Protecting Private Information While Preserving Semantic Integrity in
LLM-Assisted Systems: It can be done.

Anonymous ACL submission

Abstract

With the increasing use of Al-assisted systems,
there is growing concern over privacy leaks,
especially when users share sensitive personal
data in interactions with Large Language Mod-
els (LLMs). Conversations shared with these
models may contain Personally Identifiable In-
formation (PII) that could be exposed. To ad-
dress this issue, we present the LOPSIDED!
framework, a semantically-aware privacy agent
designed specifically for remote LLMs. Our
approach involves pseudonymizing requests
during inference and de-pseudonymizing them
once the response is generated, ensuring that
sensitive information is protected without com-
promising the quality of the LLM’s output. We
evaluate our approach using real-world conver-
sations sourced from ShareGPT. Furthermore,
we augment and annotate this data to deter-
mine whether named entities are relevant to
the prompt and impact the LLM’s output. Our
analysis reveals that our method reduces utility
errors by a factor of 5 compared to baseline
techniques, all while maintaining privacy.

1 Introduction

Al-assisted tools are becoming increasingly pop-
ular, with users relying on third-party services
to complete various tasks, from generating con-
tent to analyzing data. These systems operate by
processing user inputs, such as text, and leverag-
ing large language models to generate relevant re-
sponses. These models typically reside on remote
servers, requiring user data to be transmitted for
processing. When users input text, they may un-
knowingly share Personally Identifiable Informa-
tion (PII), such as names and addresses, raising
concerns about privacy and the potential misuse of
sensitive data (Aura et al., 2006; Hardinges et al.,
2024). For example, in 2023, Samsung employees
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unintentionally leaked sensitive company informa-
tion into ChatGPT (Mauran, 2023). Such incidents
could lead to unintended data exposure, emphasiz-
ing the need for strong privacy safeguards.

Prior work has focused on identifying and
mitigating privacy risks in Al-assisted systems
by removing PII (Di Cerbo and Trabelsi, 2018;
Stubbs et al., 2015). One common approach is
pseudonymization, a technique used to protect
users’ privacy by replacing PII with entities of
the same class. For example, a city name like
Chicago might be substituted with Los Angeles
to obscure the original data while maintaining the
overall structure of the input. However, such tech-
niques can introduce unintended consequences. If
a system relies on specific details for accuracy, al-
tering key information may lead to misleading or
incorrect results. For instance, if a user asks, "What
is the population of Chicago?" and the system mod-
ifies it to "What is the population of Los Ange-
les?", the semantic integrity of the query is compro-
mised. This highlights a key challenge in privacy-
preserving techniques — ensuring that user data
remains protected without distorting the intended
semantic meaning of their input.

More recently, large language models (LLMs)
have been explored for PII removal in Al-assisted
systems (Chen et al., 2023; Dou et al., 2023). For
example, Hide and Seek (HAS) (Chen et al., 2023)
anonymizes any PII within a prompt before it is
transmitted to a cloud-based language model and
then de-anonymizes the LLM’s response. However,
even such techniques may face challenges in pre-
serving the accuracy and context of the output, as
sanitizing the prompt without considering seman-
tic meaning could lead to unintended changes in
context or produce misleading responses. Thus, a
key research question we address in this work is
how to effectively pseudonymize prompts for PII
removal while maintaining the semantic integrity
of the LLM’s response.



Can you write an email to
Jessica? Her performance has
been poor, and she needs to step
itup.

Can you write an email to Kate?
Her performance has been poor,
and she needs to step it up.

Certainly! Here is your email to

Certainly! Here is your email to
Jessica: Kate:

Dear Jessica, ...

Dear Kate, ...

Figure 1: The LOPSIDED privacy agent system design.

Currently, all techniques rely on an all-or-
nothing approach, where either all private entities
are removed, or none are. This method can render
the system unusable for users, as they may not be
able to interact effectively with the tool if essential
information is removed. Our key insight in this
work is to develop a more nuanced approach that
selectively sanitizes PII data and replaces it with
something that generates a semantically similar
response. For example, if a user asks about the
weather in Palo Alto, it could be replaced with San
Jose, maintaining privacy while preserving the con-
text and accuracy of the response. This approach
ensures that the system produces meaningful out-
puts, rather than substituting sensitive information
with completely unrelated data. Similarly, for other
types of PII, we aim to use contextually appropri-
ate replacements that preserve both privacy and the
integrity of the user’s inquiry.

