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Figure 1: For each image pair, given a real image (left) and a text prompt, our method (right)
facilitates zero-shot text-guided editing without requiring fine-tuning of Stable Diffusion. Our results
exhibit complex, non-rigid, consistent, and faithful editing while preserving the structure and scene
layout in the original image. Our proposed method addresses various image editing tasks, including
object replacement (left column), object removal and background alteration (middle column), the
addition of new consistent items, and changes in object pose/view (right column).

ABSTRACT

Editing natural images using textual descriptions in text-to-image diffusion mod-
els remains a significant challenge, particularly in achieving consistent generation
and handling complex, non-rigid objects. Existing methods often struggle to pre-
serve textures and identity, require extensive fine-tuning, and exhibit limitations
in editing specific spatial regions or objects while retaining background details.
This paper proposes Context-Preserving Adaptive Manipulation (CPAM) – a novel
zero-shot method for complicated, non-rigid real image editing. Specifically, we
propose a preservation adaptation module that adjusts self-attention mechanisms
to preserve and independently control the object and background effectively. This
ensures that the objects’ shapes, textures, and identities are maintained while keep-
ing the background undistorted during the editing process using the mask guid-
ance technique. Additionally, we develop a localized extraction module to mit-
igate the interference with the non-desired modified regions during conditioning
in cross-attention mechanisms. We also introduce various mask-guidance strate-
gies to facilitate diverse image manipulation tasks in a simple manner. Extensive
experiments on our newly constructed Image Manipulation BenchmArk (IMBA),
a robust benchmark dataset specifically designed for real image editing, demon-
strate that our proposed method is the preferred choice among human raters, out-
performing existing state-of-the-art editing techniques.

1 INTRODUCTION

Recent advancements in text-to-image (T2I) generation (Ramesh et al., 2021; Dhariwal & Nichol,
2021; Nichol et al., 2022; Yu et al., 2022; Ramesh et al., 2022; Saharia et al., 2022) have marked
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significant milestones, especially with large-scale diffusion models Rombach et al. (2022) that excel
in creating diverse and high-quality images from text prompts. These models have opened new
avenues for text-conditioned image editing (Hertz et al., 2023; Tumanyan et al., 2023; Parmar et al.,
2023).

Real image editing typically aims to produce multiple images of different complex, non-rigid objects
or characters that resemble the original targeted object while also ensuring a perfect reconstruction
of the background (Vo et al., 2024; Wallace et al., 2023; Pan et al., 2023; Parmar et al., 2023).
However, this presents notable challenges. Text-guided editing of a real image using state-of-the-
art diffusion models (Kim et al., 2022) requires inverting the given image, which involves finding
an initial latent noise that accurately reconstructs the input image while preserving the model’s
editing capabilities. Editing an image from that latent noise often results in losing original textures
and identity, leading to a different image. Additionally, existing methods are limited in editing
specific objects within images, as they often focus on the most salient objects. This limitation arises
from training diffusion models (Rombach et al., 2022) on image-captioning datasets (Schuhmann
et al., 2021; 2022), which may lack detailed descriptions of text prompts for real-world images.
Thus, pre-trained Stable Diffusion (SD) is unable to focus on specific regions and instead operates
on the overall image. Furthermore, real-world images often contain multiple objects and complex
interactions, making it challenging to specify particular objects for editing. Additionally, fully fine-
tuning large models like SD (Rombach et al., 2022) is less feasible in research areas with limited
computational resources.

To address the lack of facilities for training models on large-scale datasets, tuning-free methods have
been developed to utilize pre-trained T2I SD (Rombach et al., 2022), referred to as zero-shot image
editing. These methods leverage a pre-trained T2I model with frozen weights to eliminate the need
for adjusting the model’s weights (Avrahami et al., 2022; Meng et al., 2022; Brack et al., 2024).
Most methods (Hertz et al., 2023; Cao et al., 2023; Liu et al., 2024; Parmar et al., 2023; Tumanyan
et al., 2023) rely on attention mechanisms in SD models to preserve the original information of
images, such as background and object identities. Specifically, some methods (Tumanyan et al.,
2023; Liu et al., 2024) swap or inject appropriate self-attention maps, while others, like Hertz et al.
(2023), replace cross-attention maps to retain the content and structure of the original image during
the synthesis process. However, these methods (Tumanyan et al., 2023; Liu et al., 2024) perform
well when the edited object has a certain similarity to the original object in terms of shape, texture,
and other attributes. Similarly, the approach in Hertz et al. (2023) that replaces cross-attention maps
requires the initial prompt and edited prompt to share similar words while incorporating different
words. For instance, if the original sentence is ‘the photo of a red dog’, the edited sentence might
be ‘the photo of a yellow cat’, where ‘red dog’ and ’yellow cat’ are the differing elements. In
contrast, Cao et al. (2023) adjusts self-attention to retain the current query features while replacing
the key and value features. This approach ensures that the query features remain unchanged and
are appropriately derived from the original semantic content guided by masks, rather than relying
on rigidly swapped attention maps. As a result, Cao et al. (2023) preserves the appearance of the
original image in a non-rigid manner during synthesis. However, Cao et al. (2023) controls the
background and foreground simultaneously to obtain the semantic content of the corresponding
original background and foreground at each appropriate step and layer. Thus, this approach lacks
flexibility in controlling different image editing tasks; for example, we need the background to
remain unchanged when the edited object resembles the original object. Additionally, a significant
weakness of many methods is that, when editing images, they make changes to the overall image and
cannot specifically edit individual objects within the image due to the condition of all image pixels
and the text prompt in the cross-attention module (as shown in the middle images of Figure 4). Some
methods (Hertz et al., 2023; Avrahami et al., 2022; 2023; Couairon et al., 2023) address the challenge
of local editing by blending the original latent noise with the edited noise, without considering
the interaction between foreground and background, resulting in rigid editing. Subsequently, these
methods lead to a substantial gap in addressing real image editing tasks.

