
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

VALUE RESIDUAL LEARNING FOR ALLEVIATING AT-
TENTION CONCENTRATION IN TRANSFORMERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Transformers can capture long-range dependencies using self-attention, allowing
tokens to attend to all others directly. However, stacking multiple attention layers
leads to attention concentration. One natural way to address this issue is to use
cross-layer attention, allowing information from earlier layers to be directly ac-
cessible to later layers. However, this approach is computationally expensive. To
address this problem, we propose Transformer with residual value (ResFormer)
which approximates cross-layer attention through adding a residual connection
from the values of the the first layer to all subsequent layers. Based on this
method, one variant is the Transformer with single layer value (SVFormer), where
all layers share the same value embedding from first layer, reducing the KV cache
by nearly 50%. Comprehensive empirical evidence demonstrates that ResFormer
mitigates attention concentration problem in deeper layers and enhances represen-
tation across most layers, outperforming the vanilla Transformer, DenseFormer,
and NeuTRENO in training error as well as downstream tasks. SVFormer trains
significantly faster than the vanilla Transformer and performs better than other
methods like GQA and CLA, with performance influenced by sequence length
and cumulative learning rate.

0 5 10 15 20
Layer Index

7.194

7.196

7.198

7.200

7.202

7.204

En
tro

py

Entropy
Token Similarity 0.50

0.55

0.60

0.65

0.70

0.75

To
ke

n
Si

m
ila

rit
y

0 5 10 15 20 25 30
Layer Index

2

3

4

5

6

Av
er

ag
e

En
tro

py

Llama 8B V3.1
Mistral 7B V0.2
Llama 8B Instruct V3.1
Mistral 7B Instruct V0.2

0 5 10 15 20 25
Layer Index

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

Av
er

ag
e

En
tro

py

Transformer
NeuTRENO
Resformer
SVFormer

Figure 1: (Left) The average entropy of token importance and the average hidden-state similarity
for a randomly initialized 468M model. (Middle) The average entropy of token importance across
layers in Llama (8B) (Dubey et al., 2024) and Mistral (7B) (Jiang et al., 2023). (Right) The average
entropy of token importance across layers in ResFormer vs. the vanilla Transformer, where token
importance is derived from the attention matrix. Lower entropy indicates more focused attention on
specific tokens. More details can be found in Eqn. 11.

1 INTRODUCTION

The Transformer (Vaswani et al., 2017) model has become one of the leading architectures in recent
years, excelling in both language modeling (Devlin et al., 2019; Lan et al., 2020; Brown et al., 2020)
and computer vision tasks (Dosovitskiy et al., 2021). The discovery of scaling laws (Hoffmann et al.,
2022; Kaplan et al., 2020) has driven the pursuit of larger Transformer models by increasing net-
work depth and width. Training large models presents significant challenges. Balancing the depth
and width of a Transformer model within a fixed parameter budget is particularly difficult. While
research indicates that deeper models generalize more compositionally than shallower ones (Petty
et al., 2024), the training and deployment of deep models remain problematic. Although Transform-
ers use residual connections (He et al., 2016) to address the vanishing gradient issue, training very

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

0 5 10 15 20 25
Layer Index

0.0

0.1

0.2

0.3

0.4

0.5

To
ke

n
Im

po
rta

nc
e

Transformer
NeuTRENO
Resformer
SVformer

(a) Token importance.

0 5 10 15 20 25
Layer Index

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

Va
lu

e-
st

at
e

No
rm

Transformer
NeuTRENO
Resformer
SVformer

(b) Norms of value states.

0 5 10 15 20 25
Layer Index

0

500

1000

1500

2000

2500

3000

Hi
dd

en
-s

ta
te

 N
or

m

Transformer
NeuTRENO
Resformer
SVformer

(c) Norms of hidden states.

Figure 2: The token importance (Xiao et al., 2024), value-state norms (Guo et al., 2024b), and
hidden-state norms (Sun et al., 2024) of the first token across layers of 468M models. More Visual-
ization results are available in Appendix A.2.
deep Transformers is still challenging. For example, a 32-layer Vision Transformer (ViT) may per-
form worse than a 24-layer one (Zhou et al., 2021). This is mainly due to the smoothing mechanism
of attention (Shi et al., 2022), which can lead to an over-smoothing effect (Nguyen et al., 2023)
where the token representations become the same as the model’s depth increases.

Existing solutions to alleviate the over-smoothing problem in Transformer include adding extra reg-
ularizers (Nguyen et al., 2023; Shi et al., 2022) and optimizing the information flow within the model
(Pagliardini et al., 2024). During the era of convolutional neural network architectures, Stochastic
Depth (Huang et al., 2016) reduces the likelihood of over-smoothing by randomly dropping layers
during training and DenseNet (Huang et al., 2017) mitigates the impact of over-smoothing by allow-
ing each layer to directly access the hidden states of all preceding layers. Recently, DenseFormer
(Pagliardini et al., 2024) adopts the idea of DenseNet when training Transformer. Additionally,
NeuTRENO (Nguyen et al., 2023) alleviates over-smoothing through incorporating the difference
between the value vectors of the first layer and the current layer to the attention output.

In this paper, we address the problem of multi-layer attention from another perspective. We in-
troduce the phenomenon of attention concentration, which describes how a model’s attention in-
creasingly focuses on fewer tokens. We quantify the degree of attention concentration using the
entropy of the distribution of token importance, where lower entropy indicates a more pronounced
concentration. Unlike over-smoothing, which is inherent to model architecture, attention concen-
tration emerges during training. Fig. 1 (Left) shows that randomly initialized models exhibit over-
smoothing but not attention concentration. Trained ViT models often focus on low-informative
background areas (Darcet et al., 2024), while language models concentrate on low-semantic tokens
(Sun et al., 2024), particularly the start token (attention sink (Xiao et al., 2024)). While previous
studies analyzed single-layer attention patterns, our research reveals a “concentration - dispersion -
concentration” pattern in deep models, as shown in Fig. 1 (Middle), suggesting potential loss of in-
formation during concentrated phases. The analysis of over-smoothing is available in Appendix A.1.

Mitigating attention concentration can lead to more interpretable attention maps and potentially im-
prove downstream task performance (Darcet et al., 2024). This phenomenon typically emerges after
the second or third network layer and is associated with value-state drains (decreased magnitude of
value states) (Guo et al., 2024b), and hidden-state peaks (increased magnitude of hidden states) (Sun
et al., 2024). Guo et al. (2024a) shows a mutual reinforcement mechanism exists between value-state
drains and attention concentration. Recent studies have linked this to implicit biases during pretrain-
ing, with most existing solutions focusing on the use of additional tokens (registers) (Darcet et al.,
2024) or additional keys and values (explicit attention bias) (Sun et al., 2024) to redirect this.

Given that the first layer always shows no attention concentration, an effective method is to use cross-
layer attention on information from this layer. However, due to computational costs, we propose
ResFormer as an efficient alternative. ResFormer applies a residual connection between the value
vectors of the current layer and the first layer before the attention operation. Unlike cross-layer
attention, ResFormer indirectly mitigates attention concentration. It leverages the absence of value-
state drains in the first layer by introducing a value residual connection. This alleviates value-state
drains in deeper layers, thereby disrupting the mutual reinforcement between attention concentration
and value-state drains, as shown in Fig. 1 (Right) and Fig. 2.

