G)}}). (55)

• Spectral IGN color refinement. Define TSIGN : MPM

2 → MPM

2 such that for any color mapping χ ∈ MPM

2 and
(Guv, λ) ∈ GPM

2 ,

[TSIGN(χ)]G(λ, u, v) = hash([TIGN(χ(λ, ·, ·))]G(u, v), [TIGN(TSP(χ))]G(u, v)). (56)

• Spectral IGN final pooling. Define TFP : MPM

2 → M0 such that for any color mapping χ ∈ MPM

2 and G ∈ G,

[TFP(χ)](G) = hash({{χG(λ, u, v) : λ ∈ ΛM (G), u, v ∈ VG}}). (57)
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• Joint pooling. Define TJP : M2 → M0 such that for any color mapping χ ∈ M2 and G ∈ G,

[TJP(χ)](G) = hash({{χG(u, v) : u, v ∈ VG}}). (58)

• 2-dimensional Pooling. Define TP2 : M2 → M1 such that for any color mapping χ ∈ M2 and G ∈ G1,

[TP2(χ)]G(u) = hash({{χG(u, v) : v ∈ VG}}). (59)

• EPWL color refinement. Define TEP,M : M1 → M1 such that for any color mapping χ ∈ M1 and Gu ∈ G1,

[TEP,M (χ)]G(u) = hash(χG(u), {{(χG(v),PM
G (u, v)) : v ∈ VG}}). (60)

• Global pooling. Define TGP : M1 → M0 such that for any color mapping χ ∈ M1 and graph G,

[TGP(χ)](G) = hash({{χG(u) : u ∈ VG}}). (61)

We now related the expressive power of Spectral IGN to the corresponding color refinement algorithm. The proof is
straightforward following standard techniques, see e.g., Zhang et al. (2023a).

Proposition A.22. The expressive power of Spectral IGN is bounded by the color mapping (TFP ◦ T∞
SIGN)(χ

PM

) in
distinguishing non-isomorphic graphs. Moreover, with sufficient layers and proper network parameters, Spectral IGN can
be as expressive as the above color mapping in distinguishing non-isomorphic graphs.

Equivalently, the pooling TFP can be decomposed into three pooling transformations TGP ◦ TP2 ◦ TSP, as stated below:

Lemma A.23. TGP ◦ TP2 ◦ TSP ◦ T∞
SIGN ≡ TFP ◦ T∞

SIGN.

Proof. First, it is clear that TGP ◦ TP2 ◦ TSP ◦ T∞
SIGN ⪯ TFP ◦ T∞

SIGN. Thus, it suffices to prove that TFP ◦ T∞
SIGN ⪯

TGP ◦ TP2 ◦ TSP ◦ T∞
SIGN. Pick any initial color mapping χ0 ∈ MPM

2 and let χ = T∞
SIGN(χ

0). Note that χ ≡ TSIGN(χ). We
will prove that (TFP)(χ) ⪯ (TGP ◦ TP2 ◦ TSP)(χ). Pick any graphs G,H ∈ G. We have

[TFP(χ)](G) = [TFP(χ)](H)

=⇒ {{χG(λ, u, v) : λ ∈ ΛM (G), u, v ∈ VG}} = {{χH(µ, x, y) : µ ∈ ΛM (H), x, y ∈ VH}}
=⇒ {{χG(λ, u, u) : λ ∈ ΛM (G), u ∈ VG}} = {{χH(µ, x, x) : µ ∈ ΛM (H), x ∈ VH}}
=⇒ {{{{χG(λ, u, v) : v ∈ VG}} : λ ∈ ΛM (G), u ∈ VG}} = {{{{χH(µ, x, y) : y ∈ VH}} : µ ∈ ΛM (H), x ∈ VH}}
=⇒ {{{{{{χG(λ

′, u, v) : λ′ ∈ ΛM (G)}} : v ∈ VG}} : λ ∈ ΛM (G), u ∈ VG}}
= {{{{{{χH(µ′, x, y) : µ′ ∈ ΛM (H)}} : y ∈ VH}} : µ ∈ ΛM (H), x ∈ VH}}

=⇒ {{{{{{χG(λ
′, u, v) : λ′ ∈ ΛM (G)}} : v ∈ VG}} : u ∈ VG}}

= {{{{{{χH(µ′, x, y) : µ′ ∈ ΛM (H)}} : y ∈ VH}} : x ∈ VH}}
=⇒ [(TGP ◦ TP2 ◦ TSP)(χ)](G) = [(TGP ◦ TP2 ◦ TSP)(χ)](H),

where the second, third, and fourth steps in the above derivation are based on Equations (54) to (56). We have obtained the
desired result.

In the subsequent proof, we will show that (TGP ◦ TP2 ◦ TSP ◦ T∞
SIGN)(χ

PM

) ≡ (TGP ◦ TEP,M )(χ0), where χ0 ∈ M1 is the
constant mapping.

Lemma A.24. Let χ0 ∈ M1 be the constant mapping. Then, (TGP ◦ TP2 ◦ TSP ◦ T∞
SIGN)(χ

PM

) ⪯ (TGP ◦ T∞
EP,M )(χ0).

Proof. Define an auxiliary color transformation T× : M1 → M2 such that for any color mapping χ ∈ M1 and rooted
graph Guv ∈ G2,

[T×(χ)]G(u, v) = hash(χG(u), χG(v)). (62)
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We first prove that TGP ≡ TGP ◦ TP2 ◦ T×. Pick any color mapping χ ∈ M1 and graphs G,H ∈ G,

[TGP(χ)](G) = [TGP(χ)](H)

⇐⇒ {{χG(u) : u ∈ VG}} = {{χH(x) : x ∈ VH}}
⇐⇒ {{(χG(u), {{χG(v) : v ∈ VG}}) : u ∈ VG}} = {{(χH(x), {{χH(y) : y ∈ VH}}) : x ∈ VH}}
⇐⇒ {{{{(χG(u), χG(v)) : v ∈ VG}} : u ∈ VG}} = {{{{(χH(x), χH(y)) : y ∈ VH}} : x ∈ VH}}
⇐⇒ [(TGP ◦ TP2 ◦ T×)(χ)](G) = [(TGP ◦ TP2 ◦ T×)(χ)](H).

