
Mechanistic Interpretability of RNNs emulating
Hidden Markov Models

Elia Torre∗ Michele Viscione Lucas Pompe Benjamin F. Grewe Valerio Mante

Institute of Neuroinformatics, University of Zurich & ETH Zurich

Abstract

Recurrent neural networks (RNNs) provide a powerful approach in neuroscience
to infer latent dynamics in neural populations and to generate hypotheses about
the neural computations underlying behavior. However, past work has focused on
relatively simple, input-driven, and largely deterministic behaviors - little is known
about the mechanisms that would allow RNNs to generate the richer, spontaneous,
and potentially stochastic behaviors observed in natural settings. Modeling with
Hidden Markov Models (HMMs) has revealed a segmentation of natural behav-
iors into discrete latent states with stochastic transitions between them, a type of
dynamics that may appear at odds with the continuous state spaces implemented
by RNNs. Here we first show that RNNs can replicate HMM emission statistics
and then reverse-engineer the trained networks to uncover the mechanisms they
implement. In the absence of inputs, the activity of trained RNNs collapses towards
a single fixed point. When driven by stochastic input, trajectories instead exhibit
noise-sustained dynamics along closed orbits. Rotation along these orbits mod-
ulates the emission probabilities and is governed by transitions between regions
of slow, noise-driven dynamics connected by fast, deterministic transitions. The
trained RNNs develop highly structured connectivity, with a small set of “kick
neurons” initiating transitions between these regions. This mechanism emerges
during training as the network shifts into a regime of stochastic resonance, enabling
it to perform probabilistic computations. Analyses across multiple HMM archi-
tectures — fully connected, cyclic, and linear-chain — reveal that this solution
generalizes through the modular reuse of the same dynamical motif, suggesting
a compositional principle by which RNNs can emulate complex discrete latent
dynamics.

1 Introduction

Modern large-scale electrophysiology and imaging techniques provide access to the simultaneous
activity of thousands of neurons in freely behaving animals, revealing the population-level dynamics
underlying perception, cognition, and movement [39, 18, 4, 3, 19, 40]. In parallel to advances in
neural recordings, it has become possible to obtain quantitative descriptions of unconstrained, natural
behaviors across many timescales [45]. The combination of these techniques holds great promise in
unlocking the neural computations underlying behavior [7].

Machine learning is critical to interpret and link the high-dimensional neural and behavioral data
produced by modern neuroscience experiments. Hidden Markov Models (HMMs) can capture
unconstrained, natural behaviors and decompose them into sequences of elemental motifs [45].
However, their discrete state representation may oversimplify the potentially continuous nature of

∗Corresponding author: name.surname@uzh.ch
Code available at https://github.com/EliaTorre/hmmrnn

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/EliaTorre/hmmrnn

neural processes. On the other hand, Recurrent Neural Networks (RNNs) provide a powerful approach
to model the dynamics of large neural populations and to generate hypotheses about the underlying
computations [10, 47] . Despite this potential, RNNs are primarily used to model highly constrained
tasks that are input-driven and largely deterministic. Hence, evidence for RNNs applicability in
modelling stochastic discrete state transitions in a manner similar to HMMs remains limited.

RNNs and HMMs may appear incompatible, as RNNs represent latent processes as trajectories
through continuous state spaces, whereas HMMs rely on discrete latent states with stochastic tran-
sitions between them. Understanding whether RNNs can use continuous dynamics to generate
stochastic transitions between discrete states would help bridge this conceptual gap and reduce the
need for strong assumptions about the structure of the latent space. To address this question, we
develop a training approach to directly fit RNNs to HMMs, and then reverse-engineer the trained
RNNs to uncover the computations they implement. This strategy may ultimately lead to testable
hypotheses about how biological neural circuits may implement discrete behavioral modes through
continuous internal dynamics.

This work makes three main novel contributions:

1. A training paradigm for stochastic RNN behaviors (Sections 3, Appendix B, Figure 1): unlike
previous work focused on deterministic tasks, we introduce a training method combining noise-
driven RNNs with Sinkhorn divergence optimization, enabling learning of the stochastic state
transitions typical of HMMs.

2. A demonstration that RNNs can emulate HMM statistics (Sections 3, Appendix C, Figures 10, 11):
we show that vanilla RNNs accurately replicate the emission statistics of various HMM architec-
tures, matching both transition dynamics and stationary distributions.

3. A multi-level mechanistic account of how RNNs generate discrete stochastic outputs.

3.1 Global dynamics (Section 4.1, Figures 3, 4): We reveal how training drives the RNNs into a
regime where stochastic inputs sustain dynamics along closed orbits ("orbital dynamics"),
while in their absence, the activity converges to a single fixed point.

3.2 Local dynamics (Section 4.2, Figure 5): We identify three functional zones: clusters, kick-
zones, and transitions, each with distinct dynamical signatures.

3.3 Connectivity and single neurons (Section 5, Figures 6, 7): We uncover structured connec-
tivity between "noise-integrating populations" and "kick neurons" and validate their role in
triggering state transitions through causal interventions.

3.4 Computational principle (Section 6, Figure 8): We show the inferred mechanism relies on
self-induced stochastic resonance.

Our findings form a coherent picture: local dynamical features, such as clusters and kick-zones,
explain how global orbital dynamics give rise to discrete outputs, while the network’s connectivity
reveals how individual neurons instantiate these dynamics. Together, these findings show that RNNs
discover a general computational motif that combines slow noise integration with fast transitions.

The mechanism we uncover offers a novel interpretation of how RNNs can generate stochastic
transitions between discrete states. This mechanism (Contributions 3.1 - 3.4) acts as a “dynamical
primitive”, reusable in a modular fashion to emulate more complex discrete latent structures. Multiple
instances of this motif combine to govern transitions between specific pairs of states.

Our results lay the foundation for future work, both in scaling to more complex HMM structures and
in investigating whether similar dynamical motifs are employed by biological neural circuits during
naturalistic behavior.

2 Related Work

RNNs have been trained on simple perceptual, cognitive, and movement tasks, both with supervised
learning [30, 42, 44] and reinforcement learning [43, 46]. These RNNs are often trained with
few or no constraints and then reverse-engineered to reveal potentially novel hypotheses about the
computations performed by biological neural circuits. Fully understanding the dynamics of RNNs
and characterizing the mechanisms they implement (i.e., mechanistic interpretability) remains a
challenging and open problem [37, 36].

2

A common reverse-engineering approach focuses on characterizing the topology of fixed points and
on obtaining linear approximations of the dynamics around them [41]. For example, RNNs trained on
motion discrimination [30] or on sentiment-classification [28] integrate inputs along line-attractors.
Networks trained to reproduce reach movements implement rotational dynamics similar to that
in primate motor cortex [42] and RNNs performing beat continuation generate low-dimensional
oscillatory dynamics [47]. Across many tasks, the topology of fixed points is invariant to the details
of the RNN implementation (e.g. vanilla RNN, GRU, LSTM), suggesting a "universality" in the types
of solutions implemented by RNNs [29].

Recent work has pushed mechanistic intepretability beyond population dynamics, to the underlying
RNN connectivity. Constraining RNNs weigths to being low-rank can reveal the relation between
connectivity, computations, and dynamics [31]. Such relations may extend to RNNs trained without
constraints, as their function may rely on a low-rank component of the full connectivity [24, 20].
Highly structured weights may emerge in particular when connectivity and latent dynamics are trained
concurrently while imposing biological constraints [25] or when training on many different tasks at
once [22, 9, 35].

Building on this line of work, here we investigate whether the above insights can be extended to RNNs
implementing a different type of computation, namely internally-driven, probabilistic transitions
between discrete latent states.

3 Approximating HMMs with RNNs

To understand how RNNs encode discrete, probabilistic structure in their state spaces, we trained
them to replicate the outputs of HMMs, which implement a process that is discrete and probabilistic
by construction (Fig. 1).