Based on the existing extensive exploration of leveraging the attention modules in SD to control
the editing process and achieve desired outcomes, we analyze and clarify the semantic interaction
of the components in attention and how to leverage them for real image editing (as detailed in Sec-
tion. 3.1). We then propose a novel zero-shot real image editing method, namely Context-Preserving
Adaptive Manipulation (CPAM), that leverages both self-attention and cross-attention. Our method
excels in manipulating non-rigid objects, allowing for modifications to various aspects such as pose,

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

view, or even specific objects or parts within the image. Importantly, our CPAM retains the back-
ground and avoids modifications to unwanted objects or regions, thereby addressing issues faced by
existing methods, enabling object removal or background replacement (as illustrated in Figure. 1).
Notably, these modifications occur without any model configuration or system architecture adjust-
ments, eliminating the need for optimization or fine-tuning phases. Specifically, we introduce a
preservation adaptation process that adjusts self-attention to independently control the object and
background, effectively preserving the original objects’ shapes, textures, and identities using mask-
ing techniques. Simultaneously, it ensures that the background remains undistorted or unwarped
throughout the denoising process. Additionally, we propose the localized extraction module to avoid
attention between the non-desired modified regions with the target prompt in the cross-attention.
Therefore, our method enables localized editing, allowing for editing not only salient objects but
also specific objects within the image. We propose different mask-guidance strategies to enable
innovative image editing tasks by simply adjusting masks and enhancing regional manipulation by
controlling object shapes. The source mask, representing the original object, and the target mask,
controlling the edited outcome, are computed differently, allowing for flexible image editing tasks.

In addition, we introduce a new Image Manipulation BenchmArk (IMBA), built upon TEd-
Bench (Kawar et al., 2023). We conduct a comprehensive user study on IMBA to assess the perfor-
mance of our method against state-of-the-art text-guided image editing techniques utilizing SD. The
extensive experimental results unequivocally highlight the superiority of our proposed method, sig-
nificantly outperforming state-of-the-art methods. Our contributions can be summarized as follows:

• We propose a novel tuning-free method dubbed Context-Preserving Adaptive
Manipulation that leverages both self-attention and cross-attention for zero-shot real im-
age editing.

• We propose the preservation adaptation process to control and preserve various aspects of
objects such as pose, view, texture, identities, structures, color, and non-rigid variances
while retaining the background.

• We propose the localized extraction module to prevent any unwanted effects of the target
prompt on the non-desired modified spatial region in cross-attention.

• We present mask-guidance strategies to facilitate various image manipulation tasks simply,
while also tracking object shapes during the synthesis process.

• We construct a new Image Manipulation BenchmArk (IMBA) dataset to contain more de-
sired information for real image editing.

2 RELATED WORK

2.1 IMAGE MANIPULATION METHODS

Several approaches required optimization or fine-tuning phases, which self-learned input im-
ages (Mokady et al., 2023; Kawar et al., 2023). Ruiz et al. (2023) synthesized novel views of a
given subject using 3–5 images of that subject and a target prompt. Gal et al. (2023) optimized
a new word embedding token for each concept. Kawar et al. (2023) generated novel poses and
views by optimizing the target text embedding, fine-tuning model parameters, and interpolating be-
tween the approximate and target text embeddings. However, it struggled to maintain background
consistency and realism, requiring careful optimization of embeddings for each prompt-image pair.
Null-Text Inversion (NULL)(Mokady et al., 2023) proposed optimal image-specific null-text embed-
dings for accurate reconstruction, combined with P2P(Hertz et al., 2023) techniques for real image
editing. Brooks et al. (2023) performed full fine-tuning of the diffusion model by generating image-
text-image triplets based on instructional input. However, the optimization and fine-tuning process
is time-consuming and resource-intensive. Our method, instead, focuses on tuning-free techniques
that eliminate the need for such processes.