To address this challenge, we propose LOP-
SIDED, a lightweight framework that balances PII
removal and semantic response preservation. Our
work focuses on maximizing user privacy by lo-
cally sanitizing sensitive information before it is
transmitted to remote LLMs. As shown in Fig-
ure 1, the privacy agent operates as an intermediary
between the user and the remote cloud. It inter-
cepts user input, sanitizes the prompt by removing
or replacing PII, and then processes the response
by de-anonymizing it before presenting it to the
user. This ensures that privacy-sensitive data is
never exposed to external servers while maintain-
ing the relevance of the system’s response. We note
that there are situations where a replacement could
completely alter the meaning. In such cases, we pri-
oritize maintaining the utility of the response while
addressing privacy concerns. Moreover, since sani-
tization must occur locally, we explore the use of
smaller models that can be deployed on the user’s

device to enable efficient privacy protection. Our
key contributions are as follows:

LOPSIDED Design: We formulate the problem
of semantic-aware privacy for Al-assisted envi-
ronments, where the goal is to pseudonymize
named entity while preserving the utility of the
LLM response. To address this problem, we intro-
duce LOPSIDED, a framework which ensures that
named entities can be modified without disrupting
the semantic integrity of the response, making it
both privacy-preserving and semantically accurate.
Semantic-aware Privacy Dataset: We augment the
ShareGPT dataset, which contains real-world Chat-
GPT conversation histories, by annotating named
entities to determine whether they are relevant or
irrelevant to the prompt. This process results in the
creation of a novel 866-sample evaluation dataset,
specifically designed for testing semantic-aware
privacy agents. This dataset serves as a benchmark
for evaluating privacy-preserving techniques, while
ensuring that the semantic integrity of Al-generated
responses remains intact.

Evaluation and Analysis: We evaluate our tech-
nique using real-world conversation prompts from
ShareGPT and compare it against several baseline
methods, including those fine-tuned on our dataset.
Our analysis shows that prior work often prioritizes
privacy at the expense of utility. In contrast, our ap-
proach reduces utility errors by a factor of 5 while
still effectively preserving privacy, demonstrating a
significant improvement in balancing both privacy
protection and semantic integrity.

2 Background

2.1 Personally Identifiable Information

Personally Identifiable Information (PII) refers to
any information that can be used to identify an in-
dividual, either directly or indirectly. PII is a key
concept in privacy and data protection, as its ex-
posure can lead to identity theft, fraud, and other
security risks (Seh et al., 2020; Krishnamurthy and
Wills, 2009). The definition of what constitutes PII
can vary, but generally, it includes both direct and
indirect identifiers (Pildn et al., 2022). Direct iden-
tifiers are information that can directly identify an
individual on their own, such as names and address.
In contrast, indirect identifiers are information that,
when combined with other data, can lead to the
identification of an individual. Examples of indi-
rect identifiers include a person’s job title, gender,
and geographic location data. We provide addi-



tional details on the PII fields considered in this
study in the Appendix section.

2.2 Named Entity Recognition

Prior studies have highlighted that identifying PII is
a significant challenge (Nadeau and Sekine, 2009;
Pilan et al., 2022). A key challenge is that the def-
inition of PII can change over time (Lukas et al.,
2023; Brown et al., 2022). Moreover, as datasets
grow larger and more complex, automatically de-
tecting PII becomes increasingly difficult and of-
ten requires human annotators for accurate identi-
fication. To address these challenges, most tech-
niques rely on Named Entity Recognition (NER),
a method used to identify and classify entities such
as names, locations, and organizations within text.
Existing methods, such as spaCy (Honnibal and
Montani, 2017) and NLTK (Bird et al., 2009), lever-
age language models to perform NER. For example,
spaCy is a popular NLP library that uses pre-trained
models to recognize named entities in text. The
model identifies entities such as names, locations,
organizations, and other relevant categories, classi-
fying them into predefined labels like [PERSON] ,
[GPE] (Geopolitical Entity), or [ORG] (Organi-
zation). Prior work has adopted spaCy as part of
their pipeline to identify and anonymize named
entities (Chen et al., 2023).

2.3 Related Work

Research has shown that language models can lead
to the leakage of PII (Rocher et al., 2019; Vakili and
Dalianis, 2021; Huang et al., 2022; Lee et al., 2023).
As a result, there has been recent work focused on
mitigating these privacy concerns in language mod-
els (Lietal., 2021; Shi et al., 2021; Yu et al., 2021;
Chen et al., 2023). These mitigation techniques
often involve the use of differential privacy guar-
antees during the training pipeline. Additionally,
efforts have been made to reduce PII leakage in
language models specifically (Zhao et al., 2022;
Lukas et al., 2023; Chen et al., 2023). However,
much of this work primarily focuses on privacy,
often neglecting the preservation of utility and the
semantic integrity of the generated outputs.
Privacy self-disclosure is closely related to PII,
but with a focus on the intentional sharing of per-
sonal information by individuals (Dou et al., 2023;
Valizadeh et al., 2021). Prior work has focused
on various types of self-disclosure, including men-
tal health and employment history (De Choudhury
et al., 2016; Yates et al., 2017; Tonneau et al.,

Metric Test Set  Training Set
# of Prompts 866 2595

# of Entities 1195 3696
Entities per Prompt 1.38 1.42

Avg # of Word Tokens 49.38 49.03

Avg Entity Length 6.80 7.24

Max Ents in a Prompt 8 31

# Prompts Req. Review 30 N/A
Rejections 20 N/A

Table 1: Data statistics and validation summary.