Figure 1: Training pipeline. A: At each time-step the network receives an i.i.d. Gaussian input vector
xt ∼ N (0, Id), where the input dimensionality is varied across experiments (d ∈ {1, 10, 100, 200}).
B: The signal is processed by a vanilla recurrent neural network, ht = ReLU

(
ht−1W

T
hh + xtW

T
ih

)
;

the hidden-state dimension is also varied (|h| ∈ {50, 150, 200}). Finally, the hidden state is mapped
linearly to a three-dimensional output via yt = htA

T. To mimic HMM emissions, logits are converted
to categorical samples via Gumbel–Softmax. C: Parameters Θ = {Whh,Wih, A} are optimised by
minimising the Sinkhorn divergence between batches of predicted outputs Y = {yt}Tt=1 and target
sequences Y ⋆ = {y⋆s}Ts=1. D: Target sequences Y ⋆ are generated by linear-chain, fully-connected,
and cyclic HMMs (described in Section 3.1 and Appendix A); the example shows a 2-state linear-
chain model.

3.1 Families of HMM architectures

To investigate how RNNs encode discrete, probabilistic structure across different latent state topolo-
gies, we train them to replicate the outputs of HMMs with three distinct types of architectures:
linear-chain, fully-connected and cyclic structures.

Linear–chain HMMs. We first consider a family of linear-chain HMMs that span a spectrum from
maximally discrete to quasi-continuous representations. These models have M ∈{2, 3, 4, 5} latent
states S(M) = {1, . . . ,M} and a common alphabet of observations O = {1, 2, 3}. Each model HM

3

is fully specified by an emission matrix E(M) = [e
(M)
i]Mi=1 and a band-diagonal transition matrix

T(M)=[t
(M)
ij]Mi,j=1.

For each latent state i, we obtain emission probabilities as linear interpolation between a state
skewed toward observation 1 (i = 1) and one skewed toward observation 3 (i = M), while keeping
P (ot = 1) = ε constant. At each timestep, the chain either remains in the current state or transitions to
a neighboring state. Given a change-rate hyper-parameter ρ = 0.05, we set qM = ρ1/(M−1) ∈ (0, 1

2),
αi = (i− 1)/(M − 1), fix ε = 0.01 and define:

e
(M)
i =

(1− ε)
(
1− αi

)
ε

(1− ε)αi

 , t
(M)
ij =


1− qM , i ∈ {1,M}, j = i,

1− 2qM , 1 < i < M, j = i,

qM , j = i± 1,

0, otherwise.

(1)

This parametrization maintains a constant probability ρ of reaching the most distant state in M − 1
steps. When M = 2 the system is maximally discrete; as M increases, the same 0→2 continuum
is partitioned into progressively finer bins, yielding a quasi–continuous latent representation. This
design systematically varies discreteness to reveal how RNN dynamics adapt as the latent space
becomes more continuous.

Fully-connected HMMs. To assess generalization beyond simple structures, we use a 3-state fully
connected HMM where each state can transition to any other. Each state favors one of the three
outputs but retains small probabilities for the others, testing RNNs on fully interconnected dynamics.

Cyclic HMMs. We also consider a 4-state cyclic HMM with bidirectional closed-loop transitions.
For each state, emissions are biased toward a characteristic pair of outputs, one dominant and one
weaker component, with adjacent states sharing a common output.

The complete specification of all HMM architectures, including transition and emission matrices, is
provided in Appendix A (Fig. 9).

3.2 Training Networks with Sinkhorn Loss Function and Performance Metrics

Network Architecture. We employ standard, vanilla RNNs [12] of hidden-state size |h| ∈
{50, 150, 200}. At each time-step, the network receives Gaussian input xt ∼ N (0, Id), with
d ∈ {1, 10, 100, 200}. The hidden state is updated and projects onto the three logits via:

ht = ReLU(ht−1W
T
hh + xtW

T
ih), yt = htA

T. (2)

To mimic the discrete emissions of an HMM, these logits are converted to categorical samples using
the Gumbel-Softmax reparametrization trick: we add i.i.d. Gumbel noise, divide by a temperature τ
(set to 1 in all experiments), and apply a soft-max. This continuous relaxation acts as a differentiable
proxy for the non-differentiable argmax in the Gumbel-Max method, letting gradients flow through
the sampling step while still converging to one-hot vectors as τ → 0 [21] [27].

Sinkhorn Divergence. Because our target sequences are probabilistic, we use a loss function that is
appropriate for comparing distributions: the Sinkhorn divergence [15][16][38], an optimal transport
(OT) distance. Typically, OT-distances find a binary coupling matrix Π linking single samples in the
outputs and targets, which minimizes the total Euclidean distance between coupled samples. If the
euclidean distance between coupled samples is zero, the output distribution reproduces the target
distribution. Finding such a coupling matrix is computationally expensive and non-differentiable.
The Sinkhorn divergence overcomes these issues by finding a smoothed coupling matrix allowing
non-unique couplings [5]. Details on the training regime are provided in Appendix B.

Performance Metrics. To quantify how closely the trained RNNs replicate their target HMMs, we
track four statistics: (i) Euclidean distance between "Sinkhorn-aligned" output sequences (global re-
construction error); (ii) the 3×3 transition matrix of successive emissions (long-range dynamics); (iii)
marginal observation frequencies (stationary distribution); and (iv) observation volatility (proportion
of time steps with output changes). For all metrics, the trained RNNs replicate the emission statistics

4

of the target HMMs. Definitions and results for all combinations of hidden size (|h| ∈ 50, 150, 200)
and input dimensionality (d ∈ 1, 10, 100, 200) are shown in Appendix C (Figs. 10, 11). Higher input
dimensionality improves convergence, while increasing hidden size beyond 150 yields only marginal
benefits. Below, we thus focus on the four configurations with |h| = 150 and d = 100.

4 Mechanistic Interpretability: Latent Dynamics

To uncover the mechanisms implemented by the trained RNNs, we first consider their global (Sec-
tion 4.1) and local (4.2) latent dynamics. These analyses reveal how several distinct "dynamical
motifs" together contribute to the RNNs’ ability to approximate HMM-like emission statistics (Fig. 2).

Figure 2: A compositional dynamical primitive. Schematic of the dynamical motifs uncovered
through reverse-engineering of trained RNNs. A: Sample trajectory in the continuous state space.
B: A single fixed point in the absence of input. C: Stochastic input displaces the system from
this attractor, sustaining dynamics along closed orbits whose radius grows with input variance. D:
Distinct slow regions (clusters) where trajectories linger, separated by transition regions. E: Local
“kick-zones” that trigger transitions between clusters. F-I: Schematic of a richer discrete latent
structure (F) expressed as a composition of three instances of the same dynamical primitive (G-I).
Each instance preserves the same global and local dynamical properties described in panels (A-E).

4.1 Global Latent Dynamics: Noise-sustained Orbital Dynamics

Orbital dynamics under stochastic input. We investigate the global latent dynamics of the trained
RNNs by projecting their hidden states onto the first two principal components (PCA, Figure 3).
When initialized from random hidden states, and without external input, activity converged to a
single fixed point (Figs. 2B, 3B), with no evidence for separate attractors that might be expected
to represent the discrete latent states of the target HMMs. However, the latent dynamic changes
markedly for RNNs receiving stochastic (Gaussian) inputs, to a regime where trajectories exhibit
orbital dynamics (Figs. 2A, 3C). The stochastic input pushes activity outward (Figs. 2C, 3D), while
the recurrent component pulls it back, together implementing a stable closed orbit along which
activity evolves uni-directionally. Along this orbit, the RNN exhibits regions of slow dynamics
(clusters) each corresponding to a distinct output class of the reference HMMs, with transitions
occurring between them (Fig. 2D). Critically, transitions between slow zones result in large changes
in the output probabilities. As the number of latent states increases in linear-chain HMMs, RNNs do
not form additional slow regions along the orbits (App. Fig. 12). Instead, they capture finer emission
discretizations by modulating the alignment of readout axes with the plane containing the orbital
dynamics (Appendix L, Fig.25). In contrast, for fully-connected and cyclic architectures, RNNs
develop multiple orbits connecting distinct pairs of slow regions, reflecting the richer structure of
the underlying HMMs. These dynamics reveal a compositional dynamical motif in which the same
fundamental unit combines to generate increasingly complex latent structures (Fig. 3G and App.
Fig. 13).

