
Monotone, Bi-Lipschitz, and Polyak-Łojasiewicz Networks

Ruigang Wang 1 Krishnamurthy (Dj) Dvijotham 2 Ian R. Manchester 1

Abstract
This paper presents a new bi-Lipschitz invertible
neural network, the BiLipNet, which has the abil-
ity to smoothly control both its Lipschitzness (out-
put sensitivity to input perturbations) and inverse
Lipschitzness (input distinguishability from differ-
ent outputs). The second main contribution is a
new scalar-output network, the PLNet, which is
a composition of a BiLipNet and a quadratic po-
tential. We show that PLNet satisfies the Polyak-
Łojasiewicz condition and can be applied to learn
non-convex surrogate losses with a unique and
efficiently-computable global minimum. The
central technical element in these networks is a
novel invertible residual layer with certified strong
monotonicity and Lipschitzness, which we com-
pose with orthogonal layers to build the BiLipNet.
The certification of these properties is based on in-
cremental quadratic constraints, resulting in much
tighter bounds than can be achieved with spec-
tral normalization. Moreover, we formulate the
calculation of the inverse of a BiLipNet – and
hence the minimum of a PLNet – as a series of
three-operator splitting problems, for which fast
algorithms can be applied.

1. Introduction
In many applications, it is desirable to learn neural networks
with certified input-output behaviors, i.e., certain proper-
ties that are guaranteed by design. For example, Lipschitz-
bounded networks have proven to be beneficial for stabi-
lizing of generative adversarial network (GAN) training
(Arjovsky et al., 2017; Gulrajani et al., 2017), certifying
robustness against adversarial attacks (Tsuzuku et al., 2018;
Singla & Feizi, 2021; Zhang et al., 2021; Araujo et al.,
2023; Wang & Manchester, 2023) and robust reinforcement

1Australian Centre for Robotics, School of Aerospace, Me-
chanical and Mechatronic Engineering, The University of Sydney,
Sydney, NSW 2006, Australia. 2Google DeepMind. Correspon-
dence to: Ruigang Wang <ruigang.wang@sydney.edu.au>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

−2 −1 0 1 2
−3

−2

−1

0

1

2

3

Target fn.

i-ResNet

i-Densenet

BiLipNet

Optimal fit

Model inv. Lip. (↓) Lip. (↑) loss (↓)
i-ResNet 0.80 4.69 0.2090

i-DenseNet 0.82 4.66 0.2091
BiLipNet 0.11 9.97 0.0685

Best Possible 0.10 10.0 0.0677

Figure 1. Fitting a step function, which is not Lipschitz, with cer-
tified (0.1, 10)-Lipschitz models. Compared to the analytically-
computed optimum, the proposed BiLipNet achieves much tighter
bounds than models based on spectral normalization.

learning (Russo & Proutiere, 2021; Barbara et al., 2024).

Another input-output property – invertibility has received
much attention in the deep learning literature since the
introduction of normalizing flows (Dinh et al., 2015) for
probability-density learning. Invertible neural networks
have been applied in applications such as generative model-
ing (Dinh et al., 2017; Kingma & Dhariwal, 2018), proba-
bilistic inference (Bauer & Mnih, 2019; Ward et al., 2019;
Louizos & Welling, 2017), solving inverse problems (Ardiz-
zone et al., 2018) and uncertainty estimation (Liu et al.,
2020). A common way to construct invertible networks is
to compose invertible affine transformations with more so-
phisticated invertible layers, including coupling flows (Dinh
et al., 2017; Kingma & Dhariwal, 2018), auto-regressive
models (Huang et al., 2018; De Cao et al., 2020; Ho
et al., 2019), invertible residual layers (Chen et al., 2019;
Behrmann et al., 2019), monotone networks (Ahn et al.,
2022), and neural ordinary differential equations (Grath-
wohl et al., 2019), see also in the surveys (Papamakarios
et al., 2021; Kobyzev et al., 2020).

1

Monotone, Bi-Lipschitz, and Polyak-Łojasiewicz Networks 2

However, (Behrmann et al., 2021) observed that commonly-
used invertible networks suffer from exploding inverses
and are thus prone to becoming numerically non-invertible.
This observation motivates the input-output property of bi-
Lipschitzness. A layer F : Rn → Rn is said to be bi-
Lipschitz with bound of (µ, ν), or simply (µ, ν)-Lipschitz,
if the following inequalities hold for all x, x′ ∈ Rn:

µ∥x− x′∥ ≤ ∥F(x)−F(x′)∥ ≤ ν∥x− x′∥,
where ∥ · ∥ is the Euclidean norm. The bound ν controls
the output sensitivity to input perturbations while µ controls
the input distinguishability from different outputs (Liu et al.,
2020). We call µ as the inverse Lipschitz bound of F as F−1

exists and is 1/µ-Lipschitz. The ratio τ := ν/µ is called
distortion (Liang et al., 2023), which is the upper bound of
the condition number of the Jacobian matrix of F . A larger
distortion implies more expressive flexibility in the model.

In this paper we argue that the bi-Lipschitz property is also
useful for learning of surrogate loss (or reward) functions.
Given some input/output pairs of a loss function, the ob-
jective is to learn a function which matches the observed
data and is “easy to optimize” in some sense. This problem
appears in many areas, including Q-learning with contin-
uous action spaces, see e.g. (Gu et al., 2016; Amos et al.,
2017; Ryu et al., 2019), offline data-driven optimization
(Grudzien et al., 2024), learning reward models in inverse
reinforcement learning (Arora & Doshi, 2021), and data-
driven surrogate losses for engineering process optimization
(Cozad et al., 2014; Misener & Biegler, 2023). An important
contribution was the input convex neural network (ICNN)
(Amos et al., 2017). However, the requirement of input
convexity could be too strong in many applications.

1.1. Contributions

• We propose a novel strongly monotone and Lipschitz
residual layer of the form F(x) = µx+H(x). For the
nonlinear block H, we introduce a new architecture –
feed-through network (FTN), which takes a multi-layer
perceptron (MLP) as its backbone and adds connec-
tions from each hidden layer to the input and output
variables. For deep networks, this architecture can im-
prove the model expressivity without suffering from
vanishing gradients.

• We parameterize FTNs with certified strong monotonic-
ity (which implies inverse Lipschitzness) and Lipschitz-
ness for F via the integral quadratic constraint (IQC)
framework (Megretski & Rantzer, 1997) and the Cay-
ley transform.

• By composing strongly-monotone and Lipschitz FTN
layers with orthogonal affine layers we obtain the
BiLipNet, a new network architecture with smoothly-
parameterized bi-Lipschitz bounds.

• We formulate the model inversion F−1 as a three-
operator splitting problem, which admits a numerically
efficient solver (Davis & Yin, 2017).

• We introduce a new scalar-output network f : Rn →
R, which we call a Polyak-Łojasiewicz network (or
PLNet) since it satisfies the condition of the same
name (Polyak, 1963; Lojasiewicz, 1963). It consists
of a bi-Lipschitz network composed with a quadratic
potential, and automatically satisfies favourable proper-
ties for surrogate loss learning, in particular existence
of a unique global optimum which is efficiently com-
putable.

1.2. Related work

Bi-Lipschitz invertible layer. In literature, there are two
types of invertible layers closely related to our models. The
first is the invertible residual layer F(x) = x+H(x) (Chen
et al., 2019; Behrmann et al., 2019), where the nonlinear
block H is a shallow network with Lipschitz bound of c < 1.
In (Perugachi-Diaz et al., 2021), H is further extended to
a deep MLP. It is easy to show that F is (1 − c)-inverse
Lipschitz and (1+ c)-Lipschitz. In both cases, the Lipschitz
regularization is via spectral normalization (Miyato et al.,
2018), which we observe to be very conservative (see Figure
1). Alternatively, a bi-Lipschitz layer can be defined by an
implicit equation (Lu et al., 2021; Ahn et al., 2022). How-
ever, these require an iterative solver for both the forward
and inverse model inference. In contrast, our model has an
explicit forward pass and iterative solution is only required
for the inverse.

IQC-based Lipschitz estimation and training. In (Fa-
zlyab et al., 2019), the IQC framework of (Megretski &
Rantzer, 1997) was first applied to obtain accurate Lipschitz
bound estimation of deep networks with slope-restricted
activations. It was later pointed out by (Wang et al., 2022)
that IQC for Lipschitzness (Fazlyab et al., 2019) is Shor’s re-
laxation of a “Rayleigh quotient” quadratically constrained
quadratic programming (QCQP). Direct (i.e. unconstrained)
parameterizations based on IQC were were proposed in (Re-
vay et al., 2020) for deep equilibrium networks, in (Araujo
et al., 2023) for residual networks, for deep MLPs and CNNs
in (Wang & Manchester, 2023), and recurrent models in (Re-
vay et al., 2023). It was pointed out by (Havens et al., 2023)
that many recent Lipschitz model parameterizations (Me-
unier et al., 2022; Prach & Lampert, 2022; Araujo et al.,
2023; Wang & Manchester, 2023) are special cases of (Re-
vay et al., 2020). In a recent work (Pauli et al., 2024), the
IQC-based Lipschitz estimation was recently extended to
more general activations such as GroupSort and MaxMin.
All of these are for one-sided (upper) Lipschitzness, whereas
our work applies the IQC framework for monotonicity and
bi-Lipschitzness.

2

Monotone, Bi-Lipschitz, and Polyak-Łojasiewicz Networks 3

Bi-Lipschitz networks for learning-based surrogate opti-
mization. (Liang et al., 2023) uses Bi-Lipschitz networks
to learn a surrogate constraint set while our work focuses on
surrogate loss learning. Both works take distortion bound
as an important regularization technique. The difference
is that the distortion estimation in (Liang et al., 2023) is
based on data samples while our work offers certified and
smoothly-parameterized distortion bounds.

2. Preliminaries
We give some definitions for a mapping F : Rn → Rn.

Definition 2.1. F is said to be µ-strongly monotone with
µ > 0 if for all x, x′ ∈ Rn we have

⟨F(x)−F(x′), x− x′⟩ ≥ µ∥x− x′∥2,

where ⟨·, ·⟩ is the Euclidean inner product: ⟨a, b⟩ = a⊤b. F
is monotone if the above condition holds for µ = 0.

Definition 2.2. F is said to be ν-Lipschitz with ν > 0 if

∥F(x)−F(x′)∥ ≤ ν∥x− x′∥, ∀x, x′ ∈ Rn.

F is said to be µ-inverse Lipschitz with µ > 0 if

∥F(x)−F(x′)∥ ≥ µ∥x− x′∥, ∀x1, x2 ∈ Rn.

F is said to be bi-Lipschitz with ν ≥ µ > 0, or simply
(µ, ν)-Lipschitz, if it is µ-inverse Lipschitz and ν-Lipschitz.