Based on the equivalence, it suffices to prove that (TGP ◦TP2 ◦TSP ◦T∞
SIGN)(χ

PM

) ⪯ (TGP ◦TP2 ◦T× ◦T∞
EP,M )(χ0). Since

TGP ◦ TP2 is order-preserving by definition, it suffices to prove that (TSP ◦ T∞
SIGN)(χ

PM

) ⪯ (T× ◦ T∞
EP,M )(χ0).

We will prove the following stronger result: for all t ∈ N, (TSP ◦ T t
SIGN)(χ

PM

) ⪯ (T× ◦ T t
EP,M )(χ0). The proof is based

on induction. For the base case of t = 0, since (T× ◦ T t
EP,M )(χ0) is a constant mapping, the result clearly holds. Now

assume that the result holds for t = t′ and consider the case of t = t′ + 1. Denote χ = T t′

SIGN(χ
PM

), χ̂ = T t
EP,M (χ0),

and note that TSP(χ) ⪯ TSP(χ
PM

) ≡ PM . Pick any graphs G,H ∈ G and vertices u, v ∈ VG, x, y ∈ VH . Based on the
induction hypothesis, [TSP(χ)]G(u, v) = [TSP(χ)]H(x, y) implies that χ̂G(u) = χ̂H(x) and χ̂G(v) = χ̂H(y). We have

[TSP(TSIGN(χ))]G(u, v) = [TSP(TSIGN(χ))]H(x, y)

=⇒ {{[TIGN(TSP(χ))]G(u, v) : λ ∈ ΛM (G)}} = {{[TIGN(TSP(χ))]H(x, y) : µ ∈ ΛM (H)}}
=⇒ [TIGN(TSP(χ))]G(u, v) = [TIGN(TSP(χ))]H(x, y)

=⇒ [TSP(χ)]G(u, v) = [TSP(χ)]H(x, y) ∧ {{[TSP(χ)]G(u,w) : w ∈ VG}} = {{[TSP(χ)]H(x, z) : z ∈ VH}}
∧ {{[TSP(χ)]G(v, w) : w ∈ VG}} = {{[TSP(χ)]H(y, z) : z ∈ VH}}

=⇒ χ̂G(u) = χ̂H(x) ∧ {{(χ̂G(w),PM
G (u,w)) : w ∈ VG}} = {{(χ̂H(z),PM

H (x, z)) : z ∈ VH}}
∧ χ̂G(v) = χ̂H(y) ∧ {{(χ̂G(w),PM

G (v, w)) : w ∈ VG}} = {{(χ̂H(z),PM
H (y, z)) : z ∈ VH}}

=⇒ [TEP,M (χ̂)]G(u) = [TEP,M (χ̂)]H(x) ∧ [TEP,M (χ̂)]G(v) = [TEP,M (χ̂)]H(y)

=⇒ [(T× ◦ TEP,M )(χ̂)]G(u, v) = [(T× ◦ TEP,M )(χ̂)]H(x, y)

where in the first step we use the definition of Spectral IGN (Equation (56)) and spectral pooling (Equation (55)); in the
third step we use the definition of 2-IGN (Equation (54)); in the fourth step we use the induction hypothesis and the fact that
TSP(χ) ⪯ PM . This concludes the induction step.

Lemma A.25. Define an auxiliary color transformation T×,PM : M1 → M2 such that for any color mapping χ ∈ M1

and rooted graph Guv ∈ G2,

[T×,PM (χ)]G(u, v) = hash(χG(u), χG(v),PM
G (u, v)). (63)

Then, (T×,PM ◦ T∞
EP,M )(χ0) ⪯ (TSP ◦ T∞

SIGN)(χ
PM

).

Proof. We will prove the following stronger result: for any t ≥ 0, (T×,PM ◦ T 2t
EP,M )(χ0) ⪯ (TSP ◦ T t

SIGN)(χ
PM

). The

proof is based on induction. For the base case of t = 0, since (T×,PM ◦ T 0
EP,M )(χ0) = T×,PM (χ0) ≡ TSP ◦ χPM

, the
result clearly holds. Now assume that the result holds for t = t′ and consider the case of t = t′ +1. Denote χ = T 2t′

EP,M (χ0)

and χ̂ = T t′

SIGN(χ
PM

). Pick any graphs G,H ∈ G and vertices u, v ∈ VG, x, y ∈ VH . Based on the induction hypothesis,
[T×,PM (χ)]G(u, v) = [T×,PM (χ)]H(x, y) implies that [TSP(χ̂)]G(u, v) = [TSP(χ̂)]H(x, y). We have

[(T×,PM ◦ T 2
EP,M )(χ)]G(u, v) = [(T×,PM ◦ T 2

EP,M )(χ)]H(x, y)

=⇒ [T 2
EP,M (χ)]G(u) = [T 2

EP,M (χ)]H(x) ∧ [T 2
EP,M (χ)]G(v) = [T 2

EP,M (χ)]H(y) ∧ PM
G (u, v) = PM

H (x, y)

=⇒ χG(u) = χH(x) ∧ χG(v) = χH(y) ∧ PM
G(u, v) = PM

H(x, y)

∧ PM
G (u, u) = PM

H (x, x) ∧ PM
G (v, v) = PM

H (y, y) ∧ I[u = v] = I[x = y]

∧ {{([TEP,M (χ)]G(w),PM
G (u,w)) : w ∈ VG}} = {{([TEP,M (χ)]H(z),PM

H (x, z)) : z ∈ VG}}
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∧ {{([TEP,M (χ)]G(w),PM
G (v, w)) : w ∈ VG}} = {{([TEP,M (χ)]H(z),PM

H (y, z)) : z ∈ VG}}
=⇒ χG(u) = χH(x) ∧ χG(v) = χH(y) ∧ PM

G (u, v) = PM
H (x, y)