2.2 ZERO-SHOT METHODS

Zero-shot approaches focused on editing images directly during the denoising phase, eliminating the
need for any fine-tuning or additional training. SDEdit (Meng et al., 2022) introduced intermediate
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Figure 2: We perform multi-text guided synthesis, where each text prompt conditions a distinct
part of the latent noise, effectively leading to results that exceed expectations and demonstrating the
ability to condition each part with its respective prompt. Please zoom in for a clearer view.

noise to an image, followed by denoising through a diffusion process conditioned on the desired edit.
However, it exhibited a tradeoff between preserving the original image attributes and fully achiev-
ing the target text’s intended changes. Blended Diffusion (Avrahami et al., 2022) facilitated local
editing using gradient guidance based on the CLIP loss of the desired modified region and the target
text prompt, without accounting for the interaction between foreground and background. However,
blending this with the original image noise at each step led to rigid editing and inconsistency. Chefer
et al. (2023) generate images that fully convey the semantics of the given text prompt by progres-
sively guiding the noised latent at each timestep, using the attention maps of the subject tokens from
the prompt. Brack et al. (2024) proposed approaches for quickly and accurately inverting images
and determining the appropriate direction for editing. Parmar et al. (2023) requires a large bank of
diverse sentences from both source and target texts to form an edit direction. Huberman-Spiegelglas
et al. (2024) introduced an inversion method for DDPM, showing that the inversion maps encoded
the image structure more effectively than the noise maps used in regular sampling, making them
better suited for image editing.

3 PROPOSED METHOD

3.1 PRELIMINARY ANALYSIS OF ATTENTION MECHANISM IN STABLE DIFFUSION

Within the Stable Diffusion (SD) Rombach et al. (2022), the attention mechanism Vaswani et al.
(2017) of the denoising U-Net, which includes both self-attention and cross-attention, is mathe-
matically expressed as Attention(Q,K, V ) = Softmax

(
QKT

√
d

)
V , where Q represents the query

features projected from spatial features, while K and V are the key and value features projected
from spatial features (in self-attention layers) or textual embeddings (in cross-attention layers) using
the respective projection matrices.

Insights from cross-attention Cross-attention involves interactions between pixels and prompts
(i.e., key and value features from textual embeddings). First, we observed that attending each prompt
to different parts of latent noise allows each section to be conditioned by its respective prompt (as
depicted in Figure. 2). Second, null text does not affect the output, a phenomenon evident during
training. Most diffusion models (DMs) utilize a classifier-free guidance (Ho & Salimans, 2021),
randomly replacing text conditioning with null text at a fixed probability during training. As a result,
when latent noise parts attend to null text, the corresponding pixels are perfectly reconstructed. Our
method leverages this by directing attention to the pixels of specific objects using the text prompt,
while background pixels attend to null text.

Insights from self-attention Previous works (Cao et al., 2023; Liu et al., 2024; Tumanyan et al.,
2023) show that self-attention features can be injected into U-Net layers for image translation, pre-
serving semantic layout. Our key insight is that self-attention lets pixels connect with themselves,
creating smooth transitions and consistent interactions. For example, in Figure. 2, we apply two
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(a) CPAM pipeline.
(b) Preservation adaptation and localized ex-
traction modules.

Figure 3: The architecture of our proposed Context-Preserving Adaptive Manipulation (CPAM) for
zero-shot real image editing consists of several key steps. First, we invert the image into latent
noise using the deterministic inversion technique of DDIM (Song et al., 2021) with null-text guided.
During the editing process, we utilize a preservation adaptation module to maintain the original
attributes while mitigating effects in the background through a localized extraction module. Please
zoom in for a clearer view.

Algorithm 1 Zero-Shot Real Image Editing
Inputs:
A target prompt Pt, A source mask Ms

The intermediate latent noises zi, the target initial latent noise map zT
Output: edited latent map z0
1: for t = T, T − 1, . . . , 1 do
2: Mt ← Mask-guidance strategy(cross-attention maps,Ms)
3: { ,Ki, Vi} ← ϵθ(zi, t)
4: {Q,K, V } ← ϵθ(zt, t)
5: inputs← (Q,K, V,Ki, Vi,Ms,Mt)

6: self-attention
adapt←− Preserving-adaptation(inputs)

7: cross-attention
inject←− Localized-extraction(Q,Pt, Pnulltext,Mt)

8: ϵ← ϵθ(zt, Pt, t, self-attention, cross-attention)
9: zt−1 ← Sample(zt, ϵ)

10: end for
11: return z0

prompts (e.g., ‘crocodile’ and ‘rhino’) to two parts of latent noise, resulting in a cohesive and non-
rigid outcome. Self-attention also helps each pixel determine which others to attend to, even when
excluding a specific region, as shown in Figure 1, where all image pixels focus on the background
pixels, excluding the teddy bear pixels, effectively removing it without disrupting the connections
of the semantic in the image. The process of object removal is further explained in Section A.1.
By controlling self-attention, we minimize the impact on irrelevant areas while preserving image
coherence.