For any (µ, ν)-Lipschitz mapping F , its inverse F−1 is
well-defined and (1/ν, 1/µ)-Lipschitz (Yeh, 2006). By the
Cauchy–Schwarz inequality, strong monotonicity implies
inverse Lipschitzness, see Figure 2. A notable difference
between monotonicity and bi-Lipschitzness is their compo-
sition behaviour. Given two bi-Lipschitz mappings F1,F2,
their composition F = F2 ◦ F1 is also bi-Lipschitz with
bound of (µ1µ2, ν1ν2) where (µ1, ν1) and (µ2, ν2) are the
bi-Lipschitz bounds of F1 and F2, respectively. However,
given two strongly monotone F1,F2 with monotonicity
bounds µ1, µ2, the composition F = F2 ◦F1 does not need
to be strongly monotone. However, it is still µ1µ2-inverse
Lipschitz. To quantify the flexibility of bi-Lipschitz maps,
we introduce the following:

Definition 2.3. F satisfies a distortion bound τ with τ ≥ 1
if F is (µ, ν)-Lipschitz with τ = ν/µ.

For an invertible affine mapping F(x) = Px+ q, the con-
dition number of P is a distortion bound. An orthogonal
mapping (i.e., P⊤P = I) has the smallest possible model
distortion τ = 1. Distortion bounds satisfy a composition
property, i.e., if F1,F2 have distortion bounds of τ1, τ2,
then F2 ◦ F1 satisfies a distortion bound of τ1τ2. Both F
and F−1 have the same distortion.

α

cosα = µ/ν

µ ν

∆x

∆y

(µ, ν)-Lipschitz
µ-strongly monotone

& ν-Lipschitz

Figure 2. This figure depicts the possible ranges of ∆y = F(x′)−
F(x) on R2 for a given ∆x = x′ − x. The ring (blue area) is
for (µ, ν)-Lipschitz F while the half moon (red area) is for a µ-
strongly monotone and ν-Lipschitz F . The largest angle between
∆x and ∆y satisfies cosα = τ−1 with τ = ν/µ as the distortion.

Surrogate loss learning. Let D be a dataset containing
finite samples of xi ∈ Rn and yi = f(xi) ∈ R where f is an
unknown loss function. The task is to learn a surrogate loss
f̂ from D, i.e., f̂ = argminf∈F E(x,y)∼D

[
(f(x)− y)2

]

where F is the model set (e.g. neural networks). In many
applications, it is highly desirable that each f ∈ F has a
unique and efficiently-computable global minimum. An
important model class is the input convex neural network
(ICNN) (Amos et al., 2017). Since f ∈ F is convex w.r.t
x, then any local minimum is a global minimum. More-
over, there exists a rich literature for convex optimization.
Although convexity is more favourable for downstream opti-
mization problems, it might be a very stringent requirement
for fitting the dataset D. In this work we aim to construct
a model set F such that every f ∈ F does not need to be
convex but still poses those favourable properties for opti-
mization. In Section 5, we will show that the construction
of such model set relies on bi-Lipschitz neural networks.

3. Monotone and bi-Lipschitz Networks
In this section we first present the construction of µ-strongly
monotone and ν-Lipschitz residual layers of the form
F(x) = µx + H(x). We then construct bi-Lipschitz net-
works by deep composition of the new monotone and Lips-
chitz layers with orthogonal linear layers.

3.1. Feed-through network

For the nonlinear block H, we introduce a network archi-
tecture, called feed-through network (FTN), which takes an
MLP as its backbone and then connects each hidden layer
to input and output variables, see Figure 3. To be specific,
the residual layer F(x) = µx+H(x) can be written as

zk = σ(Wkzk−1 + Ukx+ bk), z0 = 0

y = µx+

L∑

k=1

Ykzk + by
(1)

3

Monotone, Bi-Lipschitz, and Polyak-Łojasiewicz Networks 4

. . .z1 z2 zLx
Input

y
Output

Hidden layers

U1

UL

Y1

YL

W2

WL

µ

Figure 3. The proposed invertible residual network F(x) = µx+
H(x) where the nonlinear block H is a feed-through network,
whose hidden layers are directly connected to the input and output.

where zk ∈ Rmk are the hidden variables, Uk,Wk, Yk and
bk, by are the learnable weights and biases, respectively.
Throughout the paper we assume that the activation σ is
a scalar nonlinearity with slope restricted in [0, 1], which
is satisfied (possibly with rescaling) by common activation
functions such as ReLU, tanh, and sigmoid.
Remark 3.1. FTN contains both short paths x → zi → y
preventing vanishing gradients and long paths x → zi →
· · · → zj → y improving model expressivity (see Figure 3).

3.2. SDP conditions for monotonicity and Lipschitzness

The first step towards our parameterization is to establish
strong monotonicity and Lipschitzness for F via semidefi-
nite programming (SDP) conditions. For this, we rewrite F
in a compact form:

z = σ(Wz + Ux+ b), y = µx+ Y z + by (2)

where z =
[
z⊤1 · · · z⊤L

]⊤
, b =

[
b⊤1 · · · b⊤L

]⊤
, and

W =

0
W2 0

.
WL 0

 , U =

U1

U2

...
UL

 ,

Y =
[
Y1 Y2 · · · YL

]
.

Theorem 3.2. F is µ-strongly monotone and ν-Lipschitz
if there exists a Λ ∈ Dm

+ , where Dm
+ is the set of positive

diagonal matrices, such that the following conditions hold:

Y = U⊤Λ, 2Λ− ΛW −W⊤Λ ⪰ 2

γ
Y ⊤Y (3)

where γ = ν − µ > 0.

Remark 3.3. The above conditions are obtained by applying
the IQC theory (Megretski & Rantzer, 1997) to (2).

3.3. Model parameterization

Let Θ be the set of all θ = {U,W, Y,Λ} such that Condi-
tion (3) holds. Since it is generally not scalable to train a

model with SDP constraints, we instead construct a direct
parameterization, i.e. both unconstrained and complete:
Definition 3.4. A direct parameterization of a constraint
set Θ is a surjective differentiable mapping M : RN → Θ,
i.e. for any ϕ ∈ RN we have M(ϕ) ∈ Θ, and the image of
RN maps onto Θ, i.e. M(RN) = Θ.

A direct parameterization allows us to replace a constrained
optimization over θ ∈ Θ with an unconstrained optimization
over ϕ ∈ RN without loss of generality. This enables use of
standard first-order optimization algorithms such as SGD or
ADAM (Kingma & Ba, 2015).

We now construct a direct parameterization for FTNs satis-
fying (3). Here we present the main ideas, see Appendix A
for full details. First, we introduce the free parameters

ϕ = {F p, F q} ∪ {dk, F a
k , F

b
k}1≤k≤L

where F p ∈ Rn×n, F q ∈ Rm×n, dk ∈ Rmk , F a
k ∈

Rmk×mk and F b
k ∈ Rmk−1×mk with m0 = 0. Then, we

compute some intermediate variables Ψk = diag
(
edk

)
and

[
A⊤

k

B⊤
k

]
= Cayley

([
F a
k

F b
k

])
,

[
P
Q

]
= Cayley

([
F p

F q

])

where Cayley : Rn×p → Rn×p with n ≥ p is defined by

J = Cayley

([
G
H

])
:=

[
(I + Z)−1(I − Z)
−2H(I + Z)−1

]
(4)

with Z = G⊤−G+H⊤H . It can be verified that J⊤J = I
for any G ∈ Rp×p and H ∈ R(n−p)×p. Note that P will
not be used for further weight construction as its purpose is
to ensure that Q⊤Q ⪯ I . Next we set

Vk = 2BkA
⊤
k−1, Sk = AkQk −BkQk−1

where Q =
[
Q⊤

1 · · · Q⊤
L

]⊤
and B1 = 0, Q0 = 0. Finally,

we construct the weights in (1) as:

Uk =
√
2γΨ−1

k Sk, Wk = Ψ−1
k VkΨk−1,

Yk =

√
γ

2
S⊤
k Ψk, Λk =

1

2
Ψ2

k.
(5)

Proposition 3.5. The model parameterization M defined in
(5) is a direct parameterization for the set Θ, i.e. all models
(1) satisfying Condition (3).

This means that we can learn the free parameter ϕ using
first-order methods without any loss of model expressivity.

The construction is now done, but we note that Ψk is shared
between layers k and k + 1. To have a modular imple-
mentation, we introduce new variables ẑ = Ψz and bias
b̂ = Ψb with Ψ = diag(Ψ1,Ψ2, . . . ,ΨL). Then, (2) can be
rewritten as follows (see Appendix A)

ẑ = σ̂
(
V ẑ+

√
2γSx+ b̂

)
, y = µx+

√
γ/2S⊤ẑ+by (6)

4

Monotone, Bi-Lipschitz, and Polyak-Łojasiewicz Networks 5

where σ̂(x) := Ψσ
(
Ψ−1x

)
is a (0, 1)-Lipschitz layer with

learnable scaling Ψ, the weights S, V can be written as

S =

S1

S2

...
SL

 , V =

0
V2 0

.
VL 0

 . (7)

Number of free parameters. Consider an L-layer FTN
(1) where each layer has the same width, i.e. mk = d. The
bi-Lipschitz network based on spectral normalization (Liu
et al., 2020) has 2Ld2 free parameters while our model size
is (3L + 1)d2 + Ld. Since the Ld2 term dominates for
deep and wide networks, our model has roughly 1.5 times
as many parameter as the model from (Liu et al., 2020).

3.4. Bi-Lipschitz networks

We construct bi-Lipschitz networks (referred as BiLipNets)
by composing strongly monotone and Lipschitz layers,

G = OK+1 ◦ FK ◦ OK ◦ FK−1 ◦ · · · ◦ O2 ◦ F1 ◦ O1 (8)

where Ok(x) = Pkx+ qk with P⊤
k Pk = I is an orthogonal

layer and Fk is a µk-strongly monotone and νk-Lipschitz
layer (6). By the composition rule, the above BiLipNet is
(µ, ν)-Lipschitz with µ =

∏L
k=1 µk and ν =

∏L
k=1 νk. The

orthogonal matrix P can be parameterized via the Cayley
transformation (4) or Householder transformation (Singla
et al., 2022). Since the distortion of Ok is 1, it can improve
network expressivity without increasing model distortion.

In some applications, e.g., normalising flows (Dinh et al.,
2015; Papamakarios et al., 2021), we need to compute the
inverse of G, which can be done in a backward manner:

G−1(y) = O−1
1 ◦F−1

1 ◦ · · · ◦O−1
K ◦F−1

K ◦O−1
K+1(y), (9)

where Ok has an explicit inverse O−1
k (y) = P⊤

k (y − qk).
Computing the inverse F−1

k (y) requires an iterative solver,
which will be addressed in Section 4.

Partially bi-Lipschitz networks. A neural network G̃ :
Rn ×Rl → Rn is said to be partially bi-Lipschitz if for any
fixed value of p ∈ Rl, the mapping y = G̃(x; p) is (µ, ν)-
Lipschitz from x to y. We can construct such mappings via
G̃(x; p) = Gh(p)(x) where Gϕ is a(µ, ν)-Lipschitz network
for any free parameter ϕ ∈ RN and h : p → ϕ is a new
learnable function. Since the dimension of ϕ is often very
high, a practical approach is to make ϕ partially depend on
p. For instance, we can learn p-dependent bias via an MLP
while the weight matrices of Gϕ is independent of p.