During inference, deep networks require substantial KV cache, severely impacting model deploy-
ment (Xiao et al., 2024). Existing KV -efficient methods often process keys and values simultane-

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

0H

0A 0V

1H

1A 1V

2H

2A 2V

(a) Transformer

0H

0A 0V

1H

1A 1V

2H

2A 2V

(b) NeuTRENO

0H

0A 0V

1H

1A 1V

2H

2A 2V

(c) DenseFormer

0H

0A 0V

1H

1A
1V

2H

2A
2V

(d) ResFormer

0H

0A 0V

1H

1A

2H

2A

(e) SVFormer

Figure 3: Simplified illustration of the vanilla Transformer, NeuTRENO, DenseFormer, ResFormer,
and SVFormer, with only three-layer structures and no operations other than attention. Ai, V i, and
Hi denote the attention matrix, value vectors, and attention outputs at the i-th layer, respectively. ⊕,
⊖, and ⊗ represent standard matrix addition, subtraction, and multiplication, respectively.

ously. Building on ResFormer, we decouple the value from the attention operation and propose a
new kind of Transformer with single layer value (SVFormer). In SVFormer, the queries and keys of
all layers share the value from the first layer, and thus it can also alleviate attention concentration.

We experiment on a 20B SlimPajama sub-sampled dataset, using settings similar to popular large
language models (Wei et al., 2023; Dubey et al., 2024; Kaplan et al., 2020). We compare different
models by their relative training curves against the vanilla Transformer. Results show that Res-
Former outperforms the vanilla Transformer, DenseFormer, and NeuTRENO. ResFormer achieves
equivalent validation loss with 10.4% fewer model parameters and 13.6% less training data com-
pared to Transformer, while maintaining similar memory usage and computational cost. Besides,
SVFormer, while reducing the KV -cache by nearly half, requires a 12.2% increase in parameters
to achieve the same validation loss as Transformer. And the performance of SVFormer is better
when the training sequence length is longer. It further reduces the KV cache when integrated with
classical method GQA (Ainslie et al., 2023).

2 RELATED WORK

2.1 SHORTCUT CONNECTIONS FOR BETTER INFORMATION FLOW

Deep learning models often consist of multiple layers, posing a challenge to minimize information
loss during transmission. ResNet (He et al., 2016) mitigates the vanishing gradient problem with
identity connections. Stochastic Depth (Huang et al., 2016) enhances training by randomly dropping
layers. DenseNet (Huang et al., 2017) allows subsequent layers to directly access the hidden states
of all preceding layers. These two methods further enhance the information flow after ResNet.

Related research indicates that for advanced Transformer architectures, although increasing depth
continues to yield performance improvements in language modeling tasks, the gains become less
significant with further increases (Petty et al., 2024). Furthermore, Zhou et al. (2021) illustrates
that a 32-layer ViT underperforms a 24-layer ViT. Depth-Wise Attention (ElNokrashy et al., 2024)
allows each query to access the key and value at the same position from previous layers through an
attention-like mechanism before the output layer. DenseFormer (Pagliardini et al., 2024) integrates
weighted fusion of outputs from all preceding layers after each layer. To explore why increasing
depth in Transformers does not yield expected gains, Wang et al. (2022) finds that self-attention
acts as a low-pass filter, smoothing token representations in ViTs. Additionally, Shi et al. (2022) in-
vestigates over-smoothing from a graph perspective in BERT-based language modeling tasks. Neu-

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

TRENO (Nguyen et al., 2023) adds the difference between the value vectors of the first and current
layers to each layer’s attention output and significantly alleviates the over-smoothing problem.

In contrast to these methods, ResFormer accesses and integrates information from previous layers
prior to the attention operation, as illustrated in Fig. 3. Moreover, it does not require the selection or
tuning of additional hyperparameters.

2.2 KV CACHE COMPRESSING

The KV cache is a key factor limiting the efficiency of long-text model inference. Research in this
area can be broadly classified into Transformer-based methods, which target redundant information
in Transformer models, and non-Transformer methods, which mainly addresses the quadratic time
complexity of attention with respect to sequence length.

For non-Transformer methods, Mamba (Gu & Dao, 2023) and RWKV (Peng et al., 2023) are two
popular works. They replace the original softmax-based attention with SSM (Gu et al., 2021) and
AFT (Zhai et al., 2021) mechanisms, respectively. Besides, several approaches have been proposed
to enhance models’ ability to process long texts while reducing the reliance on KV cache. Dai et al.
(2019) advocates segmenting long texts into smaller parts for attention computation. Furthermore,
Munkhdalai et al. (2024) uses a fixed-size memory matrix for storing and retrieving past information.

Transformer-based methods can be categorized into three main groups. The first group consists of
post-training methods like SnapKV (Li et al., 2024) and ThinK (Xu et al., 2024), which compress
KV cache during inference based on attention matrices at token or hidden dimension levels. The
second group focuses on quantization and adopts low-precision KV cache quantization rather than
completely eliminating them (Hooper et al., 2024). The third group aims to maximize the efficiency
of attention-based models via parameter or activation value sharing. The most representative works
include Multi-Query Attention (Shazeer, 2019) and Grouped-Query Attention (Ainslie et al., 2023)
which suggest to share key and value across a group of queries. MLKV (Zuhri et al., 2024) further
suggest to share keys and values for queries across layers and MLA (Liu et al., 2024) introduces
low-rank projection when processing keys and values. Besides, CLA (Brandon et al., 2024) and
LISA (Mu et al., 2024) respectively point out that we can reuse keys, values, or the attention matrix
across layers to reduce redundancy between layers. While these methods typically process both key
and value simultaneously, SVFormer is the first approach to decouple value from query and key
during attention computation. Moreover, it is compatible with other methods like GQA.

3 METHOD

3.1 MOTIVATION: INFORMATION TRANSFER VIA CROSS LAYER ATTENTION

Let Hn ∈ Rl×d be the input hidden state of the n-th layer, where l denotes the sequence length
and d is the dimension size. In standard attention, the hidden state Hn will be firstly projected into
Qn,Kn,Vn ∈ Rl×d through three linear projections WQ,WK,WV ∈ Rd×d respectively. For
simplicity, we introduce dot-product attention of layer n as

Attention(Qn,Kn,Vn) = Softmax(
QnK

T
n√

d
)Vn. (1)

An ideal way to incorporate previous layers’ information is cross layer attention. The attention
mechanism naturally extracts relevant information from previous layers. If these layers contain low-
quality information, the similarity between the current layer’s query and the previous layers’ keys
will be low, thus minimizing negative impacts. Given m < n and the information (Qm,Km,Vm)
of m-th layer, the cross layer mechanism calculates the attention output Un of n-th layer by the
following attention formula:

Un = Softmax
(
Qn Concat(Kn,Km)T /

√
d
)
Concat(Vn,Vm). (2)

In practice, cross-layer attention enhances feature fusion by allowing information to flow between
layers, capturing both intra-layer and inter-layer dependencies. However, this approach introduces
additional computational overhead due to the concatenation of keys and values from multiple layers.
For example, in scenarios described by Eqn. 2, the overall computational complexity of the model
nearly doubles compared with vanilla attention described in Eqn. 1.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3.2 EFFICIENT CROSS LAYER ATTENTION

To solve this problem, we propose to replace the Km with Kn in Eqn. 2, as shown in Eqn. 3.

