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Figure 1: We introduce the concept of Semantic Orientation, which refers to natural language-
grounded object orientations, such as the “cutting” direction of a knife or the “handle” direction of a
cup. To support this, we construct OrienText300K, a large-scale object-text-orientation pairs dataset.

Abstract

While spatial reasoning has made progress in object localization relationships, it of-
ten overlooks object orientation—a key factor in 6-DoF fine-grained manipulation.
Traditional pose representations rely on pre-defined frames or templates, limiting
generalization and semantic grounding. In this paper, we introduce the concept of
semantic orientation, which defines object orientations using natural language in a
reference-frame-free manner (e.g., the “plug-in” direction of a USB or the “handle”
direction of a cup). To support this, we construct OrienText300K, a large-scale
dataset of 3D objects annotated with semantic orientations, and develop PointSO,
a general model for zero-shot semantic orientation prediction. By integrating se-
mantic orientation into VLM agents, our SOFAR framework enables 6-DoF spatial
reasoning and generates robotic actions. Extensive experiments demonstrated the
effectiveness and generalization of our SOFAR, e.g., zero-shot 48.7% successful
rate on Open6DOR and zero-shot 74.9% successful rate on SIMPLER-Env.
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Figure 2: Representation comparison between semantic orientation and others.

1 Introduction

We observe that current VLMs struggle with understanding object orientation, making them insuf-
ficient for 6-DoF robot manipulation planning. Consider some everyday scenarios: cutting bread
in half with a knife, righting a tilted wine glass, or plugging a cord into a power strip. Previous
approaches [10, 12, 8] primarily focused on understanding “where are the knife and wine glass” while
ignoring their orientations—such as the “blade direction” of the knife and the “up direction” of the
glass. This oversight makes it challenging to accomplish these 6-DoF manipulation tasks.

More importantly, different orientations of an object hold varying semantic significance. The
capability of connecting specific orientations to their semantic meanings is essential for language-
guided robot manipulations. For example, inserting a pen into a pen holder requires aligning the
pen tip with the direction of the pen holder’s opening; righting a wine glass necessitates aligning the
glass’s top with the z-axis in the world coordinate frame; and plugging into a power strip involves
understanding the “insertion” direction, which is perpendicular to the power strip’s surface. However,
translating a specific language description into a desired orientation is challenging for existing VLMs.

To move forward, we introduce language-grounded orientation that bridges spatial reasoning and
object manipulation, characterized by the following:

• From Position Awareness to Orientation Awareness. While prior works [10, 12, 8] emphasize
position relationship, orientation understanding is equally critical for defining the full 6-DoF of
object pose or end-effector poses [16, 120, 124, 60]. Orientation awareness involves understanding
object orientations and their relationships in the open world, enabling robots to complete tasks
requiring precise alignment and rearrangement.

• From Orientation to Semantic Orientation. Traditional orientation, defined relative to a base
frame or template model [104, 58, 120, 16], is insufficient for open-world manipulation guided by
language instructions [108, 49]. We introduce semantic orientation, linking orientational vectors
of an object to open-vocabulary prompts (e.g., the “handle” direction of a knife or “plug-in”
direction of a USB). This bridges geometric reasoning with functional semantics, enabling robots
to interpret task-specific orientation changes.

Achieving such open-world orientation understanding requires rich world knowledge. To this end, we
design both the model architecture and the dataset accordingly. We propose PointSO, a generalizable
cross-modal 3D Transformer [114, 26, 89, 91] for semantic orientation prediction. To train it at scale,
we construct OrienText300K, a large-scale dataset comprising over 350K 3D models with diverse
orientation-text pairs. These annotations are from Objaverse [20] and generated automatically by
prompting GPT-4o [48] with rich semantic queries covering both intra-object spatial reasoning and
inter-object manipulation contexts—eliminating the need for costly robot-collected data.

To enable comprehensive spatial reasoning, we develop SOFAR, an integrated system that combines
PointSO with foundation models such as SAM [57]. Given an RGB-D input, SAM segments the
scene, and PointSO estimates object orientations to build an orientation-aware 3D scene graph. The
graph together with the image is fed into a VLM to generate chain-of-thought [119] spatial reasoning,
supporting both positional and orientational planning for downstream robotic manipulation.

In addition, we introduce Open6DOR V2, a large-scale benchmark for 6-DoF object rearrangement
in simulation, which supports both open-loop and closed-loop control. Our method significantly
outperforms state-of-the-art VLMs and VLA models—even those trained on expensive robot trajec-
tories—across both simulated and real-world tasks. We also introduce 6-DoF SpatialBench, a new
spatial visual-question-answering benchmark to rigorously assess orientation-aware reasoning.

2



(a) Data Construction of OrienText300K.

74
76
78
80
82
84
86
88
90
92
94
96
98

100

Orthogonal No Ground Reasonable Quality Distinguish Non-Scene SO

GPT-4o-mini GPT-4V GPT-4o Filtering Annotating

Ac
cu

ra
cy

 (%
)

Data Validation Aspects

(b) Data filtering and annotating accuracy.

Figure 3: Visualization of OrienText300K data construction and validation results.

In summary, we propose Semantic Orientation as a new representation that bridges spatial reasoning
and robotic manipulation, enabling open-vocabulary, template-free orientation understanding for
unseen objects. We introduce OrienText300K, a large-scale dataset including 350K diverse objects &
orientations and 8M images through careful filtering and annotating. We develop the SOFAR system,
which enhances spatial reasoning with 6-DoF scene graph and achieves SOTA performance on
Open6DOR, SimplerEnv, and generalizes across embodiments (e.g., grippers, suction cups, dexterous
hands) and tasks (e.g., manipulation, navigation, VQA) without any task-specific fine-tuning. Finally,
we present two new benchmarks, Open6DOR V2 and 6-DoF SpatialBench, to evaluate 6-DoF
rearrangement and spatial reasoning.

2 Semantic Orientation: Connecting Language and Object Orientation

2.1 Definition of Semantic Orientation

Traditionally, object orientation is defined within a reference frame using quaternions or Euler angles
to describe relative rotations. However, in interactive tasks, orientations often carry semantic meaning.
Humans naturally interpret orientation in a semantic, reference-free manner. For example, plugging
in a charger involves aligning the metal prongs with the socket’s opening direction—a semantically
grounded alignment. Motivated by this, we define an object’s Semantic Orientation as a unit vector
that captures the direction corresponding to a given language description. Formally, for an object X
and a description ℓ, the semantic orientation sXℓ ∈ S(2) is defined as:

sXℓ = F(X, ℓ). (1)

Here, ℓ is open-vocabulary phrase referring to general directions (e.g., front, top), object parts (e.g.,
handle, cap), or interactions (e.g., pour out, plug-in). An object X can be associated with multiple
semantic orientations by varying the language input, forming a set SX = {sXℓ1 , s

X
ℓ2
, . . . , sXℓn}. These

orientations provide a semantic basis for describing and transforming the object’s rotation.

2.2 OrienText300K: Orientation-Text Paired Data at Scale

Our goal is to develop an orientation model capable of identifying semantic orientations in open-world
settings using large-scale 3D data. To support this, we introduce OrienText300K, a curated dataset
of 3D models annotated with diverse language-guided orientation labels. The dataset is constructed
from Objaverse [20], which contains approximately 800K Internet-sourced 3D models across a wide
range of categories. Since the raw data includes noisy annotations and low-quality samples, we apply
a rigorous filtering process. Using Blender, we render over 8M high-quality images under carefully
designed lighting conditions to ensure fidelity for training.

Data Filtering To ensure high-quality data for generating semantic orientation annotations, we
apply a dedicated filtering strategy that retains only the samples meeting the following six criteria. ❶
Standard orthogonal view only. Samples in random views will be filtered. ❷ Clean objects without
the ground for auxiliary visualization. ❸ Reasonable objects that have sufficient spatial reasoning
potentials. ❹ High-quality objects. Blurry and wrong samples are filtered. ❺ Distinguishable objects.
Abstract and meaningless objects are filtered. ❻ Non-scene objects for object-centric understanding.
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However, it is non-trivial to conduct filtering on such big data using manual labor. Inspired by recent
works showing large VLMs are human-aligned judgers [147, 121, 85], we employ GPT-4o [48] by
prompting requirements above. To be specific, the multi-view images of 3D objects are concatenated
together with our designed prompts into GPT-4o, and GPT-4o will decide whether samples should be
filtered. The filtered dataset yields 350K+ clean samples, significantly reducing data noise.

Data Annotation As mentioned in the introduction, VLMs struggle to produce accurate object
orientation values, which presents a significant challenge for data generation. Fortunately, VLMs
are powerful discriminators capable of distinguishing between different views through multimodal
understanding. We believe that the initial stage of data cleaning effectively removed a large amount
of misaligned data, leaving behind a set of properly aligned instances capable of producing standard
orthogonal views. We then leverage GPT-4o to interpret the semantic content across six views and
generate semantic-view pairs accordingly. Throughout the annotation process, both human modelers
in Objaverse and ChatGPT serve as our annotators, supplying the necessary knowledge to produce
both view-aligned data and semantically grounded annotations.

Quality Validation To validate annotation quality, we construct a validation set containing 208
samples with manually labeled filtering criteria and semantic orientation labels, respectively. From
Fig. 3b, we observe that GPT-4o achieves an average accuracy of 88.3% and 97.1% accuracy on
filtering and annotating, respectively. This provides a quality guarantee of our OrienText300K.

2.3 PointSO: A Cross-Modal 3D Transformer for Semantic Orientation Prediction

We introduce PointSO, a plain Transformer-based architecture [114] with cross-modal 3D-language
fusion as our orientation model. As illustrated in Fig. 4, PointSO takes the object’s 3D point clouds
and a language description as inputs, and predicts the corresponding semantic orientation.
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Figure 4: PointSO model architecture.