∧ PM
G (u, u) = PM

H (x, x) ∧ PM
G (v, v) = PM

H (y, y) ∧ I[u = v] = I[x = y]

∧ {{(χG(u), χG(w),PM
G (u,w)) : w ∈ VG}} = {{(χH(x), χH(z),PM

H (x, z)) : z ∈ VG}}
∧ {{(χG(v), χG(w),PM

G (v, w)) : w ∈ VG}} = {{(χH(y), χH(z),PM
H (y, z)) : z ∈ VG}}

∧ {{(χG(w),PM
G (w,w)) : w ∈ VG}} = {{(χH(z),PM

H (z, z)) : z ∈ VG}}
∧ {{(χG(w), χG(w

′),PM
G (w,w′)) : w,w′ ∈ VG}} = {{(χH(z), χH(z′),PM

H (z, z′)) : z, z′ ∈ VG}}
=⇒ [TSP(χ̂)]G(u, v) = [TSP(χ̂)]H(x, y) ∧ [TSP(χ̂)]G(u, u) = [TSP(χ̂)]H(x, x)

∧ [TSP(χ̂)]G(v, v) = [TSP(χ̂)]H(y, y) ∧ [TSP(χ̂)]G(v, u) = [TSP(χ̂)]H(y, x) ∧ I[u = v] = I[x = y]

∧ {{[TSP(χ̂)]G(u,w) : w ∈ VG}} = {{[TSP(χ̂)]H(x, z) : z ∈ VH}}
∧ {{[TSP(χ̂)]G(v, w) : w ∈ VG}} = {{[TSP(χ̂)]H(y, z) : z ∈ VH}}
∧ {{[TSP(χ̂)]G(w, u) : w ∈ VG}} = {{[TSP(χ̂)]H(z, x) : z ∈ VH}}
∧ {{[TSP(χ̂)]G(w, v) : w ∈ VG}} = {{[TSP(χ̂)]H(z, y) : z ∈ VH}}
∧ {{[TSP(χ̂)]G(w,w) : w ∈ VG}} = {{[TSP(χ̂)]H(z, z) : z ∈ VH}}
∧ {{[TSP(χ̂)]G(w,w′) : w,w′ ∈ VG}} = {{[TSP(χ̂)]H(z, z′) : z, z′ ∈ VH}}

=⇒ [(TIGN ◦ TSP)(χ̂)]G(u, v) = [(TIGN ◦ TSP)(χ̂)]H(x, y)

where in the second step we use the definition of TEP,M and also Lemma A.5 and Proposition A.6; in the third step we use
the definition of TEP,M again; in the fourth step we use the induction hypothesis and the fact that PM

G (u, v) = PM
G (v, u)

for all G ∈ G and u, v ∈ VG; in the last step we use the definition of 2-IGN (Equation (54)).

We next prove that [(TIGN ◦ TSP)(χ̂)]G(u, v) = [(TIGN ◦ TSP)(χ̂)]H(x, y) =⇒ [(TSP ◦ TSIGN)(χ̂)]G(u, v) = [(TSP ◦
TSIGN)(χ̂)]H(x, y). This is because

[(TIGN ◦ TSP)(χ̂)]G(u, v) = [(TIGN ◦ TSP)(χ̂)]H(x, y)

=⇒ ΛM (G) = ΛM (H) ∧ [TIGN(χ̂(λ, ·, ·))]G(u, v) = [TIGN(χ̂(λ, ·, ·))]H(x, y) ∀λ ∈ ΛM (G)

=⇒ [(TSP ◦ TSIGN)(χ̂)]G(u, v) = [(TSP ◦ TSIGN)(χ̂)]H(x, y),

where in the first step we use the following observations: (i) χ̂ ⪯ χPM

, which implies that χ̂G(λ, u, v) = χ̂H(µ, x, y) =⇒
λ = µ; (ii) (TIGN ◦ TSP)(χ̂) ⪯ TSP ◦ χPM ≡ PM and thus ΛM (G) = ΛM (H). We thus conclude the induction step.

Lemma A.26. Let χ0 ∈ M1 be the constant mapping. Then, (TGP ◦ T∞
EP,M )(χ0) ⪯ (TGP ◦ TP2 ◦ TSP ◦ T∞

SIGN)(χ
PM

).

Proof. Based on Lemma A.25, it suffices to prove that (TGP ◦ T∞
EP,M )(χ0) ≡ (TGP ◦ TP2 ◦ T×,PM ◦ T∞

EP,M )(χ0), where
T×,PM is defined in Lemma A.25. Denote χ = T∞

EP,M (χ0). Let G,H ∈ G be any graphs such that [TGP(χ)](G) =
[TGP(χ)](H). By definition of TGP,

{{χG(u) : u ∈ VG}} = {{χH(x) : x ∈ VH}}. (64)

Since χ ≡ TEP,M ◦ χ,

{{(χG(u), {{(χG(v),PM
G (u, v)) : v ∈ VG}}) : u ∈ VG}} = {{(χH(x), {{(χH(y),PM

H (x, y)) : y ∈ VH}}) : x ∈ VH}}.
(65)

Equivalently,

{{{{(χG(u), χG(v),PM
G (u, v)) : v ∈ VG}} : u ∈ VG}} = {{{{(χH(x), χH(y),PM

H (x, y)) : y ∈ VH}} : x ∈ VH}}. (66)

This implies that [(TGP ◦ TP2 ◦ T×,PM )(χ)](G) = [(TGP ◦ TP2 ◦ T×,PM )(χ)](H), concluding the proof.

Combining Proposition A.22 and Lemmas A.23, A.24 and A.26, we conclude the proof of Theorem 6.1.
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A.6. Proof of Propositions 6.3 and 6.5

This sections aims to prove Propositions 6.3 and 6.5. We will first give a brief introduction of BasisNet. The BasisNet
architecture is composed of two parts: an eigenspace encoder Φ : Rm×n×n → Rn×d and a top graph encoder ρ : Rn×d →
Rd′

. Here, we consider the standard setting where ρ is a messgage-passing GNN that takes node features as inputs and
outputs a graph representation invariant to node permutation. We assume that the expressive power of ρ is bounded by the
classic 1-WL test.

