Under review as a conference paper at ICLR 2025

VALUE RESIDUAL LEARNING FOR ALLEVIATING AT-
TENTION CONCENTRATION IN TRANSFORMERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Transformers can capture long-range dependencies using self-attention, allowing
tokens to attend to all others directly. However, stacking multiple attention layers
leads to attention concentration. One natural way to address this issue is to use
cross-layer attention, allowing information from earlier layers to be directly ac-
cessible to later layers. However, this approach is computationally expensive. To
address this problem, we propose Transformer with residual value (ResFormer)
which approximates cross-layer attention through adding a residual connection
from the values of the the first layer to all subsequent layers. Based on this
method, one variant is the Transformer with single layer value (SVFormer), where
all layers share the same value embedding from first layer, reducing the K'V' cache
by nearly 50%. Comprehensive empirical evidence demonstrates that ResFormer
mitigates attention concentration problem in deeper layers and enhances represen-
tation across most layers, outperforming the vanilla Transformer, DenseFormer,
and NeuTRENO in training error as well as downstream tasks. SVFormer trains
significantly faster than the vanilla Transformer and performs better than other
methods like GQA and CLA, with performance influenced by sequence length
and cumulative learning rate.

Llama 8B V3.1
—— Mistral 7B V0.2 28 o :\
INE s, o
Llama 8B Instruct V3.1 ‘/\L:;(,,o O
K ~

e LR
070 J\ --- Mistral 7B Instruct V0.2 \ e ./'t'fz,{.
>\ 24 N/ \ / - /

]
Y N A

B INAVAY/

o A
16 NeuTRENO ¥ .

—e— Resformer N

!
Y

) 050 —s— SVFormer

“ >

Average Entropy
N
Average Entropy

Token Similarity
w

0 5 10 15 20 25
Layer Index

0 5 10 15 20 25 30
Layer Index

Figure 1: (Left) The average entropy of token importance and the average hidden-state similarity
for a randomly initialized 468M model. (Middle) The average entropy of token importance across
layers in Llama (8B) (Dubey et al.} 2024) and Mistral (7B) (Jiang et al.,|2023). (Right) The average
entropy of token importance across layers in ResFormer vs. the vanilla Transformer, where token
importance is derived from the attention matrix. Lower entropy indicates more focused attention on
specific tokens. More details can be found in Eqn. @

1 INTRODUCTION

The Transformer (Vaswani et al., 2017)) model has become one of the leading architectures in recent
years, excelling in both language modeling (Devlin et al., 2019;|Lan et al., 2020} Brown et al., [2020)
and computer vision tasks (Dosovitskiy et al.,2021)). The discovery of scaling laws (Hoffmann et al.,
2022; |[Kaplan et al., [2020) has driven the pursuit of larger Transformer models by increasing net-
work depth and width. Training large models presents significant challenges. Balancing the depth
and width of a Transformer model within a fixed parameter budget is particularly difficult. While
research indicates that deeper models generalize more compositionally than shallower ones (Petty
et al.,|2024), the training and deployment of deep models remain problematic. Although Transform-
ers use residual connections (He et al.l 2016) to address the vanishing gradient issue, training very

Under review as a conference paper at ICLR 2025

3000

—e— Transformer . 18 > —e— Transformer —o— Transformer |, _e-e-e=s=s=s=s=s=s=s¢
05 —o= NeuTRENO \ — . —e~ NeuTRENO —e— NeuTRENO -
—e— Resformer —e= Resformer 2500 _o— Resformer
—e— SVformer / 14 » —e— SVformer —e— SVformer
04 \ o .
/ . t'e 2000
/ K B N AL 1
e =N VN L |
< 13

g £ £
o £
8 LAY A 22 A <
S e NN o 8
goa o / an /\\;\117 _________ ngUU
£ % - . 7
c \ b 08 - N Va P 7 5
Loz 2 2 © 1000
] \ Sos \ / 2
L A" 500
01 i \: 0.4 /& ’Z: \ =t /, l
__________________________ acs,
(- B Rmas 2 ® - 02 ey ;::/«'\A. PR— ezezt=?:

o 5 10 15 20 25 0 5 10 15 20 25 0 5 10 15 20 25
Layer Index Layer Index Layer Index

(a) Token importance. (b) Norms of value states. (c) Norms of hidden states.

Figure 2: The token importance (Xiao et al. 2024), value-state norms (Guo et al., [2024b), and
hidden-state norms (Sun et al][2024)) of the first token across layers of 468M models. More Visual-

ization results are available in Appendix

deep Transformers is still challenging. For example, a 32-layer Vision Transformer (ViT) may per-
form worse than a 24-layer one 202T). This is mainly due to the smoothing mechanism

of attention (Shi et all, [2022)), which can lead to an over-smoothing effect (Nguyen et al. [2023)

where the token representations become the same as the model’s depth increases.

Existing solutions to alleviate the over-smoothing problem in Transformer include adding extra reg-
ularizers (Nguyen et al.}[2023};|Shi et al., 2022) and optimizing the information flow within the model
(Pagliardini et al., 2024)). During the era of convolutional neural network architectures, Stochastic
Depth (Huang et al.| 2016) reduces the likelihood of over-smoothing by randomly dropping layers
during training and DenseNet (Huang et al.,[2017) mitigates the impact of over-smoothing by allow-
ing each layer to directly access the hidden states of all preceding layers. Recently, DenseFormer
(Pagliardini et al] [2024) adopts the idea of DenseNet when training Transformer. Additionally,
NeuTRENO (Nguyen et alJ [2023) alleviates over-smoothing through incorporating the difference
between the value vectors of the first layer and the current layer to the attention output.

In this paper, we address the problem of multi-layer attention from another perspective. We in-
troduce the phenomenon of attention concentration, which describes how a model’s attention in-
creasingly focuses on fewer tokens. We quantify the degree of attention concentration using the
entropy of the distribution of token importance, where lower entropy indicates a more pronounced
concentration. Unlike over-smoothing, which is inherent to model architecture, attention concen-
tration emerges during training. Fig.[T] (Left) shows that randomly initialized models exhibit over-
smoothing but not attention concentration. Trained ViT models often focus on low-informative
background areas (Darcet et al} [2024), while language models concentrate on low-semantic tokens
[2024), particularly the start token (attention sink [2024)). While previous
studies analyzed single-layer attention patterns, our research reveals a “concentration - dispersion -
concentration” pattern in deep models, as shown in Fig. [I](Middle), suggesting potential loss of in-
formation during concentrated phases. The analysis of over-smoothing is available in Appendix[A-]]

Mitigating attention concentration can lead to more interpretable attention maps and potentially im-
prove downstream task performance (Darcet et al.} 2024)). This phenomenon typically emerges after
the second or third network layer and is associated with value-state drains (decreased magnitude of
value states) (Guo et al] [2024b), and hidden-state peaks (increased magnitude of hidden states)
[etall 2024)). [Guo et al.|(2024a) shows a mutual reinforcement mechanism exists between value-state
drains and attention concentration. Recent studies have linked this to implicit biases during pretrain-
ing, with most existing solutions focusing on the use of additional tokens (registers)

[2024) or additional keys and values (explicit attention bias) [2024) to redirect this.