2022). These studies have explored how individu-
als manage their privacy when interacting with so-
cial media platforms and the risks associated with
voluntarily sharing personal details. In contrast,
our work focuses on situations where users may
inadvertently share personal information with Al-
assisted systems, specifically in interactions with
large language models. Our approach addresses the
potential risks of unintended information leakage
while still allowing the Al to generate accurate and
contextually relevant responses.

3 Dataset Description

3.1 Data Collection

We use the ShareGPT dataset, the only pub-
licly available dataset, consisting of 70K Chat-
GPT conversation history of users (Chiang et al.,
2023). This dataset includes a wide variety of user-
generated conversations with Al systems, some of
which contain named entities. We focus only on the
first turn of a chat-based interaction in the dataset,
as expanding the context to include multiple turns
would significantly increase the resources required
for training the models. However, our approach is
extendable to multi-turn conversations, and future
work could explore how to efficiently handle longer
context windows while maintaining the same level
of privacy and semantic integrity.

The majority of the 70K samples in this cor-
pus do not contain PII or sensitive information.
To identify the prompts that do contain PII, we
utilize Amazon Comprehend’s PII Detection Ser-
vice?. This service is a fully managed machine
learning tool that automatically detects personally
identifiable information (PII) in text. It identifies
sensitive data such as names, locations, and other
types of information that can be linked to an indi-
vidual. After running Comprehend on the dataset,
the service flagged 3461 samples as containing PII.

Zhttps://docs. aws. amazon. com/comprehend/
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what's the Peterson Solution to the critical section problem?

Peterson

PERSON

Generation Length - 128

Generate or Regenerate Example Prompts

Gold Pseudonymized

Aclassic computer science question! Aclassic computer science question!
The Peterson solution is a well-known algorithm for solving
the Critical Section Problem (CSP) in concurrent
programming. The CSP is a fundamental problem that arises

The "Sheila" solution is a humorous name for one of the
many solutions to the Critical Section Problem (CSP) in
operating systems. The CSP arises when multiple processes
or threads need to access and modify shared resources,
such as memory or files, while ensuring that only one
process can do so at any given time.

when multiple processes or threads need to access shared
resources, such as memory locations or /O devices.

In 1981, Gary L. Peterson proposed an efficient and scalable
solution to this problem, which has since become widely
known as the "Peterson Solution" or "Peterson's Algorithm".

The Sheila Solution was proposed by Andrew S. Tanenbaum
in his 1978 book "Operating Systems: Design and

Figure 2: Web interface for data annotation.

However, upon manually inspecting these samples,
we found that the service is not always accurate
and sometimes flags sentences that do not actually
contain any PII. Nevertheless, we decided to retain
these samples in the dataset. Later, when we use
these prompts with GPT to identify named entities,
the GPT responses for these flagged prompts con-
tain no named entities, confirming that they do not
actually contain PII. Table 1 summarizes the key
statistics of our dataset.

3.2 Data Annotation

We begin by tagging the named entities using
spaCy, which categorizes each entity (e.g., location,
name). For each prompt, we then annotate whether
the named entities are relevant or irrelevant. We
consider a named entity relevant if substituting it
would alter the meaning of the prompt or signifi-
cantly impact the quality of the response from an
LLM. On the other hand, irrelevant named enti-
ties can be safely replaced without affecting their
meaning or response from an LLM.

To annotate the named entities and assess their
relevance to the prompt, we developed a custom
web interface designed to streamline the annota-
tion process (see Figure 2). This interface enables
annotators to easily tag named entities detected
within each prompt and categorize them as either
relevant or irrelevant. A local instance of Llama 3
8b runs in the background, allowing users to test
how our privacy agent would impact the model’s
responses. On the left-hand side of the interface,
annotators can view Llama’s original output with-
out any privacy intervention. On the right-hand
side, they can observe the response generated by
Llama after replacing the identified entity with a

Type Relevant Irrelevant
Person 228 363
Organization 160 54
Facility 5 1
City/Country 267 23
Landmark 26 4
Demographic 62 2

Total 748 447

Table 2: Statistics of our human annotated dataset.

randomly generated pseudonym of the same type.
This comparison is provided as guidance to assist
annotators in making informed decisions, though it
does not serve as the sole criterion for determining
relevance. Detailed instructions are available in the
Appendix sections.