4. Model inverse via operator splitting
In this section we give an efficient algorithm to compute
F−1(y) where F is a µ-strongly monotone and ν-Lipschitz

layer (6). First, we write its model inverse F−1 as

ẑ = σ̂

((
V − γ

µ
SS⊤

)
ẑ + bz

)

x =
1

µ
(y − by −

√
γ/2S⊤ẑ)

(10)

with bz =
√
2γ/µS(y − by) + b̂. Both F and F−1 can be

treated as special cases of deep equilibrium networks (Bai
et al., 2019; Winston & Kolter, 2020; Revay et al., 2020) or
implicit networks (El Ghaoui et al., 2021). The difference
is that F has an explicit formula due to the strictly lower-
triangular V while F−1 is an implicit equation as SS⊤ is a
full matrix. A natural question for (10) is its well-posedness,
i.e., for any y ∈ Rn, does there exists a unique ẑ ∈ Rm

satisfying (10)?

Proposition 4.1. F−1 is well-posed if V, S are given by
(7).

Certain classes of equilibrium networks were solved via two-
operator splitting problems (Winston & Kolter, 2020; Revay
et al., 2020). We follow a similar strategy, but our structure
admits a three-operator splitting, see Proposition 4.2 with
background in Appendix B. To state the result, we first recall
the following fact from (Li et al., 2019). For the monotone
and 1-Lipschitz activation σ̂, there exists a proper convex
function f : Rn → R satisfying σ̂(·) = prox1

f (·) with

proxα
f (x) = arg min

z∈Rn

1

2
∥x− z∥2 + αf(z).

A list of f for popular activations is given in Appendix B.1.

Proposition 4.2. Finding a solution ẑ ∈ Rm to (10) is
equivalent to finding a zero to the three-operator splitting
problem 0 ∈ A(z) + B(z) + C(z) where A,B, C are mono-
tone operators defined by

A(z) = (I − V)z − bz, B(z) = ∂f(z), C(z) = γ

µ
SS⊤z

where f satisfies σ̂(·) = prox1
f (·).

For three-operator problems, the Davis-Yin splitting algo-
rithm (DYS) (Davis & Yin, 2017) can be applied, obtaining
the following fixed-point iteration:

zk+1/2 = proxα
f (u

k)

uk+1/2 = 2zk+1/2 − uk

zk+1 = RA(u
k+1/2 − αC(zk+1/2))

uk+1 = uk + zk+1 − zk+1/2

(11)

where RA(v) = ((1 + α)I − αV)−1(v + αbz). Since
V is strictly lower triangular, we can solve RA(v) using
forward substitution. Furthermore, we can show that (11) is
guaranteed to converge with α ∈

(
0, 1

τ−1

)
, where τ is the

model distortion.

5

Monotone, Bi-Lipschitz, and Polyak-Łojasiewicz Networks 6

5. Polyak-Łojasiewicz Networks
We call a network f : Rn → R a Polyak-Łojasiewicz (PL)
network, or PLNet for short, if it satisfies the following PL
condition (Polyak, 1963; Lojasiewicz, 1963):

1

2
∥∇xf(x)∥2 ≥ m(f(x)−min

x
f(x)), ∀x ∈ Rn, (12)

where m > 0. The PL condition is significant in optimiza-
tion since it is weaker than convexity, but still implies that
gradient methods converge to a global minimum with a lin-
ear rate (Karimi et al., 2016), making PLNet a promising
candidate for learning a surrogate loss models.

Proposition 5.1. If G is µ-inverse Lipschitz, then

f(x) =
1

2
∥G(x)∥2 + c, c ∈ R (13)

is a PLNet with m = µ2.

Remark 5.2. We can further relax the quadratic assumption:
f(x) = h

(
G(x)

)
is a PLNet if h : Rn → R is strongly

convex (Karimi et al., 2016).
Remark 5.3. For parametric optimization problem, one can
learn a surrogate loss via f(x; p) = 1/2∥G̃(x; p)∥2 + c
where p ∈ Rm is the problem-specific parameter and G̃ is a
partially bi-Lipschitz network.
Remark 5.4. Any sub-level set Lα = {x : f(x) < α}
with α > c is homeomorphic to a unit ball, making PLNets
suitable for neural Lyapunov functions (Wilson, 1967). Ap-
plications of PLNets to learning Lyapunov stable neural
dynamics can be found in (Cheng et al., 2024).

Computing global optimum of a PLNet. If f takes the
form (13) and G is bi-Lipschitz network (8), then f has a
unique global optimum x⋆ = G−1(0) with G−1 given by
(9). This can be efficiently computed by analytical inversion
of orthogonal layers and applying the DYS algorithm (11)
to monotone and Lipschitz layers.

Limitations of gradient descent for finding global op-
timum. An alternative way to compute the global op-
timum x⋆ is the standard gradient descent (GD) method
xk+1 = xk − α∇xf(x

k). If ∇xf is L-Lipschitz, then the
above GD solver with α = 1/L has a linear global con-
vergence rate of 1 − m/L with m = µ2 (Karimi et al.,
2016). However, this method has two drawbacks. First, the
gradient function ∇xf may not be globally Lipschitz, see
Example 5.5. Secondly, even if a global Lipschitz bound
exists, it is generally hard to estimate.
Example 5.5. Consider a scalar function f(x) = 0.5g2(x)
with g(x) = 2x + sinx, which satisfies the PL condition.
Note that ∂f/∂x = (2 + cosx)(2x+ sinx) is not globally
Lipschitz due to the term 2x cosx.

6. Experiments
Here we present experiments which explore the expressive
quality of the proposed models, regularisation via model dis-
tortion, and performance of the DYS solution method. Code
is available at https://github.com/acfr/PLNet.

6.1. Uncertainty quantification via neural Gaussian
process

It was shown in (Liu et al., 2020) that accurate uncer-
tainty quantification of neural network models depends on
a model’s ability to quantify the distance of a test exam-
ple from the training data. This distance-awareness can be
achieved with bi-Lipschitz residual layers F(x) = x+H(x)
and a Gaussian process output layer. In (Liu et al., 2020) this
is achieved by imposing Lipschitz bound of 0 < c < 1 for
H via spectral normalization. The resulting model is called
Spectral-normalized Neural Gaussian Process (SNGP). In
this section we examine the benefits of using the proposed
BiLipNet in place of spectrally-normalized layers.

Toy example. Using the two-moon dataset, we com-
pare our (µ, ν)-Lipschitz network to an SNGP using a 3-
layer i-ResNet under the same bi-Lipschitz constraints, i.e.,
µ = (1 − c)3 and ν = (1 + c)3, see Figure 4. For the
lower-distortion case (i.e., small c = 0.1), SNGP fails to
completely separate the train and out-of-distribution (OOD)
data due to its loose Lipschitz bound. Our model can dis-
tinguish the OOD examples from training dataset and the
uncertainty surface is close to the SNGP with much higher
distortion (c = 0.9). As the model distortion increases,
our model can have an uncertainty surface very close the
dataset. The uncertainty surface of SNGP does not change
much from c = 0.1 to c = 0.9, see Figure 4 and additional
results in Appendix D.2.

CIFAR-10/100. For image datasets, the SNGP model in
(Liu et al., 2020) contains three bi-Lipschitz components,
each with four residual layers of the form x+H(x) where H
is constructed to be c-Lipschitz using spectral normalization.
To ensure certifiable bi-Lipschitzness, we modify the SNGP
model by choosing c ∈ (0, 1) and removing batch normal-
ization from H since it may re-scale a layer’s spectral norm
in unexpected ways (Liu et al., 2023). The results of SNGP
with batch normalization can be found in Appendix D.2.
Our BiLipNet model has a similar architecture as SNGP
except replacing the bi-Lipschitz components with the pro-
posed (µ, ν)-Lipschitz network (8). To ensure both models
have the same bi-Lipschitz bound, we choose µ = (1− c)4

and ν = (1 + c)4.

Table 1 reports the results of SNGP and BiLipNet under dif-
ferent bounds c = 0.95, 0.65, 0.35. For CIFAR-10 dataset,
our model uniformly outperforms SNGP on both clean

6

https://github.com/acfr/PLNet

Monotone, Bi-Lipschitz, and Polyak-Łojasiewicz Networks 7

AUROC 98.1%

SN
GP

c=0.1

AUROC 100.0%

c=0.9

AUROC 100.0%

Bi
Lip

Ne
t

AUROC 100.0%

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

Figure 4. Predictive uncertainty of different NGPs with the same
bi-Lipschitz bound. The points from dark blue and regions are
classified as in-domain distribution and OOD data, respectively.
Light blue and orange points (different colors indicate different
labels) are training samples from the two-moon dataset. The red
points are ODD test examples. For the case with small distortion,
our model can still distinguish the train and OOD data, achieving
similar results of SNGP with large distortion.

and corrupted data, i.e., it achieves higher accuracy (about
10 ∼ 20% improvement), lower expected calibration error
(ECE) and negative log liklihood (NLL). Similar conclusion
also holds for CIFAR-100 on accuracy and NLL, though
our model has sightly higher ECE.

As with the previous toy example, our model with small
distortion (τ = 18.6 for c = 0.35) achieves better accuracy
than SNGP with large distortion (τ = 2.3 × 106 for c =
0.95). Thus, we observe that our parameterization is much
more expressive for a given distortion bound.

6.2. Surrogate loss learning

We explore the PLNet’s performance with the Rosenbrock
function r(x, y) = 1/200(x − 1)2 + 0.5(y − x2)2 and
its higher-dimensional generalizations. The Rosenbrock
function is a classical test problem for optimization, since it
is non-convex but a unique global minimum point (1, 1), at
which the Hessian is poorly-conditioned. We also consider
the sum of the Rosenbrock function and a 2D sine wave
function, which still has a unique global minimum at (1, 1)
while having many local minima, see Appendix D.1.

We learned models of the form (13) where G is parameter-
ized by MLP, i-ResNet (Behrmann et al., 2019), i-DenseNet
(Perugachi-Diaz et al., 2021) and the proposed BiLipNet
(8). We also trained the ICNN, a scalar-output model which
is convex w.r.t. inputs (Amos et al., 2017).

From Figure 7, we have the following observations. The
unconstrained MLP can achieve small test errors. However,
it has many local minima near the valley y = x2. This phe-
nomena is more easily visible for the Rosenbrock+Sine case
but also occurs in the plain Rosenbrock case. The ICNN
model has a unique global minimum but the fitting error
is large as its sub-level sets are convex. For i-DenseNet,
the sub-level sets become mildly non-convex but their bi-
Lipschitz bound is quite conservative, so they do not cap-
ture the overall shape. In contrast, our proposed BiLipNet
is more flexible and captures the non-convex shape while
maintaining a unique global minimum. We note that in the
Rosenbrock+Sine case, the BiLipNet surrogate has errors
of similar magnitude to the MLP, but remains “easily opti-
mizable”, i.e. it satisfies the PL condition and has a unique
global minimum. Additional results are in Appendix D.2.

Partial PLNet. We also fit a parameterized Rosenbrock
function r(x, y; p) using partial PLNet with p-dependent
biases (see Remark 5.3). The results in Figure 8 indicate
that the approach can be effective even if only bias terms
are modified by the external parameter p, and not weights.

High-dimensional case. We now turn to scalability of
the approach to higher-dimensional problems and analyse
convergence of the DYS method for computing the global
minimum. We apply the approach to a N=20-dimensional
version of the Rosenbrock function:

R(x) =
1

N − 1

N−1∑

i=1

r(xi, xi+1) (14)

which has a global minimum of zero at x = (1, 1, ..., 1)
but is non-convex and has spurious local minima (Kok &
Sandrock, 2009). We sample 10K training points uniformly
over [−2, 2]20. Note that, in contrast to the 2D example
above, this is very sparse sampling of 20-dimensional space.