Emergence of orbital dynamics during training. PCA projections reveal a clear transition in the
latent dynamics across training epochs (Fig. 4A, purple), marking the shift from a stable fixed point

5

Figure 3: Global latent dynamics of trained RNNs. Panels A and E illustrate the HMM architectures
approximated by the corresponding RNNs shown on the left and right. Hidden-state trajectories
are projected onto the first two (or three) principal components of the activity and colored by the
dominant logit. B, F: in the absence of input, trajectories from random initial conditions converge to
a single fixed point (cross). C, G: under Gaussian input noise, activity evolves along stable orbits
with slow regions associated to distinct outputs; arrows indicate flow. More complex dynamics in G
can be decomposed into the same fundamental motif observed in C by applying a second-level PCA
within the first PCA space, shown in H–J. D, K–M: contour plots (95% CI) of hidden-state densities
under increasing input variance (σ2 ∈ {0.1, 1.0, 2.0, 3.0, 4.0}) reveal a linear scaling between input
variance and orbit radius. Results for all HMM structures are provided in Appendix Figures 12, 13.

to orbital dynamics. As training progresses, unstable eigenvalues emerge, marking the destabilization
of the fixed-point regime. This transition coincides with a rise in eigenvalues near the imaginary axis,
indicating the onset of oscillatory activity (Fig.4C), and with a characteristic double-descent in the
loss curve [11] (Fig.16). Functionally, this transition enables sustained quasi-periodic oscillations that
encode the temporal dynamics of the target HMM (Fig. 8). The radius of the resulting orbits scales
linearly with input variance (Fig. 3D), a relationship confirmed by a perturbative analysis of the RNN
dynamics (Appendix H). Under unbiased Gaussian input, first-order perturbations average out, while
second-order terms —scaling linearly with variance — dominate after the transition, explaining how
stochastic input shapes the emergent orbital regime (Fig.4D). Over training, the network converges
to a stable average rate of transitions between clusters (Fig.4B). In Section 5, we examine how this
behavior arises from the interplay between recurrent connectivity and input noise.

4.2 Local Latent Dynamics: Clusters, Transitions, and Kick-Zones

Having characterized the global dynamics, we zoom in on the local properties of the orbital dynamics
to understand where and how the network implements transitions between slow zones. Standard
linearization techniques around fixed points (Section 2) offer limited insight here, as the observed
convergence towards the single fixed point does not explain the full emergent dynamics (Fig. 3). More
insights can be obtained by considering how activity evolves in the presence of the input noise on
different, short rollouts initialized from a given state-space location (Fig. 5). Specifically, we segment
state-space into different "zones" based on three measures computed at each location: the residency
time (RT), defined as the average number of steps required in a rollout until a change in the dominant
logit occurs; the logit sign-change count, quantifying how often the dominant logit’s gradient flips
before a change in the dominant logit occurs, with lower values indicating more directed flow; and
the number of unstable directions, obtained via Jacobian linearization and Möbius-transformed
eigenvalues, which reveals local sensitivity to perturbations (Appendix G).

Three dynamical regimes. Segmenting state space by residency time (RT) reveals three func-
tional zones, each with distinct dynamical signatures (Fig. 5A). We find similar zones in all RNNs,
irrespective of the architecture of the target HMM (Appendix I: Figs. 17,18,19).

6

Figure 4: A: PCA projections of the latent dynamics across epochs for an RNN trained on a 2-states
HMM, green and red indicate the dominant logit across epochs. The model first learns a single-fixed
point, then becomes unstable (purple), and finally transitions to orbital dynamics. B: The RNN
learns to encode emission probabilities of the target HMM, by means of a specific rate of transitions
between the two clusters. C: The RNN becomes unstable just before the transition, then the complex
eigenvalues appear on the imaginary axis. D: The expected second order perturbation vector E[dh(2)]
emerges in the proximity of the transition. This perturbation approximates how the variance of
the noise affects the free recurrent dynamics, capturing the dependency of the orbital dynamics on
the input noise variance. Results validating these findings for all HMM structures are provided in
Appendix E (Figs. 14, 15).

Clusters (RT > 8): regions where trajectories linger the longest, with frequent logit-gradient sign
changes (in the range 5–20), and essentially only contracting eigenvalues. These are locally stable
regions, each corresponding to a different probability distribution over the outputs.

Kick-zones (2 ≤ RT ≤ 8): located downstream of clusters, these regions exhibit moderate
logit-gradient sign changes (around 2–4) and a few unstable directions locally stretch the flow,
indicating a local push away from the cluster.

Transitions (RT < 2): Once trajectories cross the kick-zone, they enter short-lived corridors where
the system moves nearly deterministically toward the next cluster. These regions exhibit few
logit-gradient sign changes (< 1), reflecting a stable and directed flow.

Noise Sensitivity. To further validate the functional relevance of these regions we explicitly probe
their sensitivity to noise (Fig. 5B) for the RNN trained on a 2-state HMM; Appendix I, Fig. 20 for all
other linear-chain RNNs. We sample initial conditions from both cluster and transition regions and
generate trajectories under three noise conditions: identical (γ = 0), partially resampled (γ = 0.5),
and fully independent (γ = 1). Transition regions show minimal variability across noise conditions —
once the kick-zone is crossed, trajectories proceed quasi-deterministically toward the next cluster. In
contrast, cluster regions are noise-sensitive: as γ increases, trajectories diverge, with some crossing
the kick-zone and others returning to the cluster. We validated these qualitative differences with
quantitative measures of divergence: (i) the trace of the covariance matrix per timestep, capturing
dispersion; and (ii) the time-course of the average Euclidean distance between individual trajectories
and the mean trajectory (Appendix I, Fig. 21).

5 Mechanistic Interpretability: single neuron computations and connectivity

In the previous section we described a computational mechanisms at the level of population-level
dynamics, which relies in particular on transitions between slow regions. Here we aim to explain
how these transitions emerge based on key features of the RNN connectivity and the resulting single
unit properties. We focus on an RNN trained on the two-state HMM and report the analyses for the
other configurations in Appendices I, J and K.

Discovering “kick-neurons”. Among all RNN units, two separate triplets of neurons have pre-
activation values (before ReLU) with a distinctive spatial profile: pre-activation values are strongly
negative within clusters, pass through a near-zero regime in the kick-zones, and become positive
during transitions (Appendix J, Fig. 22). The intermediate regime places the units near the ReLU
activation threshold, where small variations in input can determine the opening of the ReLU gate — a
mechanism we describe in the next paragraph. Each triplet is linked to one transition direction, firing

7

Figure 5: Clusters, Transitions, and Kick-Zones. A: Left to right: (i) Residency time (RT) reveals
slow (gray) and fast (colored) regions; (ii) logit-gradient sign changes histogram shows a bi-modal
distribution, separating stable clusters from transitions; (iii) average number of unstable directions per
region (via Möbius-transformed Jacobian), peaks in kick-zones and is lowest in clusters; (iv) spatial
distribution of the number of real eigenvalues with positive real part, highlighting localized instability
in kick-zones contrasted with the stability of clusters. B: Noise sensitivity analysis from sampled
states (black star) in clusters (left) and transitions (right) with 30 trajectories (in purple) generated
under increasing noise resampling conditions (γ ∈ {0, 0.5, 1}). Transitions are robust across noise
conditions, while clusters exhibit increasing dispersion, indicating higher noise sensitivity. Panels
A, B show results for RNNs trained on 5-state HMMs. Results validating these findings for the
remaining configurations are provided in Appendix I (Figs. 17,18,19 and 20).

at the onset of movement between clusters and emerging as the dominant non-zero components of
the second-order perturbation vector E[dh(2)] (described in Section 4.1), which reflects the network’s
sensitivity to input variance. Together, these properties suggest a causal role in generating noise-driven
"kicks" that initiate state changes, prompting us to term them kick-neurons.