3D and Language Embeddings Given an
object’s point cloud X = {xi ∈ R3|i =
1, 2, . . . , N} with N 3D points defined in (x,
y, z) Cartesian space, and an arbitrary language
description ℓ, we first embed both into discrete
token embeddings. For the 3D point clouds,
we follow [26, 136, 89] to first sample Ns seed
points using farthest point sampling (FPS) and
then group inputs with KNN for point feature
embedding with a local geometric extraction net-
work such as lightweight PointNet [86, 87]. An
MLP head is used which maps a special [CLS]
token [28] to a predicted direction. As for the
language inputs, we adopt CLIP [97] and use
the global token as cross-modal fusion inputs.

Cross-Modal Fusion We perform cross-modal
fusion by injecting global text features into each
layer of the 3D Transformer using a simple yet
effective strategy: adding the text token to every point token. While other fusion methods such
as cross-attention, adapters, or concatenation along spatial or channel dimensions are possible, we
empirically find that token-wise addition performs best (see Appendix C.3). This effectiveness may
stem from the short language inputs, where summation helps reinforce their influence across layers.

Optimization Let FSO represent the PointSO model parameterized by θSO (the CLIP is kept frozen
and thus its parameters are not included). Given every object point cloud Xi ∈ DOrienText300K in the
OrienText300K dataset, where each object is labeled with a language set Li = {ℓij , j = 1, 2, . . . , Q}
and the corresponding ground truth semantic orientation set, Si = {sij , j = 1, 2, . . . , Q}. The
optimization is to minimize the negative cosine similarity Lcos(v,k) = 1 − v·k

∥v∥·∥k∥ between
predicted and the ground truth semantic orientations:

min
θSO

∑
Xi∈DOrienText300K

∑
ℓij∈Li

Lcos

(
FSO(Xi, ℓ

i
j), s

i
j

)
. (2)
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Figure 5: Overview of SOFAR system. Given RGB-D images and language instructions, SOFAR first
leverages a VLM to identify relevant object phrases and semantic orientations. Then utilizes foun-
dation models Florence-2 [125], SAM [57], and our PointSO for object segmentation and semantic
orientation estimation. This information forms a 6-DoF scene graph, which the VLM uses alongside
the RGB image to perform spatial understanding tasks or generate manipulation actions.

3 SOFAR: Semantic Orientation Bridges Spatial Reasoning and Object
Manipulation

Our proposed PointSO model now paves the way for off-the-shelf object-centric spatial orientation
understanding. However, it remains challenging to extend such object-centric spatial understanding
for scene-level spatial reasoning both in the digital world (e.g., 6-DoF visual question answering) and
in the physical world (e.g., robot manipulations). To bridge this gap, we build an integrated reasoning
system where a powerful VLM acts as an agent and reasons about the scene while communicating
with off-the-shelf models including PointSO and SAM [57]. Fig. 5 illustrates an overview of our
proposed framework, aiming at Semantic Orientation For Autonomous Robots (SOFAR).

3.1 Scene Graph with 6-DoF Information

To integrate both the positional & orientational interaction relationships of objects, we use a scene
graph with 6-DoF information to represent the environment.

Position & Orientation Information Extraction Given a language query Q, we first prompt a vision-
language model FVLM to extract a task-relevant set of object phrases P = {pi | i = 1, 2, . . . ,M}.
Each phrase pi represents a language description of an object relevant to Q. Using the SAM [57] &
Florence-2 [125], we perform language-conditioned segmentation to obtain a corresponding object
set X = {Xi | i = 1, 2, . . . ,M}, where Xi is the 3D point cloud of the i-th object. Each object is
assigned a unique ID for use in Set-of-Mark (SoM) prompting [129]. We then prompt the VLM
to generate a set of task-specific orientation descriptions Li for related objects, and use pretrained
PointSO to infer their semantic orientations, resulting in a semantic orientation set Si.

6-DoF Scene Graph From the segmented object set X , we construct an 6-DoF scene graph
G = (V,E) with M nodes. Each node oi ∈ V encodes the following semantic and spatial attributes:
❶ object phrase pi with a unique instance ID; ❷ 3D position ci = (x, y, z) ∈ R3 from the object’s
centroid; ❸ bounding box size bi = (h,w, l) ∈ R3; ❹ semantic orientation set Si along with its
corresponding description set Li. Each edge eij ∈ E represents the relative translation and size ratio
between two connected objects oi and oj .

3.2 Spatial-Aware Task Reasoning

We encode the 6-DoF scene graph G into descriptive language and input it to the VLM alongside
the RGB image I and query Q. This enriched spatial representation enables the VLM to perform
accurate spatial reasoning by leveraging its visual and linguistic understanding.

Chain-of-Thought Spatial Reasoning Most robot manipulation tasks involving rigid objects can be
abstracted as applying transformations to adjust their position and orientation. To guide the VLM in
generating such transformations from language instructions, we adopt a CoT reasoning process [119]
that decomposes the reasoning into three steps: (i) analyzing the scene with the query Q and object
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Figure 6: Qualitative results of real world language-grounded manipulation. SOFAR can generalize
across various embodiments, tasks and environments.
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Figure 7: Quantitative evaluation of zero-shot real-world language-grounded rearrangement. We
design 60 diverse real-world tasks involving over 100 diverse objects (detailed in Table 13).

nodes V; (ii) computing the desired position and orientation of the target object; (iii) predicting the
target position c̃i and semantic orientation set S̃i for each object. Given the initial state ci and Si, the
full 6-DoF transformation Pi is computed. Specifically, translation is obtained by ti = c̃i − ci, and
rotation Ri is estimated from Si and S̃i using the Kabsch-Umeyama algorithm [52, 53, 112].

Low-Level Motion Execution Following CoPa [44], we integrate task-specific grasping and motion
planning. Object or part segmentation is performed using Florence-2 [125] and SAM [57], followed
by grasp candidate generation via GSNet [33]. The optimal grasp is selected by considering both
grasp quality and heuristics. Based on instruction, SOFAR predicts the object’s translation and
rotation, defining the transformation from grasp to placement. We employ OMPL [103] to generate a
collision-free trajectory, initializing joint positions at the midpoint to ensure smooth and safe motion.
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Table 1: 6-DoF object rearrangement evaluation on Open6DOR [25].

Method
Position Track Rotation Track 6-DoF Track

Time Cost (s)
Level 0 Level 1 Overall Level 0 Level 1 Level 2 Overall Position Rotation Overall

Perception Tasks on Issac Sim [80] (Open6DOR V1 Setting)

GPT-4V [81] 46.8 39.1 45.2 9.1 6.9 11.7 9.2 - - - -
Dream2Real [54] 17.2 11.0 15.9 37.3 27.6 26.2 31.3 26.2 18.7 13.5 358.3s
VoxPoser [46] 35.6 21.7 32.6 - - - - - - - -
Open6DOR-GPT [25] 78.6 60.3 74.9 45.7 32.5 49.8 41.1 84.8 40.0 35.6 126.3 s
SOFAR-LLaVA 86.3 57.9 78.7 62.5 30.2 67.1 48.6 83.0 48.2 40.3 9.6s
SOFAR 96.0 81.5 93.0 68.6 42.2 70.1 57.0 92.7 52.7 48.7 8.5s

Execution Tasks on Libero [64] (Open6DOR V2 Setting)

Octo [107] 51.2 32.1 47.2 10.7 18.3 29.9 17.2 45.6 8.0 8.0 -
OpenVLA [56] 51.6 32.4 47.6 11.0 18.5 30.6 17.6 46.2 8.2 8.2 -
SOFAR 72.1 47.6 67.0 28.3 18.3 34.7 25.7 63.7 25.6 18.4 40s

4 Experiments

4.1 Real-world Language-Grounded Object Manipulation

Tasks and Evaluations We construct 60 real-world tasks involving over 100 objects, following
the Open6DOR benchmark [25]. The tasks are divided into three tracks—position, orientation, and
comprehensive & 6-DoF—each with simple and hard variants. The position track assesses spatial rea-
soning from basic (e.g., front/back/left/right) to more complex relations (e.g., between/center/custom).
The orientation track includes part-level orientation in the simple setting, and fine-grained angle
estimation in the hard setting. The comprehensive and 6-DoF tracks evaluate complex instruction
understanding and simultaneous control over position and orientation. Each task is repeated three
times to ensure statistical robustness. More details and visualizations are available in Appendix D.1.

Results As shown in Fig. 7, SOFAR consistently outperforms baselines across all tracks, especially on
orientation and 6-DoF tasks, while maintaining low planning overhead. We also demonstrate SOFAR’s
embodiment generality with different end-effectors, including dexterous hands and suction cups, as
illustrated in Fig. 6. Additional robot setups and generalization results are provided in Appendix A.

4.2 Semantic Orientation Prediction

Table 2: Semantic Orientation evaluation on Ori-
enText300K validation split.

Method 45° 30° 15° 5° Avg.

PointSO-S 77.34 74.22 67.97 60.94 70.12
PointSO-B 79.69 77.34 70.31 62.50 72.46
PointSO-L 81.25 78.13 72.66 65.63 74.42

Table 3: Semantic Orientation evaluation of
robustness. Single-View: randomly select
a camera viewpoint within the unit sphere and
generate a single FoV viewpoint in polar coordi-
nates. Jitter: Gaussian noise ϵ ∼ N (0, σ2),
σ = 0.01. Rotate: random SO(3) rotation
(α, β, γ) ∼ U(−π, π). All: all corruptions.

Method
OrienText300K-C Variants

Single-View Jitter Rotate All

PointSO-S 72.66 76.56 73.43 67.19
PointSO-B 75.00 78.90 75.78 71.09
PointSO-L 76.56 81.25 77.34 74.22

Using free-text descriptions to extract semantic
orientations from object point clouds is chal-
lenging. In Objaverse [20], we manually anno-
tate 128 diverse objects and construct the Ori-
enText300K val split to evaluate the directional
prediction accuracy of PointSO. We train dif-
ferent model variants on OrienText300K, and
the results in Table 2 report performance across
different angular thresholds ranging from 45° to
5°. PointSO still has an accuracy rate of 60%
even under a 5° threshold.