Un ≈ Softmax
(
Qn Concat(Kn,Kn)

T /
√
d
)
Concat(Vn,Vm) (3)

=
1

2
Softmax

(
QnK

T
n/

√
d
)
(Vn +Vm). (4)

Utilizing the concept of block matrices, Eqn. 3 can be further simplified into Eqn. 4. This simpli-
fication converts the concatenation operation of the two value matrices into an addition operation.
Compared to Eqn. 1, this new method only brings a minimal increase in computational complexity
while still leveraging the information from the m-th layer in the n-th layer. Furthermore, Eqn. 4 can
be generalized to incorporate cross-layer attention across all preceding n− 1 layers as follows:

Un ≈ 1

n
An

n∑
i=1

Vi. (5)

where An denotes the original attention matrix for layer n. From the perspective of in-
formation propagation, model described by Eqn. 3 projects the historical values into the
current layer’s embedding space using the current layer’s attention as a weight matrix.
For example, a naive approach would be to perform identity mapping, as described by

Un = AnVn +
1

n− 1

n−1∑
i=1

Vi. (6)

To evaluate the approximation effect of replacing the Km

with Kn, we randomly select 1,000 pre-training data sam-
ples. For each layer of a trained baseline model, assuming
cross-layer attention is required for each layer with respect to
the previous one, we calculate the cosine similarity between
the outputs from Eqn. 2 and Eqn. 4. We also calculate the
cosine similarity between the outputs from Eqn. 2 and Eqn. 6
for comparison. Fig. 4 shows that our proposed method pro-
vides a good approximation for cross-layer attention.

2 3 4 5 6 7 8
Layer Index

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Av
er

ag
e

Co
sin

e
Si

m
ila

rit
y

Current Attention
Identity Mapping

Figure 4: Average token similarity
between layer outputs. Lines show
similarity of outputs using current
attention (Eqn. 4) or identity atten-
tion (Eqn. 6) compared to the one
using cross-layer attention (Eqn. 2).3.3 TRANSFORMER WITH RESIDUAL VALUE

Based on Eqn. 5, we propose a variant of Transformer with residual value (ResFormer) which only
chooses first layer as the target of cross layer attention since the first layer contains all basic infor-
mation of each token. The analysis of entropy in Fig. 1 (Right) supports this point, indicating that
attention tends to be relatively dispersed across different tokens in the initial layers of the model.
The attention mechanism of ResFormer can be formulated as

Un =
1

2
An(Vn +V1). (7)

where n ≥ 2 and standard attention is applied in the first layer. From the training perspective, it
explicitly learns a residual mapping instead of directly learning the desired underlying mapping and
that’s why we call it ResFormer.

3.4 A UNIFIED VIEW OF NEUTRENO AND DENSEFORMER

Using our framework, the NeuTRENO can be defined as

Un =
(
An − λI

)
Vn + λV1. (8)

where I denotes the identity matrix and λ is a hyper-parameter. It can be found that the term of λI
may have certain negative impact on the learning of original attention. If we ignore the attention
output projection and the MLP layer, DenseFormer can also be modeled within our framework as

Un =

n∑
i=1

αiAiVi. (9)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

where {αi}ni=1 is a set of hyper-parameters. DenseFormer uses attention matrix of previous layer
as the weight matrix of projecting values but this is not aligned with the concept shown in Eqn. 3.

3.5 SVFORMER: SINGLE-LAYER VALUE FOR HALF KV CACHE

After ResFormer, a natural idea is whether we can remove the value vectors in each layer and have
all layers share the value vectors from the first layer. We call this method SVFormer. Similar to
ResFormer, SVFormer still adopts standard attention in the first layer and obtain the attention output
Un for n-th layer where n ≥ 2 through

Un = AnV1. (10)

Compared to previous methods, SVFormer is the first method
that decouple value vectors from attention. Its main advan-
tage is that it only requires computing and storing the value
vectors for the first layer, saving nearly half of the KV cache
during inference. Similar methods like CLA reduce KV
cache by sharing both of the key and value vectors every two
layers. However, the results in Fig. 5 show that sharing val-
ues has less negative impact compared with sharing keys.

0 2000 4000 6000 8000 10000
Training Step

0.03

0.02

0.01

0.00

0.01

0.02

0.03

0.04

0.05

0.06

Re
la

tiv
e

Tr
ai

ni
ng

 L
os

s

CLAttention
Only Share Keys
Only Share Values

Figure 5: Ablation study of shar-
ing different parts of attention every
two layers.

4 PRETRAIN EXPERIMENTS

4.1 SETTING

4.1.1 TRAINING DETAILS

Following Brandon et al. (2024), we choose the Llama-like architecture and SlimPajama (Soboleva
et al., 2023) data for main experiments. Specifically, the architecture includes pre-normalization,
SwiGLU activations (Shazeer, 2020), rotary position embedding (Su et al., 2024), and no dropout.
For slimpajama, we randomly sample nearly 20B tokens according to the original data distribution
of seven domains during training and adopt tokenizer used for “RedPajama-INCITE-7B-Base”. The
details of training data can be found in Table 2 in Appendix.

Unless otherwise noted, we train all models using AdamW optimizer with 0.1 weight decay, β1 =
0.9, β2 = 0.95 and the max grad norm 1.0. The batch size is set to be around 2M tokens (Zhang
et al., 2024) with a sequence length of 2,048 and the total steps is fixed 10,000 steps (Kaplan et al.,
2020). We adopt linear learning rate warmup for the first 1,200 steps with the initial learning rate
and the peak learning rate to be 1e-7 and 6e-4 respectively. The cosine decay schedule gradually
decays to 10% of the peak learning rate by the end of training (Zhou et al., 2024; Wei et al., 2023).
The detailed hyperparameters for models of various sizes and different training sequence lengths
in Appendix A.5. Moreover, All models are trained with 8 Nvidia A100 80G GPUs using mixed-
precision training in FP16. We adopt deepspeed zero-2 optimizer and flash attention mechanism.

4.1.2 RELATIVE TRAINING LOSS CURVE ON SLIMPAJAMA

We trained all models for only one epoch on SlimPajama subsets, and primarily use training loss to
compare different models. Furthermore, we use the relative training loss curve for better visualizing
the difference among different models from the perspective of loss landscape. Specifically, for each
method, we will subtract the smoothed training curve of the vanilla Transformer, obtained under the
same experimental settings, from the smoothed training curves of the method. The smoothing is
done using a window size of 10 steps or 100 steps.

4.1.3 ENTROPY FOR ANALYZING ATTENTION CONCENTRATION EFFECTS

Given the attention matrix A ∈ Rl×l at one layer, we use entropy e to represent its concentration
effect. To obtain entropy E, calculate the importance vector a = 1

l

∑l
j=1 Aij firstly where A is a

lower triangular matrix. The entropy can be formulated as follows:

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
Parameters 1e8

2.3

2.4

2.5

2.6

2.7

Av
er

ag
e

Va
lid

 L
os

s

Transformer
Resformer
10.4% reduction

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Training Tokens 1e10

2.25

2.30

2.35

2.40

2.45

2.50

2.55

2.60

Av
er

ag
e

Va
lid

 L
os

s

Transformer
Resformer
13.6% reduction

Figure 6: (Left) Validation loss as model size
scales from 82M to 468M parameters. (Right)
Validation loss for the 468M parameter model
evaluated every 2B tokens. ResFormer achieves
approximately 10.4%-13.6% reduction in both
model parameters and training data.