Noise as the trigger. To better understand the kick-mechanism, we examine the recurrent weight
matrix (Whh) and find that kick-neurons within each triplet form mutually excitatory connections,
while inhibiting the opposing triplet (Fig. 6). Similar to work by [14], showing that input noise
integration in RNNs can give rise to independent subpopulations, we observe two larger neuronal
groups (comprising ∼ 70 neurons), each forming recurrent excitatory loops within themselves while
projecting inhibitory connections to the other. These populations interact with the kick-neurons
through structured excitatory and inhibitory connections, suggesting a role as noise integrators that
modulate the transition gate opening, hence we refer to them as noise-integrating populations.

Causal Interventions. To confirm this mechanism, we performed targeted interventions (Figure 7).
We modulated either the neurons’ activity directly, or the noise-drive they receive through projections
from the associated noise-integrating populations. A modulation factor µ controlled both types of
perturbations.

Ablation (µ = 0). Silencing the kick-neurons or ablating the input noise to the corresponding
integrating population traps the trajectory within its current cluster, preventing state transitions.
Both manipulations mirror each other, confirming that noise-driven activation is required to open
the transition gate. This intervention leads to a loss of critical eigenvalue pairs from the Jacobian
spectrum, reflecting the collapse of the orbital dynamics and reversion to a single fixed-point
regime.

Enhancement (µ = 2). Doubling kick-neuron activity or amplifying the noise-drive from the cor-
responding integrating population causes overshoots beyond the target cluster. These effects
resemble an increase in noise variance, and the number of critical eigenvalue pairs remains
unchanged, indicating that enhancing activity preserves the rotational regime in this setting.

8

Figure 6: Recurrent weight matrix and Kick-circuit. A: Left to right: (i) Sub-matrix of Whh

restricted to the six kick-neurons. Within-triplet weights are positive (red), whereas cross-triplet
weights are negative (blue), indicating mutual excitation and reciprocal inhibition. (ii) Weights from
noise-integrating neurons to kick-neurons (sorted). Each integrating population excites one triplet and
inhibits the other. (iii) Recurrent weights within the integrating populations show within-population
excitation and cross-population inhibition. B: Kick-circuit: red arrows indicate excitation, blue
inhibition. The circuit comprises two self-exciting, mutually inhibiting loops that project to opposing
kick-neuron triplets, forming a noise-integration mechanism that implements stochastic transitions
between slow regions. Results for linear-chain and fully-connected HMMs in App. Figs. 23, 24.

Figure 7: Causal interventions validate the kick-circuit. A: Latent trajectories in PCA projection.
We sample initial conditions (ICs) from the two cluster regions and let trajectories evolve from
the same IC with identical input noise draws in unperturbed (gray), ablated (blue), and enhanced
(red) regimes for 60 time-steps. Suppressing either the kick-neurons (columns: 1, 4) or their noise-
drive from integrating populations (columns: 2, 5) prevents transitions between clusters, while
enhancement overshoots trajectories past the opposite cluster. Control manipulations on neurons not
part of noise-integrating populations (columns: 3, 6) preserve kick-neurons noise-drive and "cluster-
switching". B: Stability signature of the interventions. Mean±s.d. number of critical eigenvalue pairs
as a function of the modulation factor µ. Ablation (µ = 0, blue) eliminates critical-pairs, consistent
with reversion to a single fixed-point regime; enhancement (µ = 2, red) maintains the number of
critical-pairs, preserving the orbital dynamics. Grey points show intermediate values of µ.

6 Stochastic Resonance

The above analyses show that our RNN exhibits noise-sustained orbital dynamics (Figure 3), driven by
structured interactions between two functionally distinct neural populations: slow, noise-integrating
units, and fast-responding kick-neurons (Figure 5, 6). As noise accumulates in the slow subsystem,
trajectories drift along quasi-stable manifolds until they reach a region — the kick-zone — which
triggers a rapid, deterministic transition to the next attractor-like cluster. This mechanism results
in robust, quasi-periodic alternation between network states, even in the absence of any external
periodic input. This phenomenon bears resemblance to a class of noise-induced dynamics known
as self-induced stochastic resonance (SISR) [33]. In contrast to classical stochastic resonance,
which requires an external periodic signal [2], SISR arises intrinsically in systems with time-scale
separation. Weak noise applied to a fast subsystem perturbs the system off a slow manifold, initiating

9

deterministic excursions that form coherent, noise-controlled oscillations [48]. Our RNN appears to
operate in an analogous regime: the slow populations accumulate stochastic input over time while
in the cluster zones, whereas the fast kick-neurons drive sharp transitions once a noise-modulated
threshold is reached. This mechanism enables the emergence of stable oscillatory patterns, with
their period governed by the interplay between noise variance and slow integration dynamics. The
oscillation period, linked in our case to the emission probabilities, can be shaped through learning
by adjusting the effective time-constant of the slow subsystem. This interpretation is supported by
the population-level dynamics shown in Figure 8, where each cycle reflects a transition between
attractor-like states, coordinated through the interaction of slow integrators and fast responders whose
activity rises sharply before the transition. In this way, the network effectively harnesses internal
noise as a computational signal, leveraging SISR-like dynamics to perform structured, probabilistic
inference, thus allowing the RNN to emulate the HMM behavior.

Figure 8: Oscillatory dynamics. Mean activity of kick-neuron triplets (solid lines) and noise-
integrating populations (dashed lines) as the RNN switches cluster regions (alternating gray bands).
These populations exhibit clear anti-phase oscillations: while one integrating group dominates, it
reinforces itself and its matching kick-neurons, driving the system toward a transition. This dynamic
reflects a self-induced stochastic resonance (SISR) regime [33, 48], where slow noise integration and
fast resets ("kicks") produce quasi-periodic switching without external periodic input.

7 Conclusion

In this work, we explored how Recurrent Neural Networks (RNNs) can implement discrete, stochastic
latent structure through continuous dynamics. We introduced a training pipeline that fits vanilla RNNs
to various families of Hidden Markov Models (HMMs). Contrary to the expectation of an n-well
landscape with one fixed point per HMM state, trained RNNs converge to a single fixed point in the
absence of input and, under noise, exhibit noise-sustained orbital dynamics: slow regions that encode
distinct emission probabilities, separated by short, deterministic transitions. Mechanistically, it relies
on two complementary sub-circuits: large noise-integrating populations and fast kick-neurons, whose
interplay converts input variance into quasi-periodic transitions. This connectivity structure harnesses
internal noise as a computational signal, enabling RNNs to reproduce HMM-like probabilistic
behavior via a reusable dynamical motif and paralleling features of neural activity observed in the
brain.

Cortical activity is intrinsically noisy at both micro- and macro-scales, driven by stochastic ion
channel dynamics [6], probabilistic synaptic transmission [1], and the high-dimensional, recurrent
nature of cortical circuits, which produces ongoing, noisy background activity even in the absence of
external input [13], potentially as a consequence of chaotic dynamics [8]. Far from being a nuisance,
such variability can enhance information processing — increasing sensitivity to weak or sub-threshold
signals and facilitating the coordination of distributed brain regions in the processing of sensory
information via stochastic resonance [17, 32, 34].