3.2 OVERVIEW

Based on the insights in Section. 3.1, we propose Context-Preserving Adaptive Manipulation
(CPAM) to edit an image Is using a source object mask Ms and a target text prompt Pt to gen-
erate a new image It that aligns with Pt. Notably, It may spatially differ from Is, modifying objects
or background while keeping other regions unchanged. To achieve this, we introduce a preservation
adaptation module that adjusts self-attention to align the semantic content from intermediate latent
noise to the current edited noise, ensuring the retention of the original object and background during
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the editing process. To prevent unwanted changes from the target prompt in non-desired modified
regions, we propose a localized extraction module that enables targeted editing while preserving the
remaining details. Additionally, we propose mask-guidance strategies for diverse image manipu-
lation tasks. The overall CPAM architecture is illustrated in Figure. 3a, and the zero-shot editing
algorithm is outlined in Algorithm 1.

3.3 PRESERVATION ADAPTATION

In this subsection, we describe the self-attention adaptation process, which preserves the original
image’s appearance by independently adapting the semantic content from intermediate latent noise
to the edited image.

Background preservation adaptation To adapt semantic content from intermediate latent noise
during the denoising step t, we retain the query features Q and extract the original semantic content
from the key and value features K and V at that self-attention layer. We then apply attention guided
by the mask Ms. The semantic content of the background SCbg can be formulated as:

SCbg = Att(Q,Ki, Vi; 1−Ms), (1)

where Ki and Vi correspond to the key and value features of the intermediate latent noise, respec-
tively, and Att is the attention mechanism.

Object preservation adaptation Preserving the object’s semantic content is more difficult than
maintaining the background because it requires adapting the original object’s features to fit a new
shape, pose, or view. We carefully control this adaptation after S step and layer L, while generating
new shapes, poses, or views. Thus, the semantic content of the object (foreground) SCfg can be
formulated as follows:

SCfg =

{
Att(Q,Ki, Vi;Mt), If t > T and l > L and the object is retained,
Att(Q,K, V ), otherwise,

(2)

where t, l, T = 3, L = 8 denote step and layer, respectively. Vi are the value feature of intermediate
latent noise at step i. K and V are the key and value features of current noise, respectively. Mt is
the target mask of the edited object, and Att is the attention mechanism.

Location adaptation The aim of this module is to provide precise control over the foreground
and background during image editing, allowing for independent adjustments. By separately deriv-
ing the semantic content of the background from Equation. 1 and the foreground from Equation. 2,
and aligning them with the target mask Mt, we achieve flexible, region-specific edits. This process
ensures that modifications occur only in designated areas, keeping the rest of the image intact. Con-
sequently, the combined semantic content SC, guided by the target mask, is formulated as follows:

SC = Mt ⊙ SCforeground + (1−Mt)⊙ SCbackground, (3)

where ⊙ denotes the element-wise multiplication.

However, applying self-attention independently to the foreground and background leads to a lack
of interaction, resulting in rigid editing. To maintain overall image coherence, we randomly apply
normal self-attention in 10% of the layers. This approach minimizes unintended distortions and
yields more natural results during synthesis.

3.4 LOCALIZED EXTRACTION

Despite significant efforts to adapt the content of the original image in our preservation adaptation
module, the non-desired modified spatial region may appear distorted (as shown in the third image in
Figure. 4). This distortion arises because all pixels of the image attend to tokens of the text prompt,
affecting both the foreground (i.e., object) and background, including non-desired modified regions.
To address this issue, we introduce a localized extraction mechanism, allowing for editing only a
specific object without distorting the rest. This mechanism applies attention to the extracted object’s
spatial pixels from the feature query to the target prompt, while the remaining pixels attend to the
null text prompt:

LE(Q,K, V ) = Att(Extract(Q,Mt),Kt, Vt)⊕ Att(Extract(Q, 1−Mt),Null(K),Null(V )), (4)

6
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Figure 4: The real image (left), along with the edit prompt ”Messi and a rugby,” and a mask suggests
a desire to transform the soccer ball into a rugby ball. In two middle images, MasaCtrl (Cao et al.,
2023) produces another instance of Messi without mask guidance and retains the background with
mask guidance, but the problem remains unsolved (marked by blue annotation). On the other hand,
the localized extraction in our CPAM can successfully preserve the background while transforming
the soccer ball into the rugby ball (the right image). Please zoom in for a clearer view.

where ⊕ represents concatenation, Extract(Q,M) extracts the object’s spatial pixels from the fea-
ture query Q where M = 1, and Att is the attention mechanism.