Given that the first layer always shows no attention concentration, an effective method is to use cross-
layer attention on information from this layer. However, due to computational costs, we propose
ResFormer as an efficient alternative. ResFormer applies a residual connection between the value
vectors of the current layer and the first layer before the attention operation. Unlike cross-layer
attention, ResFormer indirectly mitigates attention concentration. It leverages the absence of value-
state drains in the first layer by introducing a value residual connection. This alleviates value-state
drains in deeper layers, thereby disrupting the mutual reinforcement between attention concentration
and value-state drains, as shown in Fig. [[] (Right) and Fig.

During inference, deep networks require substantial KV cache, severely impacting model deploy-
ment (Xiao et al.,[2024). Existing KV -efficient methods often process keys and values simultane-

Under review as a conference paper at ICLR 2025

HZ
()
(] @])
G v #

H ' - (H 3

6 ; 3 o
v ® a0 va
e
e H]
A [ve
[we - A° Ve 2 Ve
(a) Transformer (b) NeuTRENO (c) DenseFormer (d) ResFormer (e) SVFormer

Figure 3: Simplified illustration of the vanilla Transformer, NeuTRENO, DenseFormer, ResFormer,
and SVFormer, with only three-layer structures and no operations other than attention. A% V', and
H' denote the attention matrix, value vectors, and attention outputs at the i-th layer, respectively. @,
6, and ® represent standard matrix addition, subtraction, and multiplication, respectively.

ously. Building on ResFormer, we decouple the value from the attention operation and propose a
new kind of Transformer with single layer value (SVFormer). In SVFormer, the queries and keys of
all layers share the value from the first layer, and thus it can also alleviate attention concentration.

We experiment on a 20B SlimPajama sub-sampled dataset, using settings similar to popular large
language models (Wei et al.l 2023 [Dubey et al.|, 2024} [Kaplan et al., [2020). We compare different
models by their relative training curves against the vanilla Transformer. Results show that Res-
Former outperforms the vanilla Transformer, DenseFormer, and NeuTRENO. ResFormer achieves
equivalent validation loss with 10.4% fewer model parameters and 13.6% less training data com-
pared to Transformer, while maintaining similar memory usage and computational cost. Besides,
SVFormer, while reducing the K'V'-cache by nearly half, requires a 12.2% increase in parameters
to achieve the same validation loss as Transformer. And the performance of SVFormer is better
when the training sequence length is longer. It further reduces the K'V' cache when integrated with

classical method GQA (Ainslie et al.,[2023)).

2 RELATED WORK

2.1 SHORTCUT CONNECTIONS FOR BETTER INFORMATION FLOW

Deep learning models often consist of multiple layers, posing a challenge to minimize information
loss during transmission. ResNet mitigates the vanishing gradient problem with
identity connections. Stochastic Depth (Huang et al.| 2016) enhances training by randomly dropping
layers. DenseNet (Huang et all 2017) allows subsequent layers to directly access the hidden states
of all preceding layers. These two methods further enhance the information flow after ResNet.

Related research indicates that for advanced Transformer architectures, although increasing depth
continues to yield performance improvements in language modeling tasks, the gains become less
significant with further increases (Petty et al [2024). Furthermore, [Zhou et al. (2021) illustrates
that a 32-layer ViT underperforms a 24-layer ViT. Depth-Wise Attention (EINokrashy et al.| 2024)
allows each query to access the key and value at the same position from previous layers through an
attention-like mechanism before the output layer. DenseFormer (Pagliardini et al., [2024) integrates
weighted fusion of outputs from all preceding layers after each layer. To explore why increasing
depth in Transformers does not yield expected gains, [Wang et al.| (2022)) finds that self-attention
acts as a low-pass filter, smoothing token representations in ViTs. Additionally, (2022) in-
vestigates over-smoothing from a graph perspective in BERT-based language modeling tasks. Neu-

Under review as a conference paper at ICLR 2025

TRENO (Nguyen et al.,[2023) adds the difference between the value vectors of the first and current
layers to each layer’s attention output and significantly alleviates the over-smoothing problem.

In contrast to these methods, ResFormer accesses and integrates information from previous layers
prior to the attention operation, as illustrated in Fig.[3] Moreover, it does not require the selection or
tuning of additional hyperparameters.

2.2 KV CACHE COMPRESSING

The KV cache is a key factor limiting the efficiency of long-text model inference. Research in this
area can be broadly classified into Transformer-based methods, which target redundant information
in Transformer models, and non-Transformer methods, which mainly addresses the quadratic time
complexity of attention with respect to sequence length.

For non-Transformer methods, Mamba (Gu & Daol [2023)) and RWKYV (Peng et al., 2023) are two
popular works. They replace the original softmax-based attention with SSM (Gu et al.l [2021)) and
AFT (Zhai et al., [2021) mechanisms, respectively. Besides, several approaches have been proposed
to enhance models’ ability to process long texts while reducing the reliance on KV cache. |Dai et al.
(2019) advocates segmenting long texts into smaller parts for attention computation. Furthermore,
Munkhdalai et al.|(2024)) uses a fixed-size memory matrix for storing and retrieving past information.

Transformer-based methods can be categorized into three main groups. The first group consists of
post-training methods like SnapKV (Li et al.| [2024)) and ThinK (Xu et al.l [2024)), which compress
KV cache during inference based on attention matrices at token or hidden dimension levels. The
second group focuses on quantization and adopts low-precision K'V' cache quantization rather than
completely eliminating them (Hooper et al., 2024])). The third group aims to maximize the efficiency
of attention-based models via parameter or activation value sharing. The most representative works
include Multi-Query Attention (Shazeer,|2019) and Grouped-Query Attention (Ainslie et al., [2023))
which suggest to share key and value across a group of queries. MLKV (Zuhri et al.l |2024) further
suggest to share keys and values for queries across layers and MLA (Liu et al., [2024) introduces
low-rank projection when processing keys and values. Besides, CLA (Brandon et al.| |2024) and
LISA (Mu et al.l 2024)) respectively point out that we can reuse keys, values, or the attention matrix
across layers to reduce redundancy between layers. While these methods typically process both key
and value simultaneously, SVFormer is the first approach to decouple value from query and key
during attention computation. Moreover, it is compatible with other methods like GQA.