0 2000 4000 6000 8000 10000
Training Step

0.06

0.05

0.04

0.03

0.02

0.01

0.00

0.01

Re
la

tiv
e

Tr
ai

ni
ng

 L
os

s

Sequence length:
2048
32000
64000

0 2000 4000 6000 8000 10000
Training Step

0.10

0.08

0.06

0.04

0.02

0.00

0.02

0.04

Re
la

tiv
e

Tr
ai

ni
ng

 L
os

s

DenseFormer 82M
NeuTRENO 82M
Resformer 82M
Resformer + NeuTRENO

Figure 7: (Left) The relative training curve be-
tween a 82M ResFormer and Transformer across
different training sequence lengths. (Right) Rela-
tive training loss of various Transformer variants
compared to the vanilla Transformer model, with
model size fixed at 82M parameters.

e = −
l∑

i=1

a′
i loga

′
i. (11)

where a′ii = ai/
(∑l

i=1 ai

)
for i = 1, 2, . . . , l and the higher the entropy e, the greater the degree

of clustering in a, i.e., attention matrix A is more likely to focus on several specific tokens.

4.1.4 SPECTRAL DECOMPOSITION FOR ANALYZING REPRESENTATIONS

Spectral Decomposition is a classical method to analyze the representations of models. Zhu et al.
(2021) suggests that the eigenvectors with larger eigenvalues are more transferable. Here we use
spectral decomposition to analyze the feature space of value v of one layer as following:

1

l

l∑
i=1

viv
T
i =

d∑
j=1

wjλjw
T
j . (12)

where wj is the j-th eigenvector with eigenvalue λj for j = 1, 2, . . . , d and d is the dimensionality
of the value’s feature space.

4.2 RESFORMER vs. VANILLA TRANSFORMER

We trained ResFormer and vanilla Transformer with different model size on data with different se-
quence lengths. In Fig. 7 (Left), ResFormer consistently outperforms vanilla Transformer through-
out training across different training sequence lengths. Additionally, the results in Fig. 7 (Right)
illustrate that ResFormer outperforms DenseFormer and NeuTRENO. Furthermore, integrating Res-
Former with NeuTRENO leads to additional performance improvements.

We also analyzed how ResFormer and Transformer scale at model size and data size. ResFormer
and Transformer are trained on similar experiment setting. On the one hand, we trained model with
82M, 180M, 320M and 468M parameters on 20B training tokens and evaluated them on a separate
validation set. As shown in Fig.6 (Left), ResFormer achieves equivalent validation loss to the Trans-
former while utilizing 10.4% fewer model parameters. On the other hand, we evaluated the 468M
models every 2B tokens and ResFormer needs 13.6% fewer training tokens to achieve the same
validation loss as Transformer. The validation loss for these models is available in Appendix A.6.

We further test the variant of ResFormer defined as Un =
An(Vn + λV1). As shown in Fig.8, ResFormer can ac-
commodate a wide range of λ values and the performance
improves as λ increases, achieving the best results at λ = 2.
Regardless of the value of λ, ResFormer consistently out-
performs Transformers. It suggests that the success of Res-
Former lies in the use of V1 and the mapping by An. The ab-
lation study of different hyperparameters λ for NeuTRENO,
as defined in Equation 8, can be found in the Appendix A.3.

0 2000 4000 6000 8000
Training Step

0.10

0.08

0.06

0.04

0.02

0.00

Re
la

tiv
e

Tr
ai

ni
ng

 L
os

s

Resformer
Lambda 0.2
Lambda 0.5
Lambda 0.8
Lambda 1
Lambda 2
Lambda 5

Figure 8: Ablation study of differ-
ent λ for ResFormer.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

0 2000 4000 6000 8000 10000
Training Step

0.10

0.08

0.06

0.04

0.02

0.00

0.02

0.04

0.06

Re
la

tiv
e

Tr
ai

ni
ng

 L
os

s

Add residual of:
Value
Key
Query

Figure 9: Ablation study of
adding residual connection to
queries or keys.

0 2000 4000 6000 8000
Training Step

0.1

0.0

0.1

0.2

0.3

0.4

0.5

Re
la

tiv
e

Tr
ai

ni
ng

 L
os

s

ResFormer
Cross Layer Attention
Identity Mapping

Figure 10: Ablation study of
adding residual connection us-
ing different mapping matrix.

0 2000 4000 6000 8000 10000
Training Step

0.05

0.04

0.03

0.02

0.01

0.00

0.01

Re
la

tiv
e

Tr
ai

ni
ng

 L
os

s

Value shortcut from:
Only First layer
One Adjacent layer
All Previous layer

Figure 11: Ablation studies on
which historical layer’s value to
include in residual connections.

4.3 ABLATION STUDY OF RESIDUAL CONNECTION

In Eqn. 4, we employ residual connections for the values. We compare this approach with models
that add residual connections to queries or keys. The results, shown in Fig. 9, indicate that only
residual connections for values yield positive effects. One possible explanation is that attention
mechanisms are sensitive to perturbations, and modifying queries or keys significantly impacts it.

Moreover, we compare with the models based on Eqn. 2 and Eqn. 6. The results in Fig. 10 align
with Fig. 4, showing that identity mapping causes significant perturbations, leading to poor perfor-
mance. Interestingly, ResFormer achieves an even lower final loss than ResFormer. It suggests that
ResFormer’s impact on the attention optimization is better by mitigating value-state drains.

When determining the mapping method and target value, it is crucial to consider which historical
layers’ values should be included in the residual connection. Fig. 11 shows that each Transformer
layer should add a shortcut to the first layer’s value rather than to the nearest preceding layer or all
previous layers, highlighting the first-layer value’s critical importance. A potential explanation is
that incorporating values from other layers may dilute the impact of the first-layer value.

4.4 DOWNSTREAM EVALUATIONS

We compare the different models on several classical reasoning tasks following (Zhang et al., 2024)
in a zero-shot way. The tasks include Hellaswag (Zellers et al., 2019), OpenBookQA (Mihaylov
et al., 2018), WinoGrande (Sakaguchi et al., 2019), ARC-Easy and ARC-Challenge (Clark et al.,
2018) and PIQA (Bisk et al., 2020). The results in Table 1 show that ResFormer achieved an average
accuracy improvement of nearly 3% compared to the vanilla Transformer.

Model Max Length HellaSwag Obqa WinoGrande ARC-c ARC-e PIQA Avg

Transformer 2,048 0.263 0.142 0.492 0.199 0.331 0.572 0.333
ResFormer 2,048 0.273 0.148 0.512 0.182 0.414 0.604 0.355
Transformer 64,000 0.267 0.142 0.485 0.179 0.322 0.570 0.328
ResFormer 64,000 0.274 0.136 0.513 0.184 0.407 0.588 0.350

Table 1: Zero-shot accuracy on commonsense reasoning tasks.

4.5 VISUALIZATION OF RESFORMER

To figure out why ResFormer can achieve better performance on language modeling tasks than
vanilla Transformer, we conduct visualization based on the eigenvalue decomposition discussed in
Section 4.1.4. After sorting the eigenvalues in descending order, we compute the average eigenvalue
for each layer across 1,000 randomly sampled pre-train data examples. The results in Fig. 12 indicate
that the value states generated by most layers of the ResFormer exhibit stronger representational
capacity compared to those of the vanilla Transformer.

We also analyze the attention concentration effects mentioned in Section 4.1.3 using the same batch
of test data. Fig. 1 (Right) illustrates that the clustering effect of attention increases significantly

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0 200 400 600 800 1000
Index of eigenvectors

0

25

50

75

100

125

150

175

Ei
ge

nv
al

ue

Resformer 468M
Transformer 468M
Resformer 180M
Transformer 180M
Resformer 82M
Transformer 82M

0 5 10 15 20
Index of eigenvectors

100

200

300

400

500

600

Ei
ge

nv
al

ue

Resformer 468M
Transformer 468M
Resformer 180M
Transformer 180M

Figure 12: Left: Distribution of eigenvalues for the value vectors in the first layer of ResFormer and
Transformer. Right: Maximum eigenvalue for each layer of ResFormer and Transformer.