3.5 MASK-GUIDANCE STRATEGY

Achieving both rigid and non-rigid semantic changes within a unified framework for diverse image
manipulation tasks is a notable challenge. Our method is designed to simplify this by requiring
only adjustments to mask settings. We present various mask guidance strategies tailored to different
editing needs. The source mask Ms refers to the mask of the object or region the user wishes to edit,
which can be provided through various methods such as manual drawing, extraction from clicks, or
text prompts using SAM (Kirillov et al., 2023). Meanwhile, the target mask Mt can be obtained as
follows:

• Replacing an object or changing the object pose, view: Mt is achieved by aggregating
cross-attention maps across all steps and layers or extending the convex hull of Ms.

• Altering background: When Ms is the mask of the background, we assign Mt = Ms.

• Removing object: We assign Mt = 0, meaning in our preservation adaptation module only
adapting the semantic content of the original background (refer to Equation 3).

• Modifying a specific spatial region (e.g., adding items): We simply assign Mt = Ms or
slightly expand Ms.

Mask refinement When manipulating an object, its shape may change during diffusion steps. To
address this, we refine the mask according to the target prompt during the denoising process. The
target mask Mt is automatically obtained by aggregating cross-attention maps. Initially, for the first
Tm steps, we use the source mask Ms, then transition to Mt, which can be cloned from Ms or
derived from the generation process. Additionally, we avoid closely segmenting both the target and
original objects to prevent overly rigid editing and the leakage of underlying shape information.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

All experiments were conducted on a machine with a single A100 GPU. Our proposed CPAM was
employed using the publicly available SD-1.5 model. We initially encode the image into latent code
by variational autoencoder (Kingma & Welling, 2014) and invert to noise using the deterministic
inversion technique of DDIM (Song et al., 2021) with null-text guided. In the sampling process, we
employed DDIM sampling by with 50 denoising iterations, and the classifier-free guidance was set
at 7.5.
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Table 1: Comparison of state-of-the-art methods using FID assesses image quality, CLIPScore mea-
sures text-image alignment, LPIPS (background) evaluates background preservation, and Inception
Score reflects diversity and realism. FID, LPIPS: lower is better ↓; CLIPS, IS: higher is better ↑.

Method FID ↓ CLIPScore ↑ LPIPS (background) ↓ IS ↑
SDEdit (Meng et al., 2022) 180.37 28.19 0.338 33.33
MasaCtrl (Cao et al., 2023) 101.05 28.82 0.223 49.32
PnP (Tumanyan et al., 2023) 89.00 29.03 0.162 89.50
FPE (Liu et al., 2024) 75.90 29.02 0.152 92.97
DiffEdit (Couairon et al., 2023) 90.77 28.58 0.148 48.77
Pix2Pix-Zero (Parmar et al., 2023) 122.53 27.01 0.186 22.82
LEDITS++ (Brack et al., 2024) 92.93 28.74 0.141 41.03
Imagic (Kawar et al., 2023) 123.41 30.34 0.420 47.14
CPAM (Ours) 93.34 29.26 0.149 43.11

Figure 5: Qualitative comparison of our proposed CPAM method with state-of-the-art approaches.
Our CPAM outperforms existing methods across multiple real image editing tasks. Please zoom in
for a clearer view.

4.2 IMAGE MANIPULATION BENCHMARK (IMBA)

Textual Editing Benchmark (TEdBench) Kawar et al. (2023) was the pioneered standard benchmark
for assessing non-rigid text-based real image editing. The dataset comprises 100 pairs of input
images and target texts, describing complex non-rigid edits. However, the dataset lacks detailed
user-editing preferences, such as object retaining, background altering, etc, and lacks evaluation on
specific object editing. Thus, we introduced Image Manipulation BenchmArk (IMBA) to address
these limitations, built upon the TEdBench. IMBA dataset not only incorporates detailed user-
editing preferences but also includes additional inputs, such as alteration masks and object prompts,
to enhance control during the editing process. Moreover, IMBA adds samples containing multiple
objects, facilitating the evaluation of specific object editing capabilities. In total, IMBA includes
104 samples, with 43 samples requiring object retention, 97 samples involving object modification,
and 7 samples involving background alteration.
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Table 2: User study results measuring participants’ opinion (1: very bad, 6: very good) in rating
image editing methods. Our CPAM significantly outperforms existing methods.

Method Object Retention Background Retention Realistic Satisfaction
SDEdit (Meng et al., 2022) 3.63 3.19 3.38 2.42
MasaCtrl (Cao et al., 2023) 4.01 4.17 4.32 3.11
PnP (Tumanyan et al., 2023) 4.61 4.49 4.20 2.63
FPE (Liu et al., 2024) 4.50 4.44 4.33 2.53
DiffEdit (Couairon et al., 2023) 4.58 4.57 4.40 3.13
Pix2Pix-Zero (Parmar et al., 2023) 2.11 4.23 1.84 1.93
LEDIT++ (Brack et al., 2024) 4.38 4.95 4.57 3.26
Imagic (Kawar et al., 2023) 3.74 3.48 4.30 4.82
CPAM (Ours) 4.72 5.09 4.69 3.30

4.3 QUALITATIVE AND QUANTITATIVE EVALUATION

In this section, we present both qualitative and quantitative assessments of our proposed CPAM
method in comparison to state-of-the-art image editing approaches.