Our findings demonstrate that unconstrained RNNs can uncover both discrete and continuous latent
structure directly from data — without any imposed topological priors — and reveal that these
networks naturally converge toward biologically plausible circuit motifs. Taken together, these
results point to a compositional dynamical primitive in which slow noise integration and fast kick-
triggered resets cooperate to generate discrete state transitions, and multiple instances of this motif can
combine to produce richer latent dynamics. Overall, this work positions Recurrent Neural Networks
as a powerful alternative to Hidden Markov Models for modeling the latent structure and neural
mechanisms of natural behaviors.

10

References

[1] Christina Allen and Charles F Stevens. An evaluation of causes for unreliability of synaptic
transmission. Proceedings of the National Academy of Sciences, 91(22):10380–10383, 1994.

[2] Roberto Benzi, Alfonso Sutera, and Angelo Vulpiani. The mechanism of stochastic resonance.
Journal of Physics A: mathematical and general, 14(11):L453, 1981.

[3] Dean V Buonomano and Wolfgang Maass. State-dependent computations: spatiotemporal
processing in cortical networks. Nature Reviews Neuroscience, 10(2):113–125, 2009.

[4] John P Cunningham and Byron M Yu. Dimensionality reduction for large-scale neural record-
ings. Nature neuroscience, 17(11):1500–1509, 2014.

[5] Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. In C.J. Burges,
L. Bottou, M. Welling, Z. Ghahramani, and K.Q. Weinberger, editors, Advances in Neural
Information Processing Systems, volume 26. Curran Associates, Inc., 2013.

[6] CE Dangerfield, David Kay, and Kevin Burrage. Stochastic models and simulation of ion
channel dynamics. Procedia Computer Science, 1(1):1587–1596, 2010.

[7] Sandeep Robert Datta, David J Anderson, Kristin Branson, Pietro Perona, and Andrew Leifer.
Computational neuroethology: a call to action. Neuron, 104(1):11–24, 2019.

[8] Brian DePasquale, David Sussillo, LF Abbott, and Mark M Churchland. The centrality of
population-level factors to network computation is demonstrated by a versatile approach for
training spiking networks. Neuron, 111(5):631–649, 2023.

[9] Laura N Driscoll, Krishna Shenoy, and David Sussillo. Flexible multitask computation in
recurrent networks utilizes shared dynamical motifs. Nature Neuroscience, 27(7):1349–1363,
2024.

[10] Daniel Durstewitz, Georgia Koppe, and Max Ingo Thurm. Reconstructing computational system
dynamics from neural data with recurrent neural networks. Nature Reviews Neuroscience,
24(11):693–710, 2023.

[11] Lukas Eisenmann, Zahra Monfared, Niclas Göring, and Daniel Durstewitz. Bifurcations and loss
jumps in rnn training. Advances in Neural Information Processing Systems, 36:70511–70547,
2023.

[12] Jeffrey L Elman. Finding structure in time. Cognitive science, 14(2):179–211, 1990.

[13] A Aldo Faisal, Luc PJ Selen, and Daniel M Wolpert. Noise in the nervous system. Nature
reviews neuroscience, 9(4):292–303, 2008.

[14] Arnaud Fanthomme and Rémi Monasson. Low-dimensional manifolds support multiplexed
integrations in recurrent neural networks. Neural Computation, 33(4):1063–1112, 2021.

[15] Jean Feydy, Thibault Séjourné, François-Xavier Vialard, Shun-ichi Amari, Alain Trouve, and
Gabriel Peyré. Interpolating between optimal transport and mmd using sinkhorn divergences.
In The 22nd International Conference on Artificial Intelligence and Statistics, pages 2681–2690,
2019.

[16] Aude Genevay, Gabriel Peyré, and Marco Cuturi. Learning generative models with sinkhorn
divergences. In International Conference on Artificial Intelligence and Statistics, pages 1608–
1617. PMLR, 2018.

[17] Bruce J Gluckman, Theoden I Netoff, Emily J Neel, William L Ditto, Mark L Spano, and
Steven J Schiff. Stochastic resonance in a neuronal network from mammalian brain. Physical
Review Letters, 77(19):4098, 1996.

[18] Christine Grienberger and Arthur Konnerth. Imaging calcium in neurons. Neuron, 73(5):862–
885, 2012.

[19] Michael Häusser. Optogenetics: the age of light. Nature methods, 11(10):1012–1014, 2014.

[20] Elizabeth Herbert and Srdjan Ostojic. The impact of sparsity in low-rank recurrent neural
networks. PLOS Computational Biology, 18(8):e1010426, 2022.

[21] Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax.
arXiv preprint arXiv:1611.01144, 2016.

11

[22] W Jeffrey Johnston and Stefano Fusi. Abstract representations emerge naturally in neural
networks trained to perform multiple tasks. Nature Communications, 14(1):1040, 2023.

[23] Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[24] Renate Krause, Matthew Cook, Sepp Kollmorgen, Valerio Mante, and Giacomo Indiveri.
Operative dimensions in unconstrained connectivity of recurrent neural networks. Advances in
Neural Information Processing Systems, 35:17073–17085, 2022.

[25] Christopher Langdon and Tatiana A Engel. Latent circuit inference from heterogeneous neural
responses during cognitive tasks. Nature Neuroscience, pages 1–11, 2025.

[26] Soon Hoe Lim. Understanding recurrent neural networks using nonequilibrium response theory.
Journal of Machine Learning Research, 22(47):1–48, 2021.

[27] Chris J Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A continuous
relaxation of discrete random variables. arXiv preprint arXiv:1611.00712, 2016.

[28] Niru Maheswaranathan, Alex Williams, Matthew Golub, Surya Ganguli, and David Sussillo. Re-
verse engineering recurrent networks for sentiment classification reveals line attractor dynamics.
Advances in neural information processing systems, 32, 2019.

[29] Niru Maheswaranathan, Alex Williams, Matthew Golub, Surya Ganguli, and David Sussillo.
Universality and individuality in neural dynamics across large populations of recurrent networks.
Advances in neural information processing systems, 32, 2019.

[30] Valerio Mante, David Sussillo, Krishna V Shenoy, and William T Newsome. Context-dependent
computation by recurrent dynamics in prefrontal cortex. nature, 503(7474):78–84, 2013.

[31] Francesca Mastrogiuseppe and Srdjan Ostojic. Linking connectivity, dynamics, and computa-
tions in low-rank recurrent neural networks. Neuron, 99(3):609–623, 2018.

[32] Mark D McDonnell and Derek Abbott. What is stochastic resonance? definitions, miscon-
ceptions, debates, and its relevance to biology. PLoS computational biology, 5(5):e1000348,
2009.

[33] Cyrill B Muratov, Eric Vanden-Eijnden, et al. Self-induced stochastic resonance in excitable
systems. Physica D: Nonlinear Phenomena, 210(3-4):227–240, 2005.

[34] Alexander N Pisarchik and Alexander E Hramov. Coherence resonance in neural networks:
Theory and experiments. Physics Reports, 1000:1–57, 2023.

[35] Reidar Riveland and Alexandre Pouget. Natural language instructions induce compositional
generalization in networks of neurons. Nature Neuroscience, 27(5):988–999, 2024.

[36] Lee Sharkey, Bilal Chughtai, Joshua Batson, Jack Lindsey, Jeff Wu, Lucius Bushnaq, Nicholas
Goldowsky-Dill, Stefan Heimersheim, Alejandro Ortega, Joseph Bloom, et al. Open problems
in mechanistic interpretability. arXiv preprint arXiv:2501.16496, 2025.

[37] Jimmy Smith, Scott Linderman, and David Sussillo. Reverse engineering recurrent neural
networks with jacobian switching linear dynamical systems. Advances in Neural Information
Processing Systems, 34:16700–16713, 2021.

[38] Christos Sourmpis, Carl Petersen, Wulfram Gerstner, and Guillaume Bellec. Trial matching:
capturing variability with data-constrained spiking neural networks. Advances in Neural
Information Processing Systems, 36:74787–74798, 2023.