0 2000 4000 6000 8000
Training Step

0.08

0.06

0.04

0.02

0.00

0.02

0.04

0.06

Re
la

tiv
e

Tr
ai

ni
ng

 L
os

s

SVFormer (2048)
GQA2 (2048)
CLA2 (2048)
SVFormer (64000)
GQA2 (64000)
CLA2 (64000)

0 2000 4000 6000 8000
Training Step

0.08

0.06

0.04

0.02

0.00

0.02

0.04

0.06

0.08

Re
la

tiv
e

Tr
ai

ni
ng

 L
os

s

SVFormer+GQA4 (64000)
GQA8 (64000)
CLA2+GQA4 (64000)

Figure 13: The relative training loss for SV-
Former and other KV efficient model compared
with vanilla attention. The numbers in parenthe-
ses represent the training sequence length. Left:
Model with nearly 1/2KV cache. Right: Model
with nearly 1/8 KV cache.

0 2000 4000 6000 8000 10000
Training Step

0.08

0.06

0.04

0.02

0.00

0.02

0.04

0.06

Re
la

tiv
e

Tr
ai

ni
ng

 L
os

s

Training sequence length:
512
2048
8192
32000
64000

0 10000 20000 30000 40000 50000 60000
Training Sequence Length

5000

10000

15000

20000

25000

30000

Cr
iti

ca
l P

oi
nt

 S
te

p

Figure 14: Left: The relative training loss for SV-
Former under different sequence lengths with a
fixed batch size of 2M tokens. Right: Analysis of
critical point, and we predict it for length 64,000
using linear regression with the last 1,000 data
points.

with the number of layers for the vanilla Transformer, whereas the clustering effect is relatively
less pronounced for the ResFormer. We further visualize the attention weights, value-state norms
∥v∥2, and hidden-state norms ∥h∥2 of tokens at different layers and positions, with detailed results
in Appendix A.2. Given that attention clustering often occurs on the first token, we primarily show
its results in Fig. 2. The results indicate that using ResFormer significantly mitigates attention sinks
(Xiao et al., 2024), value-state drains (Guo et al., 2024b) and residual-state peaks (Sun et al., 2024).
Guo et al. (2024a) attributes these phenomena to the mutual reinforcement mechanism of model
and we suggest that the value shortcut disrupts this mechanism by alleviating value-state drains.
Specifically, for tokens lacking semantic information like start tokens, a large value state magnitude
can adversely affect the prediction of subsequent tokens if they are overly attended to. When there
is no value-state drains, models will reduce attention clustering to these tokens to minimize loss.

4.6 SVFORMER vs. GQA

In the Fig. 13, at a training sequence length of 64,000, SVFormer demonstrates lower final loss
compared to existing KV -efficient methods such as CLA and GQA. Moreover, it can be used con-
currently with GQA to enhance KV efficiency further. However, we observed that with a training
sequence length of 2,048, SVFormer underperforms compared to GQA. The results indicate that
sequence length significantly affects SVFormer’s performance. Thus, we conducted more compre-
hensive experiments on sequence length.

Results in Fig. 14 (Left) demonstrate that SVFormer will always be gradually surpassed by vanilla
attention during training while its training speed is faster than vanilla Transformer at the early stage.
However, as the training sequence length increases, the SVFormer model performs better. In this
way, we focus on the critical point, defined as the number of training steps exceeded. Fig. 14 (Right)
illustrates that the relationship between the critical point and sequence length exhibits an exponential
trend. We argue that it’s due to the challenge deep models face in fully optimizing the increasingly
larger first-layer value matrix as the training sequence length grows.

4.7 OTHER FACTORS INFLUENCING SVFORMER

Intuitively, the training effectiveness of SVFormer is influenced by factors such as the maximum
learning rate, warmup steps, model size, and other factors beyond just the training sequence length.
We conducted experiments to explore these relationships.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

0 2000 4000 6000 8000 10000
Training Step

0.20

0.15

0.10

0.05

0.00

0.05

Re
la

tiv
e

Tr
ai

ni
ng

 L
os

s

Peak learning rate:
1e-4
3e-4
6e-4

(a) Learning Rate.

0 2000 4000 6000 8000 10000
Training Step

0.4

0.3

0.2

0.1

0.0

0.1

Re
la

tiv
e

Tr
ai

ni
ng

 L
os

s

Warmup steps:
1200 steps
120 steps

(b) Warmup Steps.

0 2000 4000 6000 8000 10000
Training Step

0.4

0.3

0.2

0.1

0.0

Re
la

tiv
e

Tr
ai

ni
ng

 L
os

s

Architecture:
Llama 82M
GPT2 78M

(c) Architecture.

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
Parameters 1e8

2.3

2.4

2.5

2.6

2.7

Av
er

ag
e

Va
lid

 L
os

s

Transformer
SVFormer
12.2% increase

(d) Model Size.

Figure 15: The relative training loss for SVFormer under different hyper-parameter setting and the
validation loss as model size scales from 82M to 468M parameters.

Based on the results shown in Fig. 15a and Fig. 15b, a smaller learning rate benefits SVFormer more,
with warmup’s impact being comparatively small. This could be attributed to the model’s outcomes
being closely tied to the total summed learning rate, which has weak connection with warmup steps
(Kaplan et al., 2020). Moreover, larger models often require smaller learning rates to ensure training
stability, making them more suitable for using SVFormer.

Llama-like models and GPT2-like models exhibit similar critical points and final losses (see
Fig. 15c). This suggests that the difference between SVFormer and the vanilla Transformer is not
sensitive to architecture. Compared with Transformer, SVFormer requires a 12.2% increase in pa-
rameters to achieve the same validation loss while reducing the KV -cache by nearly half.

4.8 ABLATION STUDY OF SVFORMER

0 2000 4000 6000 8000 10000
Training Step

0.2

0.1

0.0

0.1

0.2

0.3

0.4

0.5

Re
la

tiv
e

Tr
ai

ni
ng

 L
os

s

Components to share:
Value
Query
Key

Figure 16: Ablation study
of sharing first layer’s
query(key) across all layers.

0 2000 4000 6000 8000 10000
Training Step

0.10

0.08

0.06

0.04

0.02

0.00

0.02

0.04

Re
la

tiv
e

Tr
ai

ni
ng

 L
os

s

Shared value from:
First Layer
First Layer + Last Layer
First Layer + One Middle Layer + Last Layer
First Layer + Two Middle Layer + Last Layer

Figure 17: Ablation study on
sharing values from different
numbers of layers.

To better understand SVFormer, we conduct several ablation experiments. We first observe the
effects of sharing the first layer’s queries or keys across all layers in Fig. 16, finding that this sig-
nificantly impacts model performance, similar to the results in Fig. 5. Additionally, sharing the
first layer’s values in a multi-layer network may reduce the network’s “effective depth.” By updat-
ing the shared values using intermediate layers as “anchors,” we find that increasing the number of
“anchors” improves performance, as shown in Fig. 17.