Figure 5 provides a qualitative comparison of our CPAM method against leading techniques in image
editing based on Stable Diffusion (SD), such as P2P+NULL (Hertz et al., 2023; Mokady et al., 2023),
SDEdit (Meng et al., 2022), MasaCtrl (Cao et al., 2023), PnP (Tumanyan et al., 2023), FPE (Liu
et al., 2024), DiffEdit (Couairon et al., 2023), Pix2Pix-Zero (Parmar et al., 2023), LEDIT++ (Brack
et al., 2024), and the fine-tuning method Imagic (Kawar et al., 2023). Our results indicate that
CPAM consistently outperforms these existing methods across various real image editing tasks.
This performance is particularly evident in its ability to modify diverse aspects of images, including
pose, view, background changes, and specific object alterations, all while effectively preserving the
original background and avoiding unintended modifications.

In Table 1, we compare the quantitative metrics of our CPAM method against other state-of-the-art
approaches. We excluded the evaluation of P2P (Hertz et al., 2023) combined with NULL (Mokady
et al., 2023) due to its reliance on an initial prompt that often leads to unchanged outputs. The
data reveals a clear trend: while SDEdit and other methods struggle to maintain structural integrity
and background details, our CPAM method achieves high CLIP accuracy alongside low structure
distortion and background LPIPS scores. This combination demonstrates our capability to execute
edits effectively while retaining the essential features of the original input images.

Methods like SDEdit (Meng et al., 2022) often yield unrealistic results due to their dependence on
noise strength parameters, which can disrupt semantic consistency. MasaCtrl (Cao et al., 2023) lacks
precise control over background and foreground elements during denoising, leading to unwanted
alterations. PnP (Tumanyan et al., 2023) preserves the background but often fails to meet the target
prompt, while FPE (Liu et al., 2024) generates minimal visible changes due to its high reliance on
self-attention maps. Pix2Pix-Zero (Parmar et al., 2023) struggles in real image editing tasks due
to its dependence on closely matched prompts. Additionally, DiffEdit (Couairon et al., 2023) and
LEDIT++ (Brack et al., 2024) often capture the entire object when generating masks based on noise
estimation, resulting in unwanted modifications. Although Imagic (Kawar et al., 2023) excels in
user satisfaction, it frequently struggles with background retention and can produce misalignments
or unwanted alterations, and requires more time consuming for fine-tuning and optimizing for each
image prompt pair.

In contrast, our CPAM method demonstrates a more robust performance in preserving both object
integrity and background details, effectively executing complex edits without sacrificing quality.
This combination of qualitative and quantitative evaluations underscores the effectiveness of our
approach in the context of modern image editing techniques.

4.4 USER STUDY

To further assess the effectiveness of our proposed CPAM method, we conducted a user study com-
paring it against several leading prompt-based editing methods utilizing diffusion models. The meth-
ods evaluated include SDEdit (Meng et al., 2022), MasaCtrl (Cao et al., 2023), PnP (Tumanyan et al.,

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

2023), FPE (Liu et al., 2024), DiffEdit (Couairon et al., 2023), Pix2Pix-Zero (Parmar et al., 2023),
LEDIT++ (Brack et al., 2024), and the fine-tuning method Imagic (Kawar et al., 2023).

To ensure a comprehensive evaluation, we defined four key metrics: object retention, background
retention, realism, and overall satisfaction. These metrics are designed to assess the methods’ effec-
tiveness in executing realistic edits while preserving important features of the original images:

• Object Retention: This metric evaluates how well the method preserves the identity and
details of the main object in the image during editing.

• Background Retention: This assesses the method’s ability to maintain the integrity and
appearance of the background while altering the main object.

• Realism: This metric analyzes the realism of the edits, particularly in the context of non-
rigid transformations.

• Satisfaction: This measures the degree to which the edited image aligns with the textual
description provided as the editing prompt.

We invited 20 participants from diverse professional backgrounds to provide a variety of perspectives
in the evaluation process. Each participant rated the performance of the methods on a scale from
1 (very bad) to 6 (very good) across the four metrics. Participants evaluated 50 randomly shuffled
images for each method, resulting in a total of 36,000 responses.

Table 2 presents the Mean Opinion Score (MOS) derived from the participants’ ratings. The results
demonstrate that our CPAM method significantly outperforms the other methods across most met-
rics. Notably, CPAM received the highest ratings for object retention, background retention, and
realism, indicating its superior ability to maintain key elements of the images while executing edits
effectively. While Imagic (Kawar et al., 2023) excelled in user satisfaction but it faced challenges
in background retention, occasionally produced unrealistic outputs, and required significantly more
time for fine-tuning and optimization for each image-prompt pair.

Overall, the user study reinforced the findings from our qualitative and quantitative evaluations,
highlighting the effectiveness of CPAM in real image editing tasks.