A comparison of train and test error vs model distortion is
shown in Figure 5. It can be seen that our proposed BiLipNet
model achieves far better fits than iResNet (Behrmann et al.,
2021) and iDenseNet (Perugachi-Diaz et al., 2021), which
can not achieve small training error for any value of the
distortion parameter. Furthermore, for our network, the
distortion parameter appears to act as an effective regularizer.
Note that the best test error occurs after training error drops
to near zero (∼ 10−8) but distortion is still relatively small.

Solver comparison. Given the surrogate loss function
learned by BiLipNet, we now compare methods to compute
the location of its global minimum. In Figure 6 we compare
the proposed DYS solver to the forward step method (FSM),
see, e.g., (Ryu & Boyd, 2016). Specifically, the inverse x =
F−1(y) with F as a µ-strongly monotone and ν-Lipschitz

7

Monotone, Bi-Lipschitz, and Polyak-Łojasiewicz Networks 8

Accuracy (↑) ECE (↓) NLL (↓)
Method c Clean Corrupted Clean Corrupted Clean Corrupted

CIFAR-10

SNGP
0.95 76.7 ± 0.629 58.7 ± 1.000 0.057 ± 0.007 0.079 ± 0.006 0.682 ± 0.015 1.199 ± 0.041
0.65 72.5 ± 1.500 54.7 ± 1.778 0.058 ± 0.006 0.078 ± 0.006 0.797 ± 0.046 1.303 ± 0.057
0.35 62.7 ± 0.334 52.3 ± 0.721 0.069 ± 0.010 0.065 ± 0.006 1.055 ± 0.010 1.356 ± 0.018

BiLipNet
0.95 86.2 ± 0.250 70.8 ± 0.469 0.020 ± 0.003 0.052 ± 0.005 0.423 ± 0.006 0.895 ± 0.020
0.65 86.7 ± 0.129 72.8 ± 0.592 0.015 ± 0.005 0.047 ± 0.009 0.400 ± 0.006 0.830 ± 0.024
0.35 84.5 ± 0.184 72.6 ± 0.216 0.010 ± 0.002 0.052 ± 0.004 0.457 ± 0.002 0.827 ± 0.008

CIFAR-100

SNGP
0.95 36.9 ± 1.656 25.5 ± 1.406 0.131 ± 0.010 0.068 ± 0.005 2.493 ± 0.068 3.073 ± 0.069
0.65 33.0 ± 0.481 24.3 ± 0.749 0.117 ± 0.006 0.068 ± 0.003 2.683 ± 0.015 3.140 ± 0.048
0.35 26.5 ± 1.630 19.3 ± 1.296 0.101 ± 0.016 0.056 ± 0.010 3.020 ± 0.062 3.406 ± 0.073

BiLipNet
0.95 51.0 ± 0.480 35.8 ± 0.397 0.230 ± 0.006 0.137 ± 0.007 2.064 ± 0.024 2.718 ± 0.014
0.65 55.2 ± 0.426 39.2 ± 0.495 0.225 ± 0.004 0.137 ± 0.005 1.887 ± 0.021 2.576 ± 0.022
0.35 54.4 ± 0.438 41.1 ± 0.200 0.194 ± 0.008 0.126 ± 0.009 1.876 ± 0.031 2.447 ± 0.016

Table 1. Results for SNGP and BiLipNet on CIFAR-10/100, averaged over 5 seeds. To ensure bi-Lipschitz bounds, batch normalization is
removed from SNGP. BiLipNet uniformly significantly outperforms SNGP in term of accuracy on both clean and corrupted data.

101 102

model distortion τ

10−7

10−5

10−3

10−1

` 2
lo

ss

Train

BiLipNet

i-ResNet

i-DenseNet

101 102

model distortion τ

10−2

Test

BiLipNet

i-ResNet

i-DenseNet

Figure 5. Surrogate loss learning for 20-dimensional Rosenbrock
function. Comparison of training and test error vs model distortion
for PLNet with different bi-Lipschitz models.

layer can be computed via

xk+1 = xk − α(F(xk)− y) (15)

which has a convergence rate of 1 − µ2/ν2 if α = µ/ν2.
We also consider a commonly used gradient-based method
– ADAM (Kingma & Ba, 2015) applied directly to the sur-
rogate loss. We take two values of the distortion parameter:
τ = 5 (optimal) and τ = 50. In both cases, the proposed
DYS method converges significantly faster than the alter-
natives, and the results illustrate an additional benefit of
regularising via distortion, besides improving the test error:
the τ = 5 case converges significantly faster than τ = 50.

At the computed point x⋆ = G−1(0) for τ = 5, the true
function (14) takes a value of R(x⋆) = 0.041. This is
more than an order of magnitude better than the smallest
value of R(x) over the training data, which ranged over
[0.475, 6.532], indicating that PLNets have a useful “im-
plicit bias” and do not simply interpolate the training data.

0 25 50 75 100
Steps

10−8

10−6

10−4

10−2

100

S
u
r
r
o
g
a
t
e

l
o
s
s

Distortion τ = 5

DYS
(

µ
ν−µ

)

FSM
(
µ
ν2

)

ADAM(2.0)

0 25 50 75 100
Steps

10−8

10−6

10−4

10−2

100

Distortion τ = 50

DYS
(

µ
ν−µ

)

FSM
(
µ
ν2

)

ADAM(5.0)

Figure 6. Solver comparison for finding the global minimum of a
PLNet. We try a range of rates [0.1, 0.5, 1.0, 2.0, 5.0] for ADAM
and present the best result. The proposed back solve method with
DYS algorithm (11) converges much faster than ADAM applied to
f or back solve method with FSM algorithm (15).

7. Conclusion
This paper has introduced a new bi-Lipschitz network ar-
chitecture, the BiLipNet, and a new scalar-output network,
the PLNet which satisfies the Polyak-Łojasiewicz condition,
and is hence “easily optimizable”.

The core technical contribution is a new layer-type: the
“feed-through” layer, which has certified bounds for strong
monotonicity and Lipschitzness. By composing with or-
thogonal layers we obtain a bi-Lipschitz network structure
(BiLipNet) which has much tighter bounds than existing
bi-Lipschitz residual networks based on spectral normal-
ization. The PLNet composes a BiLipNet with a quadratic
output layer, and guarantees unique global minimum which
is efficiently computable.

8

Monotone, Bi-Lipschitz, and Polyak-Łojasiewicz Networks 9

T
ru

e

Rosenbrock Rosenbrock + Sine

M
L

P

Error Error

IC
N

N
(0
.0

4,
16

)-
i-

D
en

se
N

et
(0
.0

4,
16

)-
B

iL
ip

N
et

0.0
1.6
3.2
4.8
6.4
8.0
9.6
11.2
12.8

0.0
1.6
3.2
4.8
6.4
8.0
9.6
11.2
12.8

0.0
1.6
3.2
4.8
6.4
8.0
9.6
11.2
12.8

0.000
0.015
0.030
0.045
0.060
0.075
0.090
0.105
0.120

0.0
1.6
3.2
4.8
6.4
8.0
9.6
11.2
12.8

0.00

0.12

0.24

0.36

0.48

0.60

0.0
1.6
3.2
4.8
6.4
8.0
9.6
11.2

0.0

0.6

1.2

1.8

2.4

3.0

0.4

2.0

3.6

5.2

6.8

8.4

10.0

11.6

0.0

0.6

1.2

1.8

2.4

3.0

0.0

1.6

3.2

4.8

6.4

8.0

9.6

11.2

0.0

0.3

0.6

0.9

1.2

1.5

0.0

1.6

3.2

4.8

6.4

8.0

9.6

11.2

0.0

0.5

1.0

1.5

2.0

2.5

0.0
1.6
3.2
4.8
6.4
8.0
9.6
11.2
12.8

0.000

0.016

0.032

0.048

0.064

0.080

0.0
1.6
3.2
4.8
6.4
8.0
9.6
11.2
12.8

0.0

0.1

0.2

0.3

0.4

0.5

Figure 7. Learning a surrogate loss for the Rosenbrock and Rosenbrock+Sine functions, which is non-convex and has many local minima.
The first row contains the true functions while the remaining rows show learned functions and errors for various surrogate loss models.

T
ru

e

(a, b) = (1, 1) (a, b) = (0, 0) (a, b) = (−1,−1)

P
ar

ti
al

ly
B

iL
ip

N
et

0.0
1.5
3.0
4.5
6.0
7.5
9.0
10.5
12.0

0.0

1.6

3.2

4.8

6.4

8.0

9.6

11.2

0.0

0.6

1.2

1.8

2.4

3.0

3.6

4.2

0.0

0.6

1.2

1.8

2.4

3.0

3.6

4.2

0.0

3.2

6.4

9.6

12.8

16.0

19.2

22.4

0.0

3.2

6.4

9.6

12.8

16.0

19.2

22.4

Figure 8. Learning a parameterized Rosenbrock function r(x, y; a, b) = 1/200(x− a)2 + 0.5(y − bx2)2 via a partial PLNet.

9

Monotone, Bi-Lipschitz, and Polyak-Łojasiewicz Networks 10

Impact Statement
There are many application domains in which the trustwor-
thiness of machine learning is a live topic of debate and
raises important and challenging questions. The goal of
this paper is to advance the sub-field of machine learning
methods which have mathematically-certified properties. In
particular, in this paper one application is uncertainty quan-
tification. We hope that a positive impact of our paper and
others like it will be to the development of ML methods that
can better satisfy societal expectations of trustworthiness
and transparency.

We are not aware of any potentially significant negative
impacts that are particularly associated with this line of
research (models with certified properties).

References
Ahn, B., Kim, C., Hong, Y., and Kim, H. J. Invertible

monotone operators for normalizing flows. Advances
in Neural Information Processing Systems, 35:16836–
16848, 2022.

Amos, B., Xu, L., and Kolter, J. Z. Input convex neural net-
works. In International Conference on Machine Learning
(ICML), pp. 146–155. PMLR, 2017.

Araujo, A., Havens, A. J., Delattre, B., Allauzen, A., and Hu,
B. A unified algebraic perspective on Lipschitz neural
networks. In The Eleventh International Conference on
Learning Representations (ICLR), 2023.

Ardizzone, L., Kruse, J., Rother, C., and Köthe, U. Analyz-
ing inverse problems with invertible neural networks. In
International Conference on Learning Representations
(ICLR), 2018.

Arjovsky, M., Chintala, S., and Bottou, L. Wasserstein gen-
erative adversarial networks. In International conference
on machine learning (ICML), pp. 214–223. PMLR, 2017.

Arora, S. and Doshi, P. A survey of inverse reinforcement
learning: Challenges, methods and progress. Artificial
Intelligence, 297:103500, 2021.

Bai, S., Kolter, J. Z., and Koltun, V. Deep equilibrium
models. In Advances in Neural Information Processing
Systems, pp. 690–701, 2019.

Barbara, N. H., Wang, R., and Manchester, I. R. On robust
reinforcement learning with lipschitz-bounded policy net-
works. arXiv preprint arXiv:2405.11432, 2024.