We next describe the design of the eigenspace encoder Φ. Given graph matrix M and graph G, let MG =
∑m

i=1 λiPi be
the eigen-decomposition of MG, where λ1 < · · · < λm are eigenvalues of MG. For each eigenspace, BasisNet processes
the projection matrix Pi using a 2-IGN IGN(di) : Rn×n → Rn, where di is the multiplicity of eigenvalue λi. The output of
Φ is then defined as

Φ(G) = [IGN(d1)(P1), · · · , IGN(dm)(Pm),0, · · · ,0] ∈ Rn×d, (67)

where [ ] denotes the concatenation. When the number of eigenspaces is less than the output dimension d, zero-padding is
applied. Note that BasisNet processes different projections using different IGNs if their multiplicities differ.

Color refinement algorithms for Siamese IGN and BasisNet. Similar to Spectral IGN, we can write the corresponding
color refinement algorithms for the two GNN architectures. We first define the initial color mapping χBasis,PM ∈ MPM

2

as follows: χBasis,PM

G (λ, u, v) = (dλ,P
M
λ (u, v)) for all (Guv, λ) ∈ GPM

2 , where PM
λ is the projection matrix associated

with eigenvalue λ and dλ is the multiplicity of eigenvalue λ. Here, we encode the multiplicity in χBasis,PM

because BasisNet
uses different IGNs for different eigenvalue multiplicities. We then define several color transformations:

• Siamese IGN color refinement. Define TSiam : MPM

2 → MPM

2 such that for any color mapping χ ∈ MPM

2 and
(Guv, λ) ∈ GPM

2 ,
[TSiam(χ)]G(λ, u, v) = [TIGN(χ(λ, ·, ·))]G(u, v), (68)

where TIGN is defined in Equation (54).

• BasisNet pooling. Define TBP : MPM

2 → MPM

1 such that for any color mapping χ ∈ MPM

2 and (Gu, λ) ∈ GPM

1 ,

[TBP(χ)]G(λ, u) = hash(χG(λ, u, u), {{χG(λ, u, v) : v ∈ VG}}, {{χG(λ, v, u) : v ∈ VG}},
{{χG(λ, v, v) : v ∈ VG}}, {{χG(λ, v, w) : v, w ∈ VG}}).

(69)

One can see that Equation (69) has 5 aggregations inside the hash function, which matches the number of orthogonal
bases in Maron et al. (2019b).

• Spectral pooling. Define TSP1 : MPM

1 → M1 such that for any color mapping χ ∈ MPM

1 and Gu ∈ G1,

[TSP1(χ)]G(u) = hash({{χG(λ, u) : λ ∈ ΛM (G)}}). (70)

Similarly, define TSP2 : MPM

2 → M2 such that for any color mapping χ ∈ MPM

2 and Guv ∈ G2,

[TSP2(χ)]G(u, v) = hash({{χG(λ, u, v) : λ ∈ ΛM (G)}}). (71)

• Joint pooling. This has been defined in Equation (58).

• Diagonal pooling. Define TD : M2 → M1 such that for any color mapping χ ∈ M2 and rooted graph Gu,

[TD(χ)]G(u) = χG(u, u). (72)

• 1-WL refinement. This has been defined in Equation (11).

• Global pooling. This has been defined in Equation (61).

We are ready to define the color mappings corresponding to the whole algorithms:

• Weak Spectral IGN: the color mapping is defined as (TJP ◦ TSP2 ◦ T∞
Siam)(χ

PM

).

• BasisNet: the color mapping is defined as (TGP ◦ TWL ◦ TSP1 ◦ TBP ◦ T∞
Siam)(χ

Basis,PM

).
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Similar to the previous analysis, we can prove that the above two color mappings upper bound the expressive power of the
corresponding GNN models. Below, it suffices to prove the following key lemma:

Lemma A.27. For any graph matrix M , (TJP ◦ TSP2 ◦ T∞
Siam)(χ

PM

) ⪯ (TGP ◦ TWL ◦ TSP1 ◦ TBP ◦ T∞
Siam)(χ

Basis,PM

).

Proof. The proof will be decomposed into a series of steps. We first prove that T∞
Siam(χ

PM

) ⪯ T∞
Siam(χ

Basis,PM

). It suffices
to prove that TSiam(χPM

) ⪯ χBasis,PM

. Pick any graphs G,H ∈ G, eigenvalues λ ∈ ΛM (G), µ ∈ ΛM (H), and vertices
u, v ∈ VG, x, y ∈ VH . Then, by definition of TSiam, [TSiam(χPM

)]G(λ, u, v) = [TSiam(χ
PM

)]H(µ, x, y) implies that

χPM

G (λ, u, v) = χPM

H (µ, x, y) ∧ {{χPM

G (λ,w,w) : w ∈ VG}} = {{χPM

H (µ, z, z) : z ∈ VH}}. (73)

Therefore, tr([PM
λ ]G) = tr([PM

µ ]H), where tr(·) denotes the matrix trace. Noting that tr([PM
λ ]G) is exactly the multiplic-

ity of eigenvalue λ for graph matrix MG, we have χBasis,PM

G (λ, u, v) = χBasis,PM

H (µ, x, y).