We recruited three graduate students from our
lab, who volunteered to assist with the annotation
process. Each volunteer was trained on how to
use the interface and was instructed to label the
entities in the dataset as relevant or irrelevant for
PII. Given the significant resources required for
manual annotation, we limited the scope of the data
annotation to the test dataset (866 samples). This
allowed us to evaluate how our approach performed
in preserving privacy and semantic integrity. In
total, the annotators spent approximately 6 hours
completing the task.

3.3 Data Validation

We validated our data using a majority voting ap-
proach. Specifically, if two out of the three annota-
tors agreed on an entity being relevant, then it was
classified as relevant; if two out of the three annota-
tors agreed that it was irrelevant, it was considered
irrelevant.

Because annotators have the ability to reject
prompts, there is a small chance that there is a
three-way tie, where the first annotator says that an
entity is irrelevant, the second says it is relevant,
and the third rejects the prompt. This situation
did not arise, but there were cases in which one
annotator rejected and the others did not. These an-
notations were subjected to a manual review by the
author. As a result, 20 samples were rejected due
to inconsistencies or ambiguities in the annotations.
Additionally, 30 samples were further revised after
a closer examination to ensure their accuracy.

3.4 Data Analysis

Table 2 highlights the key characteristics of the
human-annotated dataset. We observe that, for
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Figure 3: Overall workflow of LOPSIDED framework.

each named entity category, the number of relevant
and irrelevant samples varies. In general, relevant
tags occur 1.6 times more frequently than irrelevant
tags (Table 2), which aligns with the intuition that
users typically include information that is relevant
to the task. However, 37% of the samples were
deemed irrelevant, indicating that these named enti-
ties can be safely replaced without affecting LLM’s
response.

4 LOPSIDED Design

Figure 3 illustrates the overall workflow of the
LOPSIDED framework, which consists of two
main components: semantic-aware pseudonymiza-
tion and the named entity substitution mod-
ule. Unlike prior methods, the semantic-aware
pseudonymization module is designed to gener-
ate semantically appropriate replacement entities,
referred to as pseudonyms, for sensitive informa-
tion while preserving the meaning of both the input
prompt and the response derived from it. Specifi-
cally, when the user provides an input prompt, the
semantic-aware pseudonymization module identi-
fies and replaces private named entities, ensuring
that this does not impact the overall response. The
sensitive named entities are then stored locally for
later use. The sanitized prompt is subsequently sent
to the remote cloud provider, where a response is
generated. Once returned, the named entity sub-
stitution module utilizes both the locally stored
private named entity information and the generated
response to produce the final output. As a result,
the user receives a response that protects privacy
while maintaining the utility of the original prompt.

4.1 Semantic-aware Pseudonymization

This component substitutes named entities within
a user prompt with pseudonyms. Formally, let
represent the original input prompt. We train a

pseudonymization model P to generate an output
consisting of a modified prompt =’ and a set of
entity pairs € = {(€orig, €pseudo) },» Where eorig is
a named entity identified in the original prompt
x and epseudo 18 the corresponding pseudonym or
replacement entity used in .

Data collection for Pseudonymization. To train the
model, we first collect a dataset of sentences con-
taining sensitive named entities. Since manually
modifying each sentence is both time-consuming
and costly (Wu et al., 2023), we leverage state-of-
the-art language models like GPT-40 to automate
this process (Liu et al., 2023). Specifically, we
prompt GPT-40 to generate semantically appro-
priate replacement entities for the sensitive infor-
mation in the sentences, resulting in a modified
version of the input prompt. Figure 6 illustrates
a sample response from GPT-40, and we provide
the list of instructions to generate the prompt in
the Appendix B.2.1. This approach allows us to
create a supervised dataset, which we then use to
distill the knowledge from GPT-40 into our model.
We conducted a manual inspection of the dataset to
ensure that the replaced entities were not similar to
the original.

Model Training. We train the pseudonymization
model P on the curated dataset Dpgeudo using the
following objective:

mgx E(xaevzl)NDpseudo logpp(e7 x/|$) (1)

where e = {(€orig, €pseudo ) 1S a set of named entity
substitution pairs, and 2’ is the modified prompt
containing the pseudonymized entities. Since our
primary goal is to run the model locally with
lower computational requirements, we opt for the
smaller 2B-parameter Gemma 2 model for our ex-
periments (Team, 2024).