Bauer, M. and Mnih, A. Resampled priors for variational
autoencoders. In The 22nd International Conference on
Artificial Intelligence and Statistics, pp. 66–75. PMLR,
2019.

Behrmann, J., Grathwohl, W., Chen, R. T., Duvenaud, D.,
and Jacobsen, J.-H. Invertible residual networks. In
International conference on machine learning (ICML),
pp. 573–582. PMLR, 2019.

Behrmann, J., Vicol, P., Wang, K.-C., Grosse, R., and Ja-
cobsen, J.-H. Understanding and mitigating exploding
inverses in invertible neural networks. In International
Conference on Artificial Intelligence and Statistics, pp.
1792–1800. PMLR, 2021.

Chen, R. T., Behrmann, J., Duvenaud, D. K., and Jacobsen,
J.-H. Residual flows for invertible generative modeling.
Advances in Neural Information Processing Systems, 32,
2019.

Cheng, J., Wang, R., and Manchester, I. R. Learning stable
and passive neural differential equations. arXiv preprint
arXiv:2404.12554, 2024.

Coleman, C., Narayanan, D., Kang, D., Zhao, T., Zhang, J.,
Nardi, L., Bailis, P., Olukotun, K., Ré, C., and Zaharia,
M. Dawnbench: An end-to-end deep learning benchmark
and competition. Training, 100(101):102, 2017.

Cozad, A., Sahinidis, N. V., and Miller, D. C. Learning sur-
rogate models for simulation-based optimization. AIChE
Journal, 60(6):2211–2227, 2014.

Davis, D. and Yin, W. A three-operator splitting scheme and
its optimization applications. Set-valued and variational
analysis, 25:829–858, 2017.

Davis, T. A. Direct methods for sparse linear systems.
SIAM, 2006.

De Cao, N., Aziz, W., and Titov, I. Block neural autore-
gressive flow. In Uncertainty in artificial intelligence, pp.
1263–1273. PMLR, 2020.

Dinh, L., Krueger, D., and Bengio, Y. Nice: Non-linear
independent components estimation. ICLR Workshop
Track, 2015.

Dinh, L., Sohl-Dickstein, J., and Bengio, S. Density esti-
mation using real NVP. In International Conference on
Learning Representations (ICLR), 2017.

El Ghaoui, L., Gu, F., Travacca, B., Askari, A., and Tsai, A.
Implicit deep learning. SIAM Journal on Mathematics of
Data Science, 3(3):930–958, 2021.

Fazlyab, M., Robey, A., Hassani, H., Morari, M., and Pap-
pas, G. Efficient and accurate estimation of Lipschitz
constants for deep neural networks. In Advances in Neu-
ral Information Processing Systems, pp. 11427–11438,
2019.

10

Monotone, Bi-Lipschitz, and Polyak-Łojasiewicz Networks 11

Grathwohl, W., Chen, R. T., Bettencourt, J., and Duvenaud,
D. Scalable reversible generative models with free-form
continuous dynamics. In International Conference on
Learning Representations (ICLR), 2019.

Grudzien, K., Uehara, M., Levine, S., and Abbeel, P. Func-
tional graphical models: Structure enables offline data-
driven optimization. In International Conference on Arti-
ficial Intelligence and Statistics, pp. 2449–2457. PMLR,
2024.

Gu, S., Lillicrap, T., Sutskever, I., and Levine, S. Continu-
ous deep Q-learning with model-based acceleration. In
International conference on machine learning (ICML),
pp. 2829–2838. PMLR, 2016.

Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., and
Courville, A. C. Improved training of Wasserstein GANs.
Advances in neural information processing systems, 30,
2017.

Havens, A. J., Araujo, A., Garg, S., Khorrami, F., and Hu,
B. Exploiting connections between Lipschitz structures
for certifiably robust deep equilibrium models. In Thirty-
seventh Conference on Neural Information Processing
Systems, 2023.

Helfrich, K., Willmott, D., and Ye, Q. Orthogonal recurrent
neural networks with scaled Cayley transform. In Inter-
national Conference on Machine Learning (ICML), pp.
1969–1978. PMLR, 2018.

Ho, J., Chen, X., Srinivas, A., Duan, Y., and Abbeel, P.
Flow++: Improving flow-based generative models with
variational dequantization and architecture design. In
International Conference on Machine Learning (ICML),
pp. 2722–2730. PMLR, 2019.

Huang, C.-W., Krueger, D., Lacoste, A., and Courville, A.
Neural autoregressive flows. In International Conference
on Machine Learning (ICML), pp. 2078–2087. PMLR,
2018.

Karimi, H., Nutini, J., and Schmidt, M. Linear conver-
gence of gradient and proximal-gradient methods under
the Polyak-Łojasiewicz condition. In Machine Learn-
ing and Knowledge Discovery in Databases: European
Conference, ECML PKDD 2016, Riva del Garda, Italy,
September 19-23, 2016, Proceedings, Part I 16, pp. 795–
811. Springer, 2016.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. In International Conference on Learning
Representations (ICLR), 2015.

Kingma, D. P. and Dhariwal, P. Glow: Generative flow
with invertible 1x1 convolutions. Advances in neural
information processing systems, 31, 2018.

Kobyzev, I., Prince, S. J., and Brubaker, M. A. Normalizing
flows: An introduction and review of current methods.
IEEE transactions on pattern analysis and machine intel-
ligence, 43(11):3964–3979, 2020.

Kok, S. and Sandrock, C. Locating and Characterizing the
Stationary Points of the Extended Rosenbrock Function.
Evolutionary Computation, 17(3):437–453, 09 2009.

Li, J., Fang, C., and Lin, Z. Lifted proximal operator ma-
chines. In Proceedings of the AAAI Conference on Artifi-
cial Intelligence, volume 33, pp. 4181–4188, 2019.

Li, J., Li, F., and Todorovic, S. Efficient riemannian opti-
mization on the stiefel manifold via the Cayley transform.
In International Conference on Learning Representations
(ICLR), 2020.

Liang, E., Chen, M., and Low, S. Low complexity home-
omorphic projection to ensure neural-network solution
feasibility for optimization over (non-) convex set. In
International conference on machine learning (ICML).
PMLR, 2023.

Liu, J., Lin, Z., Padhy, S., Tran, D., Bedrax Weiss, T., and
Lakshminarayanan, B. Simple and principled uncertainty
estimation with deterministic deep learning via distance
awareness. Advances in Neural Information Processing
Systems, 33:7498–7512, 2020.

Liu, J. Z., Padhy, S., Ren, J., Lin, Z., Wen, Y., Jerfel, G.,
Nado, Z., Snoek, J., Tran, D., and Lakshminarayanan,
B. A simple approach to improve single-model deep
uncertainty via distance-awareness. Journal of Machine
Learning Research, 24(42):1–63, 2023.

Lojasiewicz, S. A topological property of real analytic
subsets. Coll. du CNRS, Les équations aux dérivées par-
tielles, 117(87-89):2, 1963.

Louizos, C. and Welling, M. Multiplicative normalizing
flows for variational bayesian neural networks. In Inter-
national Conference on Machine Learning (ICML), pp.
2218–2227. PMLR, 2017.

Lu, C., Chen, J., Li, C., Wang, Q., and Zhu, J. Implicit nor-
malizing flows. In International Conference on Learning
Representations (ICLR), 2021.

Megretski, A. and Rantzer, A. System analysis via integral
quadratic constraints. IEEE Transactions on Automatic
Control, 42(6):819–830, 1997.

Meunier, L., Delattre, B. J., Araujo, A., and Allauzen, A.
A dynamical system perspective for Lipschitz neural net-
works. In International Conference on Machine Learning
(ICML), pp. 15484–15500. PMLR, 2022.

11

Monotone, Bi-Lipschitz, and Polyak-Łojasiewicz Networks 12

Misener, R. and Biegler, L. Formulating data-driven sur-
rogate models for process optimization. Computers &
Chemical Engineering, 179:108411, 2023.

Miyato, T., Kataoka, T., Koyama, M., and Yoshida, Y. Spec-
tral normalization for generative adversarial networks. In
International Conference on Learning Representations
(ICLR), 2018.

Papamakarios, G., Nalisnick, E., Rezende, D. J., Mohamed,
S., and Lakshminarayanan, B. Normalizing flows for
probabilistic modeling and inference. The Journal of
Machine Learning Research, 22(1):2617–2680, 2021.

Pauli, P., Havens, A., Araujo, A., Garg, S., Khorrami, F.,
Allgöwer, F., and Hu, B. Novel quadratic constraints for
extending LipSDP beyond slope-restricted activations. In
International Conference on Learning Representations
(ICLR), 2024.

Perugachi-Diaz, Y., Tomczak, J., and Bhulai, S. Invertible
densenets with concatenated Lipswish. Advances in Neu-
ral Information Processing Systems, 34:17246–17257,
2021.

Polyak, B. Gradient methods for minimizing functionals (in
russian). USSR Computational Mathematics and Mathe-
matical Physics, 3(4):643–653, 1963.

Prach, B. and Lampert, C. H. Almost-orthogonal layers
for efficient general-purpose Lipschitz networks. In Eu-
ropean Conference on Computer Vision, pp. 350–365.
Springer, 2022.

Rantzer, A. On the Kalman—Yakubovich—Popov lemma.
Systems & control letters, 28(1):7–10, 1996.

Revay, M., Wang, R., and Manchester, I. R. Lips-
chitz bounded equilibrium networks. arXiv preprint
arXiv:2010.01732, 2020.

Revay, M., Wang, R., and Manchester, I. R. Recurrent
equilibrium networks: Flexible dynamic models with
guaranteed stability and robustness. IEEE Transactions
on Automatic Control, 2023.

Russo, A. and Proutiere, A. Towards optimal attacks on re-
inforcement learning policies. In 2021 American Control
Conference (ACC), pp. 4561–4567. IEEE, 2021.

Ryu, E. K. and Boyd, S. Primer on monotone operator
methods. Appl. comput. math, 15(1):3–43, 2016.

Ryu, M., Chow, Y., Anderson, R., Tjandraatmadja, C., and
Boutilier, C. CAQL: Continuous action Q-learning. In
International Conference on Learning Representations
(ICLR), 2019.

Singla, S. and Feizi, S. Skew orthogonal convolutions. In
International Conference on Machine Learning (ICML),
pp. 9756–9766. PMLR, 2021.

Singla, S., Singla, S., and Feizi, S. Improved deterministic
l2 robustness on CIFAR-10 and CIFAR-100. In Interna-
tional Conference on Learning Representations (ICLR),
2022.

Trockman, A. and Kolter, J. Z. Orthogonalizing convolu-
tional layers with the Cayley transform. In International
Conference on Learning Representations (ICLR), 2021.

Tsuzuku, Y., Sato, I., and Sugiyama, M. Lipschitz-margin
training: Scalable certification of perturbation invariance
for deep neural networks. In Advances in neural informa-
tion processing systems, pp. 6541–6550, 2018.

Wang, R. and Manchester, I. Direct parameterization of
Lipschitz-bounded deep networks. In International Con-
ference on Machine Learning (ICML), pp. 36093–36110.
PMLR, 2023.

Wang, Z., Prakriya, G., and Jha, S. A quantitative geomet-
ric approach to neural-network smoothness. Advances
in Neural Information Processing Systems, 35:34201–
34215, 2022.