[39] Micha E Spira and Aviad Hai. Multi-electrode array technologies for neuroscience and cardiol-
ogy. Nature nanotechnology, 8(2):83–94, 2013.

[40] Nicholas A Steinmetz, Cagatay Aydin, Anna Lebedeva, Michael Okun, Marius Pachitariu,
Marius Bauza, Maxime Beau, Jai Bhagat, Claudia Böhm, Martijn Broux, et al. Neuropix-
els 2.0: A miniaturized high-density probe for stable, long-term brain recordings. Science,
372(6539):eabf4588, 2021.

[41] David Sussillo and Omri Barak. Opening the black box: low-dimensional dynamics in high-
dimensional recurrent neural networks. Neural computation, 25(3):626–649, 2013.

[42] David Sussillo, Mark M Churchland, Matthew T Kaufman, and Krishna V Shenoy. A neural net-
work that finds a naturalistic solution for the production of muscle activity. Nature neuroscience,
18(7):1025–1033, 2015.

12

[43] Jane X Wang, Zeb Kurth-Nelson, Dharshan Kumaran, Dhruva Tirumala, Hubert Soyer, Joel Z
Leibo, Demis Hassabis, and Matthew Botvinick. Prefrontal cortex as a meta-reinforcement
learning system. Nature neuroscience, 21(6):860–868, 2018.

[44] Jing Wang, Devika Narain, Eghbal A Hosseini, and Mehrdad Jazayeri. Flexible timing by
temporal scaling of cortical responses. Nature neuroscience, 21(1):102–110, 2018.

[45] Caleb Weinreb, Jonah E Pearl, Sherry Lin, Mohammed Abdal Monium Osman, Libby Zhang,
Sidharth Annapragada, Eli Conlin, Red Hoffmann, Sofia Makowska, Winthrop F Gillis, et al.
Keypoint-moseq: parsing behavior by linking point tracking to pose dynamics. Nature Methods,
21(7):1329–1339, 2024.

[46] Guangyu Robert Yang and Xiao-Jing Wang. Artificial neural networks for neuroscientists: a
primer. Neuron, 107(6):1048–1070, 2020.

[47] Klavdia Zemlianova, Amitabha Bose, and John Rinzel. Dynamical mechanisms of how an rnn
keeps a beat, uncovered with a low-dimensional reduced model. Scientific Reports, 14(1):26388,
2024.

[48] Jinjie Zhu and Hiroya Nakao. Stochastic periodic orbits in fast-slow systems with self-induced
stochastic resonance. Physical Review Research, 3(3):033070, 2021.

13

Contents

1 Introduction 1

2 Related Work 2

3 Approximating HMMs with RNNs 3
3.1 Families of HMM architectures . 3
3.2 Training Networks with Sinkhorn Loss Function and Performance Metrics 4

4 Mechanistic Interpretability: Latent Dynamics 5
4.1 Global Latent Dynamics: Noise-sustained Orbital Dynamics 5
4.2 Local Latent Dynamics: Clusters, Transitions, and Kick-Zones 6

5 Mechanistic Interpretability: single neuron computations and connectivity 7

6 Stochastic Resonance 9

7 Conclusion 10

Appendix 14

A Hidden Markov Models Architectures 15

B Training Regime and Computational Resources 15

C Performance Metrics 16
C.1 Sinkhorn-Aligned Euclidean Distances . 18
C.2 Transition Matrices Squared Differences . 19

D Trajectories for RNNs trained on HMMs 20
D.1 Trajectories for Linear-Chain HMMs . 20
D.2 Trajectories for Fully-Connected and Cyclic HMMs . 21

E Learning Trajectories Across Training Epochs 22

F Loss Curves 24

G Jacobian Linearization and Stability Analysis via Möbius Transformation 25

H Second Order Perturbation 26

I Residency times and noise sensitivity 28

J Kick-Neurons Activity 33

K Recurrent weight matrices and Kick-circuits 34

L Alignment of Output Dimensions with Orbits Plane 36

M Limitations and Broader Impact 37
M.1 Discussion of Limitations . 37
M.2 Broader Impact . 37

14

A Hidden Markov Models Architectures

Figure 9: Hidden Markov Models architectures used for training. Panels A-D illustrate a spectrum
of linear-chain HMM with M ∈ {2, 3, 4, 5} latent states (from left to right, top to bottom). Arrows
indicate state transitions, with labels showing transition probabilities; The hidden states of the HMM
(larger circles) have been colored according to the most likely outcome associated with a specific
state, or by a mixture of them. Smaller circles represent emission distributions for each state over the
observation alphabet O = {1, 2, 3}, with green, blue, and red corresponding to emissions o1, o2, and
o3, respectively. All models are constructed to preserve a constant probability ρ = 0.05 of reaching
the most distant state in M−1 steps. As M increases, the latent representation becomes progressively
finer, transitioning from highly discrete (A) to quasi-continuous (D). E: Fully-connected HMM with
three latent states, each capable of transitioning to any other (including self-transitions). Emission
probabilities are biased toward one dominant output per state, while retaining smaller weights for the
others, producing a symmetric, all-to-all transition structure. F: Cyclic HMM with four latent states
arranged in a bidirectional loop. Each state emits a characteristic pair of outputs, with one output
dominant and the other weaker, while adjacent states share one common output.

B Training Regime and Computational Resources

We conducted a systematic sweep across key architectural and task parameters to evaluate how RNNs
replicate the emission statistics of different HMM families. Specifically, we trained networks on four
linear-chain HMMs (M = 2, 3, 4, 5 latent states) as well as on the fully-connected and cyclic archi-
tectures described in Section 3.1. For the linear-chain HMMs, we train networks with three different
hidden state sizes (|h| = 50, 150, 200) and four input noise dimensionalities (d = 1, 10, 100, 200),
yielding 48 unique configurations. Each configuration is trained with three independent random
seeds, resulting in a total of 144 models. For the fully-connected and cyclic architectures, we fixed the
hidden size to |h| = 150 and input dimensionality to d = 100, training three independent seeds per
architecture, resulting in six additional models. Only seeds that successfully converged were retained
for analysis.

The training regime is kept consistent across all configurations. Each RNN is trained on 30,000
sequences of fixed length, sampled from its corresponding HMM: 100 for M = 2, 30 for M = 3, 4,
40 for M = 5, 30 for the fully-connected, and 40 for the cyclic architectures. Optimization is
performed in batches of 4096 using the Adam optimizer [23] with a learning rate of 0.001. Hidden
states are initialized to zero at the start of training, and all weights are drawn from a uniform

15

distribution U(−
√
k,
√
k), where k = 1

hidden_size . To stabilize learning and mitigate exploding
gradients, we apply gradient clipping with a maximum norm of 0.9 for the linear-chain models and
0.3 for the fully-connected and cyclic architectures. Training proceeded until convergence, typically
reached within 1000 epochs. However, convergence becomes less consistent as the number of hidden
states in the target HMM increases, in which case shorter training sequences were used to facilitate
convergence.

The complete pipeline—including HMM data generation, RNN training, computation of evaluation
metrics, PCA analyses, and visualization—was optimized for efficient execution on modern hardware.
On an NVIDIA RTX 4090 GPU, each model completed training in approximately 5–20 minutes,
depending on sequence length and network size.

C Performance Metrics

To evaluate how well task-optimized RNNs replicate the behavior of the reference HMMs, we
developed four performance metrics that capture both global sequence similarity and fine-grained
statistical properties. These include: Euclidean distances between matched sequences, squared
differences in transition matrices, observation frequencies, and observation volatility. Below we
detail the definition, motivation, and implementation of each metric.

Sinkhorn-aligned euclidean distance. To quantify the global discrepancy between HMM and
RNN sequences, we compute the Euclidean distance after aligning predicted and reference sequences
via the Sinkhorn divergence. This procedure ensures a principled pairing between sequences by
solving a soft optimal transport problem, where matched sequences minimize expected pairwise
distances under an entropy-regularized transport plan.