4.2 Named Entity Substitution

The key goal of the named entity substitution model
S is to reconstruct the original response y as trans-
parently as possible, ensuring it remains semanti-
cally similar to the original response that would
have been generated from the unmodified input z.
By leveraging the stored named entity mappings
e, the model S reinserts the original entities into
Y/, the response from the remote LLM. This en-
sures that the final output maintains both privacy
protection and the semantic response of the prompt.

Formally, let ' represent the modified input and
y’ denote the response generated by the remote



LLM using z’. We train a substitution model S to
reconstruct the response y, which would have been
generated by remote LLM from the original input
2. The model S takes the modified remote LLM
response %/, and uses a set of named entity mapping
¢’ = {(€pseudo> €orig) } to restore the original entities
within a response y.

Data collection for substitution model. We
augment the dataset collected during the
pseudonymization step by incorporating responses
from GPT-4o0. For each original input = and its cor-
responding modified version z’, we query GPT-40
to generate both the original response y (for x) and
the modified response 3’ (for z'). Our appendix
contains additional information on the structure
of the data collected from GPT-40, including
our prompting techniques in Appendix B.2.1.
The process results in a dataset consisting of
tuples of the form (original input, modified input,
original response, modified response, named entity
substitution pairs). We then use this dataset to
train the substitution model .S to reconstruct the
original response y from the modified response 3’
and named entity substitution pairs ¢’.

Model training. We train the substitution model S
on the dataset Dg,p using the following objective:

max B o y)op,, 1082s(0lY' €) ()
where ¢’ = {(€pseudo €orig) } 18 a set of pairs that
provides the pseudonym and its corresponding
named entity.

5 Evaluation

5.1 Baseline Methods

We compare our techniques with the following
baseline methods:

Microsoft Presidio (Mendels et al., 2018). This
data protection tool focuses on accurately detecting
private information in text for anonymization or
removal. It prioritizes privacy but does not consider
the utility of the entities it removes.

Presidio Anonymizer w/ Replacement. This modifi-
cation of the Presidio anonymizer assigns numbers
to the entities it replaces (i.e., [NAME_1] .) This
name is stored as a mapping to the original text,
and is replaced by the Presidio Deanonymizer.
Hide-and-Seek (HaS) (Chen et al., 2023). This
privacy framework uses a large language model
to anonymize and deanonymize prompts to LLM.
The model focuses on privacy but does not consider

semantic meaning. We use the available pretrained
model for our evaluation.

Hide-and-Seek (fine-tuned). We fine-tune the Hide-
and-Seek model on our dataset to improve its per-
formance and adapt it to our specific use case.

5.2 Training

We use a pretrained Gemini-2b-it model, consisting
of 2 billion parameters, and fine-tuned it on our
dataset. We trained the model on 5 epochs using
an A6000 GPU. The batch size was set to 4, and
the learning rate was 5e-5. For more details, please
see Appendix B.

5.2.1

For our evaluation, we use BLEU and ROUGE
scores to compare the responses from modified and
unmodified prompts. In addition, we evaluate the
model using the following metrics:

Privacy Errors: are defined as the ratio of irrele-
vant named entity recognition (NER) samples that
were not replaced when they should have been, to
the total number of irrelevant NER samples. This
metric measures how often the model failed to
anonymize or pseudonymize irrelevant entities that
should have been replaced to ensure privacy.
Utility Errors: are defined as the ratio of rele-
vant named entity samples that were incorrectly
replaced, to the total number of relevant named en-
tity samples. This metric measures how often the
model erroneously replaced relevant entities, which
could negatively impact the utility and quality of
the LLM’s response.

Metrics

6 Results

6.1 Baseline Performance

We begin by comparing our approach to baseline
techniques. In our experiment, we modify the
prompt and compare the output generated by the
privacy agent to the output produced by GPT-4
alone, without any privacy interventions. To evalu-
ate the performance of each approach, we use stan-
dard metrics such as ROUGE and BLEU scores,
which assess the quality and similarity of the gen-
erated responses (Blagec et al., 2022).

Table 3 compares the performance of various pri-
vacy agents. As shown, LOPSIDED outperforms
other techniques in terms of overall ROUGE and
BLEU scores. In general, models that were not fine-
tuned exhibit lower performance. Notably, LOP-
SIDED achieves higher scores, indicating that its



ROUGE-1 ROUGE-2 ROUGE-L BLEU-1 BLEU-2 BLEU-3 BLEU-4
LOPSIDED 0.796 0.625 0.654 0.720 0.641 0.595 0.564
HasS (finetuned) 0.461 0.226 0.284 0.149 0.108 0.096 0.090
HaS 0.149 0.102 0.125 0.139 0.129 0.124 0.121
Presidio 0.642 0.443 0.487 0.532 0.444 0.397 0.366
Presidio w/ Repl 0.655 0.454 0.497 0.541 0.453 0.405 0.374

Table 3: Baseline performance comparisons. Bolded values are the highest scores.

responses are closer to the ground truth (i.e., the
original, unmodified response) compared to other
baseline techniques. Additionally, models that have
been fine-tuned tend to have lower scores, further
highlighting the effectiveness of LOPSIDED in
preserving semantic integrity of the LLM response.