Ward, P. N., Smofsky, A., and Bose, A. J. Improving explo-
ration in soft-actor-critic with normalizing flows policies.
ICML Workshop on Invertible Neural Networks and Nor-
malizing Flows,, 2019.

Wilson, F. W. The structure of the level surfaces of a Lya-
punov function. Journal of Differential Equations, 3(3):
323–329, 1967.

Winston, E. and Kolter, J. Z. Monotone operator equilibrium
networks. Advances in neural information processing
systems, 33:10718–10728, 2020.

Yeh, J. Real analysis: theory of measure and integration
second edition. World Scientific Publishing Company,
2006.

Zhang, B., Cai, T., Lu, Z., He, D., and Wang, L. Towards
certifying l-infinity robustness using neural networks with
l-inf-dist neurons. In International Conference on Ma-
chine Learning, pp. 12368–12379. PMLR, 2021.

12

Monotone, Bi-Lipschitz, and Polyak-Łojasiewicz Networks 13

A. Model Parameterization
A model parameterization is a mapping M : ϕ → θ where ϕ ∈ RN is a free learnable parameter while θ includes the model
weights U ∈ Rm×n,W ∈ Rm×m, Y ∈ Rn×m and IQC multiplier Λ ∈ Dm

+ with n,m as the dimensions of the input and
hidden units, respectively. The aim of this section is to construct a parameterization such that the large-scale SDP constraint
(3) holds, i.e., Y = U⊤Λ and

H = 2Λ−W⊤Λ− ΛW =

2Λ1 −W⊤
2 Λ2

−Λ2W2 2Λ2 −W⊤
3 Λ3

.
−ΛL−1WL−1 2ΛL−1 −W⊤

L ΛL

−ΛLWL 2ΛL

≥ 2

γ
Y ⊤Y (16)

Since H ⪰ 0 has band structure, it can be represented by H = XX⊤ (Davis, 2006). Moreover, from Lemma 3 of (Rantzer,
1996) we have that any U, Y satisfying Y = U⊤Λ and XX⊤ ⪰ 2

γY
⊤Y can be represent by

U =
√
γ/2Λ−1XQ, Y =

√
γ/2Q⊤X⊤ (17)

where Q ∈ Rm×n with QQ⊤ ⪯ I . The remaining task is to find X such that H = XX⊤ has the same sparse structure
as (16), which was solved by (Wang & Manchester, 2023). For self-contained purpose, we provide detail construction as
follows. First, we further parameterize X = ΨP , where Ψ = diag(Ψ1, . . . ,ΨL) with Ψk ∈ Dmk

+ and

P =

A1

−B2 A2

.
−BL AL

 .

By comparing H = ΨPP⊤Ψ with (16) we have

Hkk = Ψk(BkB
⊤
k +AkA

⊤
k)Ψk = 2Λk, Hk−1,k = −ΨkBkA

⊤
k−1 = −ΛkWk,

which further leads to

Ψ2
k = 2Λk, BkB

⊤
k +AkA

⊤
k = I, Wk = 2Ψ−1

k BkA
⊤
k−1Ψk−1 k = 1, . . . , L, (18)

with B1 = 0. We have converted the large-scale SDP constraint (16) into many simple and small-scale constraints such as

Ψ2
k = 2Λk, RkR

⊤
k = I, QQ⊤ ⪯ I (19)

with Rk =
[
Bk Ak

]
, which further can be easily parameterized via the Cayley transformation (4), see Section 3.3. The

Cayley transformation has been applied to construct orthogonal layers (Helfrich et al., 2018; Li et al., 2020; Trockman &
Kolter, 2021) and 1-Lipschitz Sandwich layer (Wang & Manchester, 2023).

An equivalent model representation. The model weights U, Y,W defined in (5) can be rewritten as U =
√
2γΨ−1S,

Y =
√
γ/2S⊤Ψ−1 and W = Ψ−1WΨ with

S =

S1

S2

...
SL

 =

A1Q1

A2Q2 −B2Q1

...
ALQL −BLQL−1

 , V =

0
V2 0

.
VL 0

 =

0
2B2A

⊤
1 0

.
2BLA

⊤
L−1 0

 (20)

where Q =
[
Q⊤

1 · · · Q⊤
L

]⊤
. Then, the network (2) can be written as

z = σ(Ψ−1VΨz +
√
2γΨ−1Sx+ b), y = µx+

√
γ/2S⊤Ψz. (21)

13

Monotone, Bi-Lipschitz, and Polyak-Łojasiewicz Networks 14

By introducing the new hidden state ẑ = Ψz and bias b̂ = Ψb, we obtain an equivalent form:

ẑ = σ̂
(
V ẑ +

√
2γSx+ b̂

)
, y = µx+

√
γ/2S⊤ẑ + by. (22)

This representation is useful for computing the model inverse via monotone operator splitting, see Appendix B. We now
give a lemma which will be used later for proving some propositions.

Lemma A.1. For the matrices V, S defined in (20) we have

2I − V − V ⊤ ⪰ 0, 2I − SS⊤ ⪰ 0. (23)

Proof. First, we have

2I − (V + V ⊤) = 2

I −A1B
⊤
2

−B2A
⊤
1 I −A2B

⊤
3

−B⊤
3 A2

.

.

⪰ 0

where the inequality is obtained by sequentially applying the fact AkA
⊤
k +BkB

⊤
k = I and Schur complement to the top

diagonal block. For the inequality on S, we have

2I − SS⊤ = 2I − PQQ⊤P⊤ ⪰ 2I − PP⊤

= 2I −

A1

−B2 A2

.
−BL AL

A1

−B2 A2

.
−BL AL

⊤

=

I A1B
⊤
2

B2A
⊤
1 I A2B

⊤
3

B⊤
3 A2

.

.

⪰ 0.

Similarly, the last inequality can be established by sequentially applying the Schur complement to the top diagonal block.

B. Monotone Operator Splitting for Computing Model Inverse
Inspired by (Winston & Kolter, 2020; Revay et al., 2020), we try to compute x = F−1(y) via an operator splitting
method. We first present some background of monotone operator theory based on the survey (Ryu & Boyd, 2016), and then
reformulate the model inverse as a three-operator splitting problem.

B.1. Monotone operator

An operator is a set-valued or single-valued map defined by a subset of the space A ⊆ Rn × Rn; we use the notation
A(x) = {y | (x, y) ∈ A}. For example, the affine operator is defined by L(x) = {(x,Wx + b) | x ∈ Rn}. Another
important example is the subdifferential operator ∂f = {(x, ∂f(x))} for a proper function f : Rn → R ∪ {∞} with
f(z) = ∞ for z /∈ dom f , where ∂f(x) = {g ∈ Rn | f(y) ≥ f(x) + ⟨y − x, g⟩ , ∀y ∈ Rn}. An operator A has a
Lipschitz bound of L if ∥u − v∥ ≤ L∥x − y∥ for all (x, u), (y, v) ∈ A. It is non-expansive if L = 1 and contractive if
L < 1. A is strongly monotone with m > 0 if

⟨u− v, x− y⟩ ≥ m∥x− y∥, ∀(x, u), (y, v) ∈ A. (24)

If the above inequality holds for m = 0, we call A a monotone operator. Similarly, A is said to be inverse monotone
with ρ if ⟨u− v, x− y⟩ ≥ ρ∥u− v∥, ∀(x, u), (y, v) ∈ A. An operator is called maximal monotone if no other monotone
operator strictly contains it. The linear operator L is m-strongly monotone if W +W⊤ ⪰ 2mI , and ρ-inverse monotone
if W + W⊤ ⪰ 2ρW⊤W . A subdifferential ∂f is maximal monotone if and only if f is a convex closed proper (CCP)
function. Here are some basic operations for operators:

• the operator sum A+ B = {(x, y + z) | (x, y) ∈ A, (x, z) ∈ B};

• the composition AB = {(x, z) | ∃y s.t. (x, y) ∈ A, (y, z) ∈ B} ;

14

Monotone, Bi-Lipschitz, and Polyak-Łojasiewicz Networks 15

Table 2. A list of common activation functions and their associated convex proper f(z) whose proximal operator is σ(x) (Revay et al.,
2020). For z /∈ dom f , we have f(z) = ∞. In the case of Softplus activation, Lis(z) is the polylogarithm function.

Activation σ(x) Convex f(z) dom f

ReLu max(x, 0) 0 [0,∞)

LeakyReLu max(x, 0.01x) 99
2 min(z, 0)2 R

Tanh tanh(x) 1
2

[
ln(1− z2) + z ln

(
1+z
1−z

)
− z2

]
(−1, 1)

Sigmoid 1/(1 + e−x) z ln z + (1− z) ln(1− z)− z2

2 (0, 1)

Arctan arctan(x) − ln(| cos z|)− z2

2 (−1, 1)

Softplus ln(1 + ex) −Li2(e
z)− iπz − z2/2 (0,∞)

• the inverse operator A−1 = {(y, x) | (x, y) ∈ A};

• the resolvent operator RA = (I + αA)−1 with α > 0;

• the Cayley operator CA = 2RA − I .

Note that the resolvent and Cayley operators are non-expansive for any maximal monotone A, and are contractive if A is
strongly monotone. For a linear operator L we have RL(x) = (I + αW)−1(x− αb). For a subdifferential operator ∂f , its
resolvent is R∂f (x) = proxα

f (x) := argminz 1/2∥x− z∥+ αf(z), which is also called the proximal operator.

Activation as proximal operator. As shown in (Li et al., 2019; Revay et al., 2020), many popular slope-restricted scalar
activation functions can also be treated as proximal operators. To be specific, if σ : R → R is slope-restricted in [0, 1], then
there exists a convex proper function f such that σ(·) = prox1

f (·). For self-contained purpose, we provide a list of common
activations and their associated convex proper functions in Table 2, which can also be found in (Revay et al., 2020; Li et al.,
2019).

B.2. Operator splitting

Many optimization problems (e.g. convex optimization) can be formulated as one of finding a zero of an appropriate
monotone operator F , i.e., find x ∈ Rn such that 0 ∈ F(x). Note that x is a solution if and only if it is a fixed point x = T (x)
with T = I − αF for any nonzero α ∈ R. The corresponding fixed point iteration is xk+1 = T (xk) = xk − αF(xk).
If F is m-strongly monotone and L-Lipschitz, then this iteration converges by choosing α ∈ (0, 2m/L2). The optimal
convergence rate is 1− (m/L)2, given by α = m/L2.

If F contains some non-smooth components, we then split F into two or three maximal operators:

two-operator splitting problem: 0 ∈ A(x) + B(x) (25)
three-operator splitting problem: 0 ∈ A(x) + B(x) + C(x) (26)

where A,B, and C are maximal monotone. The main benefit of such splitting is that the resolvent or Cayley operators for
individual operator are easy to evaluate, which further leads to more computationally efficient algorithms. For two-operator
splitting problem, some popular algorithms include

• forward-backward splitting (FBS) x = RB(I − αA)(x)

15

Monotone, Bi-Lipschitz, and Polyak-Łojasiewicz Networks 16

• forward-backward-forward splitting (FBFS) x = ((I − αA)RB(I − αA) + αA)(x)

• Peaceman-Rachford splitting (PRS) z = CACB(z), x = RB(z)

• Douglas-Rachford splitting (DRS) z = (1/2I + 1/2CACB)(z), x = RB(z)

where the corresponding fixed-point iterations, the choices of hyper-parameter α and convergence results can be found
in (Ryu & Boyd, 2016). For three-operator splitting problem, the Davis-Yin splitting (DYS) (Davis & Yin, 2017) can be
expressed by z = T (z), x = RB(z) where T = CA(CB − αCRB)− αCRB.