We then prove that TJP ◦ TSP2 ◦ T∞
Siam ⪯ TGP ◦ TWL ◦ TD ◦ TSP2 ◦ T∞

Siam. Pick any initial color mapping χ0 ∈ MPM

2 and
let χ = T∞

Siam(χ
0). Note that χ ≡ TSiam(χ). We will prove that (TJP ◦ TSP2)(χ) ⪯ (TGP ◦ TWL ◦ TD ◦ TSP2)(χ). Pick any

graphs G,H ∈ G. We have

[(TJP ◦ TSP2)(χ)](G) = [(TJP ◦ TSP2)(χ)](H)

=⇒ {{{{χG(λ, u, v) : λ ∈ ΛM (G)}} : u, v ∈ VG}} = {{{{χH(µ, x, y) : µ ∈ ΛM (H)}} : x, y ∈ VH}}
=⇒ {{({{χG(λ, u, v) : λ ∈ ΛM (G)}}, atpG(u, v)) : u, v ∈ VG}}

= {{({{χH(µ, x, y) : µ ∈ ΛM (H)}}, atpH(x, y)) : x, y ∈ VH}}
=⇒ {{({{χG(λ, v, v) : λ ∈ ΛM (G)}}, atpG(u, v)) : u, v ∈ VG}}

= {{({{χH(µ, y, y) : µ ∈ ΛM (H)}}, atpH(x, y)) : x, y ∈ VH}}
=⇒ [(TGP ◦ TWL ◦ TD ◦ TSP2)(χ)](G) = [(TGP ◦ TWL ◦ TD ◦ TSP2)(χ)](H),

where the second step is based on Lemma A.5, and the third step is based on the definition of TSiam. This proves that
TJP ◦ TSP2 ◦ T∞

Siam ⪯ TGP ◦ TWL ◦ TD ◦ TSP2 ◦ T∞
Siam.

We next prove that TD ◦ TSP2 ◦ T∞
Siam ⪯ TSP1 ◦ TBP ◦ T∞

Siam. Pick any graphs G,H ∈ G and vertices u ∈ VG, x ∈ VH . We
have

[(TD ◦ TSP2)(χ)](G) = [(TD ◦ TSP2)(χ)](H)

=⇒ {{χG(λ, u, u) : λ ∈ ΛM (G)}} = {{χH(µ, x, x) : µ ∈ ΛM (H)}}
=⇒ {{{{χG(λ, u, v) : v ∈ VG}} : λ ∈ ΛM (G)}} = {{{{χH(µ, x, y) : y ∈ VH}} : µ ∈ ΛM (H)}}
=⇒ [(TSP1 ◦ TBP)(χ)](G) = [(TSP1 ◦ TBP)(χ)](H),

where the second step is based on the definition of TSiam. This proves that TD ◦ TSP2 ◦ T∞
Siam ⪯ TSP1 ◦ TBP ◦ T∞

Siam.

We conclude the proof by combining the above relations with Propositions A.1 and A.2.

We next turn to the proof of Proposition 6.5, which is almost the same as the case of BasisNet. Below, we will define
the equivalent color refinement algorithm for SPE. The initial color mapping associated with SPE is simply PM . Then,
the architecture refines PM by using color transformation TIGN defined in Equation (54). The remaining procedure is
the same as BasisNet. Combined these together, the color mapping corresponding to the whole algorithm can be written
as (TGP ◦ T∞

WL ◦ TP2 ◦ T∞
IGN)(PM ). Then, it suffices to prove the following two equivalence relations: (i) T∞

IGN(PM ) ≡
(TSP2 ◦ T∞

SIGN)(χ
PM

); (ii) TWL ◦ TP2 ◦ TSP2 ◦ T∞
SIGN ≡ TP2 ◦ TSP2 ◦ T∞

SIGN. The proof procedure is alomst the same as in
Appendices A.5 and A.6 and we omit it here.

A.7. Discussions with other architectures

Graphormer (Ying et al., 2021), Graphormer-GD (Zhang et al., 2023b), and GraphiT (Mialon et al., 2021). Zhang
et al. (2023b) has shown that the expressive power of these architectures is inherently bounded by GD-WL with different
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distances. Here, Graphormer uses SPD, Graphormer-GD uses both SPD and RD, while the distance used in GraphiT has the
form dG(u, v) =

∑m
i=1 ϕ(λi)Pi(u, v), where Pi is the projection matrix associated with eigenvalue λ for graph matrix L̂,

and ϕ : R → R is a general function. Therefore, based on Theorem 5.1 and the proof, it is straightforward to see that all
these architectures are bounded by EPWL.

PEG (Wang et al., 2022). Given graph G, PEG maintains a feature vector h(l)(u) ∈ Rd for each node u ∈ VG in each
layer l, and the feature is updated by the following formula:

h(l+1)(u) = ψ

 ∑
v∈NG(u)

ϕ(∥zG(u)− zG(v)∥)Wh(l)(v)

 , (74)

where ϕ : R → R and ψ : Rd → Rd are arbitrary functions, W ∈ Rd×d is a parameterized weight matrix, and zG(u) ∈ Rk

is the positional encoding corresponding to the top k eigenvectors at node u. Here, we assume that the number k is chosen
such that ∥zG(u)− zG(v)∥ is unique for all graphs G of interest (i.e., no ambiguity problem).

We will show that the expressive power of PEG is bounded by EPWL. To obtain this result, note that ∥zG(u)− zG(v)∥2 =∑k
i=1(zG,i(u))

2 + (zG,i(v))
2 − 2zG,i(u)zG,i(v). Since ∥zG(u)− zG(v)∥ is unique, the span of top k eigenvectors must

be equivalent to the direct sum of the eigenspaces corresponding to top k′ eigenvalues λ1 > λ2 > · · · > λk′ for some
k′ ≤ k. It follows that ∥zG(u) − zG(v)∥2 =

∑k′

i=1 Pi(u, u) + Pi(v, v) − 2Pi(u, v) where Pi is the projection onto the
eigenspace corresponding to eigenvalue λi. Therefore, the expressive power of PEG is bounded by the color refinement
algorithm (TGP ◦ T∞

PEG)(χ
0) with χ0 the initial color mapping and TPEG the color transformation defined below:

[TPEG(χ)]G(u) = hash
(
{{(χG(v),PM

G (u, u),PM
G (v, v),PM

G (u, v)) : v ∈ VG}}
)
. (75)

We will prove that (TGP ◦ T∞
EP,M )(χ0) ⪯ (TGP ◦ T∞

PEG)(χ
0). Based on Propositions A.1 and A.2, it suffices to prove that

T∞
EP,M ⪯ TPEG ◦ T∞

EP,M . Denote χ = T∞
EP,M (χ0) and note that χ ≡ T∞

EP,M (χ). Pick any graphs G,H ∈ G and vertices
u ∈ VG, x ∈ VH . We have

χG(u) = χH(x)

=⇒ PM
G (u, u) = PM

H (x, x) ∧ {{(χG(v),PM
G (u, v)) : v ∈ VG}} = {{(χH(y),PM

H (x, y)) : y ∈ VH}}
=⇒ {{(χG(v),PM

G (u, u),PM
G (v, v),PM

G (u, v)) : v ∈ VG}} = {{(χH(y),PM
H (x, x),PM

H (y, y),PM
H (x, y)) : y ∈ VH}}

=⇒ [TPEG(χ)]G(u) = [TPEG(χ)]H(x),

where in the first and second steps we use Proposition A.14. This concludes the proof that the expressive power of PEG is
bounded by EPWL.