5 CONCLUSION

In this paper, we propose the concept of attention concentration, a problem that arises from stack-
ing multiple attention layers. From the perspective of cross-layer attention, we derive ResFormer,
which adds a residual connection between the value vectors of the current layer and those of the
first layer before the attention operation to alleviate attention concentration. Additionally, we intro-
duce SVFormer, based on ResFormer, which reduces the KV cache by nearly half. We conducted
comprehensive experiments on the language modeling task to validate the advantages of these two
Transformer variants in different scenarios.

ETHICS STATEMENT

On the one hand, the data employed in this paper is sourced from publicly available datasets provided
by the company, which have undergone a certain level of filtering. On the other hand, the models
trained in our study are solely utilized for experimental analysis and will not be publicly deployed.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REPRODUCIBILITY STATEMENT

We have detailed the complete experiments setup such as batch size, optimizer, learning rates in
Section 4.1.1. Besides, we will release source codes once our paper is made public. These resources
should be sufficient to reproduce results of the paper.

REFERENCES

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebrón, and Sumit
Sanghai. Gqa: Training generalized multi-query transformer models from multi-head check-
points. arXiv preprint arXiv:2305.13245, 2023.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O’Brien, Eric
Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, et al.
Pythia: A suite for analyzing large language models across training and scaling. In International
Conference on Machine Learning, pp. 2397–2430. PMLR, 2023.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. PIQA: reasoning about
physical commonsense in natural language. In AAAI, pp. 7432–7439. AAAI Press, 2020.

William Brandon, Mayank Mishra, Aniruddha Nrusimha, Rameswar Panda, and Jonathan Ragan
Kelly. Reducing transformer key-value cache size with cross-layer attention. arXiv preprint
arXiv:2405.12981, 2024.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. In NeurIPS, 2020.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the AI2 reasoning challenge.
CoRR, abs/1803.05457, 2018.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G. Carbonell, Quoc Viet Le, and Ruslan Salakhutdi-
nov. Transformer-xl: Attentive language models beyond a fixed-length context. In ACL (1), pp.
2978–2988. Association for Computational Linguistics, 2019.

Timothée Darcet, Maxime Oquab, Julien Mairal, and Piotr Bojanowski. Vision transformers need
registers. In International Conference on Learning Representations. OpenReview.net, 2024.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep
bidirectional transformers for language understanding. In NAACL-HLT (1), pp. 4171–4186. As-
sociation for Computational Linguistics, 2019.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
scale. In International Conference on Learning Representations. OpenReview.net, 2021.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Muhammad ElNokrashy, Badr AlKhamissi, and Mona Diab. Depth-wise attention (dwatt): A layer
fusion method for data-efficient classification. In Proceedings of the 2024 Joint International
Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING
2024), pp. 4665–4674, 2024.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces. arXiv preprint arXiv:2111.00396, 2021.

Tianyu Guo, Druv Pai, Yu Bai, Jiantao Jiao, Michael I Jordan, and Song Mei. Active-dormant
attention heads: Mechanistically demystifying extreme-token phenomena in llms. arXiv preprint
arXiv:2410.13835, 2024a.

Zhiyu Guo, Hidetaka Kamigaito, and Taro Watanabe. Attention score is not all you need for token
importance indicator in kv cache reduction: Value also matters. arXiv preprint arXiv:2406.12335,
2024b.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Train-
ing compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, Michael W Mahoney, Yakun Sophia Shao,
Kurt Keutzer, and Amir Gholami. Kvquant: Towards 10 million context length llm inference with
kv cache quantization. arXiv preprint arXiv:2401.18079, 2024.

Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q Weinberger. Deep networks with
stochastic depth. In Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The
Netherlands, October 11–14, 2016, Proceedings, Part IV 14, pp. 646–661. Springer, 2016.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 4700–4708, 2017.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de Las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas
Wang, Timothée Lacroix, and William El Sayed. Mistral 7b. CoRR, abs/2310.06825, 2023.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and Radu Sori-
cut. ALBERT: A lite BERT for self-supervised learning of language representations. In Interna-
tional Conference on Learning Representations. OpenReview.net, 2020.

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle
Cai, Patrick Lewis, and Deming Chen. Snapkv: Llm knows what you are looking for before
generation. arXiv preprint arXiv:2404.14469, 2024.

Aixin Liu, Bei Feng, Bin Wang, Bingxuan Wang, Bo Liu, Chenggang Zhao, Chengqi Dengr, Chong
Ruan, Damai Dai, Daya Guo, et al. Deepseek-v2: A strong, economical, and efficient mixture-
of-experts language model. arXiv preprint arXiv:2405.04434, 2024.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering, 2018.

Yongyu Mu, Yuzhang Wu, Yuchun Fan, Chenglong Wang, Hengyu Li, Qiaozhi He, Murun Yang,
Tong Xiao, and Jingbo Zhu. Cross-layer attention sharing for large language models. arXiv
preprint arXiv:2408.01890, 2024.

Tsendsuren Munkhdalai, Manaal Faruqui, and Siddharth Gopal. Leave no context behind: Efficient
infinite context transformers with infini-attention. arXiv preprint arXiv:2404.07143, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Tam Nguyen, Tan Nguyen, and Richard Baraniuk. Mitigating over-smoothing in transformers via
regularized nonlocal functionals. Advances in Neural Information Processing Systems, 36:80233–
80256, 2023.

Matteo Pagliardini, Amirkeivan Mohtashami, Francois Fleuret, and Martin Jaggi. Denseformer:
Enhancing information flow in transformers via depth weighted averaging. arXiv preprint
arXiv:2402.02622, 2024.

Bo Peng, Eric Alcaide, Quentin Anthony, Alon Albalak, Samuel Arcadinho, Stella Biderman,
Huanqi Cao, Xin Cheng, Michael Chung, Matteo Grella, et al. Rwkv: Reinventing rnns for
the transformer era. arXiv preprint arXiv:2305.13048, 2023.

Jackson Petty, Sjoerd Steenkiste, Ishita Dasgupta, Fei Sha, Dan Garrette, and Tal Linzen. The
impact of depth on compositional generalization in transformer language models. In Proceedings
of the 2024 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies (Volume 1: Long Papers), pp. 7232–7245, 2024.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale, 2019.

Noam Shazeer. Fast transformer decoding: One write-head is all you need. CoRR, abs/1911.02150,
2019.

Noam Shazeer. GLU variants improve transformer. CoRR, abs/2002.05202, 2020.

Han Shi, Jiahui Gao, Hang Xu, Xiaodan Liang, Zhenguo Li, Lingpeng Kong, Stephen Lee, and
James T Kwok. Revisiting over-smoothing in bert from the perspective of graph. arXiv preprint
arXiv:2202.08625, 2022.

Daria Soboleva, Faisal Al-Khateeb, Robert Myers, Jacob R Steeves, Joel Hestness, and Nolan Dey.
SlimPajama: A 627B token cleaned and deduplicated version of RedPajama, 2023. URL https:
//huggingface.co/datasets/cerebras/SlimPajama-627B.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: En-
hanced transformer with rotary position embedding. Neurocomputing, 568:127063, 2024.

Mingjie Sun, Xinlei Chen, J Zico Kolter, and Zhuang Liu. Massive activations in large language
models. arXiv preprint arXiv:2402.17762, 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need.(nips), 2017. arXiv preprint
arXiv:1706.03762, 10:S0140525X16001837, 2017.

Peihao Wang, Wenqing Zheng, Tianlong Chen, and Zhangyang Wang. Anti-oversmoothing in deep
vision transformers via the fourier domain analysis: From theory to practice. arXiv preprint
arXiv:2203.05962, 2022.