3 METHOD

3.1 MOTIVATION: INFORMATION TRANSFER VIA CROSS LAYER ATTENTION

Let H,, € R be the input hidden state of the n-th layer, where [denotes the sequence length
and d is the dimension size. In standard attention, the hidden state H,, will be firstly projected into
Q.. K,,V, € R through three linear projections W, WX WV ¢ R4*? respectively. For
simplicity, we introduce dot-product attention of layer n as

T
LSS 1)

Vd

An ideal way to incorporate previous layers’ information is cross layer attention. The attention
mechanism naturally extracts relevant information from previous layers. If these layers contain low-
quality information, the similarity between the current layer’s query and the previous layers’ keys
will be low, thus minimizing negative impacts. Given m < n and the information (Q,,,, K, V)
of m-th layer, the cross layer mechanism calculates the attention output U,, of n-th layer by the
following attention formula:

U,, = Softmax (Qn Concat(K,, Km)T/\/g) Concat(V,, V).)

In practice, cross-layer attention enhances feature fusion by allowing information to flow between
layers, capturing both intra-layer and inter-layer dependencies. However, this approach introduces
additional computational overhead due to the concatenation of keys and values from multiple layers.
For example, in scenarios described by Eqn. [2] the overall computational complexity of the model
nearly doubles compared with vanilla attention described in Eqn.

Attention(Q,,, K, V,) = Softmax(

Under review as a conference paper at ICLR 2025

3.2 EFFICIENT CROSS LAYER ATTENTION

To solve this problem, we propose to replace the K,,, with K,, in Eqn. 2} as shown in Eqn.[3]
U,, =~ Softmax (Qn Concat(K,, Kn)T/\/Zi) Concat(Vy, V) (3)

- % Softmax (Qan /\/&) (Vi + V). @)

Utilizing the concept of block matrices, Eqn. [3] can be further simplified into Eqn.[d] This simpli-
fication converts the concatenation operation of the two value matrices into an addition operation.
Compared to Eqn. [T} this new method only brings a minimal increase in computational complexity
while still leveraging the information from the m-th layer in the n-th layer. Furthermore, Eqn. [can
be generalized to incorporate cross-layer attention across all preceding n — 1 layers as follows:

1 n
U, ~—-A, V. 5
- Zl (5)

where A, denotes the original attention matrix for layer n. From the perspective of in-
formation propagation, model described by Eqn. [3] projects the historical values into the
current layer’s embedding space using the current layer’s attention as a weight matrix.
For example, a naive approach would be to perform identity mapping, as described by

0.9 —e— Current Attention

n—1 Identity Mapping
1 _
U,=A,V, + —— V,. 6 N
) © \ =
-\

To evaluate the approximation effect of replacing the K,,
with K,,, we randomly select 1,000 pre-training data sam-
ples. For each layer of a trained baseline model, assuming
cross-layer attention is required for each layer with respect to
the previous one, we calculate the cosine similarity between
the outputs from Eqn. 2] and Eqn. f] We also calculate the
cosine similarity between the outputs from Eqn.2Jand Eqn.[6] pepween layer outputs. Lines show
for comparison. Fig.[dshows that our proposed method pro- similarity of outputs using current
vides a good approximation for cross-layer attention. attention (Eqn.) or identity atten-

Average Cosine Similarity
© o o o o
O -V

°
w

2 3 7 8

5
Layer Index

Figure 4: Average token similarity

tion (Eqn. [f) compared to the one
3.3 TRANSFORMER WITH RESIDUAL VALUE using cross-layer attention (Eqn. [2).

Based on Eqn. [5] we propose a variant of Transformer with residual value (ResFormer) which only
chooses first layer as the target of cross layer attention since the first layer contains all basic infor-
mation of each token. The analysis of entropy in Fig. [I] (Right) supports this point, indicating that
attention tends to be relatively dispersed across different tokens in the initial layers of the model.
The attention mechanism of ResFormer can be formulated as

1
Un = iAn(Vn + Vl)- (7)

where n > 2 and standard attention is applied in the first layer. From the training perspective, it
explicitly learns a residual mapping instead of directly learning the desired underlying mapping and
that’s why we call it ResFormer.

3.4 A UNIFIED VIEW OF NEUTRENO AND DENSEFORMER
Using our framework, the NeuTRENO can be defined as
U, = (An -)\I)Vn LAV, ®)

where I denotes the identity matrix and X\ is a hyper-parameter. It can be found that the term of AL
may have certain negative impact on the learning of original attention. If we ignore the attention
output projection and the MLP layer, DenseFormer can also be modeled within our framework as

i=1

Under review as a conference paper at ICLR 2025

where {a; }!", is a set of hyper-parameters. DenseFormer uses attention matrix of previous layer
as the weight matrix of projecting values but this is not aligned with the concept shown in Eqn.

3.5 SVFORMER: SINGLE-LAYER VALUE FOR HALF KV CACHE
After ResFormer, a natural idea is whether we can remove the value vectors in each layer and have

all layers share the value vectors from the first layer. We call this method SVFormer. Similar to
ResFormer, SVFormer still adopts standard attention in the first layer and obtain the attention output

U,, for n-th layer where n > 2 through 008

U, =A,V,. (10)

Compared to previous methods, SVFormer is the first method
that decouple value vectors from attention. Its main advan- i I —

tage is that it only requires computing and storing the value . R .
vectors for the first layer, saving nearly half of the K’V cache o0 A Only Share Keys

during inference. Similar methods like CLA reduce KV 003 e

Relative Training Loss

0 2000 4000 6000 8000 10000

cache by sharing both of the key and value vectors every two Treining Step

layers. However, the results in Fig. [5] show that sharing val- Figure 5: Ablation study of shar-

ues has less negative impact compared with sharing keys. ing different parts of attention every
two layers.

4 PRETRAIN EXPERIMENTS

4.1 SETTING

4.1.1 TRAINING DETAILS

Following |Brandon et al.| (2024)), we choose the Llama-like architecture and SlimPajama (Soboleva
et al.| [2023) data for main experiments. Specifically, the architecture includes pre-normalization,
SwiGLU activations (Shazeer, [2020), rotary position embedding (Su et al.l |2024), and no dropout.
For slimpajama, we randomly sample nearly 20B tokens according to the original data distribution
of seven domains during training and adopt tokenizer used for “RedPajama-INCITE-7B-Base”. The
details of training data can be found in Table[2]in Appendix.

Unless otherwise noted, we train all models using AdamW optimizer with 0.1 weight decay, 51 =
0.9, B2 = 0.95 and the max grad norm 1.0. The batch size is set to be around 2M tokens (Zhang
et al.| 2024)) with a sequence length of 2,048 and the total steps is fixed 10,000 steps (Kaplan et al.,
2020). We adopt linear learning rate warmup for the first 1,200 steps with the initial learning rate
and the peak learning rate to be le-7 and 6e-4 respectively. The cosine decay schedule gradually
decays to 10% of the peak learning rate by the end of training (Zhou et al., [2024; Wei et al., [2023).
The detailed hyperparameters for models of various sizes and different training sequence lengths
in Appendix [A5] Moreover, All models are trained with 8 Nvidia A100 80G GPUs using mixed-
precision training in FP16. We adopt deepspeed zero-2 optimizer and flash attention mechanism.