In the real world, obtaining complete object
point clouds is often difficult. To evaluate the ro-
bustness of PointSO under such conditions, we
introduce three types of input perturbations: ran-
dom rotations, partial single-sided observations,
and Gaussian noise. As reported in Table 3, the
accuracy at the 45° threshold reflects the model’s
resilience to these corruptions.

4.3 6-DoF Object Rearrangement Evaluation on Open6DOR V2

To evaluate 6-DoF object rearrangement capabilities, we extend the original Open6DOR bench-
mark [25], which primarily focuses on final pose estimation, into a more comprehensive setting that
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Table 4: SimplerEnv [62] simulation evaluation results for the Google Robot setup. We present
success rates for the “Variant Aggregation” and “Visual Matching” approaches. Top-1 & Top-2
accuracies are represented using different colors. OXE: Open X-Embodiment dataset [15].

Google Robot
Evaluation Setup Policy Training Data

Pick Coke Can Move Near Open / Close Drawer

Average
Horizontal

Laying
Vertical
Laying Standing Average Average Open Close Average

Variant
Aggregation

RT-1-X [15] OXE 0.569 0.204 0.698 0.490 0.323 0.069 0.519 0.294 0.397
RT-2-X [152] OXE 0.822 0.754 0.893 0.823 0.792 0.333 0.372 0.353 0.661
Octo-Base [107] OXE 0.005 0.000 0.013 0.006 0.031 0.000 0.021 0.011 0.012
OpenVLA [56] OXE 0.711 0.271 0.653 0.545 0.477 0.158 0.195 0.177 0.411

SOFAR Zero-Shot 0.861 0.960 0.901 0.907 0.740 0.200 0.394 0.297 0.676

Visual
Matching

RT-1-X [15] OXE 0.820 0.330 0.550 0.567 0.317 0.296 0.891 0.597 0.534
RT-2-X [152] OXE 0.740 0.740 0.880 0.787 0.779 0.157 0.343 0.250 0.606
Octo-Base [107] OXE 0.210 0.210 0.090 0.170 0.042 0.009 0.444 0.227 0.168
OpenVLA [56] OXE 0.270 0.030 0.190 0.163 0.462 0.194 0.518 0.356 0.277

SOFAR Zero-Shot 0.770 1.000 1.000 0.923 0.917 0.227 0.578 0.403 0.749

Table 5: SimplerEnv [62] simulation evaluation results for the WidowX + Bridge setup. We
report both the final success rate (“Success”) along with partial success (e.g., “Grasp Spoon”). OXE:
Open X-Embodiment dataset [15]. Bridge: BridgeData V2 dataset [115] (In domain training).

Policy Training Data

Put Spoon Put Carrot Stack Green Block Put Eggplant

Average
on Towel on Plate on Yellow Block in Yellow Basket

Grasp
Spoon Success Grasp

Carrot Success Grasp
Green Block Success Grasp

Eggplant Success

RT-1-X [6] OXE 0.167 0.000 0.208 0.042 0.083 0.000 0.000 0.000 0.011
Octo-Base [107] OXE 0.347 0.125 0.528 0.083 0.319 0.000 0.667 0.431 0.160
Octo-Small [107] OXE 0.778 0.472 0.278 0.097 0.403 0.042 0.875 0.569 0.300
OpenVLA [56] OXE 0.041 0.000 0.333 0.000 0.125 0.000 0.083 0.041 0.010
RoboVLM [61] OXE 0.375 0.208 0.333 0.250 0.083 0.083 0.000 0.000 0.135
RoboVLM [61] Bridge 0.542 0.292 0.250 0.250 0.458 0.125 0.583 0.583 0.313
SpatialVLA [94] OXE 0.250 0.208 0.417 0.208 0.583 0.250 0.792 0.708 0.344
SpatialVLA [94] Bridge 0.208 0.167 0.292 0.250 0.625 0.292 1.000 1.000 0.427

SOFAR Zero-Shot 0.625 0.583 0.750 0.667 0.917 0.708 0.667 0.375 0.583

includes both perception and execution evaluation. We migrate its scenes into a robosuite-based
simulation environment [151], following the task interface defined by LIBERO [64], and name this
new benchmark Open6DOR V2. Results are reported in Table 1. For perception tasks, we adopt the
original Open6DOR [25] evaluation protocol and compare with the same baselines. SOFAR achieves
the best performance, demonstrating strong spatial understanding and zero-shot generalization. For
execution tasks, we compare against the pretrained Octo [107] and the LIBERO-finetuned Open-
VLA [56], all evaluated in the same robosuite environment to minimize domain shift. While both
baselines show limited success due to poor generalizability, SOFAR reaches around 40% success rate
using a vanilla execution pipeline. We note that certain objects are intrinsically difficult to manipulate,
suggesting the need for more robust policies incorporating prehensile grasping and adaptive strategies
to improve performance on Open6DOR V2.

4.4 Simulation Object Manipulation Evaluation on SIMPLER [62]

We conduct quantitative evaluations of SOFAR’s zero-shot execution performance on Google Robot
tasks & Widow-X tasks and compare it to baselines including Octo [107], OpenVLA [56] and more
concurrent works [61, 94]. The robot follows the planned trajectory generated by the planning
module, as described in Sec. 3.2, to execute the task. Furthermore, leveraging the error detection
and re-planning capabilities of VLMs [48, 1], we can make multiple attempts following a single-step
execution failure to approximately achieve a closed-loop effect. For fairness, we limit the maximum
number of attempts to three. Detailed visualizations and analyses are provided in the Appendix B.5.
As shown in Tables 4 and 5, despite the training data for Octo and OpenVLA including Google Robot
tasks, SOFAR demonstrates superior zero-shot performance compared to most baselines.
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Figure 8: Real-world orientation-aware navigation. We present both the third-person view and the
egocentric view, annotating the predicted orientation of the interacted objects.

4.5 Orientation-Aware Robotic Navigation

In navigation tasks, reaching an object from its functional side is crucial for subsequent manipu-
lation—for example, approaching a microwave from the front to open its door. To support such
scenarios, we extend semantic orientation to the navigation domain. As shown in Fig. 8, a quadruped
robot is tasked with reaching both the correct position and the appropriate facing direction. This
orientation-aware constraint enhances the navigation process by ensuring precise alignment with the
desired orientation, thereby improving task performance in scenarios where directionality is critical.

4.6 Spatial Reasoning Evaluation on 6-DoF SpatialBench

Table 6: Spatial reasoning evaluation on 6-DoF
SpatialBench. Depth-Esti: Use depth estimation
methods such as Metric3D [135] or Moge [117].

Method Depth-Esti
Position Orientation

Total
rel. abs. rel. abs.

Blind Evaluation with LLMs

GPT-3.5-Turbo [7] ✗ 24.5 24.9 26.7 27.5 25.7
GPT-4-Turbo [82] ✗ 27.2 27.3 29.2 27.9 27.8

General VLMs

LLaVA-1.5 [68] ✗ 30.9 24.5 28.3 25.8 27.2
GPT-4o-mini [48] ✗ 33.3 26.9 32.5 23.8 31.0
GPT-4o [48] ✗ 49.4 28.4 44.2 25.8 36.2

VLMs with Spatial Awareness

SpaceLLaVA [10] ✗ 32.4 30.5 30.9 24.9 28.2
SpaceMantis [10] ✗ 33.6 29.2 27.2 25.0 28.9
SpatialBot [8] ✓ 50.9 21.6 39.6 22.9 32.7
RoboPoint [137] ✗ 43.8 30.8 33.8 25.8 33.5
SOFAR ✓ 59.6 33.8 54.6 31.3 43.9

To assess spatial understanding with full 6-DoF
awareness, we introduce 6-DoF SpatialBench,
a VQA benchmark designed to evaluate both po-
sitional and orientational comprehension. Un-
like prior benchmarks [12, 8, 29, 106] that pri-
marily emphasize coarse positional reasoning
(e.g., “to the left,” “nearest”) and often overlook
orientation or rely on relative metrics, we pro-
vide a more fine-grained evaluation with quan-
titative annotations. It consists of 223 human-
annotated samples, each containing an RGB
image and a multiple-choice question with 4
options. The benchmark includes two tracks:
position and orientation, covering tasks such as
object counting, spatial relations, and object-
facing direction. All questions and ground-truth
answers are curated through human annota-
tion. We evaluate SOFAR on 6-DoF Spatial-
Bench against several VLMs and comparable methods as baselines, as presented in Table 6. SO-
FAR consistently outperforms other methods across both tracks, achieving over 18% improvement.

5 Limitations & Conclusions

One notable limitation for decoupled systems like SOFAR is that the execution may fail due to a
sub-module error, as shown in Appendix B.8, i.e., robots may place target objects with an error
transformation because of unstable grasping or inaccurate visual perception. For example, the pen will
be placed in an unexpected pose due to the rotation during execution. Future works include integrating
scalable data and more advanced models and exploring the potential of combining end-to-end and
such decoupled methods, and expanding SOFAR to more applications.

We propose semantic orientation, a language-grounded representation that links object orientations
with intuitive descriptors (e.g., “plug-in direction”), bridging geometric reasoning and functional
semantics. To support this, we construct OrienText300K, a large-scale dataset of 3D models with
semantic orientation annotations. Our PointSO model, integrated within the SOFAR system, demon-
strates strong performance in both simulated and real-world robotic manipulation tasks.
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Justification: N/A
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of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide detailed experiment information in the Appendix D for reproduc-
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived
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whether the code and data are provided or not.
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one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how
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In the case of closed-source models, it may be that access to the model is limited in
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to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
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• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
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6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide detailed hyperparameters in the Appendix D for reproduction.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: In the real-world experiment depicted in Fig. 7, we report error bars.
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide detailed computer resources in the Appendix D.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The paper has ensured anonymity and ethical standards.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss potential positive societal impacts and negative societal impacts in
Appendix I.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: N/A
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: In Section 4, we properly credit all the public baselines and datasets utilized in
this paper.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We include the documentation in the supplementary materials.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: N/A
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: N/A
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: N/A
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
LLM) for what should or should not be described.
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A Robot Setups

A.1 Simulation Robot Setups

To ensure fairness, we utilize the same Franka Panda arm for evaluations in both the LIBERO [64]
and our Open6DOR V2 benchmarks. For SIMPLER [62], we use the Google Robot and Widow-X
exclusively to conduct the baseline experiments, adhering to all configurations outlined in SIMPLER,
as presented in Tables 4 and 5.