Given two sequences of categorical outputs, yrnn and yhmm, represented as one-hot vectors in RT×C

(where T is sequence length and C the number of output categories), we flatten them into vectors of
dimension T · C and compute the Euclidean distance:

d(yrnn,yhmm) =

√√√√T ·C∑
i=1

(
y
(i)
rnn − y

(i)
hmm

)2
Distances are computed across batches of N = 5000 sequences, averaged over random seeds and
configurations. As a baseline, the same metric is computed between pairs of HMM-generated
sequences. These distributions are visualized in Fig. 10, demonstrating that RNN outputs closely
match the HMM baseline.

Transition matrix squared differences. To assess how well the RNN captures the temporal depen-
dencies between successive outputs, we compute empirical transition matrices from the sequences.
For each model, we extract the most likely output at each time step and count the empirical frequency
of transitions from output i to j:

Tij =
transitions from output i to j

total transitions from i

We compute T rnn and T hmm, and compare them via element-wise squared differences:

∆ij =
(
T rnn
ij − T hmm

ij

)2
The resulting matrices are averaged across models and shown in Fig. 11, providing a detailed account
of how accurately each RNN reproduces the internal transition structure of its target HMM.

Observation frequencies. This metric assesses the RNN’s ability to reproduce the stationary
distribution of HMM outputs. We count the frequency of each output class across all time steps and
sequences, yielding a probability vector prnn ∈ RC . We compare this to the ground-truth distribution
phmm and, although not shown in figures, this analysis confirms that most trained networks match
long-term HMM statistics closely.

16

Observation Volatility. To quantify short-term dynamics, we measure how frequently the RNN
changes its output across time. Volatility is then averaged across sequences and compared with that
of the HMM. This metric complements observation frequency by detecting under- or over-smoothing
in the RNN’s emission process.

17

C.1 Sinkhorn-Aligned Euclidean Distances

Figure 10: Sinkhorn-aligned euclidean distances. Mean ± s.d. Euclidean distances between
Sinkhorn-aligned output sequences generated by trained RNNs and their corresponding HMM
references, across all combinations of hidden-state size (|h| ∈ 50, 150, 200) and input-noise dimen-
sionality (d ∈ 1, 10, 100, 200). Panels A–D show results for linear-chain HMMs with M ∈ 2, 3, 4, 5
latent states, while panels E–F correspond to the cyclic and fully-connected architectures, respec-
tively. Error bars indicate variability across three random seeds per configuration. Horizontal green
bands represent the baseline distance obtained by comparing HMM-generated sequences against
themselves. Red-circled points mark the selected RNN configuration (|h| = 150, d = 100) used in
the mechanistic analyses presented throughout the paper. For linear-chain HMMs, increasing input
dimensionality systematically improves alignment with the reference emissions, approaching the
HMM baseline across hidden-state sizes. For fully-connected and cyclic architectures, RNNs trained
with the same configuration (|h| = 150, d = 100) achieve similarly close correspondence to their
HMM targets.

18

C.2 Transition Matrices Squared Differences

Figure 11: Transition matrices squared differences.Mean ± s.d. of the element-wise squared differ-
ences between empirical transition matrices computed from RNN outputs and those of their reference
HMMs, across all combinations of hidden-state size (|h| ∈ 50, 150, 200) and input-noise dimension-
ality (d ∈ 1, 10, 100, 200). Panels A–D correspond to linear-chain HMMs with M ∈ 2, 3, 4, 5 latent
states, while panels E–F report results for the fully-connected and cyclic architectures, respectively.
Errors are averaged over three random seeds per configuration. Darker colors indicate larger devia-
tions from the reference transition matrices, while lighter tones reflect closer alignment. Red-outlined
boxes highlight the selected RNN configurations (|h| = 150, d = 100) used in the mechanistic
analyses throughout the paper. For the linear-chain architectures, transition-matrix alignment im-
proves systematically with increasing input dimensionality, approaching near-perfect correspondence
at d ≥ 100. The fully-connected and cyclic models, trained with the same configuration, achieve
comparably low deviation levels.

19

D Trajectories for RNNs trained on HMMs

D.1 Trajectories for Linear-Chain HMMs

Figure 12: Trajectories for linear-chain HMMs. Each column shows results from RNNs (|h| = 150)
trained to reproduce the emission statistics of linear-chain HMMs with M ∈ {2, 3, 4, 5} latent
states. Hidden-state trajectories are projected onto the first two principal components (same axes
across rows). A–D: trajectories from random initial conditions converge to a single fixed point
(cross) in the absence of input. E–H: under Gaussian input noise, trajectories evolve along stable
orbits with distinct regions corresponding to different dominant logits (colors). Arrows indicate
average flow direction. I–L: hidden-state density contours (95% CI) under increasing input variance
(σ2 ∈ {0.1, 1.0, 2.0, 3.0, 4.0}) reveal a linear scaling between orbit radius and input variance, while
preserving overall shape.

20

D.2 Trajectories for Fully-Connected and Cyclic HMMs

Figure 13: Trajectories for fully-connected and cyclic HMMs. Hidden-state dynamics of RNNs
(|h| = 150) trained to reproduce the emission statistics of fully-connected (top) and cyclic (bottom)
HMMs. Hidden-state trajectories are projected onto the first three principal components in A–B and
I–J. To visualize orbital dynamics linking any given pair of clusters, within the subspace in A–B
and I–J we computed a second set of PC component separately for activity restricted to each pair,
shown in C–H and K–N. B, J: Under Gaussian input noise, trajectories evolve along multiple stable
orbits connecting slow regions dominated by distinct logits (colors). These orbital trajectories can be
decomposed into the same fundamental dynamical primitives described in the text, shown in C–E
and K–L, respectively. A, I: In the absence of input, trajectories from random initial conditions
converge to a single fixed point (cross). F–H and M–N: Hidden-state density contours (95 % CI)
under increasing input variance (σ2 ∈ {0.1, 1.0, 2.0, 3.0, 4.0}) reveal that the linear scaling between
input variance and orbit radius is preserved.

21

E Learning Trajectories Across Training Epochs

Figure 14: Learning trajectories across training epochs for linear-chain HMMs. Each row
corresponds to an RNN trained on a linear-chain HMM with M ∈ {2, 3, 4, 5} latent states (top to
bottom). A, E, I, M: PCA projections of hidden-state dynamics across training epochs reveal the
emergence of structured orbital dynamics: networks initially converge to a single fixed point, undergo
a transient unstable regime (purple), and ultimately form stable, noise-sustained orbital dynamics
(colored by dominant logit). B, F, J, N: the average transition rate between output clusters, showing a
clear shift after the transition epoch (purple dashed line) aligning with the converged transition rate
(red dotted line). C, G, K, O: the fraction of unstable and complex Möbius-transformed eigenvalues
of the Jacobian rises sharply around the transition, reflecting, respectively, the destabilization of the
fixed point and the onset of oscillatory dynamics. D, H, L, P: the expected second-order perturbation
vector E[dh(2)] emerges after this transition, capturing how input noise variance drives the recurrent
dynamics and sustains the orbital regime. Together, these results demonstrate a consistent learning
trajectory across architectures, in which the network transitions from stable to oscillatory dynamics.