4.1.2 RELATIVE TRAINING LOSS CURVE ON SLIMPAJAMA

We trained all models for only one epoch on SlimPajama subsets, and primarily use training loss to
compare different models. Furthermore, we use the relative training loss curve for better visualizing
the difference among different models from the perspective of loss landscape. Specifically, for each
method, we will subtract the smoothed training curve of the vanilla Transformer, obtained under the
same experimental settings, from the smoothed training curves of the method. The smoothing is
done using a window size of 10 steps or 100 steps.

4.1.3 ENTROPY FOR ANALYZING ATTENTION CONCENTRATION EFFECTS

Given the attention matrix A € R'*! at one layer, we use entropy e to represent its concentration
effect. To obtain entropy E, calculate the importance vector a = % Zé.:l A;j firstly where A is a
lower triangular matrix. The entropy can be formulated as follows:

Under review as a conference paper at ICLR 2025

Average Valid Loss

0 25 30 35 a0 as 04 05 08 10 12 14 400 00 B0 10000
Parameters 18 # Training Tokens Training Step

Figure 6: (Left) Validation loss as model size Figure 7: (Left) The relative training curve be-
scales from 82M to 468M parameters. (Right) tween a 82M ResFormer and Transformer across
Validation loss for the 468M parameter model different training sequence lengths. (Right) Rela-
evaluated every 2B tokens. ResFormer achieves tive training loss of various Transformer variants
approximately 10.4%-13.6% reduction in both compared to the vanilla Transformer model, with
model parameters and training data. model size fixed at 82M parameters.

!
e:—Zagloga;. (11)
i=1

where a;' = a;/ <Zé=1 ai) forv = 1,2,...,[and the higher the entropy e, the greater the degree
of clustering in a, i.e., attention matrix A is more likely to focus on several specific tokens.

4.1.4 SPECTRAL DECOMPOSITION FOR ANALYZING REPRESENTATIONS

Spectral Decomposition is a classical method to analyze the representations of models.
(2021)) suggests that the eigenvectors with larger eigenvalues are more transferable. Here we use
spectral decomposition to analyze the feature space of value v of one layer as following:

l d
1
YZvi'uiT = ij)\jwjr. (12)
i=1 j=1
where w; is the j-th eigenvector with eigenvalue A; for j = 1,2,...,d and d is the dimensionality

of the value’s feature space.

4.2 RESFORMER vs. VANILLA TRANSFORMER

We trained ResFormer and vanilla Transformer with different model size on data with different se-
quence lengths. In Fig. [7] (Left), ResFormer consistently outperforms vanilla Transformer through-
out training across different training sequence lengths. Additionally, the results in Fig. [7] (Right)
illustrate that ResFormer outperforms DenseFormer and NeuTRENO. Furthermore, integrating Res-
Former with NeuTRENO leads to additional performance improvements.

We also analyzed how ResFormer and Transformer scale at model size and data size. ResFormer
and Transformer are trained on similar experiment setting. On the one hand, we trained model with
82M, 180M, 320M and 468M parameters on 20B training tokens and evaluated them on a separate
validation set. As shown in Fig[f](Left), ResFormer achieves equivalent validation loss to the Trans-
former while utilizing 10.4% fewer model parameters. On the other hand, we evaluated the 468M
models every 2B tokens and ResFormer needs 13.6% fewer training tokens to achieve the same
validation loss as Transformer. The validation loss for these models is available in Appendix [A.6]

/,:

~—— Lambda 0.2
—— Lambda 0.5
—— Lambda 0.8

0.00

We further test the variant of ResFormer defined as U,, = 002
A, (V, + AVy). As shown in Fig ResFormer can ac-
commodate a wide range of A values and the performance
improves as A\ increases, achieving the best results at A = 2.
Regardless of the value of A, ResFormer consistently out-
performs Transformers. It suggests that the success of Res- o0
Former lies in the use of V; and the mapping by A ,,. The ab-

lation study of different hyperparameters A for NeuTRENO, ’ P panngsten

as defined in Equation[8] can be found in the Appendix[A.3] Figure 8: Ablation study of differ-
ent A for ResFormer.

~0.04

~0.06

~0.08

Relative Training Loss

—— Lambda 1
—— Lambda 2
—— Lambda 5

Under review as a conference paper at ICLR 2025

LU 0.01

0.5
0.00

0.4
—— ResFormer

Cross Layer Attention
—— Identity Mapping

Relative Training Loss
i
Relative Training Loss
Relative Training Loss
| 1

Value shortcut from:

—— Only First layer
One Adjacent layer

—— Al Previous layer

Add residual of:
— Value
Key

-0.04

— Query

-010 ! 01t -005
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 0 2000 4000 6000 8000 10000

Training Step Training Step Training Step

Figure 9: Ablation study of Figure 10: Ablation study of Figure 11: Ablation studies on
adding residual connection to adding residual connection us- which historical layer’s value to
queries or keys. ing different mapping matrix. include in residual connections.

4.3 ABLATION STUDY OF RESIDUAL CONNECTION

In Eqn.] we employ residual connections for the values. We compare this approach with models
that add residual connections to queries or keys. The results, shown in Fig. 9] indicate that only
residual connections for values yield positive effects. One possible explanation is that attention
mechanisms are sensitive to perturbations, and modifying queries or keys significantly impacts it.

Moreover, we compare with the models based on Eqn. 2] and Eqn. [§] The results in Fig. [I0] align
with Fig. 4] showing that identity mapping causes significant perturbations, leading to poor perfor-
mance. Interestingly, ResFormer achieves an even lower final loss than ResFormer. It suggests that
ResFormer’s impact on the attention optimization is better by mitigating value-state drains.

When determining the mapping method and target value, it is crucial to consider which historical
layers’” values should be included in the residual connection. Fig. [TT|shows that each Transformer
layer should add a shortcut to the first layer’s value rather than to the nearest preceding layer or all
previous layers, highlighting the first-layer value’s critical importance. A potential explanation is
that incorporating values from other layers may dilute the impact of the first-layer value.

4.4 DOWNSTREAM EVALUATIONS

We compare the different models on several classical reasoning tasks following (Zhang et al., [2024)
in a zero-shot way. The tasks include Hellaswag (Zellers et al., 2019), OpenBookQA (Mihaylov
et al.| |2018), WinoGrande (Sakaguchi et al., 2019), ARC-Easy and ARC-Challenge (Clark et al.,
2018) and PIQA (Bisk et al.,2020). The results in Table show that ResFormer achieved an average
accuracy improvement of nearly 3% compared to the vanilla Transformer.

Model Max Length HellaSwag Obga WinoGrande ARC-c ARC-e PIQA Avg
Transformer 2,048 0.263 0.142 0.492 0.199 0331 0572 0.333
ResFormer 2,048 0.273 0.148 0.512 0.182 0414 0.604 0.355
Transformer 64,000 0.267 0.142 0.485 0.179 0322 0570 0.328
ResFormer 64,000 0.274 0.136 0.513 0.184 0.407 0.588 0.350

Table 1: Zero-shot accuracy on commonsense reasoning tasks.