A.2 Real World Robot Setups

As for manipulation tasks, in Fig. 9, we perform 6-DoF rearrangement tasks using the Franka Panda
equipped with a gripper and the UR robot arm with a LeapHand, while articulated object manipulation
is conducted using the Flexiv arm equipped with a suction tool. All the robot arms mount a RealSense
D415 camera at their end for image capturing.

UR5e Franka Flexiv Leaphand

Figure 9: The robots used in our real-world experiments.

In Fig. 10, we present the workspace and robotic arm for real-world 6-DoF rearrangement. Unlike
Rekep [47], CoPa [44] et al., we utilize only a single RealSense D415 camera. This setup significantly
reduces the additional overhead associated with environmental setup and multi-camera calibration,
and it is more readily reproducible.

As for navigation tasks, we provide a visualization of our robotic dog in Fig. 11. Following Uni-
Navid [139], our robotic dog is Unitree GO2 and we mount a RealSense D455 camera on the head of
the robotic dog. Here, we only use the RGB frames with a resolution of 640×480 in the setting of 90◦
HFOV. We also mount a portable Wi-Fi at the back of the robot dog, which is used to communicate
with the remote server (send captured images and receive commands). Unitree GO2 is integrated
with a LiDAR-L1, which is only used for local motion planning.

Franka 
PandaSingle 

RealSense
D415

Figure 10: 6-DoF rearrangement robot setup.

RealSense D455

LiDAR-L1

Portable Wi-Fi

Figure 11: Navigation robot setup.
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Table 7: Zeroshot articulate object manipulation evaluation within the SAPIEN [123] simulator
using PartNet-Mobility Dataset. Notably, while the baseline methods use distinct training and testing
splits, our model achieves robust performance without fine-tuning on the SAPIEN samples.

Method

Where2Act [79] 0.26 0.36 0.19 0.27 0.23 0.11 0.15 0.47 0.14 0.24 0.13 0.12 0.56 0.68 0.07 0.40
UMPNet [128] 0.46 0.43 0.15 0.28 0.54 0.32 0.28 0.56 0.44 0.40 0.10 0.23 0.18 0.54 0.20 0.42

FlowBot3D [30] 0.67 0.55 0.20 0.32 0.27 0.31 0.61 0.68 0.15 0.28 0.36 0.18 0.21 0.70 0.18 0.26
Implicit3D [148] 0.53 0.58 0.35 0.55 0.28 0.66 0.58 0.51 0.52 0.57 0.45 0.34 0.41 0.54 0.39 0.43
ManipLLM [60] 0.68 0.64 0.36 0.77 0.43 0.62 0.65 0.61 0.65 0.52 0.53 0.40 0.64 0.71 0.60 0.64

SOFAR 0.75 0.88 0.43 0.85 0.60 0.54 0.75 0.49 0.58 0.72 0.69 0.42 0.70 0.81 0.58 0.63

Method AVG AVG

Where2Act [79] 0.13 0.18 0.13 0.40 0.26 0.18 0.35 0.38 0.28 0.05 0.21 0.17 0.20 0.15 0.15 0.21
UMPNet [128] 0.22 0.33 0.26 0.64 0.35 0.42 0.20 0.35 0.42 0.29 0.20 0.26 0.28 0.25 0.15 0.28

FlowBot3D [30] 0.17 0.53 0.29 0.42 0.37 0.23 0.10 0.60 0.39 0.27 0.42 0.28 0.51 0.13 0.23 0.32
Implicit3D [148] 0.27 0.65 0.20 0.33 0.46 0.45 0.17 0.80 0.53 0.15 0.69 0.41 0.31 0.30 0.31 0.41
ManipLLM [60] 0.41 0.75 0.44 0.67 0.59 0.38 0.22 0.81 0.86 0.38 0.85 0.42 0.83 0.26 0.38 0.54

SOFAR 0.35 0.68 0.62 0.73 0.64 0.68 0.45 0.90 0.77 0.55 0.79 0.48 0.80 0.56 0.44 0.64

B Additional Experiments

B.1 Articulated Objects Manipulation Evaluation

We further integrate SOFAR with articulated object manipulation, as illustrated in Table 7, and
evaluate its practicality in robotic manipulation tasks using the PartNet-Mobility Dataset within the
SAPIEN [123] simulator. Our experimental setup follows ManipLLM [60], employing the same
evaluation metrics. Specifically, we directly utilize the segmentation centers provided by SAM as
contact points, leverage PointSO to generate contact directions, and use VLM to determine subsequent
motion directions. The results demonstrate significant improvements over the baseline. Notably, our
model achieves this performance without dividing the data into training and testing sets, operating
instead in a fully zero-shot across most tasks. This underscores the robustness and generalization of
our approach.

B.2 Spatial Reasoning on EmbSpatial-Bench [29]

Table 8: Evaluation of EmbSpatial-Bench [29].

Model Generation Likelihood

BLIP-2 [59] 37.99 35.71
InstructBLIP [18] 38.85 33.41
MiniGPT4 [150] 23.54 31.70
LLaVA-1.6 [67] 35.19 38.84

GPT-4V [81] 36.07 -
Qwen-VL-Max [3] 49.11 -
SOFAR 70.88 -

To further validate the spatial reasoning capabil-
ities of SOFAR, we evaluated its performance
on the spatial visual-question-answering tasks in
EmbSpatial-Bench [29]. As reported in Table 8,
our model substantially outperforms all baseline
methods, achieving over a 20% improvement
in overall performance. This result highlights
SOFAR’s effectiveness in spatial understanding
and reasoning within complex visual scenes.

B.3 Cross Embodiment Generalization

Our approach determines grasp poses by generating masks and plans the target pose and transfor-
mation using our PointSO and large language model. It does not rely on trajectory data specific to
any robotic arm, making SOFAR embodiment-agnostic. Fig. 6 illustrates the diverse embodiments
employed in our real-world experiments. Leveraging the GSNet [116] algorithm based on Leap-
Hand [99], we perform 6-DoF object manipulation experiments on dexterous hands. We conduct three
position-related and three rotation-related experiments. Leveraging the PointSO and large language
models, SOFAR is capable of performing complex 6-DoF manipulation tasks, such as “Upright the
fallen wine glass and arrange it neatly in a row with the other wine glasses.”
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Figure 12: Long-horizon object manipulation experiment of our SOFAR.

B.4 Long Horizon Object Manipulation Experiment

Fig. 12 illustrates the execution performance of our model on long-horizon tasks. Through the
VLM [48, 1], complex instructions such as “making breakfast” and “cleaning up the desktop” can
be decomposed into sub-tasks. In the second example, we deliberately chose uncommon objects as
assets, such as “Aladdin’s lamp” and “puppets”, but SOFAR is able to successfully complete all tasks.

B.5 Close-Loop Execution Experiment

(b) Pick the Coke can.

(a) Pick the Coke can.

Figure 13: Close-loop execution of our SOFAR.

Similar to ReKep [47], SOFAR leverages
VLMs [48, 1] to perform long-horizon de-
composition of complex tasks and employs
dual-system VLMs [48, 1] to determine
the success of execution between tasks and
subtasks, enabling closed-loop execution.
When a discrepancy between the results
and expectations is detected, SOFAR re-
percepts and re-executes the current sub-
task. We demonstrate the closed-loop re-
plan capabilities of SOFAR within Simpler-
Env [62] in Fig. 13. The instruction for
both tasks is “pick the coke can” In Fig. 13
(a), the model initially misidentified the coke can as a Fanta can. After correction by the VLM, the
model re-identified and located the correct object. In Fig. 13 (b), the model accidentally knocks over
the Coke can during motion due to erroneous motion planning. Subsequently, the model re-plans and
successfully achieves the grasp.

B.6 In the Wild Evaluation of Semantic Orientation

We provide a qualitative demonstration of the accuracy of PointSO under in-the-wild conditions, as
shown in Fig. 14, where the predicted Semantic Orientation is marked in the images. We obtained
single-sided point clouds by segmenting objects using Florence-2 [125] and SAM [57] and fed them
into PointSO. It can be observed that our model achieves good performance across different views,
objects, and instructions, which proves the effectiveness and generalization of PointSO.

B.7 Cross-View Generalization

SOFAR gets point clouds in the world coordinate system using an RGB-D camera to obtain grasping
poses, and it is not limited to a fixed camera perspective. In addition, PointSO generates partial point
clouds from different perspectives through random camera views to serve as data augmentation for
training data, which also generalizes to camera perspectives in the real world. Fig. 15 illustrates
SOFAR’s generalization capability for 6-DoF object manipulation across different camera poses.
It can be observed that whether it’s a front view, side view, or ego view, SOFAR can successfully
execute the “upright the bottle” instruction.
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Figure 14: In-the-wild evaluation of PointSO. Figure 15: Cross view generalization of SOFAR.