Tianwen Wei, Liang Zhao, Lichang Zhang, Bo Zhu, Lijie Wang, Haihua Yang, Biye Li, Cheng
Cheng, Weiwei Lü, Rui Hu, et al. Skywork: A more open bilingual foundation model. arXiv
preprint arXiv:2310.19341, 2023.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. In International Conference on Learning Representations.
OpenReview.net, 2024.

Sang Michael Xie, Hieu Pham, Xuanyi Dong, Nan Du, Hanxiao Liu, Yifeng Lu, Percy S Liang,
Quoc V Le, Tengyu Ma, and Adams Wei Yu. Doremi: Optimizing data mixtures speeds up
language model pretraining. Advances in Neural Information Processing Systems, 36, 2024.

Yuhui Xu, Zhanming Jie, Hanze Dong, Lei Wang, Xudong Lu, Aojun Zhou, Amrita Saha, Caiming
Xiong, and Doyen Sahoo. Think: Thinner key cache by query-driven pruning. arXiv preprint
arXiv:2407.21018, 2024.

13

https://huggingface.co/datasets/cerebras/SlimPajama-627B
https://huggingface.co/datasets/cerebras/SlimPajama-627B

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? In ACL (1), pp. 4791–4800. Association for Computational
Linguistics, 2019.

Shuangfei Zhai, Walter Talbott, Nitish Srivastava, Chen Huang, Hanlin Goh, Ruixiang Zhang, and
Josh Susskind. An attention free transformer. arXiv preprint arXiv:2105.14103, 2021.

Peiyuan Zhang, Guangtao Zeng, Tianduo Wang, and Wei Lu. Tinyllama: An open-source small
language model. arXiv preprint arXiv:2401.02385, 2024.

Chunting Zhou, Pengfei Liu, Puxin Xu, Srinivasan Iyer, Jiao Sun, Yuning Mao, Xuezhe Ma, Avia
Efrat, Ping Yu, Lili Yu, et al. Lima: Less is more for alignment. Advances in Neural Information
Processing Systems, 36, 2024.

Daquan Zhou, Bingyi Kang, Xiaojie Jin, Linjie Yang, Xiaochen Lian, Zihang Jiang, Qibin Hou,
and Jiashi Feng. Deepvit: Towards deeper vision transformer. arXiv preprint arXiv:2103.11886,
2021.

Fei Zhu, Zhen Cheng, Xu-Yao Zhang, and Cheng-lin Liu. Class-incremental learning via dual
augmentation. Advances in Neural Information Processing Systems, 34:14306–14318, 2021.

Zayd Muhammad Kawakibi Zuhri, Muhammad Farid Adilazuarda, Ayu Purwarianti, and Al-
ham Fikri Aji. Mlkv: Multi-layer key-value heads for memory efficient transformer decoding.
arXiv preprint arXiv:2406.09297, 2024.

A APPENDIX

A.1 TOKEN SIMILARITY ANALYSIS

Attention concentration tends to make embeddings of different tokens more similar, resulting in
over-smoothing. The extent of over-smoothing can be assessed by calculating the average token
similarity s of the hidden states using the following formula:

s =
1

l(l − 1)

∑l

i=1

∑l

j=1,j ̸=i
Sim

(
hi,hj

)
. (13)

where {hi}li=1 is the hidden state of the i-th token and Sim(·) denotes the operation of cosine
similarity. The results in Fig. 18 are align with the results in Fig. 1. In the case of Llama and
Mistral, the average token similarity demonstrates an “M”-shaped pattern with increasing network
depth, while entropy follows a “W”-shaped pattern at corresponding positions. These trends indicate
a strong correlation between attention concentration and over-smoothing.

0 5 10 15 20 25 30
Layer Index

0.05

0.10

0.15

0.20

0.25

0.30

Av
er

ag
e

To
ke

n
Si

m
ila

rit
y

Llama 8B V3.1
Llama 8B Instruct V3.1
Mistral 7B V0.2
Mistral 7B Instruct V0.2

Figure 18: The average token similarity of hidden states across layers in Llama and Mistral.

A.2 ATTENTION CONCENTRATION VISUALIZATION

We visualize the token importance, norms of value states and norms of hidden states for tokens at
different position across layers. The results are averaged from 1,000 different sequences so that only

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Transformer

10 20 30 40 50 60 70 80 90
Token Index

5
10

15
20

La
ye

rs

0.1

0.2

0.3

0.4

0.5

10 20 30 40 50 60 70 80 90
Token Index

5
10

15
20

La
ye

rs

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

10 20 30 40 50 60 70 80 90
Token Index

5
10

15
20

La
ye

rs

500

1000

1500

2000

2500

NeuTRENO

10 20 30 40 50 60 70 80 90
Token Index

5
10

15
20

La
ye

rs

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

10 20 30 40 50 60 70 80 90
Token Index

5
10

15
20

La
ye

rs

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

10 20 30 40 50 60 70 80 90
Token Index

5
10

15
20

La
ye

rs

200

400

600

800

1000

1200

1400

ResFormer

10 20 30 40 50 60 70 80 90
Token Index

5
10

15
20

La
ye

rs

0.01

0.02

0.03

0.04

0.05

0.06

0.07

10 20 30 40 50 60 70 80 90
Token Index

5
10

15
20

La
ye

rs

0.7

0.8

0.9

1.0

1.1

1.2

1.3

10 20 30 40 50 60 70 80 90
Token Index

5
10

15
20

La
ye

rs

50

100

150

200

250

300

SVFormer

10 20 30 40 50 60 70 80 90
Token Index

5
10

15
20

La
ye

rs

0.01

0.02

0.03

0.04

0.05

(a) Token importance.

10 20 30 40 50 60 70 80 90
Token Index

5
10

15
20

La
ye

rs

1.82

1.83

1.84

1.85

1.86

1.87

1.88

(b) Value-state norms.

10 20 30 40 50 60 70 80 90
Token Index

5
10

15
20

La
ye

rs

50

100

150

200

250

300

350

400

(c) Hidden-state drains.

Figure 19: Visualization of token importance, value state norms, and hidden state norms across
different token positions and layers in 468M models.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

1 2 3 4 5 6 7 8
Layer Index

2.75

3.00

3.25

3.50

3.75

4.00

4.25

4.50

Av
er

ag
e

En
tro

py

Transformer
NeuTRENO
Resformer
SVFormer
Cross Layer Attention

(a) Entropy.

1 2 3 4 5 6 7 8
Layer Index

0.0

0.1

0.2

0.3

0.4

0.5

To
ke

n
Im

po
rta

nc
e

Transformer
NeuTRENO
Resformer
SVformer
Cross Layer Attention

(b) Token importance.

1 2 3 4 5 6 7 8
Layer Index

0.2

0.4

0.6

0.8

1.0

1.2

Va
lu

e-
st

at
e

No
rm

Transformer
NeuTRENO
Resformer
SVformer
Cross Layer Attention

(c) Value-state norms.

1 2 3 4 5 6 7 8 9
Layer Index

0

50

100

150

200

250

Hi
dd

en
-s

ta
te

 N
or

m

Transformer
NeuTRENO
Resformer
SVformer
Cross Layer Attention

(d) Hidden-state norms.

Figure 20: Token analysis in 82M models. (a) Importance entropy of sequences; (b) Token impor-
tance, (c) value-state norms, and (d) hidden-state norms of the first token across layers.

0 5 10 15 20 25
Layer Index

0.00

0.05

0.10

0.15

0.20

0.25

To
ke

n
Im

po
rta

nc
e

Top-1
Top-2
Top-3
Top-10
Top-1%

(a) Transformer.