4.5 VISUALIZATION OF RESFORMER

To figure out why ResFormer can achieve better performance on language modeling tasks than
vanilla Transformer, we conduct visualization based on the eigenvalue decomposition discussed in
Section[d.1.4] After sorting the eigenvalues in descending order, we compute the average eigenvalue
for each layer across 1,000 randomly sampled pre-train data examples. The results in Fig.[T2]indicate
that the value states generated by most layers of the ResFormer exhibit stronger representational
capacity compared to those of the vanilla Transformer.

We also analyze the attention concentration effects mentioned in Section[d.1.3|using the same batch
of test data. Fig. |l| (Right) illustrates that the clustering effect of attention increases significantly

Under review as a conference paper at ICLR 2025

~—— Resformer 468M
—— Transformer 468M
-~ Resformer 180M
-~ Transformer 180M

125 Resformer 82M

Transformer 82M

Eigenvalue

200 800 1000

400
Index of eigenvectors

Eigenvalue

~—— Resformer 468M

—— Transformer 468M
Resformer 180M
Transformer 180M

10 1 20
Index of eigenvectors

Figure 12: Left: Distribution of eigenvalues for the value vectors in the first layer of ResFormer and
Transformer. Right: Maximum eigenvalue for each layer of ResFormer and Transformer.

SVFormer (2048)
GOAZ (2048)
CLA? (2048)

— SVFormer (64000)

— SVFormer+GQA4 (64000)
—— GQA2 (64000) 006 —— GQAB (64000)
—— CLA2+GQA4 (64000)
o8
o 2000 000

— clea o0y |

Relative Training Loss

Figure 13: The relative training loss for SV-
Former and other KV efficient model compared
with vanilla attention. The numbers in parenthe-
ses represent the training sequence length. Left:
Model with nearly 1/2 KV cache. Right: Model
with nearly 1/8 K'V cache.

000 50000 60000
Length

Figure 14: Left: The relative training loss for SV-
Former under different sequence lengths with a
fixed batch size of 2M tokens. Right: Analysis of
critical point, and we predict it for length 64,000
using linear regression with the last 1,000 data
points.

with the number of layers for the vanilla Transformer, whereas the clustering effect is relatively
less pronounced for the ResFormer. We further visualize the attention weights, value-state norms
||v||2, and hidden-state norms ||k ||2 of tokens at different layers and positions, with detailed results
in Appendix Given that attention clustering often occurs on the first token, we primarily show
its results in Fig. “@] The results indicate that using ResFormer significantly mitigates attention sinks
[2024)), value-state drains and residual-state peaks [2024).
Guo et al.| (2024a)) attributes these phenomena to the mutual reinforcement mechanism of model
and we suggest that the value shortcut disrupts this mechanism by alleviating value-state drains.
Specifically, for tokens lacking semantic information like start tokens, a large value state magnitude
can adversely affect the prediction of subsequent tokens if they are overly attended to. When there
is no value-state drains, models will reduce attention clustering to these tokens to minimize loss.

4.6 SVFORMER vs. GQA

In the Fig. [T3] at a training sequence length of 64,000, SVFormer demonstrates lower final loss
compared to existing KV -efficient methods such as CLA and GQA. Moreover, it can be used con-
currently with GQA to enhance KV efficiency further. However, we observed that with a training
sequence length of 2,048, SVFormer underperforms compared to GQA. The results indicate that
sequence length significantly affects SVFormer’s performance. Thus, we conducted more compre-
hensive experiments on sequence length.

Results in Fig. [T4] (Left) demonstrate that SVFormer will always be gradually surpassed by vanilla
attention during training while its training speed is faster than vanilla Transformer at the early stage.
However, as the training sequence length increases, the SVFormer model performs better. In this
way, we focus on the critical point, defined as the number of training steps exceeded. Fig.[T4](Right)
illustrates that the relationship between the critical point and sequence length exhibits an exponential
trend. We argue that it’s due to the challenge deep models face in fully optimizing the increasingly
larger first-layer value matrix as the training sequence length grows.

4.7 OTHER FACTORS INFLUENCING SVFORMER

Intuitively, the training effectiveness of SVFormer is influenced by factors such as the maximum
learning rate, warmup steps, model size, and other factors beyond just the training sequence length.
We conducted experiments to explore these relationships.

Under review as a conference paper at ICLR 2025

Relative Training Loss

Relative Training Loss
———T

¥

Average Valid L

a0 000 4000 000 10000 20 25 30 35
Training Step Training Step # Parameters

(a) Learning Rate. (b) Warmup Steps. (c) Architecture. (d) Model Size.

Figure 15: The relative training loss for SVFormer under different hyper-parameter setting and the
validation loss as model size scales from 82M to 468M parameters.

Based on the results shown in Fig.[T5aand Fig.[T5b] a smaller learning rate benefits SVFormer more,
with warmup’s impact being comparatively small. This could be attributed to the model’s outcomes
being closely tied to the total summed learning rate, which has weak connection with warmup steps
(Kaplan et al.,|2020). Moreover, larger models often require smaller learning rates to ensure training
stability, making them more suitable for using SVFormer.

Llama-like models and GPT2-like models exhibit similar critical points and final losses (see
Fig. [I5¢). This suggests that the difference between SVFormer and the vanilla Transformer is not
sensitive to architecture. Compared with Transformer, SVFormer requires a 12.2% increase in pa-
rameters to achieve the same validation loss while reducing the KV -cache by nearly half.

4.8 ABLATION STUDY OF SVFORMER

Shared value from

— First Layer
First Layer
aye

Relative Training Loss
Relative Training Loss
Lo

+ Last Layer

-0.08 —— First Layer + One Middle Layer + Last Layer
—— First Layer + Two Middle Layer + Last Layer

— Key
-02
o 2000 4000 6000 8000 10000

0 2000 4000 6000 8000 10000

Training Step Training Step

Figure 16: Ablation study Figure 17: Ablation study on
of sharing first layer’s sharing values from different

query(key) across all layers. numbers of layers.

To better understand SVFormer, we conduct several ablation experiments. We first observe the
effects of sharing the first layer’s queries or keys across all layers in Fig.[T6 finding that this sig-
nificantly impacts model performance, similar to the results in Fig. 5] Additionally, sharing the
first layer’s values in a multi-layer network may reduce the network’s “effective depth.” By updat-
ing the shared values using intermediate layers as “anchors,” we find that increasing the number of
“anchors” improves performance, as shown in Fig. [I7]

5 CONCLUSION

In this paper, we propose the concept of attention concentration, a problem that arises from stack-
ing multiple attention layers. From the perspective of cross-layer attention, we derive ResFormer,
which adds a residual connection between the value vectors of the current layer and those of the
first layer before the attention operation to alleviate attention concentration. Additionally, we intro-
duce SVFormer, based on ResFormer, which reduces the K'V' cache by nearly half. We conducted
comprehensive experiments on the language modeling task to validate the advantages of these two
Transformer variants in different scenarios.