B.8 Failure Case Distribution Analysis

Based on the failure cases from real-world experiments, we conducted a quantitative analysis of the
failure case distribution for SOFAR, with the results shown in Fig. 16. It can be observed that 31% of
the failures originated from grasping issues, including objects being too small, inability to generate
reasonable grasping poses, and instability after grasping leading to sliding or dropping. Next, 23%
were due to incorrect or inaccurate Semantic Orientation prediction. For tasks such as upright or
upside - down, highly precise angle estimation (<5°) is required for smooth execution. Object analysis
and detection accounted for approximately 20% of the errors. The instability of open-vocabulary
detection modules like Florence2 [125] and Grounding DINO [69] often led to incorrect detection of
out-of-distribution objects or object parts. In addition, since our Motion Planning did not take into
account the working space range of the robotic arm and potential collisions of the manipulated object,
occasional deadlocks and collisions occurred during motion. Finally, there were issues with the Task
Planning of the VLM [48, 1]. For some complex Orientations, the VLM occasionally failed to infer
the required angles and directions to complete the task. Employing a more powerful, thought-enabled
VLM [50] might alleviate such errors.

Figure 16: Failure case distribution analysis of our SOFAR.

C Ablation Study

C.1 Semantic Orientation Ablation

To demonstrate that the proposed semantic orientation indeed plays a crucial role in robotic
tasks—rather than the observed effects being attributable to other factors such as Chain-of-Thought
reasoning—we conduct conduct ablation experiments for methodological differences between the
baselines, including whether to add semantic orientation in the scene graph and whether to use CoT,
as shown in Tab. 9.
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Table 9: Ablation study of composition module of SOFAR.

CoT Orient.
Position Track Rotation Track 6-DoF Track

Level 0 Level 1 Overall Level 0 Level 1 Level 2 Overall Position Rotation Overall

✗ ✗ 95.4 77.7 91.9 17.2 8.4 11.4 13.0 92.7 15.5 14.2
✓ ✗ 96.3 81.6 93.3 16.3 8.9 11.0 12.9 93.0 15.1 13.7
✗ ✓ 95.6 77.2 91.7 63.3 35.4 61.8 52.3 92.7 48.3 45.8
✓ ✓ 96.0 81.5 93.0 68.6 42.2 70.1 57.0 92.7 52.7 48.7

C.2 Scaling Law

Table 10: Data scaling property of semantic orien-
tation with different training data scales evaluated on
OrienText300K validation split. All experiments are
conducted with the PointSO-Base variant.

Data Scale 45° 30° 15° 5° Average

15K 57.03 46.09 39.84 27.34 42.58
35K 61.72 53.13 43.75 30.47 47.27
150K 76.56 72.66 66.41 56.25 67.97
350K 79.69 77.34 70.31 62.50 72.46

The scaling capability of models and data is
one of the most critical attributes today and
a core feature of foundation models [5]. We
investigate the performance of PointSO across
different data scales, as illustrated in Table 10.
We obtain the subset for OrienText300K from
Objaverse-LVIS, which consists of approxi-
mately 46,000 3D objects with category anno-
tations. The selection was based on the seven
criteria mentioned in the main text. Objects
meeting all seven criteria formed the strict subset, comprising around 15k objects. When includ-
ing objects without textures and those of lower quality, the total increases to approximately 26k
objects. It can be seen that the increase in data volume is the most significant factor driving the
performance improvement of PointSO. It can be anticipated that with further data expansion, such as
Objaverse-XL [19], PointSO will achieve better performance.

C.3 Cross-Modal Fusion Choices

Table 11: Ablation study of multi-modal fusion
in PointSO. All experiments are conducted with the
PointSO-Base variant.

Fusion Method 45° 30° 15° 5° Avg.

Cross-attn 74.22 70.31 63.28 57.03 66.21
Multiplication 74.22 69.53 60.16 56.25 65.04
Addition 79.69 77.34 70.31 62.50 72.46
Concat 66.41 60.94 52.34 43.75 55.86

We further conduct an ablation study on the
multi-modal fusion methods in PointSO, test-
ing commonly used feature fusion techniques
such as cross-attention, multiplication, ad-
dition, and concatenation, as shown in Ta-
ble 11. The results indicate that simple addi-
tion achieves the best performance. This may
be attributed to the fact that instructions in the
semantic domain are typically composed of
short phrases or sentences, and the text CLS token already encodes sufficiently high-level semantic
information.

Table 12: Ablation study of open vocabulary detection modules on Open6DOR perception tasks.

Method
Position Track Rotation Track 6-DoF Track

Time Cost (s)
Level 0 Level 1 Overall Level 0 Level 1 Level 2 Overall Position Rotation Overall

YOLO-World [13] 59.0 37.7 53.3 48.3 36.1 62.0 44.9 53.4 44.6 27.8 7.4s
Grounding DINO [69] 92.2 71.5 86.7 64.7 41.1 69.8 55.5 87.2 51.6 44.6 9.2s
Florence-2 [125] 96.0 81.5 93.0 68.6 42.2 70.1 57.0 92.7 52.7 48.7 8.5s

C.4 Open Vocabulary Object Detection Module

SOFAR utilize an open vocabulary detection foundation model to localize the interacted objects or
parts, then generate masks with SAM [57]. Although not the SOTA performance on the COCO
benchmark, Florence-2 [125] exhibits remarkable generalization in in-the-wild detection tasks,
even in simulator scenarios. Table 12 illustrates the performance of various detection modules in
Open6DOR [25] Perception, where Florence-2 achieves the best results and outperforms Grounding
DINO [69] and YOLO-World [13].
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Figure 17: The real-world assets used in our real-world experiments. More than 100 diverse
objects are used in our 6-DoF rearrangement experiments.

D Additional Implementation Details

D.1 Detail Real World Experiment Results

To fully demonstrate the generalization of SOFAR rather than cherry-picking, we carefully design
60 different real-world experimental tasks, covering more than 100 different and diverse objects.
Similar to the Open6DOR [25] benchmark in the simulator, we divide these 60 tasks into three parts:
position-track, orientation-track, and the most challenging comprehensive & 6-DoF-track. Each track
is further divided into simple and hard levels. The position-simple track includes tasks related to front
& back & left & right spatial relationships, while the position-hard track includes tasks related to
between, center, and customized. The orientation-simple track includes tasks related to the orientation
of object parts, and the orientation-hard track includes tasks related to whether the object is upright
or flipped (with very strict requirements for angles in both upright and flipped cases). Comprehensive
tasks involve complex instruction understanding and long-horizon tasks; 6-DoF tasks simultaneously
include requirements for both object position and orientation instructions. In Table 13, we present the
complete task instructions, as well as the performance metrics of SOFAR and the baseline. Due to the
large number of tasks, we performed each task three times. It can be seen that SOFAR achieves the
best performance in all tracks, especially in the orientation-track and comprehensive & 6-DoF-track.
We also show all the objects used in the real-world experiments in Fig. 17, covering a wide range of
commonly and uncommonly used objects in daily life.

D.2 PointSO Model Details

Table 15: Details of PointSO model variants.
This table format follows Dosovitskiy et al. [28].

Model CLIP Layers Hidden MLP Heads #Params
size size

Small ViT-B/32 12 256 1024 4 11.4M
Base ViT-B/32 12 384 1536 6 19.0M
Large ViT-B/32 12 512 2048 8 43.6M

For PointSO, we utilize FPS + KNN to perform
patchify and employ a small PointNet [86] as the
patch encoder. Subsequently, a standard Trans-
former encoder is adopted as the backbone, fol-
lowed by a single linear layer to map the output
to a three-dimensional vector space. All param-
eter configurations follow prior work on point
cloud representation learning [26, 89, 91]. De-
tailed hyperparameter and model configurations are provided in Tables 14 and 15.

D.3 SoFar-LLaVA Model Details

In addition to leveraging the extensive knowledge and strong generalization capabilities of closed-
source/open-source pretrained VLMs [98, 1, 3] for zero-shot or in-context learning, SOFAR can also
enhance the planning performance of open-source models through visual instruction tuning for rapid
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Table 13: Detailed zero-shot real-world 6-DoF rearrangement results.

Task CoPa [44] ReKep-Auto [47] SOFAR-LLaVA (Ours) SOFAR (Ours)

Positional Object Manipulation

Move the soccer ball to the right of the bread. 2/3 3/3 3/3 3/3
Place the doll to the right of the lemon. 3/3 3/3 3/3 3/3
Put the pliers on the right side of the soccer ball. 1/3 1/3 3/3 2/3
Move the pen to the right of the doll. 3/3 2/3 3/3 3/3
Place the carrot on the left of the croissant. 2/3 3/3 2/3 2/3
Move the avocado to the left of the baseball. 3/3 2/3 2/3 3/3
Pick the pepper and place it to the left of the charger. 1/3 2/3 2/3 2/3
Place the baseball on the left side of the mug. 3/3 2/3 2/3 3/3
Arrange the flower in front of the potato. 2/3 3/3 2/3 3/3
Put the volleyball in front of the knife. 3/3 3/3 3/3 3/3
Place the ice cream cone in front of the potato. 2/3 3/3 2/3 3/3
Move the bitter melon to the front of the forklift. 2/3 1/3 2/3 2/3
Place the orange at the back of the stapler. 3/3 2/3 3/3 3/3
Move the panda toy to the back of the shampoo bottle. 2/3 3/3 3/3 2/3
pick the pumpkin and place it behind the pomegranate. 3/3 2/3 1/3 2/3
Place the basketball at the back of the board wipe. 2/3 2/3 3/3 2/3
Put the apple inside the box. 3/3 2/3 3/3 3/3
Place the waffles on the center of the plate. 3/3 2/3 3/3 3/3
Move the hamburger into the bowl. 2/3 2/3 2/3 3/3
Pick the puppet and put it into the basket. 1/3 2/3 2/3 2/3
Drop the grape into the box. 2/3 3/3 3/3 2/3
Put the doll between the lemon and the USB. 2/3 2/3 2/3 3/3
Set the duck toy in the center of the cart, bowl, and camera. 2/3 1/3 2/3 2/3
Place the strawberry between the Coke bottle and the glue. 2/3 2/3 3/3 3/3
Put the pen behind the basketball and in front of the vase. 2/3 1/3 2/3 2/3
Total success rate 74.7% 72.0% 81.3% 85.3%