Table 4 provides a qualitative comparison of the
output generated by different techniques. Specifi-
cally, HaS and other baseline methods fail to pre-
serve accurate date and location information, as
they indiscriminately substitute all named entities.
This often leads to inaccurate responses.

6.2 Privacy and Utility Evaluation

Next, we evaluate the overall performance of our
substitution model in balancing privacy and util-
ity. Specifically, we focus on ensuring that relevant
named entities (those critical for maintaining the
utility of the response) are not replaced, while ir-
relevant named entities are effectively substituted
to protect user privacy. We use utility to refer to
named entities that are integral to the meaning of
the prompt and the remote LLM’s response.

For our evaluation, we use the human-annotated
test dataset, which contains labels indicating
whether each named entity in a prompt is relevant
or irrelevant. By comparing the output of the sub-
stitution model with these labels, we can measure
how well the model maintains the utility of the
response by ensuring that relevant entities remain
intact, while effectively substituting irrelevant or
private entities.

Figure 4 compares the privacy and utility error
rates across different techniques. We observe that
HaS achieves a low privacy error of 3% because
it primarily focuses on substituting all named en-
tities, regardless of their relevance. However, this
approach comes at the cost of higher utility errors.

In contrast, LOPSIDED has a slightly higher pri-
vacy error of 8%, but it achieves 5x fewer utility-
related errors, demonstrating its ability to selec-
tively preserve relevant entities while still protect-
ing private information. Compared to Presidio,

M Privacy W Utility
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0.00%

Figure 4: Privacy and utility error comparisons.

LOPSIDED achieves lower errors in both privacy
and utility. We also observe that most privacy er-
rors, including those from LOPSIDED, occur when
substituting people and organization names. This
is because modifying an organization name often
alters the context significantly, leading to changes
in the LLM’s response.

6.3 Text Syntheticity Detection

Similar to (Yermilov et al., 2023), we conduct a
text syntheticity detection experiment to evaluate
whether pseudonymized texts retain similarity to
their original versions. This analysis is necessary
because pseudonymization can disrupt the relation-
ships between named entities and their surrounding
context, potentially leading to inconsistencies in
downstream tasks.

To evaluate this, we follow the approach
in Yermilov et al., where we combine both
pseudonymized and original texts and train a classi-
fication model using bert-base-uncased (Devlin
et al., 2018). to determine whether a given text
has been pseudonymized. A high classification ac-
curacy indicates that pseudonymization introduces
detectable artifacts, whereas a low classification ac-
curacy suggests that pseudonymized texts closely
resemble their original counterparts.

Table 5 presents the text syntheticity classifica-
tion scores for different techniques. As shown,
LOPSIDED achieves the lowest classification



Prompt When does the sun set in San Antonio mid-summer ?
Agent Privatized Prompt GPT Reply Final Result
LOPSIDED ... sunsetin Houston ... ... typically sets in Houston around ... typically sets in San Antonio
8:30 PM to 8:45 PM CDT ... around 8:30 PM to 8:45 PM CDT ...
HaS ... sun set in [GPE] To provide ... (GPE) and date ... sun set in San Antonio
Finetuned [DATE] ? (DATE) ... specify the location mid-summer ... (GPE) and date
and the date ... (DATE) ... specify ...
Presidio ... sun set in I can’t provide ... I can’t provide ...
w/ Repl <LOCATION_0>

<DATE_TIME_0> ?

Table 4: A sample input ran on each privacy framework, shown at every step of the process.
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Figure 5: Privacy and utility errors by named entity type.

Framework Detectability Detectability
(Avg) (Final)
LOPSIDED 46.59 % 44.88 %
HaS Finetuned 71.84% 83.84%
HaS 85.65% 87.73%
Presidio 60.43% 62.19%
Presidio w/ Repl 51.36% 48.63%

Table 5: Syntheticity detection scores.

score, indicating that its pseudonymized texts are
the most similar to the original ones. This sug-
gests that LOPSIDED effectively preserves linguis-
tic and contextual integrity while ensuring privacy.