4.5 LIMITATIONS AND DISSCUSION

Similar to other zero-shot methods, our method is constrained by the capabilities of the pre-trained
model. Sometimes, the generated images may not align perfectly with the provided prompts. Our
mask refinement module aims to obtain masks from cross-attention maps by applying a simple
standardization technique. However, this approach may result in imprecise object shapes or may
overly focus on prominent objects, leading to suboptimal outcomes. While we can address this issue
by adjusting or slightly expanding the masks, there are situations where these solutions may not be
sufficient. When editing a specific spatial region of an image, precise prompts and initial masks are
necessary, and the model must generate content in that region. Unfortunately, we may encounter
difficulties editing small or non-salient objects or when content cannot be generated in that region.
This challenge arises because the SD model is primarily trained on image-captioning datasets, where
the text prompts typically focus on salient objects. Fortunately, our method allows for an increased
guidance scale, effectively addressing this challenge and enhancing the model’s ability to generate
content in less prominent areas.

5 CONCLUSION

Our CPAM facilitates various zero-shot real image editing tasks by leveraging both self-attention
and cross-attention mechanisms within SD models. Overcoming existing limitations, CPAM em-
ploys a preservation adaptation process to meticulously control and retain various object attributes
while preserving the background. Additionally, our method features a localized extraction module
to prevent undesired effects of target prompts on non-desired spatial regions, enabling precise object
editing within images. We also introduce IMBA dataset, providing rich information for compre-
hensive image manipulation evaluations. Empirical results demonstrate that our CPAM consistently
outperforms existing leading editing techniques in achieving complicated and non-rigid edits.
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A APPENDIX

A.1 ABLATION STUDY

Most diffusion models (DMs) rely on classifier-free guidance (Ho & Salimans, 2021), where a low
guidance scale can produce overly abstract or unrelated images, while a high guidance scale can
result in images that look rigid or unnatural, as the model over-commits to the prompt, potentially
sacrificing creativity and naturalness. However, our method leverages a higher guidance scale to
edit images without causing distortion. It achieves this using simple prompts, avoiding the need for
complex and precise text descriptions, making the editing process more intuitive and user-friendly
(as shown in Figure 6).

We further explain that our method enables object removal. To achieve this during the editing
process, we control self-attention to ensure that all spatial pixels attend only to the background while
disregarding the object content. This effectively removes the object without breaking the semantic
structure of the image, as demonstrated in Figure 7.

A.2 COMPARATIVE PIPELINE ANALYSIS: CPAM VS MASACTRL

In our comparative analysis, we examine the intricacies of CPAM and MasaCtrl, as illustrated in
Figure. 8. Unlike MasaCtrl, which lacks independently control over the semantic content of the
background and object across different steps and layers and CPAM employs localized extraction in
contrast to MasaCtrl’s employment of normal cross-attention.
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Figure 6: We demonstrate the effect of image consistency and control with and without using our
method. Our approach allows for a high guidance scale, achieving the desired results without dis-
torting the image, requiring only a simple prompt from the user.

Figure 7: Our method controls self-attention to focus only on the background of the image, marked
by the green region, effectively removing the object.
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Figure 8: The Comparative Details of CPAM and MasaCtrl.

A.3 IMAGE MANIPULATION BENCHMARK (IMBA) DETAILS

Figure 9: The visualization of Image Manipulation BenchmArk (IMBA).

We introduced Image Manipulation BenchmArk (IMBA) built upon the TEdBench. IMBA dataset
not only incorporates detailed user-editing preferences but also includes additional inputs, such as
alteration masks and object prompts, to enhance control during the editing process (as illustrated in
Figure. 9).

A.4 FURTHER EXAMPLES

We provide additional visualizations for a more qualitative evaluation (Figure 10) and various real
image manipulation tasks, including removing objects (Figure. 11),
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Figure 10: More qualitative results comparing our proposed CPAM method with state-of-the-art
techniques.

Figure 11: CPAM effectively removes the object.

A.5 EXPERIMENTAL DETAILS

All experiments were conducted using Stable Diffusion 1.5 and guidance scale 7.5, 50 infer-
ence steps. For all methods, we utilized publicly available official code, with the exception of
Imagic (Kawar et al., 2023). For Imagic, we evaluated publicly available results and leveraged
community-developed code from the Diffusers library on Hugging Face.

We performed a grid search across the hyperparameter ranges specified for each method while keep-
ing other parameters at their default settings. Initially, a wider range of values was explored to
define reasonable boundaries, after which edge values that resulted in performance declines were
discarded.

P2P+NULL (Hertz et al., 2023; Mokady et al., 2023) Get initial prompt by Clip (Radford et al.,
2021), with the rate of replacing self-attention steps set between 0.4 and 0.7.

SDEdit (Meng et al., 2022) Diffusion steps between 25 (with strength 0.5 at 50 steps) and 40
steps (with strength 0.8 at the default 50 steps).