Orientational Object Manipulation

Turn the yellow head of the toy car to the right. 2/3 2/3 1/3 2/3
Adjust the knife handle so it points to the right. 2/3 1/3 2/3 2/3
Rotate the cap of the bottle towards the right. 2/3 2/3 2/3 2/3
Rotate the tip of the screwdriver to face the right. 0/3 0/3 1/3 1/3
Rotate the stem of the apple to the right. 0/3 1/3 1/3 2/3
Turn the front of the toy car to the left. 0/3 0/3 2/3 2/3
Rotate the cap of the bottle towards the left. 2/3 1/3 1/3 2/3
Adjust the pear’s stem to the right. 1/3 1/3 1/3 1/3
Turn the mug handle to the right. 1/3 1/3 2/3 2/3
Rotate the handle of the mug to towards right. 2/3 1/3 2/3 1/3
Rotate the box so the text side faces forward. 0/3 1/3 0/3 1/3
Adjust the USB port to point forward. 0/3 0/3 1/3 1/3
Set the bottle upright. 0/3 1/3 0/3 1/3
Place the coffee cup in an upright position. 1/3 1/3 2/3 2/3
Upright the statue of liberty 0/3 0/3 1/3 0/3
Stand the doll upright. 0/3 1/3 0/3 1/3
Right the Coke can. 0/3 0/3 1/3 1/3
Flip the bottle upside down. 0/3 0/3 0/3 1/3
Turn the coffee cup upside down. 0/3 0/3 1/3 1/3
Invert the shampoo bottle upside down. 0/3 0/3 0/3 0/3
Total success rate 21.7% 23.3% 35.0% 43.3%

Comprehensive 6-DoF Object Manipulation

Pull out a tissue. 3/3 3/3 2/3 3/3
Place the right bottle into the box and arrange it in a 3×3 pattern. 0/3 0/3 0/3 1/3
Take the tallest box and position it on the right side. 1/3 1/3 3/3 3/3
Grasp the error bottle and put it on the right side. 1/3 2/3 1/3 2/3
Take out the green test tube and place it between the two bottles. 2/3 2/3 3/3 3/3
Pack the objects on the table into the box one by one. 1/3 1/3 0/3 1/3
Rotate the loopy doll to face the yellow dragon doll 0/3 1/3 1/3 1/3
Right the fallen wine glass and arrange it neatly in a row. 0/3 0/3 0/3 0/3
Grasp the handle of the knife and cut the bread. 0/3 0/3 0/3 1/3
Pick the baseball into the cart and turn the cart to facing right. 0/3 0/3 1/3 2/3
Place the mug on the left of the ball and the handle turn right. 0/3 0/3 1/3 1/3
Aim the camera at the toy truck. 1/3 0/3 1/3 1/3
Rotate the flashlight to illuminate the loopy. 0/3 0/3 1/3 1/3
Put the pen into the pen container. 0/3 1/3 0/3 1/3
Pour out chips from the chips cylinder to the plate. 0/3 1/3 1/3 1/3
Total success rate 20.0% 26.7% 33.3% 48.9%

fine-tuning. The pipeline of the model is illustrated in Fig. 18. A JSON-formatted 6-DoF scene
graph, processed through a text tokenizer, along with the image refined by SoM [129], is fed into
an LLM (e.g., LLaMA [110, 111]) for supervised fine-tuning [67]. In the Open6DOR [25] task,
we supplement the training dataset with additional samples retrieved and manually annotated from
Objaverse [20], ensuring alignment with the object categories in the original benchmark. This dataset
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Table 14: Training recipes for PointSO and SOFAR-LLaVA.
PointSO SOFAR-LLaVA

Config Small Base Large Finetune SFT

optimizer AdamW AdamW AdamW AdamW AdamW
learning rate 5e-5 5e-5 2e-5 5e-5 2e-5
weight decay 5e-2 5e-2 5e-2 5e-2 0
learning rate scheduler cosine cosine cosine cosine cosine
training epochs 300 300 300 50 2
warmup epochs 10 10 10 5 0.03
batch size 256 256 256 256 128
drop path rate 0.2 0.2 0.2 0.2 -

number of points 10000 10000 10000 10000 -
number of point patches 512 512 512 512 -
point patch size 32 32 32 32 -

augmentation Rot&Part&Noise Rot&Part&Noise Rot&Part&Noise Rotation -

GPU device 8×H800 8×H800 8×H800 8×H800 8×H800

Vision Encoder

Projection

Large Language Model

Interacted Object is …
Delta position is [x, y, z]
Rotation Matrix is [R]

Scene Graph Marked Image

Text
Tokenizer

X! X"

VLM Structure6-DoF Scene Graph

“Push the left chair under the desk.”

“Let the lamp the laptop.”

“How to paper in the printer?”

Segment
Anything

Semantic
Orientation

lamp:
id: 1
center: [x,y,z]
bbox: […]
orientation:
lignten: [α,θ,β]

printer:
id: 2
center: [x,y,z]
bbox: […]
orientation:
refill: [α,θ,β]

Chair:
…

Figure 18: Pipeline of SOFAR-LLaVA, a fine-tuned VLM based on visual instruction tuning.

includes approximately 3,000 6-DoF object manipulation instructions. Using this data, we construct
dialogue-style training data based on ChatGPT and train the SOFAR-LLaVA model. The training
hyperparameters are detailed in Table 14. Similarly, we finetune PointSO on this training dataset and
achieve superior performance on the Open6DOR task.

D.4 ChatGPT API Costs

The knowledge of OrienText300K is derived from the annotations of 3D modelers on Sketchfab,
combined with ChatGPT’s filtering and comprehension capabilities. To generate semantic orientation
annotations, we filter the 800K dataset of Objaverse [20] and apply ChatGPT to approximately 350K
of the filtered data to generate semantic text-view index pairs. The OpenAI official API was used for
these calls, with the GPT-4o version set to 2024-08-06 and the output format configured as JSON.
The total cost for debugging and execution amounted to approximately $10K.

E Additional Benchmark Statistic Analysis

E.1 6-DoF SpatialBench Analysis

We conduct a statistical analysis of the manually constructed 6-DoF SpatialBench, with category
comparisons and word cloud visualizations shown in Fig. 19. We collect diverse image data from
the internet, encompassing scenes such as indoor, outdoor, and natural landscapes. The questions
may involve one or multiple objects, with varying levels of uncertainty in image resolution. Most
importantly, we are the first to propose a VQA benchmark for orientation understanding, focusing on
both quantitative and qualitative evaluation of orientation.
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E.2 Open6DOR V2 Analysis

Open6DOR V2 builds upon Open6DOR V1 by removing some incorrectly labeled data, removing
manual evaluation metrics, and integrating assets and metrics into Libero, enabling closed-loop policy
evaluation. The detailed number of tasks is presented in Table 16, comprising over 4,500 tasks in
total. Notably, we remove level 2 of the position track in Open6DOR V1 [25] because it requires
manual inspection, which is not conducive to open-source use and replication by the community.
Besides, due to the randomness of object drops in the scene, approximately 8% of the samples already
satisfy the evaluation metrics in their initial state.

F Related Works

F.1 Vision-Language Models for Spatial Understanding

Vision-Language Models are rapidly being developed in the research community, driven by the
storming lead in extending GPT-style [95, 96, 7] Large Language Models (LLMs) like LLaMA [110,
111] to VLMs [67, 68, 27, 105, 141, 144, 51]. SpatialVLM [10] pioneers this direction by constructing
VQA data in spatial understanding from RGB-D, which is used for training an RGB-only VLM.
Following SpatialVLM, SpatialRGPT [12] extends RGB-based spatial understanding to RGB-D
by constructing spatial understanding data using 3D scene graphs. SpatialBot [8] explores RGB-D
spatial reasoning through hierarchical depth-based reasoning. Some other works propose visual
prompting for improving GPT-4V’s spatial understanding [65, 129, 75]. Meanwhile, another line of
works explores VLMs using 3D representations such as point clouds for 3D scene [43, 35] and object-
centric [91, 127, 92] understanding. More recently, OmniSpatial [51] proposed a comprehensive and
challenging spatial reasoning benchmark. Despite the remarkable progress, these works are limited
to 3-DoF understanding, which is not actionable. In contrast, we explore spatial understanding in
6-DoFs from RGB-D via VLMs. Unlike vanilla 3D scene graphs used by SpatialRGPT for data
construction, we propose orientation-aware 3D scene graphs realized by our proposed PointSO. In
addition, we formulate spatial understanding as graph learning, where the scene graph nodes are
directly input during inference.

F.2 Language-Grounded Robot Manipulation

Language-grounded robot Manipulation adopts the human language as a general instruction interface.
Existing works can be categorized into two groups: i) End-to-end models like RT-series [6, 152, 4]
built upon unified cross-modal Transformers with tokenized actions [100, 66, 145], large vision-
language-action models built from VLMs [56, 143], or 3D representations [146, 137]. Training on
robot data such as Open X-Embodiment [15] and DROID [55], a remarkable process has been made.
However, the data scale is still limited compared to in-the-wild data for training VLMs. ii) Decoupled
high-level reasoning and low-level actions in large VLMs and small off-the-shelf policy models,
primitives [49, 63, 46, 44, 34, 131, 138, 77, 39, 149], or articulated priors [45, 60]. Our SOFAR lies
in this group, where an open-world generalization property emerges from VLMs and our proposed
PointSO is empowered by orientation-aware spatial understanding.