GIRT (Ma et al., 2023b). Given graph G, GIRT maintains a feature vector for both vertices and vertex pairs. Denote by
h(l)(u) ∈ Rd the feature of node u ∈ VG in layer l, and denote by h(l)(u, v) ∈ Rd′

the feature of node pair (u, v) ∈ V 2
G in

layer l. The features are updated by the following formula:

h
(l+1)
G (u, v) = σ

(
ρ
(
(WQhG(u) +WKhG(v))⊙WEwh

(l)
G (u, v)

)
+WEbh

(l)
G (u, v)

)
, (76)

α
(l+1)
G (u, v) = Softmaxj∈VG

(WAh
(l+1)
G (u, v)), (77)

h
(l+1)
G (u) =

∑
v∈VG

α
(l+1)
G (u, v) · (WVh

(l)
G (v) +WEvh

(l+1)
G (u, v)), (78)

where the initial feature is defined as

h
(0)
G (u, v) = [(D−1A)0G(u, v), (D

−1A)1G(u, v), · · · , (D−1A)KG (u, v)],

h
(0)
G (u) = h

(0)
G (u, u).

One can easily write the corresponding color refinement algorithm that upper bounds of the expressive power of GIRT.
Formally, it can be expressed as (TGP ◦ TD ◦ T∞

GIRT)(χ
GIRT), where TD is defined in Equation (72), the initial color mapping

χGIRT is simply the multi-dimensional PageRank distance, and TGIRT : M2 → M2 is the color refinement defined below:

[TGIRT(χ)]G(u, v) =

{
hash(χG(u, v), χG(u, u), χG(v, v)) if u ̸= v,
hash(χG(u, u), {{(χG(u, v), χG(v, v)) : v ∈ VG}} if u = v.

(79)
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We will prove that (TGP ◦ T∞
EP,M )(χ0) ⪯ (TGP ◦ TD ◦ T∞

GIRT)(χ
GIRT). Define color transformation T×,PM : M1 → M2

such that for any color mapping χ ∈ M1 and rooted graph Guv ∈ G2,

[T×,PM (χ)]G(u, v) = hash(χG(u), χG(v),PM
G (u, v),PM

G (u, u),PM
G (v, v)). (80)

Note that TGP ◦T∞
EP,M ≡ TGP ◦TD ◦T×,PM ◦T∞

EP,M by Proposition A.14. Also, T×,PM (χ0) ⪯ χGIRT due to Lemma A.16.
Therefore, it suffices to prove that T×,PM ◦ T∞

EP,M ⪯ T∞
GIRT ◦ T×,PM . Based on Proposition A.2, it suffices to prove that

TGIRT ◦ T×,PM ◦ T∞
EP,M ≡ T×,PM ◦ T∞

EP,M . Denote χ = T∞
EP,M (χ0), where χ0 ∈ M1 is any initial color mapping. Pick

any graphs G,H ∈ G and vertices u, v ∈ VG, x, y ∈ VH such that [T×,PM (χ)]G(u, v) = [T×,PM (χ)]H(x, y). We have:

• If u = v, then x = y.

[T×,PM (χ)]G(u, u) = [T×,PM (χ)]H(x, x)

=⇒ χG(u) = χH(x),PM
G (u, u) = PM

H (x, x)

=⇒ {{(χG(u), χG(v),PM
G (u, v)) : v ∈ VG}} = {{(χH(x), χH(y),PM

H (x, y)) : y ∈ VH}}
=⇒ {{(χG(u),PM

G (u, u), χG(v),PM
G (v, v),PM

G (u, v)) : v ∈ VG}}
= {{(χH(x),PM

H (x, x), χH(y),PM
H (y, y),PM

H (x, y)) : y ∈ VH}}
=⇒ {{([T×,PM (χ)]G(u, v), [T×,PM (χ)]G(v, v)) : v ∈ VG}}

= {{([T×,PM (χ)]H(x, y), [T×,PM (χ)]H(y, y)) : y ∈ VH}}
=⇒ [(TGIRT ◦ T×,PM )(χ)]G(u, u) = [(TGIRT ◦ T×,PM )(χ)]G(x, x).

• If u ̸= v, then x ̸= y.

[T×,PM (χ)]G(u, v) = [T×,PM (χ)]H(x, y)

=⇒ χG(u) = χH(x), χG(v) = χH(y),PM
G (u, v) = PM

H (x, y),PM
G (u, u) = PM

H (x, x),PM
G (v, v) = PM

H (y, y)

=⇒ [(TGIRT ◦ T×,PM )(χ)]G(u, v) = [(TGIRT ◦ T×,PM )(χ)]G(x, y).

Here, in the above derivations we use Proposition A.14. We have concluded the proof that the expressive power of GIRT is
bounded by EPWL.

Spectral PPGN and Spectral k-IGN. Based on Maron et al. (2019a), PPGN can mimic the 2-FWL test (Cai et al., 1992),
and Spectral k-IGN can mimic the k-WL test (Grohe, 2017). Let TWL(k) : Mk → Mk and TFWL(k) : Mk → Mk be
the color refinements associated with k-WL and k-FWL, respectively, and let χ0

k ∈ Mk be the initial color mapping
in k-WL and k-FWL. The color refinement algorithms corresponding to k-WL and k-FWL can then be described as
(TJP(k) ◦ T∞

WL(k))(χ
0
k) and (TJP(k) ◦ T∞

FWL(k))(χ
0
k), respectively, where TJP(k) is defined in Equation (84). Maron et al.