MasaCtrl (Cao et al., 2023) Step query set to 4, layer query between 10 and 14, with three mask
options: no mask guidance, explicit mask, and auto-aggregated mask.

PnP (Tumanyan et al., 2023) The rate of replacing self-attention steps and feature injection be-
tween 0.5 and 0.8, 50 inference steps.

FPE (Liu et al., 2024) The rate of replacing self-attention steps is set between 0.5 and 0.8.
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DiffEdit (Couairon et al., 2023) Get initial prompt by Clip (Radford et al., 2021).

Pix2Pix-Zero (Parmar et al., 2023) Generate 5 source prompts and 5 target prompts by flan-t5-xl
model (Chung et al., 2024).

LEDIT++ (Brack et al., 2024) 50 inversion steps, skip between 0.1 and 0.3.

Imagic (Kawar et al., 2023) 500 text embedding optimization steps, 1000 model finetuning steps,
α between 0.1 and 2.0.

A.6 USER STUDY DETAILS

Participants We invited 20 participants (17 males and three females, age ∈ [16, 22]) from our
research community, including students with knowledge about AI and those from outside the indus-
try, to participate in our study. All participants were new to AI generative tasks, although some had
previously participated in various user studies related to AI. With diverse professional backgrounds,
they brought different perspectives to the evaluation process, ensuring an objective assessment (see
an overview of the information of participants in 12).

Figure 12: The information of users.

Setup All methods were evaluated using the T2I SD model with publicly available checkpoints
v1.5. We organized the participants into 20 batches, each randomly selecting 50 samples from a
pool of 104 samples and shuffling the methods for evaluation. The original image and the images
generated by the four methods were presented side-by-side for evaluation. To ensure objectivity, we
blinded the method so that participants did not know which method the image belonged to, including
our method. To ensure a fair comparison and achieve optimal results, we conducted our experiments
and followed the recommendations provided by the authors. For samples that required retaining the
object, we selected SDEdit with a strength of 0.5 and MasaCtrl with step 4 and layer 6. For other
samples, we chose SDEdit with a strength of 0.8 and MasaCtrl with step 4 and layer 10.

Tasks The participants were asked to rate the performance of each of the four methods on a scale
of 1 to 6 for four metrics based on their perspectives. They must follow the order of samples and
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Figure 14: Without fine-tuning the model, it cannot generate novel views and poses of objects
aligned with the text prompt. We compare these tuning-free methods to the fine-tuning method
Imagic, which can generate novel views and poses.

methods in their batch. For samples where retaining the object was not required, participants left the
rating blank in the cell corresponding to the retention of object metric.

Apparatus and procedure Our pilot study was conducted online and in our lab, where partici-
pants completed the assigned tasks in their respective batches. The total time for these study sessions
was approximately 4 hours per person. Some sessions were video-recorded for further analysis.

Quantitative results We present the average rating scores of the participants, ranging from 1 to
6 (1 denoting ”very bad” and 6 indicating ”very good”), obtained from the user study evaluation.
The results suggest that users expressed a high degree of contentment with CPAM in terms of object
retention, background retention, and realistic metrics. Additionally, they rated high the satisfaction
metric with the Imagic method (see Figure. 13).

Figure 13: The statistical ratings for each method.

A.7 FAILURE CASES

We visualize failure cases as discussed in the limitations subsection regarding the limitations of pre-
trained models 14, the instability of aggregated masks 15, editing specific spatial regions, and the
model’s focus on salient objects 16.

A.8 FUTURE WORK AND FURTHER DISCUSSION

Our findings in using cross-attention to condition multiple text prompts for different regions offer
a promising approach for editing images with multiple simple prompts. This stands in contrast to
methods that rely on complex details and highly precise prompts for optimal results. In future work,
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Figure 15: The failure case occurs when the mask is imprecise. In the first sample, the mask often
captures all the salient objects within the image and cannot focus solely on the desired object, even
if we aggregate attention maps correlated to a specific token like ”lamp”. In the second sample, the
dog’s mask loses its legs.

Figure 16: We modify the specific object within the image using fixed masks and aggregated masks
as guidance. In the first sample, we aim to replace the glass of milk with a sunglass. However, the
model generates the content in the wrong expected location. In the second sample, our goal is to
replace the ball with a tomato. However, the model focuses solely on the salient object (people),
resulting in an incorrect outcome.

we aim to leverage this technique for real-world image editing tasks, simplifying the user experience
while maintaining high-quality outputs.
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As our method relies on a precise mask, we plan to integrate a noise estimation technique Brack
et al. (2024); Couairon et al. (2023) for generating masks, offering users a more robust solution.
We can first generate an edited image to address the issues of the model generating content in the
wrong place or being uncertain about where the model generates, especially in the task of editing
a specific spatial region. Based on this, we can adjust the mask, prompt, and then re-generate the
image. Addressing these problems constitutes our future work.
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