ETHICS STATEMENT
On the one hand, the data employed in this paper is sourced from publicly available datasets provided

by the company, which have undergone a certain level of filtering. On the other hand, the models
trained in our study are solely utilized for experimental analysis and will not be publicly deployed.

10

Under review as a conference paper at ICLR 2025

REPRODUCIBILITY STATEMENT

We have detailed the complete experiments setup such as batch size, optimizer, learning rates in
Section[d.1.1] Besides, we will release source codes once our paper is made public. These resources
should be sufficient to reproduce results of the paper.

REFERENCES

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebron, and Sumit
Sanghai. Gqa: Training generalized multi-query transformer models from multi-head check-
points. arXiv preprint arXiv:2305.13245, 2023.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O’Brien, Eric
Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, et al.
Pythia: A suite for analyzing large language models across training and scaling. In International
Conference on Machine Learning, pp. 2397-2430. PMLR, 2023.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. PIQA: reasoning about
physical commonsense in natural language. In AAAI pp. 7432-7439. AAAI Press, 2020.

William Brandon, Mayank Mishra, Aniruddha Nrusimha, Rameswar Panda, and Jonathan Ragan
Kelly. Reducing transformer key-value cache size with cross-layer attention. arXiv preprint
arXiv:2405.12981, 2024.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. In NeurIPS, 2020.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the AI2 reasoning challenge.
CoRR, abs/1803.05457, 2018.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime G. Carbonell, Quoc Viet Le, and Ruslan Salakhutdi-
nov. Transformer-xl: Attentive language models beyond a fixed-length context. In ACL (1), pp.
2978-2988. Association for Computational Linguistics, 2019.

Timothée Darcet, Maxime Oquab, Julien Mairal, and Piotr Bojanowski. Vision transformers need
registers. In International Conference on Learning Representations. OpenReview.net, 2024.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-training of deep
bidirectional transformers for language understanding. In NAACL-HLT (1), pp. 4171-4186. As-
sociation for Computational Linguistics, 2019.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
scale. In International Conference on Learning Representations. OpenReview.net, 2021.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Muhammad EINokrashy, Badr AlKhamissi, and Mona Diab. Depth-wise attention (dwatt): A layer
fusion method for data-efficient classification. In Proceedings of the 2024 Joint International
Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING
2024), pp. 46654674, 2024.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. arXiv
preprint arXiv:2312.00752, 2023.

11

Under review as a conference paper at ICLR 2025

Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
state spaces. arXiv preprint arXiv:2111.00396, 2021.

Tianyu Guo, Druv Pai, Yu Bai, Jiantao Jiao, Michael I Jordan, and Song Mei. Active-dormant
attention heads: Mechanistically demystifying extreme-token phenomena in llms. arXiv preprint
arXiv:2410.13835, 2024a.

Zhiyu Guo, Hidetaka Kamigaito, and Taro Watanabe. Attention score is not all you need for token
importance indicator in kv cache reduction: Value also matters. arXiv preprint arXiv:2406.12335,
2024b.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770-778, 2016.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Train-
ing compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, Michael W Mahoney, Yakun Sophia Shao,
Kurt Keutzer, and Amir Gholami. Kvquant: Towards 10 million context length 1lm inference with
kv cache quantization. arXiv preprint arXiv:2401.18079, 2024.

Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q Weinberger. Deep networks with
stochastic depth. In Computer Vision—ECCV 2016: 14th European Conference, Amsterdam, The
Netherlands, October 11-14, 2016, Proceedings, Part IV 14, pp. 646—661. Springer, 2016.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 4700-4708, 2017.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de Las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas
Wang, Timothée Lacroix, and William El Sayed. Mistral 7b. CoRR, abs/2310.06825, 2023.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and Radu Sori-
cut. ALBERT: A lite BERT for self-supervised learning of language representations. In Interna-
tional Conference on Learning Representations. OpenReview.net, 2020.

Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye, Tianle
Cai, Patrick Lewis, and Deming Chen. Snapkv: Llm knows what you are looking for before
generation. arXiv preprint arXiv:2404.14469, 2024.

Aixin Liu, Bei Feng, Bin Wang, Bingxuan Wang, Bo Liu, Chenggang Zhao, Chengqi Dengr, Chong
Ruan, Damai Dai, Daya Guo, et al. Deepseek-v2: A strong, economical, and efficient mixture-
of-experts language model. arXiv preprint arXiv:2405.04434, 2024.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering, 2018.

Yongyu Mu, Yuzhang Wu, Yuchun Fan, Chenglong Wang, Hengyu Li, Qiaozhi He, Murun Yang,
Tong Xiao, and Jingbo Zhu. Cross-layer attention sharing for large language models. arXiv
preprint arXiv:2408.01890, 2024.

Tsendsuren Munkhdalai, Manaal Faruqui, and Siddharth Gopal. Leave no context behind: Efficient
infinite context transformers with infini-attention. arXiv preprint arXiv:2404.07143, 2024.

12

Under review as a conference paper at ICLR 2025

Tam Nguyen, Tan Nguyen, and Richard Baraniuk. Mitigating over-smoothing in transformers via
regularized nonlocal functionals. Advances in Neural Information Processing Systems, 36:80233—
80256, 2023.

Matteo Pagliardini, Amirkeivan Mohtashami, Francois Fleuret, and Martin Jaggi. Denseformer:
Enhancing information flow in transformers via depth weighted averaging. arXiv preprint
arXiv:2402.02622, 2024.

Bo Peng, Eric Alcaide, Quentin Anthony, Alon Albalak, Samuel Arcadinho, Stella Biderman,
Huanqgi Cao, Xin Cheng, Michael Chung, Matteo Grella, et al. Rwkv: Reinventing rnns for
the transformer era. arXiv preprint arXiv:2305.13048, 2023.

Jackson Petty, Sjoerd Steenkiste, Ishita Dasgupta, Fei Sha, Dan Garrette, and Tal Linzen. The
impact of depth on compositional generalization in transformer language models. In Proceedings
of the 2024 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies (Volume 1: Long Papers), pp. 7232-7245, 2024.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale, 2019.

Noam Shazeer. Fast transformer decoding: One write-head is all you need. CoRR, abs/1911.02150,
2019.

Noam Shazeer. GLU variants improve transformer. CoRR, abs/2002.05202, 2020.

Han Shi, Jiahui Gao, Hang Xu, Xiaodan Liang, Zhenguo Li, Lingpeng Kong, Stephen Lee, and
James T Kwok. Revisiting over-smoothing in bert from the perspective of graph. arXiv preprint
arXiv:2202.08625, 2022.

Daria Soboleva, Faisal Al-Khateeb, Robert Myers, Jacob R Steeves, Joel Hestness, and Nolan Dey.
SlimPajama: A 627B token cleaned and deduplicated version of RedPajama, 2023. URL https:
//huggingface.co/datasets/cerebras/SlimPajama—627B.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: En-
hanced transformer with rotary position embedding. Neurocomputing, 568:127063, 2024.