6.4 Hardware Performance

We also benchmark the performance of our pri-
vacy agent running on a laptop to evaluate the real-
world feasibility of deploying similar systems. For
our evaluation, we used an M3 MacBook Pro with
16GB of memory. We quantized two Gemma 2-
based models using 11ama. cpp with a quantization
level of g4_k. We observed that the quantized mod-
els processed 33 tokens/sec.

Additionally, we evaluated the entire end-to-

end process, including queries to a remote LLM.
The end-to-end average speed was 15 tokens/sec,
though it’s important to note that around 33% of
this time is attributed to the OpenAl API. Assum-
ing a faster API is used, this speed could approach
20 tokens per second, which is comparable to the

original GPT-4’s performance?.

7 Conclusion

LOPSIDED introduces a novel framework for
pseudonymizing LLM API prompts while preserv-
ing the utility of the user’s request. To support
this, we present an 866-sample evaluation dataset,
validated by human annotators, to assess the effec-
tiveness and utility of privacy agents. This dataset
serves as a benchmark for evaluating similar pri-
vacy techniques and demonstrates the strengths of
our approach. Our results show that LOPSIDED
successfully balances both privacy and utility, out-
performing other baseline techniques in maintain-
ing semantic integrity while protecting sensitive
information. We will release both the dataset and
model publicly alongside this paper to foster fur-
ther research and development.

3https://artificialanalysis.ai/models/gpt-4



Limitations

Annotation Resources

Our annotation process was limited to a test set of
866 samples due to the significant effort required
for manual annotation. However, LOPSIDED does
not depend on the relevant tags in the dataset for
training, meaning our training process remains un-
affected by the availability of annotated data. That
said, we believe that incorporating relevant and
irrelevant tags for training could further improve
the overall performance of the system. Thus, the
development of techniques that leverage these tags
could be explored in future work.

Dataset Quality

ShareGPT is a great resource for real world data,
but suffers from a lack of quality control. This
includes, but is not limited to, nonsense prompts,
single word prompts, non-english prompts, and
typing/grammar mistakes. To address these issues,
we instructed annotators to reject prompts that vi-
olated certain guidelines outlined in Appendix A.
The rejection rate for the test data was low, and we
expect a similar trend in the training set. However,
the presence of low-quality samples may have still
affected the overall quality of our privacy models.

Ethics Statement

We note that all annotators were graduate students
who participated voluntarily, with no compensation
provided for their involvement in the project. Their
contributions were essential for the successful an-
notation of the dataset, and we greatly appreciate
their efforts in helping to create a valuable resource
for future research.

The sensitive nature of private information is
heavily considered by the authors. For this reason,
we only use data from ShareGPT. Users must opt-
in to share their data with this service. No data
was collected from users without their knowledge
during our work. There are additional risks to be
considered with any privacy-related tool. The use
of our tool may introduce certain limitations or
unintended consequences, as it may occasionally
prioritize utility over privacy, particularly when
the relevance of certain named entities is critical
to the task at hand. This trade-off is inherent in
any privacy-preserving approach and highlights the
ongoing challenge of balancing privacy protection
with maintaining the utility and quality of LLM out-
puts. We posit that any additional layer in a user’s

privacy pipeline is a step toward a safer experience
when using language model API’s.
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A Annotation

Annotators were requested to reject any prompts
that fall into the following categories: (i) Non-
english language prompt, (ii) Sexual, violent, or
harmful content, and (iii) Single or few word
prompt. Most categories were straightforward to
annotate, with each prompt typically containing
one or two named entities. Based on our obser-
vations, the availability of responses from a llama
LLM for various substitutions also helped us under-
stand whether a named entity was relevant, which
in turn simplified the data annotation process. How-
ever, while we did not conduct a qualitative survey
on the effectiveness of LLM response in annotation,
it is important to note that the annotation process
was still influenced by certain subjective judgments
made by the annotators. This led to some inter-
annotator disagreements. However, we observed
that these disagreements were infrequent, with a
total of 30 disagreements across the dataset.

In addition to a demo of our web interface to the
annotators, we also provide a annotation guide. Be-
low is a direct sample excerpt from the annotation
guidelines provided to our annotators.

Annotation Guidelines

A tag is relevant if the word’s meaning is abso-
lutely required in order to give an acceptable response.
Names are usually not required and could be removed
or changed to protect a user’s privacy - thus, they are not
relevant.

The context of a tag determines how relevant it is.
If the prompt was "Write an acrostic poem for John",
that name would be extremely relevant since the output
would be completely wrong if we changed or removed
the name.

For reference, two example model outputs will
be generated to show how changing the token might
impact the response. These are meant for reference and
should not be the sole decision factor.