F.3 3D Representation Learning

Research on 3D Representation Learning encompasses various methods, including point-based [86,
87], voxel-based [78], and multiview-based approaches [102, 38]. Point-based methods [93, 31]
have gained prominence in object classification [122, 113] due to their sparsity yet geometry-
informative representation. On the other hand, voxel-based methods [21, 134, 90] offer dense
representation and translation invariance, leading to a remarkable performance in object detection [17]
and segmentation [133, 2]. The evolution of attention mechanisms [114] has also contributed to the
development of effective representations for downstream tasks, as exemplified by the emergence
of 3D Transformers [31, 74, 76]. Notably, 3D self-supervised representation learning has garnered
significant attention in recent studies. PointContrast [126] utilizes contrastive learning across different
views to acquire discriminative 3D scene representations. Innovations such as Point-BERT [136]
and Point-MAE [83] introduce masked modeling [40, 22] pretraining into the 3D domain. ACT [26]
pioneers cross-modal geometry understanding through 2D or language foundation models such
as CLIP [97] or BERT [22]. Following ACT, RECON [89] further proposes a learning paradigm
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Figure 19: 6-DoF SpatialBench statistics. (a) Statistical analysis of the task type, question type, and
object relation. (b) Word cloud visualization.
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Figure 20: An example of SOFAR how to finish “move near” task in SIMPLER [62].

that unifies generative and contrastive learning. PPT [142] highlights the significance of positional
encoding in 3D representation learning. Additionally, leveraging foundation vision-language models
like CLIP [26, 97] has spurred the exploration of a new direction in open-world 3D representation
learning. This line of work seeks to extend the applicability and adaptability of 3D representations in
diverse and open-world/vocabulary scenarios [84, 140, 24, 23, 32].

G Additional Discussions

G.1 Relation to Affordance & 6-DoF Pose Estimation

Conceptually, this semantic orientation is a counterpart of affordance [36, 101, 88, 37] but beyond,
as SO and affordance, all present potential actions and interactions with objects. However, SO
also contains the spatial understanding of intra-object part-level attributes more than affordance
learning. Compared to vanilla 6-DoF pose estimation, our proposed SO combined with the 3-DoF
translation understanding, has the same DoF completeness. The difference is, our proposed SO is
grounded in languages, making it useful for open-world manipulation requiring complicated spatial
reasoning [109, 49, 25]. In addition, our Semantic Orientation can be auto-labeled from Internet 3D
data that achieves higher scalability, as introduced in Section 2.

G.2 Comparison to Concurrent Works

Comparison with ReKep [47]

Recently, ReKep has succeeded in executing complex robotic tasks, such as long-horizon manipula-
tion, based on the relationships and constraints between spatial key points. Its structural design offers
many insights that SOFAR can draw upon, yet it also presents several issues: (1) Overly customized
prompt engineering. ReKep requires manually designed complex system prompts for each task
during inference. While this approach may be described as “no training”, it cannot be considered
a true zero-shot transfer. In contrast, SOFAR achieves genuine zero-shot transfer by eliminating
the need for any human involvement during inference; (2) Using constraints based solely on key

37



Table 16: Statistics of Open6DOR V2 Benchmark. The entire benchmark comprises three indepen-
dent tracks, each featuring diverse tasks with careful annotations. The tasks are divided into different
levels based on instruction categories, with statistics demonstrated above.

Track Position-track Rotation-track 6-DoF-track Totel

Level Level 0 Level 1 Level 0 Level 1 Level 2 - -

Task Catog. Left Right Top Behind Front Between Center Geometric Directional Semantic - -

Task Stat. 296 266 209 297 278 193 159 318 367 134 1810 4535

Benchmark Stat. 1698 1027 1810 4535

points fails to capture the full 6-DoF pose integrity of objects. For example, in the “pouring water”
task, merely bringing the spout of the kettle close to the cup may lead to incorrect solutions, such
as the kettle overturning; (3) ReKep requires all key points to be present in the first frame, and
each step of the process—from mask extraction to feature dimensionality reduction, clustering, and
filtering—introduces additional hyperparameters.

Comparison with Orient Anything [118]

Recently, Orient Anything also highlighted the importance of orientation in spatial perception and
adopted a training data construction approach similar to Our PointSO. Our primary distinction lies
in semantic orientation, which is language-conditioned orientation. In contrast, Orient Anything is
limited to learning basic directions such as “front” and “top”. By aligning with textual information,
semantic orientation better enhances spatial perception, understanding, and robotic manipulation.

G.3 Future Works

Future work includes further expanding the OrienText300K with larger datasets like Objaverse-
XL [19], enhancing the performance of semantic orientation through self-supervised learning and
pretraining methods [40, 97, 26, 89], and demonstrating its effectiveness in a broader range of robotic
scenarios, such as navigation [9], mobile manipulation [132], lifelong learning [64], spatio-temporal
reasoning [47, 72, 73, 130], humanoid [41, 11, 14, 42], and human-robot interaction [70, 71].

H Additional Visualizations

H.1 Robotic Manipulation

As shown in Fig. 20, we present a visualization of executing a task named “move near”. According to
the input image and task instruction - “move blue plastic bottle near pepsi can”, SOFAR can predict
the center coordinate of the target object (bottle) and relative target (pepsi can), and it would infer the
place coordinate and produce a series of grasp poses.

H.2 6-DoF SpatialBench

To further evaluate 6-DoF spatial understanding, we construct a 6-DoF SpatialBench. We present
examples of question-answer pairs from the 6-DoF SpatialBench, with quantitative and qualitative
questions shown in Figs. 21 and 22, respectively. The benchmark we constructed is both challenging
and practical, potentially involving calculations based on the laws of motion, such as “Assuming a
moving speed of 0.5 m/s, how many seconds would it take to walk from here to the white flower?”
Moreover, it covers a wide range of spatially relevant scenarios across both indoor and outdoor
environments.

H.3 System Prompts

Prompt engineering significantly enhances ChatGPT’s capabilities. The model’s understanding and
reasoning abilities can be greatly improved by leveraging techniques such as Chain-of-Thought [119]
and In-Context Learning [7]. Figs. 23 and 24 illustrate the system prompt we used in constructing
OrienText300K. Fig. 25, Fig. 26, and Fig. 27 illustrate the system prompt we used when evaluating
SOFAR on Open6DOR (simulation), object manipulation (both simulation and real worlds), and
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VQA, respectively. Note that different from previous methods [46, 47], SOFAR does not require
complicated in-context examples.

I Broader impacts

Our work on semantic orientation significantly enhances robotic spatial reasoning and manipula-
tion capabilities, enabling more intuitive human-robot interaction. This advancement can improve
efficiency in various industries, such as manufacturing and healthcare, and enhance the quality of
life by assisting in tasks like elderly care and home automation. Additionally, it contributes to
the broader field of AI research by providing new tools and benchmarks for spatial reasoning and
language-grounded manipulation.
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Figure 21: Visualization example of 6-DoF SpatialBench data samples.
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Figure 22: Visualization example of 6-DoF SpatialBench data samples.
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[System Prompt]

You are an expert AI assistant for 3D object understanding.
The user imported a potentially uncalibrated 3D model into Blender and placed cameras in front, back, left, 
right, top, and bottom to render images, labeled from 1 to 6.
You are required to infer the entire 3D object based on these images and determine its attributes.

Your task is to assess the following attributes for each 3D model and respond with "true" or "false" for each 
question:
Axis Alignment: Determine whether the object is horizontally and vertically aligned across all views. Key 
features (e.g., edges, handles, or other distinct elements) of the object must be perpendicular or parallel to 
the cameras. Respond "true" if all views are aligned with the axis, "false" if not.
Scene or Collection: Determine whether the 3D model represents a 3D scene or a collection of independent 
objects (e.g. a room, outdoor scene, or multiple independent objects). Respond with "true" if it does, and 
"false" if it only contains a single object.
White: Determine whether the 3D model only has single white or gray colors, and lacks any other colors. 
Respond with "true" if it is white or gray, and "false" if it has any other colors (e.g., black or yellow).
Ground: Determine whether the 3D model includes a ground plane for auxiliary visualization. Respond with 
"true" if it does, and "false" if it only has the object.
High Quality: Determine whether the 3D model is a refined, well-constructed mesh without defects, such as 
point noise or streaking artifacts commonly found in low-quality RGBD scans. Respond with "true" if the 
mesh is clean and smooth, and "false" if it contains noise, roughness, or visual artifacts.
Distinguishable Views: Determine whether the 3D model has distinguishable views, or has clear semantic 
information in certain views (e.g., some 3D object has clear front, top directions). Respond with "true" if the 
6 views show noticeable differences or have clear semantic information in certain views, and "false" if the 
views appear identical and there is no obvious semantic information on all views.
Reasonable Object: Determine whether the 3D model represents a common, recognizable, meaningful object. 
Respond with "true" if it is, and "false" if it is abstract, confused, or unrecognizable.

You need to first analyze the 3D object detail, and then output its correct attributes.

[User] Standard Views:

Oblique Views: (Only for reference)

Figure 23: The system prompt of GPT-4o used for filtering Objaverse data.
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[System Prompt]

You are a visual assistant specializing in interpreting 3D objects from multiple perspectives. 
You will receive 6 images of a 3D object from standard views (front, back, left, right, top, bottom), presented 
in random order. Typically, image 5 corresponds to the top view. 
Your task is to generate an instruction-index pair that identifies a meaningful semantic orientation for the 
object, based on its function or commonly understood orientation. 
The instruction can be a verb, noun, adjective, or phrase, and must clearly relate to the object's function or 
orientation in everyday use. 
Ensure the direction is clear, objective, and uniquely meaningful.

Examples:
For a pen, the instruction might be "pen cap", and the index is the image with the pen cap facing the camera.
For a cup, the instruction might be "handle", and the index is the image with the cup handle facing the 
camera.
For a phone, the instruction might be "screen", and the index is the image with the phone screen facing the 
camera.
For a table, the instruction might be "on", and the index is the image with the tabletop facing the camera.
For a power outlet, the instruction might be "plug-in". Based on common knowledge, its semantic 
orientation is perpendicular to the power outlet's plane, along the direction of the power outlet's slots, and 
therefore, the index is the image with the power outlet pinholes' plane facing the camera.
For a desk, the instruction might be “open the drawer”. Based on common sense, the robot would need to 
pull the drawer open. The semantic orientation corresponds to the direction of the drawer's extension, 
hence the index is the image with the drawer handle facing the camera.
For a microphone, the instruction might be "speak", the semantic orientation is along the direction of the 
microphone's head, and therefore, the index is the image with the microphone head facing the camera.