B.3. Operator splitting perspective for F−1

As shown in the proof of Proposition 4.2, By applying the forward-backward splitting with parameter α = 1, we can
compute the solution z via the following iteration:

zk+1 = RB(z
k − Â

(
zk

)
) = σ̂

((
V − γ/µSS⊤) zk + bz

)
.

It is worth pointing out that the above iteration may not converge for the choice of α = 1. In practice we often use more
stable and faster two-operator splitting algorithms (e.g., PRS or DRS), see (Winston & Kolter, 2020; Revay et al., 2020). In
this work, the motivation for further decomposing the monotone operator Â into two monotone operators A, C is that RA is
a large-scale linear equation with nice sparse structure while RÂ is dense due to the full weight matrix in C.

Fixed-point iteration. We now apply the DYS algorithm from (Davis & Yin, 2017) to 0 ∈ A(z) + B(z) + C(z), resulting
in the following fixed-point iteration:

zk+1/2 = RB(u
k) = proxα

f (u
k)

uk+1/2 = 2zk+1/2 − uk

zk+1 = RA(u
k+1/2 − αC(zk+1/2))

uk+1 = uk + zk+1 − zk+1/2

(27)

where the third line is a large-scale sparse linear equation of the form

(1 + α)I
−αV21 (1 + α)I

.
−αVL,L−1 (1 + α)I

zk+1
1

zk+1
2
...

zk+1
L

 = uk+1/2 + α

(
bz −

γ

µ
SS⊤zk+1/2

)
.

By introducing vk+1/2 = bz − γ/µSS⊤zk+1/2, we have

zk+1
0 = 0, zk+1

l =
α

1 + α

(
Vl,l−1z

k+1
l−1 + v

k+1/2
l

)
+

1

1 + α
u
k+1/2
l , l = 1, . . . , L. (28)

Convergence range for the hyper-parameter α. From the previous paragraph, we know that (11) is equivalent to the
FPI (27). From Theorem 1.1 of (Davis & Yin, 2017), we have that (27) converges for any α ∈ (0, 2β) with β as the
inverse-monotone bound of C. From Lemma A.1 we have 2I ⪰ S⊤S and

2γ

µ
SS⊤ ⪰ γ

µ
S(S⊤S)S⊤ =

µ

γ
(γ/µSS⊤)2 = 2β(γ/µSS⊤)2

i.e., C(z) is inverse monotone with β = µ/(2γ). Therefore, (11) converges for any α ∈ (0, µ/γ). Since γ = ν − µ and
τ = ν/µ, we then obtain the convergence range in term of model distortion τ , i.e., α ∈ (0, 1/(τ − 1)). Larger α often
implies faster convergence rate, see Figure 9.

16

Monotone, Bi-Lipschitz, and Polyak-Łojasiewicz Networks 17

0 200 400 600
10−4

10−3

10−2

10−1

‖x
−
x
?
‖/
‖x
‖
(
h
i
d
_
d
i
m
=
3
8
4
)

input_dim=8

FSM(µ/ν2)

DYS(µ/γ)

DYS(0.7µ/γ)

DYS(0.5µ/γ)

DYS(0.3µ/γ)

0 200 400 600

10−3

10−2

10−1

input_dim=16

0 200 400 600

10−3

10−2

10−1

input_dim=32

0 200 400 600

10−3

10−2

10−1

input_dim=64

0 200 400 600
Steps

10−4

10−3

10−2

10−1

‖x
−
x
?
‖/
‖x
‖
(
h
i
d
_
d
i
m
=
7
6
8
)

0 200 400 600
Steps

10−4

10−3

10−2

10−1

0 200 400 600
Steps

10−3

10−2

10−1

0 200 400 600
Steps

10−3

10−2

10−1

Figure 9. Solver comparison for computing the inverse of random µ-monotone and ν-Lipschitz layers with different input and hidden unit
dimensions. We obverse that DYS (27) converges faster for lager α. If α is close to the bound µ/γ with γ = ν − µ, DYS converges much
faster rate than FSM (15) with hyper-parameter α = µ/ν2, which achieves its best convergence rate (Ryu & Boyd, 2016).

C. Proofs
C.1. Proof of Theorem 3.2

We consider the neural network H : x → ỹ defined by

v = Wz + Ux+ b, z = σ(v), ỹ = Y z + by. (29)

Since F(x) = µx+H(x), then F is µ-strongly monotone and ν-Lipschitz if H is monotone and γ-Lipschitz with γ = ν−µ.

For any pair of solutions s1 = (x1, v1, z1, ỹ1) and s2 = (x2, v2, z2, ỹ2), their difference ∆s = s1 − s2 satisfies

∆v = W∆z + U∆x, ∆z = Jσ(v1, v2)∆v, ∆ỹ = Y∆z (30)

where Jσ is a diagonal matrix with [Jσ]ii ∈ [0, 1] since σ is an elementwise activation with slope restricted in [0, 1]. For any
Λ ∈ Dm

+ we have
⟨∆v −∆z,Λ∆z⟩ = ∆v⊤(I − Jσ)ΛJσ∆v ≥ 0, ∀∆v ∈ Rm. (31)

Based on (30), (31) and Condition (3) we have

⟨∆x,∆ỹ⟩ − ⟨∆v −∆z,Λ∆z⟩ = ⟨∆x, Y∆z⟩ − ⟨(W − I)∆z + U∆x,Λ∆z⟩
= ⟨∆x, Y∆z⟩ −

〈
∆x, U⊤Λ∆z

〉
+ ⟨(I −W)∆z,Λ∆z⟩

=
1

2
∆z⊤

(
Λ(I −W) + (I −W⊤)Λ

)
∆z ≥ ∥Y∆z∥2 ≥ 0,

which further implies ⟨∆x,∆y⟩ − µ∥∆x∥2 ≥ ⟨∆v −∆z,Λ∆z⟩ ≥ 0. Thus, H is monotone. We can use the similar
technique to derive the Lipschitz bound of H. Firstly we have

γ∥∆x∥2 − 1

γ
∥∆ỹ∥2 − 2 ⟨∆v −∆z,Λ∆z⟩ =γ∥∆x∥2 − 1

γ
∥∆ỹ∥2 + 2 ⟨(I −W)∆z,Λ∆z⟩ − 2 ⟨U∆x,Λ∆z⟩

=γ∥∆x∥2 − 2 ⟨∆x,∆ỹ⟩ − 1

γ
∥∆ỹ∥2 +∆z⊤(2Λ− ΛW −W⊤Λ)∆z

≥γ∥∆x∥2 − 2 ⟨∆x,∆ỹ⟩ − 1

γ
∥∆ỹ∥2 + 2

γ
∥Y∆z∥2 =

∥∥∥∥
√
γ∆x− 1√

γ
∆ỹ

∥∥∥∥
2

.

17

Monotone, Bi-Lipschitz, and Polyak-Łojasiewicz Networks 18

Due to (31) we can further obtain γ2∥∆x∥2 ≥ ∥∆ỹ∥2, i.e., H is γ-Lipschitz.

C.2. Proof of Proposition 3.5

Sufficient part: (5) ⇒ (3). From (17) we have that Y = U⊤Λ. We check the inequality part of (3) as follows:

2Λ−W⊤Λ− ΛW = ΨPP⊤Ψ = XX⊤ ⪰ XQQ⊤X⊤ =
2

γ
Y ⊤Y.

Necessary part: (3) ⇒ (5). Since H ⪰ 0 has band structure, then it can be decomposed into H = XX⊤ where X has the
following block lower triangular structure (Davis, 2006):

X =

X11

X21 X22

.
XL,L−1 XLL

 .

For this special case, a way to construct X from Λ,W and further computation of the free parameters d, F a
k , F

b
k , F

q, F ⋆

can be found in (Wang & Manchester, 2023). Finally, we need to show that XX⊤ ⪰ 2/γY ⊤Y is equivalent to Y =√
γ/2Q⊤X⊤ for some QQ⊤ ⪯ I , which can be directly followed by Lemma 3 of (Rantzer, 1996).

C.3. Proof of Proposition 4.1

From Lemma A.1 we have

2I − (V − γ/µSS⊤)− (V − γ/µSS⊤)⊤ = 2I − V − V ⊤ + 2γ/µSS⊤ ⪰ 2γ/µSS⊤ ⪰ 0. (32)

Then, the equilibrium network (10) is well-posed by Theorem 1 of (Revay et al., 2020).

C.4. Proof of Proposition 4.2

We first show that 0 ∈ A(z) + B(z) + C(z) is a monotone operator splitting problem. It is obvious that B, C are maximal
monotone operators. From Lemma A.1 we have (I − V) + (I − V)⊤ ⪰ 0, i.e. A is also monotone. Then, we show that the
above operator splitting problem shares the same set of equilibrium points with the model inverse (10). First, we rewrite it
into a two-operator splitting problem 0 ∈ Â(z) + B(z) where Â = A+ C. By applying the forward-backward splitting
with parameter α = 1, we can compute the solution z via the following iteration:

zk+1 =RB(z
k − Â

(
zk

)
) = prox1

f

(
zk −

(
I − V + γ/µSS⊤) zk + bz

)
= σ̂

((
V − γ/µSS⊤) zk + bz

)
.

Thus, any solution z⋆ of the equilibrium network (10) is also an equilibrium point of the above iteration.

C.5. Proof of Proposition 5.1

First, we have ∇f(x) = G⊤(x)G(x) where G(x) = ∇G(x) satisfies ∥G(x)∥ ≥ µ. Then, the PL inequality holds for f with
m = µ2, i.e.,

1

2
∥∇f(x)∥2 =

1

2
G(x)⊤G(x)⊤G(x)G(x) ≥ µ2

2
∥G(x)∥2 = µ2(f(x)− f⋆). (33)

D. Experiments
D.1. Training details

We choose ReLU as our default activation and use ADAM (Kingma & Ba, 2015) with one-cycle linear learning rate
(Coleman et al., 2017) except the NGP case which SGD with piecewise constant scheduling. For the NGP case, we use the
cross entropy loss while the L2 loss is used for the rest of the examples. We found that it can improve the model training by
enforcing Q⊤Q = I , which can be done by fixing F p = 0. Dataset and model architectures are described as follows.

18

Monotone, Bi-Lipschitz, and Polyak-Łojasiewicz Networks 19

1D Step function. The target function is a step function

f(x) =

{
2, x > 0

−2, x < 0

which is monotone and 0-Lipschitz everywhere except the singularity point x = 0. We try to fit this curve with (0.1, 10)-
Lipschitz models. The optimal fit is a linear piecewise continuous function with slope of 10 near x = 0 and slope of 0.1 near
x = ±2. We take 1000 random samples from [−2, 2] for training. Our model (BiLipNet) is an one-layer residual network
F(x) = µx+H(x) where H has 8 hidden layers of width 32, giving the model 15.8K parameters. We compare to i-ResNet
(Chen et al., 2019) and i-DenseNet (Perugachi-Diaz et al., 2021), where the nonlinear block H has 2 and 4 hidden layers,
respectively. For those two models, we test for depth from 2 to 8 with proper hidden width (so that they has similar amount
of parameters). And the empirical Lipschitz bound is computed via finite difference over the test data. As shown in Figure 1,
our model achieves much tighter bounds than other models.