Examples of relevant tags:

Show me a list of restaurants in Philadelphia.

Write a song about Caroline.

Note: Caroline is relevant as songs, like poems,
involve rhyming.

Examples of irrelevant tags:

Write an email firing Laura for not showing up today.

Is it too late to get a passport for my trip to Germany?

Note: Germany is irrelevant here since passport
processing times are not based on destinations.
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Parameter Value
epochs 5

batch size 4

weight decay 0.001
learning rate 5.00E-04
sequence length 1024
quantization 4bit

Table 6: Hyper parameters for training the replacement
and privacy models. HaS Finetuned was also trained
using these parameters, but with a batch size of 2.

Parameter Value
epochs 5
batch size 8
weight decay 0.01
learning rate  2e-05

Table 7: Training parameters for our BERT based syn-
theticity detection evaluation model.

B Training Details

Table 6 shows the training setup for our models.
Since both the privacy and replacement models
share the base of Gemma 2 2b-it, there were no
modifications required.

B.1 Syntheticity Detection Model Training
B.1.1 Model Hyper-parameters

We provide the training parameter details for our
syntheticity detection in Table 7.

B.1.2 Model Data

The syntheticity model was trained on a 60-40
train/evaluation split of the LOPSIDED test data.
The classifier was trained to predict a label of either
synthetic or not. As input, it is given the original
prompt and the response from either the privacy
model or from GPT-4o directly.

B.2 Prompt Templates

B.2.1 Pseudonymizer Prompt

The pseudonymizer system prompt is shown in
Listing 2, and details what aspects of user privacy
we ask the teacher model to consider.

B.2.2 Substitution Prompt for GPT

The system prompt used for the replacement model,
and its teacher model, are shown in Listing ??. This
task is considerably simpler, as we do not have the
model consider user privacy or semantic meaning.



B - IRV N

You are PrivacyGPT. You will anonymize the user’s prompt while maintaining the
meaning whenever possible.

Your task is to revise the user’s prompt. Your goal is to reword and change all
private entities that are not strictly relevant to the text. You can change any
names, places, organizations, etc as long as they wont effect the response when
changed back.

Remember the following criteria:

* The meaning of the prompt **must not changexx.

* Any replacement of names, places, organizations, etc must be semantically similar
to their original values.

* Don’t use placeholders like [NAME]. Opt for similar entities, such as names
with the same gender, organizations in the same field, etc.

* We will replace these replacements again when their response is completed, so
the user does not notice the effect.

* If the private entities are crucial to the meaning of the prompt then they must
stay as they appear.

* For example, a location may remain in the prompt if it is absolutely needed to

create a response and a replacement would not work.

* Works of literature often do not rely on the entity remaining the same, but
there are exceptions, for example if the user requests a rhyming poem or
song.

* You are **maximizing the privacy*x* of the user, and x*minimizing the effect on
their request’s reponsex*.

* If there are no changes, the array of changed entities may be empty, but still
include the prompt as the "modified_prompt”

You will return your reasoning for each change as well as the change itself. At the
end, provide the fully modified prompt.

**REMEMBER: ONLY REPLACE THE WORD/TOKEN IF IT WONT CHANGE THE ANSWER OR RESPONSE OF
THE QUESTION OR TASK.=*x%
Here is the prompt:

{prompt}

Listing 1: Pseudonymizer Prompt Template.

You are ReplaceGPT, an entity replacement model. Your task is to take an input, and
output a transformed response that replaces all of the entities specified.

The goal is to minimize the impact of changing the entities. The user should not be
able to tell this transformation happened.

The user will provide JSON input of the original text, and a list of the entities
that must be changed.

You will provide a json output that contains the modified text, and a rationale as
to why you made the changes you made.

Do not make any unnecesary changes that effect the semantic quality of the text, the
meaning should stay the same.

Only the entities themselves should change, not the meaning.

Listing 2: Substitution Prompt Template.
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B.3 Additional Data Collection Details

Data from the teacher model are returned via
structured JSON format, which is mandated by a
schema we provide. Examples of the output are
shown in Figures 6 and 7 for the pseudonymizer
and replacement pipelines respectively.
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"changed_entities”: [
{

"explanation”:

the story’s meaning.",

"original_enti
"new_entity":

}!
]

"The name

’Raven’

ty": "Raven",

"Shadow"”

can be any dog name

"modified_prompt”: "Write a short story about Shadow...."

and doesn’t affect

Figure 6: GPT-40 pseudonymization output.

"rationale”:"The names

’ n

’Nyla’ and

’TIan’

"modified_output”:"Once upon a time .."

were replaced with ’Raven’ and ’Jayson

Figure 7: GPT-40 response output for a modified input.
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