0 5 10 15 20 25
Layer Index

0.00

0.02

0.04

0.06

0.08

0.10

To
ke

n
Im

po
rta

nc
e

Top-1
Top-2
Top-3
Top-10
Top-1%

(b) NeuTRENO.

0 5 10 15 20 25
Layer Index

0.00

0.02

0.04

0.06

0.08

0.10

To
ke

n
Im

po
rta

nc
e

Top-1
Top-2
Top-3
Top-10
Top-1%

(c) ResFormer.

0 5 10 15 20 25
Layer Index

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

To
ke

n
Im

po
rta

nc
e

Top-1
Top-2
Top-3
Top-10
Top-1%

(d) SVFormer.

Figure 21: The distribution of token importance for different models at different layers.

the start token is the same and special across all sequences. Fig. 19 (First column) demonstrates
that the start token easily attracts massive attention despite lacking semantic information for Trans-
former and NeuTRENO. For ResFormer, the importance of the start token is less than 10 times that
of tokens at other positions, indicating that tokens carrying semantic information receive more atten-
tion. Moreover, both Transformer and NeuTRENO exhibit significant value-state drains (Guo et al.,
2024b) and residual-state peaks (Guo et al., 2024a; Sun et al., 2024) on the start token at certain
layers. In contrast, for ResFormer, the value state norm of the start token exceeds half the magnitude
of other tokens, while the peak hidden state norm is less than triple the average. Fig.21 further illus-
trates the distribution of token importance, where TOP-i represents the i-th largest token importance
within a sequence. Compared to Transformer and NeuTRENO, ResFormer and SVFormer exhibit a
more uniform distribution of token importance.

Similar to Fig.2, we conducted experiments on 82M models, with results shown in Fig.20. We also
illustrate the attention pattern of cross-layer attention introduced in Eqn. 2. The results demonstrate
that while cross-layer attention successfully mitigates the problem of attention concentration, it still
exhibits value-state drains.

A.3 ABLATION STUDY OF NEUTRENO

NeuTRENO is sensitive to the choice of hyperparameter λ which is task-dependent. In the appendix
of Nguyen et al. (2023), it is reported that λ is set to 0.6 for image classification and segmentation
tasks, and 0.4 for language modeling tasks. Fig. 22 indicates that λ = 0.4 achieves the best results
in our training dataset so that we choose λ = 0.4 for comparison. Besides, we empirically choose
λ = 0.2 for NeuTRENO when combined with ResFormer.

A.4 PRE-TRAIN DATASET

Based on the equation D ≥ 5000 · N0.74 (Kaplan et al., 2020) where D is data size and N is the
number of non-embedding parameters, we need to collect at least 17.5B for model has N = 700M
non-embedding parameters (corresponding to complete 1B model with 2,048 hidden size, 50,277
vocab size and 2,048 sequence length) to avoid over-fitting. Besides, Xie et al. (2024) indicates that
the mixture proportions of pre-training data domains significantly affects the training results. In this
way, we sampled 20B tokens data from original 627B data based on the original data proportions
shown in the Table 2.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

0 2000 4000 6000 8000
Training Step

0.04

0.03

0.02

0.01

Re
la

tiv
e

Tr
ai

ni
ng

 L
os

s

NeuTRENO(Lambda 0.2)
NeuTRENO(Lambda 0.4)
NeuTRENO(Lambda 0.6)
NeuTRENO(Lambda 0.8)

Figure 22: Ablation study of different λ for NeuTRENO.

Data source proportions Tokens

Commoncrawl 50% 10 B
C4 20% 4 B

GitHub 10% 2 B
Books 5% 1 B
ArXiv 5% 1 B

Wikpedia 5% 1 B
StackExchange 5% 1 B

Table 2: The details of pre-train dataset.

A.5 TRAINING DETAILS

Max Sequence Length 512 2,048 8,192 32,000 64,000

Total Batch Size 4,096 1,024 256 64 32
Per-GPU Batch Size 128 32 8 2 1
Gradient Accumulation Step 32
GPUs 8

Table 3: Training details for training dataset with different sequence length.

Section 4.1.1 introduces the main experimental hyperparameters used in the paper. This section
further details the training parameters for various model sizes and training sequence lengths. Table 4
demonstrates the differences among models of various sizes. The configurations for the number
of layers, attention heads, hidden dimensions, and FFN dimensions are based on Biderman et al.
(2023). Additionally, the λ in Eqn. 8 is set to be 0.4 for NeuTRENO. Moreover, as reported in
Table 3, the batch size that a single GPU can accommodate varies depending on the length of the
training sequences. Note that the total number of tokens in each batch is consistently 2 million.

A.6 VALIDATION LOSS ON SLIMPAJAMA

Section 4.1.2 introduces to use relative training loss as a main evaluation matrix. Table 5 reports the
validation loss for differnt model on the whole validation split of slimpajama.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Model Size 2M 82M 180M 468M

Layers 4 8 12 24
Attention Heads 2 8 12 16
Hidden Dimension 16 512 768 1,024
FFN Dimension 56 1,792 2,688 3,584
Tie Word Embedding False
(Peak Learning Rate, Final Learning Rate) (6e− 4, 6e− 5)

Learning Rate Schedule Cosine Decay
Vocabulary Size 50,277
Activation Function SwiGLU
Position Embedding RoPE (θ = 10,000)
Batch Size 2M tokens
Data Size 20B tokens
(Warmup Steps, Training Steps) (120, 10,000)
Adam β (0.9, 0.95)
Dropout 0.0
Weight Decay 0.1

Table 4: Training details for models with different size.

Model Common
Crawl C4 Github Stack

Exchange Wikipedia Book Arxiv Avg.

Transformer (82M) 3.3595 3.5388 1.4247 2.3872 2.9047 3.3797 2.1779 2.7389
Transformer (180M) 3.0961 3.2834 1.2451 2.1651 2.5897 3.1309 2.0001 2.5015
Transformer (468M) 2.8514 3.0430 1.0908 1.9628 2.2821 2.8979 1.8362 2.2806
ResFormer (82M) 3.3362 3.5191 1.3941 2.3592 2.8646 3.3572 2.1518 2.7117
ResFormer (180M) 3.0631 3.2504 1.2200 2.1350 2.5435 3.0994 1.9732 2.4692
ResFormer (468M) 2.8214 3.0115 1.0730 1.9388 2.2477 2.8696 1.8142 2.2537

Table 5: Validation loss on slimpajama.

18

	Introduction
	Related Work
	Shortcut Connections For Better Information Flow
	KV cache compressing

	Method
	Motivation: Information Transfer Via Cross Layer Attention
	Efficient Cross Layer Attention
	Transformer with Residual Value
	A unified View Of NeuTRENO and DenseFormer
	SVFormer: Single-layer Value For Half KV Cache

	Pretrain Experiments
	Setting
	Training Details
	Relative Training Loss Curve On SlimPajama
	Entropy For Analyzing Attention Concentration Effects
	Spectral Decomposition For Analyzing Representations

	ResFormer vs. vanilla Transformer
	Ablation study of residual connection
	Downstream Evaluations
	Visualization of ResFormer
	SVFormer vs. GQA
	Other Factors Influencing SVFormer
	Ablation study of SVFormer

	Conclusion
	Appendix
	Token Similarity Analysis
	Attention Concentration Visualization
	Ablation study of NeuTRENO
	Pre-train Dataset
	Training Details
	Validation Loss On Slimpajama