Mingjie Sun, Xinlei Chen, J Zico Kolter, and Zhuang Liu. Massive activations in large language
models. arXiv preprint arXiv:2402.17762, 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need.(nips), 2017. arXiv preprint
arXiv:1706.03762, 10:S0140525X16001837, 2017.

Peihao Wang, Wenqing Zheng, Tianlong Chen, and Zhangyang Wang. Anti-oversmoothing in deep
vision transformers via the fourier domain analysis: From theory to practice. arXiv preprint
arXiv:2203.05962, 2022.

Tianwen Wei, Liang Zhao, Lichang Zhang, Bo Zhu, Lijie Wang, Haihua Yang, Biye Li, Cheng
Cheng, Weiwei Lii, Rui Hu, et al. Skywork: A more open bilingual foundation model. arXiv
preprint arXiv:2310.19341, 2023.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. In International Conference on Learning Representations.
OpenReview.net, 2024.

Sang Michael Xie, Hieu Pham, Xuanyi Dong, Nan Du, Hanxiao Liu, Yifeng Lu, Percy S Liang,
Quoc V Le, Tengyu Ma, and Adams Wei Yu. Doremi: Optimizing data mixtures speeds up
language model pretraining. Advances in Neural Information Processing Systems, 36, 2024,

Yuhui Xu, Zhanming Jie, Hanze Dong, Lei Wang, Xudong Lu, Aojun Zhou, Amrita Saha, Caiming
Xiong, and Doyen Sahoo. Think: Thinner key cache by query-driven pruning. arXiv preprint
arXiv:2407.21018, 2024.

13

https://huggingface.co/datasets/cerebras/SlimPajama-627B
https://huggingface.co/datasets/cerebras/SlimPajama-627B

Under review as a conference paper at ICLR 2025

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? In ACL (1), pp. 4791-4800. Association for Computational
Linguistics, 2019.

Shuangfei Zhai, Walter Talbott, Nitish Srivastava, Chen Huang, Hanlin Goh, Ruixiang Zhang, and
Josh Susskind. An attention free transformer. arXiv preprint arXiv:2105.14103, 2021.

Peiyuan Zhang, Guangtao Zeng, Tianduo Wang, and Wei Lu. Tinyllama: An open-source small
language model. arXiv preprint arXiv:2401.02385, 2024.

Chunting Zhou, Pengfei Liu, Puxin Xu, Srinivasan Iyer, Jiao Sun, Yuning Mao, Xuezhe Ma, Avia
Efrat, Ping Yu, Lili Yu, et al. Lima: Less is more for alignment. Advances in Neural Information
Processing Systems, 36, 2024.

Daquan Zhou, Bingyi Kang, Xiaojie Jin, Linjie Yang, Xiaochen Lian, Zihang Jiang, Qibin Hou,
and Jiashi Feng. Deepvit: Towards deeper vision transformer. arXiv preprint arXiv:2103.11886,
2021.

Fei Zhu, Zhen Cheng, Xu-Yao Zhang, and Cheng-lin Liu. Class-incremental learning via dual
augmentation. Advances in Neural Information Processing Systems, 34:14306-14318, 2021.

Zayd Muhammad Kawakibi Zuhri, Muhammad Farid Adilazuarda, Ayu Purwarianti, and Al-
ham Fikri Aji. Mlkv: Multi-layer key-value heads for memory efficient transformer decoding.
arXiv preprint arXiv:2406.09297, 2024.

A APPENDIX

A.1 TOKEN SIMILARITY ANALYSIS

Attention concentration tends to make embeddings of different tokens more similar, resulting in
over-smoothing. The extent of over-smoothing can be assessed by calculating the average token
similarity s of the hidden states using the following formula:

1 l l)
s = 71(1 Y Z¢:1 Z.j:Lj;ﬂ Sim (hi, h7> (13)

where {h;}._, is the hidden state of the i-th token and Sim(-) denotes the operation of cosine
similarity. The results in Fig. [[§] are align with the results in Fig. [T} In the case of Llama and
Mistral, the average token similarity demonstrates an “M”-shaped pattern with increasing network
depth, while entropy follows a “W”-shaped pattern at corresponding positions. These trends indicate
a strong correlation between attention concentration and over-smoothing.

0.30

et
—— Llama 8B V3.1

0.10 —— Llama 8B Instruct V3.1
i ~=- Mistral 7B V0.2

i -=- Mistral 7B Instruct V0.2

Average Token Similarity

0 5 10 15 20 25 30
Layer Index

Figure 18: The average token similarity of hidden states across layers in Llama and Mistral.

A.2 ATTENTION CONCENTRATION VISUALIZATION

We visualize the token importance, norms of value states and norms of hidden states for tokens at
different position across layers. The results are averaged from 1,000 different sequences so that only

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Layers

Transformer

-0.2
Io.l
0.40
0.35

-0.30

10 20 30 40 50 60 70 80 90
Token Index

5

10

-0.25

Layers

-0.20

NeuTRENO

15

-0.15

0.10
0.05

10 20 30 40 50 60 70 80 90
Token Index

0.07
0.06
-0.05
-0.04
ResFormer .

0.02

0.01

0.05
0.04

-0.03

10 20 30 40 50 60 70 80 90
Token Index

5

-0.02

Io.n1

SVFormer

|
.i

i
10 20 30 40 50 60 70 80 90

Token Index

(a) Token importance.

225
2.00
-175
0
4 -150
s
3 -125

-1.00

075
050

10 20 30 40 50 60 70 80 90
Token Index

10
!

o

g

Layers

1
10 20 30 40 50 60 70 80 90
Token Index

Layers
10

15

10 20 30 40 50 60 70 80 90

Token Index
188
»
187
s -186
b
s -185
3 .
a
~184
R

1.83
1.82
10 20 30 40 50 60 70 80 90

Token Index

(b) Value-state norms.

Layers
10

15

20

Layers
10

15

20

5

10

Layers

Layers
10

15

20

2500
- 2000
- 1500
- 1000

500

1400
1200

- 1000

10 20 30 40 S0 60 70 80 90
Token Index

-800

- 600

400
200

10 20 30 40 50 60 70 80 90
Token Index

10 20 30 40 50 60 70 80 90
Token Index

10 20 30 40 50 60 70 80 90
Token Index

(c) Hidden-state drains.

Figure 19: Visualization of token importance, value state norms, and hidden state norms across
different token positions and layers in 468M models.

15

Under review as a conference paper at ICLR 2025

Token Importance
Hidden-state Norm

4 s 6 2 3 4 s 6 2 s a4 s g 3 4 s 6
Layer Index Layer Index Layer Index Layer Index

(a) Entropy. (b) Token importance. (c) Value-state norms. (d) Hidden-state norms.

Figure 20: Token analysis in 82M models. (a) Importance entropy of sequences; (b) Token impor-
tance, (c) value-state norms, and (d) hidden-state norms of the first token across layers.