(2019a) proved that with sufficiently layers, the features of vertex k-tuples computed by k-IGN is finer than T∞
WL(k)(χ

0
k),

and the features of vertex pairs computed by PPGN is finer than T∞
FWL(2)(χ

0
2). Later, Azizian et al. (2021) proved that the

features of vertex pairs computed by PPGN is also bounded by (and thus as fine as) T∞
FWL(2)(χ

0
2) (see Lemma 12 in their

paper). Finally, Geerts & Reutter (2022) proved that the features of vertex k-tuples computed by k-IGN is bounded by (and
thus as fine as) T∞

WL(k)(χ
0
k) (see Lemma E.1 in their paper).

We now define the color refinement algorithms for Spectral PPGN and Spectral k-IGN, which are as expressive as the
corresponding GNN architectures based on the results of Maron et al. (2019a); Azizian et al. (2021); Geerts & Reutter
(2022). First define the following color transformations:

• Spectral k-IGN color refinement. Define TSIGN(k) : MPM

k → MPM

k such that for any color mapping χ ∈ MPM

k

and (Gu, λ) ∈ GPM

k ,

[TSIGN(k)(χ)]G(λ,u) = hash([TWL(k)(χ(λ, · · · ))]G(u), [TWL(k)(TSP(k)(χ))]G(u)). (81)

• Spectral PPGN color refinement. Define TPPGN : MPM

2 → MPM

2 such that for any color mapping χ ∈ MPM

2 and
(Gu, λ) ∈ GPM

2 ,

[TSPPGN(χ)]G(λ,u) = hash([TFWL(2)(χ(λ, · · · ))]G(u), [TFWL(2)(TSP(2)(χ))]G(u)). (82)
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• Spectral pooling. Define TSP(k) : MPM

k → Mk such that for any color mapping χ ∈ MPM

k and Gu ∈ Gk,

[TSP(k)(χ)]G(u) = hash({{χG(λ,u) : λ ∈ ΛM (G)}}). (83)

• Joint pooling. Define TJP(k) : Mk → M0 such that for any color mapping χ ∈ Mk and G ∈ G,

[TJP(k)(χ)](G) = hash({{χG(u) : u ∈ V k
G}}). (84)

Define the initial color mapping χPM

k ∈ MPM

k such that for any graph G, vertices u ∈ V k
G , and λ ∈ ΛM (G),

[χPM

k ]G(λ,u) = hash(λ, [PM
λ ]G(u1, u1), · · · , [PM

λ ]G(u1, uk), · · · , [PM
λ ]G(uk, u1), · · · , [PM

λ ]G(uk, uk)), (85)

where PM
λ is the projection onto eigenspace associated with eigenvalue λ for graph matrix M . The color refinement

algorithm for Spectral PPGN is then defined as (TJP(2) ◦ TSP(2) ◦ T∞
SPPGN)(χ

PM

2 ). Similarly, the color refinement algorithm
for Spectral k-IGN is then defined as (TJP(k) ◦ TSP(k) ◦ T∞

SIGN(k))(χ
PM

2 ). We aim to prove that following two results:

Proposition A.28. (TJP(2) ◦ TSP(2) ◦ T∞
SPPGN)(χ

PM

2 ) ≡ (TJP(2) ◦ T∞
FWL(2))(χ

0
2).

Proposition A.29. (TJP(k) ◦ TSP(k) ◦ T∞
SIGN(k))(χ

PM

k ) ≡ (TJP(k) ◦ T∞
WL(k))(χ

0
k).

We will only prove Proposition A.28, as the proof of Proposition A.29 is almost the same.

Proof of Proposition A.28. We first prove that (TJP(2) ◦ TSP(2) ◦ T∞
SPPGN)(χ

PM

2 ) ⪯ (TJP(2) ◦ T∞
FWL(2))(χ

0
2). Since

TSP(2)(χ
PM

2 ) ⪯ χ0
2 (Lemma A.5), it suffices to prove that TSP(2) ◦ T∞

SPPGN ⪯ T∞
FWL(2) ◦ TSP(2). Based on Proposi-

tion A.2, it suffices to prove that TFWL(2) ◦ TSP(2) ◦ T∞
SPPGN ≡ TSP(2) ◦ T∞

SPPGN. Denote χ = T∞
SPPGN(χ̂

0), where
χ̂0 ∈ MPM

2 is any initial color mapping. Pick any graphs G,H ∈ G and vertices u, v ∈ VG, x, y ∈ VH such that
[TSP(2)(χ)]G(u, v) = [TSP(2)(χ)]H(x, y). We have:

[TSP(2)(χ)]G(u, v) = [TSP(2)(χ)]H(x, y)

=⇒ {{χG(λ, u, v) : λ ∈ ΛM (G)}} = {{χH(µ, x, y) : µ ∈ ΛM (H)}}
=⇒ {{[(TFWL(2) ◦ TSP(2))(χ)]G(u, v) : λ ∈ ΛM (G)}} = {{[(TFWL(2) ◦ TSP(2))(χ)]H(x, y) : µ ∈ ΛM (H)}}
=⇒ [(TFWL(2) ◦ TSP(2))(χ)]G(u, v) = [(TFWL(2) ◦ TSP(2))(χ)]H(x, y).

where in the second step we use the definition of TSPPGN and the fact that χ ≡ TSPPGN(χ).

We next prove that (TJP(2) ◦ T∞
FWL(2))(χ

0
2) ⪯ (TJP(2) ◦ TSP(2) ◦ T∞

SPPGN)(χ
PM

2 ). Based on Zhang et al. (2023a), we have
T∞
FWL(2) ⪯ T∞

PS ◦ TNM and T∞
PS ≡ TDu ◦ TDv ◦ T∞

PS , where TPS, TNM, TDu, TDv are defined in Appendix A.3. On the other
hand, we have proved in Corollary A.11 that (T∞

PS ◦TNM)(χ0
2) ⪯ PM . Therefore, (T∞

PS ◦TNM)(χ0
2) ⪯ (TDu ◦TDv)(PM ) ⪯

TSP(2)(χ
PM

2 ). This finally implies that T∞
FWL(2)(χ

0
2) ⪯ TSP(2)(χ

PM

2 ).