Neural Gaussian process. We take 1000 two-moon data points as training data and 1000 Gaussian samples with mean
(1.3,−1.8) and variance (0.02, 0.01) as OOD data. For all models, we use fixed input weight to mapping the 2D input into
128D hidden space, then perform hidden space transformation using bi-Lipschitz models, and finally add a Gaussian process
as the output layer. SNGP uses 3 residual layer x +H(x) where the Lipschitz bound of H is c < 1. BiLipNet has one
monotone and Lipschitz layer with two orthogonal layer, i.e., K = 1 for (8). The nonlinear block H of our model has 6
hidden layers with width of 32. Both models are chosen to have the same amount of parameters, roughly 233K.

CIFAR-10/100 datasets. We first adopt the SNGP model from (Liu et al., 2020) and make some modifications as follows.

• SNGP contains three bi-Lipschitz components with each including four residual layers of the form x+H(x). It used
spectral norm bound c = 6 for the weights inside H, which means that the bi-Lipschitz property may not hold. To
provide a certified guarantee of bi-Lipschitzness we need c ∈ (0, 1). We tried three values of c: 0.35, 0.65 and 0.95.
Since the Lipschitz bounds are µ = (1− c)4 and ν = (1 + c)4, a larger c implies a more expressive SNGP model.

• We ran the SNGP with/without batch normalization for the bi-Lipschitz components. As pointed out in (Liu et al.,
2023), the batch normalization may re-scale a layer’s spectral norm in unexpected ways. So there is no theoretical
guarantee on bi-Lipschitz property when batch normalization is applied.

• Training the original SNGP takes about 95% GPU memory of an Nvidia RTX3090. With the same number of
parameters, our model needs more GPU memory as it uses the approach from (Trockman & Kolter, 2021) to perform
the Cayley transform of convolution operators, which involves FFT and inverse FFT. In order to use a single GPU to
train both models, we reduce the width of SNGP so that it has a similar amount of parameters as our model (∼ 14M).

Our model has a similar structure to SNGP except that we replace their bi-Lipschitz components with our proposed
bi-Lipschitz networks. Note that there is no batch normalization inside our bi-Lipschitz networks. All models are trained for
200 epochs using the mini-batch stochastic gradient descent (SGD) method with batch size of 256. We adjust the learning
rate based on a piecewise constant schedule.

2D Rosenbrock function. The true function is a Rosenbrock function defined by

r(x, y) =
1

200
(x− 1)2 +

1

2

(
y − x2

)2
.

Note that we use a scaling factor of 1/200 for the classic Rosenbrock function. The above function is non-convex but has
one minimum at (1, 1). We also consider the combination of the above Rosenbrock function with the following 2D Sine
function:

s(x, y) = 0.25(sin(8(x− 1)− π/2) + sin(8(y − 1)− π/2) + 2).

In this case r(x, y) + s(x, y) still has a unique global minimum at (1, 1). But there are many local minima. We take 5K
random training samples from the domain [−2,−2]× [−1, 3]. The proposed BiLipNet contains two monotone and Lipschitz
layers (i.e., K = 2 for (8)). The nonlinear block H has 4 hidden layers of width 128. The model size is roughly 16K. The
ICNN model has 8 hidden layers with width of 180. The MLP has hidden units of [128, 256, 256, 512]. We trained i-ResNet
and i-DenseNet with different depth and width such that the total amount of parameters is comparable with BiLipNet.

19

Monotone, Bi-Lipschitz, and Polyak-Łojasiewicz Networks 20

Parametric Rosenbrock function. We consider the following parametric Rosenbrock function

r(x, y; p) =
1

200
(x− a)2 +

1

2
(y − bx2)2, p = (a, b) ∈ [−1, 1]2.

We take 10K random training data. The partially BiLipNet contains 3 orthogonal layers, and 2 monotone and Lipschitz
layers (the H block of each layer has 4 hidden layer with width 128). The bias term of each orthogonal layer is produced by
an MLP with hidden units of [64, 128, 2] while the bias for those hidden units inside the H block is generated by an MLP of
[64, 128, 256, 512]. The model’s bi-Lipschitz bound is chosen to be (0.04, 16). The resulting model size is 604K.

ND Rosenbrock function. We also consider the N -dimensional (with N = 20) Rosenbrock function:

R(x) =
1

N − 1

N−1∑

i=1

r(xi, xi+1)

which is non-convex and has a unique global minimum at (1, 1, . . . , 1). Besides it also has many local minima. We take
10K random samples over the domain [−2, 2]20 and do training with batch size of 200. Note that the data size is very small
compared to the dimension. We then use 500K samples for testing. BiLipNet has two monotone and Lipschitz layers (i.e.,
K = 2 for (8)) where each layer has a nonlinear block H with 8 hidden layer of width 256 (model size ∼ 2.1M). For the
i-ResNet/i-DenseNet, we try different depths from 2 to 10 and observe that depth of 5 yields slightly better results. The
width of hidden layer is chosen so that it has a similar amount of parameters as BiLipNet.

D.2. Extra results

Some extra results for the bi-Lipschitz models on two-moon and CIFAR-10/100 datasets are shown in Figure 10 and Table 3,
respectively. Figure 11 depicts the additional results on surrogate loss learning.

Accuracy (↑) ECE (↓) NLL (↓)
Method c Clean Corrupted Clean Corrupted Clean Corrupted

CIFAR-10

SNGP-BN
0.95 94.7 ± 0.079 73.0 ± 0.461 0.017 ± 0.002 0.127 ± 0.010 0.166 ± 0.004 0.991 ± 0.054
0.65 94.1 ± 0.159 72.3 ± 0.561 0.016 ± 0.000 0.116 ± 0.005 0.182 ± 0.005 0.985 ± 0.029
0.35 92.3 ± 0.260 70.4 ± 0.800 0.008 ± 0.003 0.095 ± 0.007 0.231 ± 0.006 0.995 ± 0.031

BiLipNet
0.95 86.2 ± 0.250 70.8 ± 0.469 0.020 ± 0.003 0.052 ± 0.005 0.423 ± 0.006 0.895 ± 0.020
0.65 86.7 ± 0.129 72.8 ± 0.592 0.015 ± 0.005 0.047 ± 0.009 0.400 ± 0.006 0.830 ± 0.024
0.35 84.5 ± 0.184 72.6 ± 0.216 0.010 ± 0.002 0.052 ± 0.004 0.457 ± 0.002 0.827 ± 0.008

CIFAR-100

SNGP-BN
0.95 72.3 ± 0.513 44.8 ± 0.470 0.071 ± 0.006 0.091 ± 0.006 1.042 ± 0.018 2.476 ± 0.025
0.65 67.8 ± 1.006 41.5 ± 0.916 0.117 ± 0.007 0.092 ± 0.002 1.231 ± 0.035 2.573 ± 0.036
0.35 61.9 ± 0.741 37.0 ± 0.660 0.158 ± 0.006 0.098 ± 0.006 1.510 ± 0.029 2.760 ± 0.043

BiLipNet
0.95 51.0 ± 0.480 35.8 ± 0.397 0.230 ± 0.006 0.137 ± 0.007 2.064 ± 0.024 2.718 ± 0.014
0.65 55.2 ± 0.426 39.2 ± 0.495 0.225 ± 0.004 0.137 ± 0.005 1.887 ± 0.021 2.576 ± 0.022
0.35 54.4 ± 0.438 41.1 ± 0.200 0.194 ± 0.008 0.126 ± 0.009 1.876 ± 0.031 2.447 ± 0.016

Table 3. Results for SNGP-BN (SNGP with batch normalization) and BiLipNet (without batch normalization) on CIFAR-10/100, averaged
over 5 seeds. As pointed out by (Liu et al., 2023), the batch normalization may rescale a layer’s spectral norm in unexpected ways. So
there is no theoretical guarantee on bi-Lipschitz property for SNGP-BN. This may offer it extra expressive power, leading to performance
improvement in both clean and corrupted accuracy for a large distortion models (i.e. c = 0.95). For models with low distortion (i.e.
c = 0.35), BiLipNet has better accuracy for the corrupted dataset.

20

Monotone, Bi-Lipschitz, and Polyak-Łojasiewicz Networks 21

0.0 0.5 1.00

200

400

600

SN
GP

OOD
Train

2.5 0.0 2.5
2
1
0
1
2

0.0 0.5 1.00

200

400

600

800 OOD
Train

2.5 0.0 2.5
2
1
0
1
2

0.0 0.5 1.00

200

400

600

800 OOD
Train

2.5 0.0 2.5
2
1
0
1
2

0.0 0.5 1.0
Predictive uncertainty

0

250

500

750

1000

Ou
rs

OOD
Train

2.5 0.0 2.5
Uncertainty surface

2
1
0
1
2

0.0 0.5 1.0
Predictive uncertainty

0

200

400

600

800 OOD
Train

2.5 0.0 2.5
Uncertainty surface

2
1
0
1
2

0.0 0.5 1.0
Predictive uncertainty

0

200

400

600

800 OOD
Train

2.5 0.0 2.5
Uncertainty surface

2
1
0
1
2

Lip. [0.343, 2.197] (c=0.3) Lip. [0.125, 3.375] (c=0.5) Lip. [0.027, 4.913] (c=0.7)

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

Figure 10. Uncertainty qualification via neural Gaussian process with different bi-Lipschitz bound specifications.

T
ru

e

Rosenbrock Rosenbrock + Sine

(0
.0

4,
16

)-
i-

R
es

N
et

(0
.2

5,
4)

-B
iL

ip
N

et
(0
.5
,2

)-
B

iL
ip

N
et

0.0

1.6

3.2

4.8

6.4

8.0

9.6

11.2

12.8

0.0
1.6
3.2
4.8
6.4
8.0
9.6
11.2
12.8

0.0

1.6

3.2

4.8

6.4

8.0

9.6

11.2

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

0.0

1.6

3.2

4.8

6.4

8.0

9.6

11.2

0.0

0.4

0.8

1.2

1.6

2.0

0.0
1.6
3.2
4.8
6.4
8.0
9.6
11.2
12.8

0.0

0.2

0.4

0.6

0.8

1.0

0.0
1.6
3.2
4.8
6.4
8.0
9.6
11.2
12.8

0.0

0.2

0.4

0.6

0.8

1.0

0.0
1.2
2.4
3.6
4.8
6.0
7.2
8.4

0.0
0.4
0.8
1.2
1.6
2.0
2.4
2.8
3.2
3.6

0.0
1.2
2.4
3.6
4.8
6.0
7.2
8.4
9.6

0.0

0.8

1.6

2.4

3.2

4.0

Figure 11. Additional results for Learning a surrogate loss for the Rosenbrock and Rosenbrock + Sine functions. The first row contains the
true functions while the remaining rows show learned functions and errors for various surrogate loss models. Our model has the flexibility
of capturing the non-convex sub-level sets, but can also fit smoothed representations by reducing the distortion parameter.

21