Token Importance

10 15) s 10 1 2 s 10 15 s 10 15
Layer Index Layer Index Layer Index Layer Index

(a) Transformer. (b) NeuTRENO. (c) ResFormer. (d) SVFormer.

Figure 21: The distribution of token importance for different models at different layers.

the start token is the same and special across all sequences. Fig. [I9) (First column) demonstrates
that the start token easily attracts massive attention despite lacking semantic information for Trans-
former and NeuTRENO. For ResFormer, the importance of the start token is less than 10 times that
of tokens at other positions, indicating that tokens carrying semantic information receive more atten-
tion. Moreover, both Transformer and NeuTRENO exhibit significant value-state drains
and residual-state peaks (Guo et al] [2024a} [Sun et al] [2024)) on the start token at certain
layers. In contrast, for ResFormer, the value state norm of the start token exceeds half the magnitude
of other tokens, while the peak hidden state norm is less than triple the average. Fig[2T]further illus-
trates the distribution of token importance, where TOP-7 represents the i-th largest token importance
within a sequence. Compared to Transformer and NeuTRENO, ResFormer and SVFormer exhibit a
more uniform distribution of token importance.

Similar to Fig[2] we conducted experiments on 82M models, with results shown in Fig[20} We also
illustrate the attention pattern of cross-layer attention introduced in Eqn.[2} The results demonstrate
that while cross-layer attention successfully mitigates the problem of attention concentration, it still
exhibits value-state drains.

A.3 ABLATION STUDY OF NEUTRENO

NeuTRENO is sensitive to the choice of hyperparameter A which is task-dependent. In the appendix
of [Nguyen et al.| (2023)), it is reported that X is set to 0.6 for image classification and segmentation
tasks, and 0.4 for language modeling tasks. Fig.[22indicates that A = 0.4 achieves the best results
in our training dataset so that we choose A = 0.4 for comparison. Besides, we empirically choose
A = 0.2 for NeuTRENO when combined with ResFormer.

A.4 PRE-TRAIN DATASET

Based on the equation D > 5000 - N9 (Kaplan et al 2020) where D is data size and N is the
number of non-embedding parameters, we need to collect at least 17.5B for model has N = 700M
non-embedding parameters (corresponding to complete 1B model with 2,048 hidden size, 50,277
vocab size and 2,048 sequence length) to avoid over-fitting. Besides, indicates that
the mixture proportions of pre-training data domains significantly affects the training results. In this
way, we sampled 20B tokens data from original 627B data based on the original data proportions
shown in the Table 2]

16

Under review as a conference paper at ICLR 2025

-0.01

|
o
o
N

|
o
o
[+

Relative Training Loss

—— NeuTRENO(Lambda 0.2)
~—— NeuTRENO(Lambda 0.4)
—— NeuTRENO(Lambda 0.6)
—— NeuTRENO(Lambda 0.8)

—-0.04

0 2000 4000 6000 8000
Training Step

Figure 22: Ablation study of different A for NeuTRENO.

Data source proportions Tokens

Commoncrawl 50% 10B
C4 20% 4B
GitHub 10% 2B
Books 5% 1B
ArXiv 5% 1B
Wikpedia 5% 1B
StackExchange 5% 1B

Table 2: The details of pre-train dataset.

A.5 TRAINING DETAILS

Max Sequence Length 512 2,048 8,192 32,000 64,000
Total Batch Size 4,096 1,024 256 64 32
Per-GPU Batch Size 128 32 8 2 1
Gradient Accumulation Step 32

GPUs 8

Table 3: Training details for training dataset with different sequence length.

Section 1] introduces the main experimental hyperparameters used in the paper. This section
further details the training parameters for various model sizes and training sequence lengths. Table[]
demonstrates the differences among models of various sizes. The configurations for the number
of layers, attention heads, hidden dimensions, and FFN dimensions are based on [Biderman et al
(2023). Additionally, the X in Eqn. [§]is set to be 0.4 for NeuTRENO. Moreover, as reported in
Table [} the batch size that a single GPU can accommodate varies depending on the length of the
training sequences. Note that the total number of tokens in each batch is consistently 2 million.

A.6 VALIDATION LOSS ON SLIMPAJAMA

Section[f-1.2)introduces to use relative training loss as a main evaluation matrix. Table[reports the
validation loss for differnt model on the whole validation split of slimpajama.

17

Under review as a conference paper at ICLR 2025

Model Size 2M 82M 180M 468M
Layers 4 8 12 24
Attention Heads 2 8 12 16
Hidden Dimension 16 512 768 1,024
FFN Dimension 56 1,792 2,688 3,584
Tie Word Embedding False
(Peak Learning Rate, Final Learning Rate) (6e — 4,6e — 5)
Learning Rate Schedule Cosine Decay
Vocabulary Size 50,277
Activation Function SwiGLU
Position Embedding RoPE (6 = 10,000)
Batch Size 2M tokens
Data Size 20B tokens
(Warmup Steps, Training Steps) (120, 10,000)
Adam 3 (0.9, 0.95)
Dropout 0.0
Weight Decay 0.1

Table 4: Training details for models with different size.

Model Cgrrr;“nv(l’n C4 Github Exifgfl‘ge Wikipedia Book Arxiv Avg.
Transformer (82M) 33595 3.5388 14247 2.3872 2.9047 3.3797 21779 2.7389
Transformer (180M) 3.0961 3.2834 1.2451 2.1651 2.5897 3.1309 2.0001 2.5015
Transformer (468M) 2.8514 3.0430 1.0908 1.9628 2.2821 2.8979 1.8362 2.2806
ResFormer (82M) 33362 35191 1.3941 2.3592 2.8646 33572 2.1518 27117
ResFormer (180M) 3.0631 32504 1.2200 2.1350 2.5435 3.0994 19732 2.4692
ResFormer (468M) 2.8214 3.0115 1.0730 1.9388 2.2477 2.8696 1.8142 22537

Table 5: Validation loss on slimpajama.

18

	Introduction
	Related Work
	Shortcut Connections For Better Information Flow
	KV cache compressing

	Method
	Motivation: Information Transfer Via Cross Layer Attention
	Efficient Cross Layer Attention
	Transformer with Residual Value
	A unified View Of NeuTRENO and DenseFormer
	SVFormer: Single-layer Value For Half KV Cache

	Pretrain Experiments
	Setting
	Training Details
	Relative Training Loss Curve On SlimPajama
	Entropy For Analyzing Attention Concentration Effects
	Spectral Decomposition For Analyzing Representations

	ResFormer vs. vanilla Transformer
	Ablation study of residual connection
	Downstream Evaluations
	Visualization of ResFormer
	SVFormer vs. GQA
	Other Factors Influencing SVFormer
	Ablation study of SVFormer

	Conclusion
	Appendix
	Token Similarity Analysis
	Attention Concentration Visualization
	Ablation study of NeuTRENO
	Pre-train Dataset
	Training Details
	Validation Loss On Slimpajama