It thus suffices to prove that (T∞
FWL(2) ◦ TSP(2))(χ

PM

2 ) ⪯ (TSP(2) ◦ T∞
SPPGN)(χ

PM

2 ). We will prove the following stronger

result: for any t ≥ 0, (T∞
FWL(2) ◦ TSP(2))(χ

PM

2 )) ⪯ (TSP(2) ◦ T t
SPPGN)(χ

PM

2 ). The proof is based on induction. For the
base case of t = 0, the result clearly holds. Now assume that the result holds for t = t′ and consider the case of t = t′ + 1.
Denote χ = T t

SPPGN(χ
PM

2 ). Pick any graphs G,H ∈ G and vertices u, v ∈ VG, x, y ∈ VH . We have

[(T∞
FWL(2) ◦ TSP(2))(χ

PM

2 ))]G(u, v) = [(T∞
FWL(2) ◦ TSP(2))(χ

PM

2 ))]H(x, y)

=⇒ [(TFWL(2) ◦ T∞
FWL(2) ◦ TSP(2))(χ

PM

2 ))]G(u, v) = [(TFWL(2) ◦ T∞
FWL(2) ◦ TSP(2))(χ

PM

2 ))]H(x, y)

=⇒ [(TFWL(2) ◦ TSP(2))(χ)]G(u, v) = [(TFWL(2) ◦ TSP(2))(χ)]H(x, y)

=⇒ ΛM (G) = ΛM (H) ∧ [(TFWL(2)(χ(λ, · · · ))]G(u, v) = [(TFWL(2)(χ(λ, · · · ))]H(x, y) ∀λ ∈ ΛM (G).

Combining the last two steps implies that [(TSP(2) ◦ TSPPGN)(χ)]G(u, v) = [(TSP(2) ◦ TSPPGN)(χ)]H(x, y). We thus
conclude the induction step.
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A.8. Counterexamples

In this subsection, we aim to reveal the expressivity gaps between different GNN models. This is achieved by constructing a
pair of counterexample graphs G,H ∈ G such that one GNN can distinguish while the other cannot. Here, we will leverage
an important theoretical tool to construct counterexamples, known as Fürer graphs Fürer (2001). An in-depth introduction of
Fürer graphs can be found in Zhang et al. (2023a).

Definition A.30 (Fürer graphs). Given any connected graph F = (VF , EF ), the Fürer graph G(F ) = (VG(F ), EG(F )) is
constructed as follows:

VG(F ) = {(x,X) : x ∈ VF , X ⊂ NF (x), |X| mod 2 = 0},
EG(F ) = {{(x,X), (y, Y )} ⊂ VG : {x, y} ∈ EF , (x ∈ Y ↔ y ∈ X)}.

Here, x ∈ Y ↔ y ∈ X holds when either (x ∈ Y and y ∈ X) or (x /∈ Y and y /∈ X) holds. For each x ∈ VF , denote the
set

MetaF (x) := {(x,X) : X ⊂ NF (x), |X| mod 2 = 0}, (86)

which is called the meta vertices of G(F ) associated to x. Note that VG(F ) =
⋃

x∈VF
MetaF (x).

We next define an operation called “twist”:

Definition A.31 (Twisted Fürer graphs). LetG(F ) = (VG(F ), EG(F )) be the Fürer graph of F = (VF , EF ), and let {x, y} ∈
EF be an edge of F . The twisted Fürer graph of G(F ) for edge {x, y}, is constructed as follows: twist(G(F ), {x, y}) :=
(VG(F ), Etwist(G(F ),{x,y})), where

Etwist(G(F ),{x,y}) := EG(F )△{{ξ, η} : ξ ∈ MetaF (x), η ∈ MetaF (y)},

and △ is the symmetric difference operator, i.e., A△B = (A\B) ∪ (B\A). For an edge set S = {e1, · · · , ek} ⊂ EF , we
further define

twist(G(F ), S) := twist(· · · twist(G(F ), e1) · · · , ek). (87)

Note that Equation (87) is well-defined as the resulting graph does not depend on the order of edges e1, · · · , ek for twisting.

The following result is well-known (see e.g., Zhang et al., 2023a, Corollary I.5 and Lemma I.7)):

Theorem A.32. For any graph F and any set S1, S2 ⊂ EF , twist(G(F ), S1) ≃ twist(G(F ), S2) iff |S1| mod 2 =
|S2| mod 2.

Below, we will prove Proposition A.33 using Fürer graphs. Note that it can be easily checked via a computer program
whether a pair of graphs can be distinguished by a given color refinement algorithm. However, an in-depth understanding of
why a given color refinement algorithm can/cannot distinguish these (twisted) Fürer graphs is beyond the scope of this paper
and is left for future work.

Proposition A.33. The following hold:

a) There exists a pair of graphs G,H such that SWL cannot distinguish them but Siamese IGN, Spectral IGN, and EPWL
with any graph matrix M ∈ {A,L, L̂} can distinguish them;

b) For any M ∈ {A,L, L̂}, there exists a pair of graphs G,H such that Weak Spectral IGN cannot distinguish them but
Spectral IGN can distinguish them;

c) There exists a pair of graphs G,H such that Weak Spectral IGN cannot distinguish them with any M ∈ {A,L, L̂},
but GD-WL with any distance listed in Section 5 can distinguish them;

d) There exists a pair of graphs G,H such that Spectral IGN and EPWL with any graph matrix M ∈ {A,L, L̂} cannot
distinguish them, but SWL can distinguish them.

Proof. For Proposition A.33(a,b,c,d), the counterexample graphs are the Fürer graph and twisted Fürer graph for base graph
F defined in Figure 3(a,b,c,d), respectively.
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(a) (b) (c) (d)

Figure 3. Illustrations of base graphs used to construct Fürer graph and twisted Fürer graph for proving Proposition A.33.
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