You need to first analyze the category, attributes, characteristics, state, and usage of this 3D object in detail, 
and then output a pair of instructions and index.
When it is challenging to generate complex instructions, or when multiple views of the object are too similar 
to produce a unique instruction, you can use simpler instructions, such as "top" or "front".
The output format is as follows:
Analysis: "..."
Instruction: "..." 
Index: 1-6

Standard Views:
[User]
Oblique Views: (Only for reference)

Figure 24: The system prompt of GPT-4o used for generating semantic orientation-Index pairs.
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[Parsing System Prompt]

You are an assistant specialized in interpreting tabletop pick-and-place instructions for robotic manipulation. 
Your main goals are to identify relevant objects and analyze necessary orientations.

Key Objectives
1. Object Identification: Identify and list the objects mentioned in the instruction. Exclude the table itself.
2. Orientation Analysis: For the object needs to pick & place, determine any required orientation crucial to the task‘s 
success. If orientation isn’t specified, leave the orientation list empty.
3. Direction Terms: Limit directional terms to these two categories:

- Object Parts: e.g., “handle”, “pen cap”, “top”
- Interaction Actions: e.g., “pour out”, “open”
Terms must be single words, not phrases or sentences.
You must analysis both the instruction and the image to determine the object‘s direction attributes.

4. Disambiguation of Identification: If instructions reference vague objects (e.g., “else object”, “all objects"), use visual
information to clarify.
5. Disambiguation of Orientation: If the instructions describe complex rotation like "upright", you can interpret them as 
ensuring an object's relevant part is aligned with the z-axis (e.g., "bottle cap", "top").

This disambiguation utilizes world knowledge, as we define the far-to-near direction as the x-axis, the left-to-right 
direction as the y-axis, and the bottom-to-top direction as the z-axis. 

Similarly, place an object to point forward means that the "top" of the object is oriented along the x-axis.

[Reasoning System Prompt]

You are an assistant for spatial intelligence and robotic operations, specializing in pick-and-place tasks. 
Your role is to process robotic commands to pick a object and place it in a specific location.

Input Context:
1. Pick & Place Command: A directive specifying which object to pick and where to place it, including any specific pose 
requirements.
2. picked object info: A dictionary with the picked object‘s position in the world coordinate system.

- Coordinates: Object center and bounding box in 3D (x, y, z), where:
-- x: Extends from far to near. Objects closer to the observer have larger x-values
-- y: Extends from left to right. Objects further to the right have larger y-values
-- z: Extends upward. Objects positioned higher have larger z-values

3. other objects info: A list of dictionaries with the position of other objects in the scene.
- Coordinates: Object center and bounding box in 3D (x, y, z), same in the world coordinate system.

Objective:
1. Generate target placement position: Based on the spatial location descriptions provided in the instructions (e.g., 
'behind,' 'between,' 'left,' etc.), as well as each object's center and bounding box (bbox), analyze and calculate the 
appropriate placement for the picked object.

- front indicates positioning the object at an x-coordinate slightly larger than the reference object's x maximum.
- right indicates positioning the object at a y-coordinate slightly larger than the reference object's y maximum.
- between indicates positioning the object at the midpoint between two reference objects.

[User]

Place the knife behind the clipboard on the table. 
And rotate the handle of the knife to left.

Figure 25: The system prompt of Open6DOR tasks.
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[Parsing System Prompt]

You are a spatially intelligent AI specializing in interpreting objects, spatial directions, and interaction semantics for tasks
involving spatial understanding or robotic manipulation. 
The user will input an image and an instruction. Analyze user instruction and provide:

Objects: List involved objects using concise nouns or phrases, without any adjectives (e.g, the "top drawer" should be 
listed as "drawer").
Semantic Orientations: Identify essential spatial or action-related terms, categorized as:
- Object Parts: e.g., "handle", "lid", "top".
- Action Terms: e.g., "pour out", "open".

Guidelines:
Focus on key spatial or action contexts for task completion.
Use implicit spatial conventions (Certain user instructions need to satisfy implicit constraints related to position and 
orientation.) if practical.
Avoid numeric values or absolute positions.
Only specify object-centric pose relationships, not inter-object positions (such as left, right, front, behind).

[Reasoning System Prompt]

You are a robotic spatial intelligence and manipulation assistant, specialized in interpreting commands and scene 
structures for robotic object manipulation. 
Your task is to analyze the user's directive and scene graph to guide the robot in identifying objects, computing spatial 
transformations, and producing step-by-step guidance for manipulation tasks.

Input Context:
1. Manipulation Command: A directive specifying which object to pick and where to place it, including any specific pose 
requirements.
2. Scene Graph: A dictionary with the scene objects' position and orientation in the world coordinate system.

- Coordinates: Object center and bounding box in 3D (x, y, z), where:
-- x: Extends from near to far. Objects further to the observer have larger x-values
-- y: Extends from right to left. Objects further to the left have larger y-values
-- z: Extends upward. Objects positioned higher have larger z-values

- Orientations of the object's parts (e.g., 'screen', 'handle') in 3D space.
-- (1, 0, 0): Points forward along the x-axis
-- (0, 1, 0): Points left along the y-axis
-- (0, 0, 1): Points upward along the z-axis

Objective: To process each command, follow these steps:

Target Identification: Identify the object to be picked up or manipulated.
Final Position: Specify the intended final position of the object after manipulation, in terms of x, y, z coordinates.
Orientation Mapping: For each semantic orientation provided, compute the final orientation of the manipulated object 
in the world coordinate system.

[User]

Open top drawer.

Figure 26: The system prompt of general manipulation tasks.
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[Parsing System Prompt]

You are a spatially intelligent, embodied AI brain specialized in spatial and interactive understanding, tasked with 
interpreting objects, spatial directions, and relevant interaction semantics in response to the user's queries. The user 
provides commands or questions related to spatial intelligence or robotic manipulation, often with an image input.
Your job is to analyze the given instruction and provide a list of objects involved in the task, alongside semantic 
orientations needed to complete the instruction effectively. You should focus on the key interaction directions required 
for successful completion without specifying numeric values or absolute positions, as these will be calculated by an 
expert model later.

Guidelines:
1. Focus on Semantic Orientations: Define directions concisely using single terms that fall into one of these two 
categories:

- Object Parts (e.g., "handle", "screen", "top")
- Action-Oriented Terms (e.g., "pour out", "plug-in", "open")

2. Optimize for Simplicity: Choose terms that provide essential spatial or action context while remaining simple and 
intuitive for the model. Use only the most relevant directions or parts needed to complete the user's task.
3. Analysis: When necessary, use implicit spatial conventions where appropriate to ensure a practical output for the 
model.
4. Only object-centric pose related: Distinguish which object relationships are determined by position (such as left, right, 
front, behind) and which are determined by object pose, and we only focus on the direction of object - centric pose.

[Reasoning System Prompt]

You are a spatial intelligence assistant specialized in understanding 3D visual scenes and answering spatial reasoning 
questions. 

The user will provide:
Image: An image of the scene.
Question: User question about the spatial relationships between objects in the scene.
Scene Graph: Additional information about the objects, including:

- id: object ID
- object name: object category
- center: 3D coordinates of the object's center
- bounding box: 3D bounding box coordinates
- orientation: object directions in 3D space

All the coordinates are in the camera coordinate system, where:
- x-axis: Extends from left to right in the image, objects located right have larger x-values
- y-axis: Extends from bottom to top in the image, objects located at top of the image have larger y-values
- z-axis: Extends from near to far in the image, objects located further away have larger z-values

You need to focus mainly on the image, the scene graph information is just for reference.
Avoid providing answers such as "cannot determine." Instead, provide the most likely answer based on the information 
available.

[User]

How far between the left bottle and the right bottle?

Figure 27: The system prompt of visual-question-answering tasks.

46


	Introduction
	Semantic Orientation: Connecting Language and Object Orientation
	Definition of Semantic Orientation
	OrienText300K: Orientation-Text Paired Data at Scale
	PointSO: A Cross-Modal 3D Transformer for Semantic Orientation Prediction

	SoFar: Semantic Orientation Bridges Spatial Reasoning and Object Manipulation
	Scene Graph with 6-DoF Information
	Spatial-Aware Task Reasoning

	Experiments
	Real-world Language-Grounded Object Manipulation
	Semantic Orientation Prediction
	6-DoF Object Rearrangement Evaluation on Open6DOR V2
	Simulation Object Manipulation Evaluation on SIMPLER simplerenv24
	Orientation-Aware Robotic Navigation
	Spatial Reasoning Evaluation on 6-DoF SpatialBench

	Limitations & Conclusions
	Robot Setups
	Simulation Robot Setups
	Real World Robot Setups

	Additional Experiments
	Articulated Objects Manipulation Evaluation
	Spatial Reasoning on EmbSpatial-Bench embspatial24
	Cross Embodiment Generalization
	Long Horizon Object Manipulation Experiment
	Close-Loop Execution Experiment
	In the Wild Evaluation of Semantic Orientation
	Cross-View Generalization
	Failure Case Distribution Analysis

	Ablation Study
	Semantic Orientation Ablation
	Scaling Law
	Cross-Modal Fusion Choices
	Open Vocabulary Object Detection Module

	Additional Implementation Details
	Detail Real World Experiment Results
	PointSO Model Details
	SoFar-LLaVA Model Details
	ChatGPT API Costs

	Additional Benchmark Statistic Analysis
	6-DoF SpatialBench Analysis
	Open6DOR V2 Analysis

	Related Works
	Vision-Language Models for Spatial Understanding
	Language-Grounded Robot Manipulation
	3D Representation Learning

	Additional Discussions
	Relation to Affordance & 6-DoF Pose Estimation
	Comparison to Concurrent Works
	Future Works

	Additional Visualizations
	Robotic Manipulation
	6-DoF SpatialBench
	System Prompts

	Broader impacts