22

Figure 15: Learning trajectories across training epochs for fully-connected and cyclic HMMs.
Each row corresponds to an RNN (|h| = 150) trained to reproduce the emission statistics of a fully-
connected (top) or cyclic (bottom) HMM. A, E: PCA projections of hidden-state dynamics across
training epochs show the progressive emergence of structured orbital dynamics: networks initially
converge to a single fixed point, undergo a transient unstable regime (purple), and ultimately form
stable, noise-sustained orbital dynamics (colored by dominant logit). B, F: the average transition rate
between output clusters, showing a clear shift after the transition epoch (purple dashed line) aligning
with the converged transition rate (red dotted line). C, G: the fraction of unstable and complex Möbius-
transformed eigenvalues of the Jacobian rises sharply around the transition, reflecting, respectively,
the destabilization of the fixed point and the onset of oscillatory dynamics. D, H: the expected
second-order perturbation vector E[dh(2)] emerges after this transition, capturing how input noise
variance drives the recurrent dynamics and sustains the orbital regime. These results demonstrate that
RNNs trained on more complex HMMs follow the same qualitative learning trajectory observed for
linear-chain models, transitioning from a single attractor to oscillatory dynamics.

23

F Loss Curves

Figure 16: Training and validation loss curves. Sinkhorn loss over training epochs for the six
RNN models used in the main analyses (|h| = 150, d = 100), each trained to reproduce the
emission statistics of an HMM with different transition structures: linear-chain M ∈ {2, 3, 4, 5},
fully-connected, and cyclic. Training and validation losses (blue and orange) closely overlap across all
configurations, indicating no signs of overfitting. All models converge within 500 epochs, exhibiting
a characteristic double-descent profile. The second loss drop coincides with the transient unstable
regime identified in Figures 14 - 15, marking the emergence of noise-sustained orbital dynamics and
the transition from fixed-point to rotational behavior. This correspondence confirms that the onset
of orbital dynamics constitutes the dynamical solution through which the networks minimize the
Sinkhorn loss.

24

G Jacobian Linearization and Stability Analysis via Möbius Transformation

In a vanilla RNN with ReLU non-linearity the hidden state evolves as

ht = ϕ
(
xt W

T
in + ht−1 W

T
hh

)
, ϕ(z) = max(0, z). (A.1)

Because the derivative of the ReLU is either 0 or 1, the Jacobian that propagates an infinitesimal
perturbation δht−1 to δht takes a particularly simple form:

Jt = WT
hhDt, Dt = diag

[
1zt>0

]
, zt = xt W

T
in + ht−1 W

T
hh. (A.2)

The diagonal gating matrix Dt switches rows of Whh on or off depending on whether the correspond-
ing pre-activation is positive.

Discrete-time stability and the need for a spectral map. In discrete time a fixed point is lo-
cally stable iff all eigenvalues satisfy |λi| < 1. To interpret this spectrum with the intuition of
continuous-time systems (where the relevant boundary is Reλi = 0) we apply the classical Möbius
transformation

µ(λ) =
1 + λ

1− λ
, λ ̸= 1. (A.4)

This bijection maps the unit circle to the imaginary axis and preserves complex conjugacy, giving the
correspondence

Condition in λ After mapping Interpretation

|λ| < 1 Reµ(λ) < 0 contraction
|λ| = 1 Reµ(λ) = 0 neutral / Hopf boundary
|λ| > 1 Reµ(λ) > 0 expansion

25

H Second Order Perturbation

Inspired by the perturbative approach on RNN of [26], here we compute two simple terms to estimate
the impact of the first and second order effects of the input noise on the stable dynamics. Without
loss of generality, we reformulate the RNN dynamics as:

ĥt+1 = ϕ(ĥt)W
T
hh + xtW

T
in ϵ

With ϕ representing the ReLU activation, ĥt ∈ Rr the pre-activation recurrent state, xt ∈ Rn with
xt ∼ N (0, σ2In), and zi the i− th pre-activation neuron. We recover the formulation of equation
(2) in Section 3.2 with ht = ϕ(ĥt). Let’s define the unperturbed dynamics

ĥo
t = ϕ(ĥo

t−1)W
T
hh

Such that ĥ0
tc = ĥ0

tc−1 for some tc > 0. We consider the first order perturbation around it

ĥt = ĥ0
t + δht

By substituting we obtain the following:

ĥ0
t+1 + δht+1 = ϕ(ĥ′0

t + δht)W
T
hh + xtW

T
in ϵ,

δht+1 = ϕ(ĥ0
t + δht)W

T
hh − ϕ(ĥ0

t)W
T
hh + xtW

T
in ϵ.

Given the ReLU activation, we approximate for small δht:

ϕ(ĥ0
t + δht) ≈ ϕ(ĥ0

t) + δhtDϕ(ĥ
0
t),

where Dϕ(ĥ
0
t) is diagonal, with entries 1 if (ĥ0

t)i > 0, 0 otherwise. Thus:

δht+1 ≈ δhtDϕ(ĥ
0
t)W

T
hh + xtW

T
in ϵ.

Naming At = Dϕ(ĥ
o
t)W

T
hh and Mt,s = As+1As+1...At =

∏t+1
k=s+1 Ak, with At+1 = Ir.

By iterating we obtain:

δht = ϵ

t∑
s=0

xsW
T
in

(
t+1∏

k=s+1

Ak

)
= ϵ

t∑
s=0

xsW
T
in Mt,s

ĥt = ĥo
t + ϵ

t∑
s=0

xsW
T
in Mt,s

We observe that, given the unbiased Gaussian noise, E[δh] = 0. Therefore, the RNN integration
mechanism must rely on higher order terms. Henceforth, we herby derive the second order term as
well. To make the higher-order term explicit, Instead of δh = δh(1) + O(σ2) we express δht into
orders of noise:

δht = δh
(1)
t + δh

(2)
t +O(σ3),

where δh(1)
t is the first-order term and δh

(2)
t is the second-order term. For an element-wise activation

(∂
2ϕi

∂z2
j

= 0 for i ̸= j), we get the following recurrent form

δht+1 = δhtDϕ(ĥ
0
t)W

T
hh +

1

2

r∑
i=1

[
(δht)

2
i ·

∂2ϕi

∂z2i
(ĥ0

t)

]
ei ·WT

hh + xtW
T
in +O(∥δht∥3)

Given that δh(2)
t captures only the second order effects, it must satisfy the following relation

26

δh
(2)
t+1 ≈ δh

(2)
t Dϕ(ĥ

0
t)W

T
hh +

1

2

r∑
i=1

[
(δh

(1)
t)2i ·

∂2ϕi

∂z2i
(ĥ0

t)

]
ei ·WT

hh

with δh
(2)
0 = 0. This is a linear recursion, driven also by a quadratic term in δh

(1)
t . Solving it we

obtain:

δh
(2)
t =

ϵ2

2

t∑
s=0

r∑
i=1

[
(δh(1)

s)2i ·
∂2ϕi

∂z2i
(ĥ0

s)

]
ei ·Mt,s

Which leads to the following expectation, depending only on the noise variance.

E[δh(2)
t] =

ϵ2

2

t∑
s=0

r∑
i=1

σ2

(
s∑

k=0

WT
in Mt,s

)2

i

· ∂
2ϕi

∂z2i
(ĥ0

s)

 ei ·Mt,s

Unfortunately, the ReLU activation does not possess a second derivative. Henceforth, we approximate
the impact of the second order perturbation with the square of the first order perturbation over several
trials whenever the pre-activation neurons activity zi is below 0:

dh
(2)
t =

t∑
k

1

2

(
dh

(1)
k

)2
⊙ fk ·Mt,k

Where ⊙ is the Hadamard product and

(fk)i =

{
1 if (zk)i < 0
0 otherwise

for t = 10 and averaging with respect to 100 different trajectories. This vector emerges after the orbital
dynamics onset (Figure 4A,D) and scales linearly with the variance, analogous to the scaling of the
orbits observed in Figure 3D, K-M. Furthermore, empirically, we observe that kick neurons comprise
some of the top non-zero components of this vector, suggesting a deeper connection between variance
and the firing mechanism.

27

I Residency times and noise sensitivity

Figure 17: Residency analyses for linear-chain HMMs. Each row corresponds to an RNN trained
on a linear-chain HMM with M ∈ {2, 3, 4, 5} latent states (panels A–D). Left: PCA projections
of the latent trajectories colored by residency time (RT) reveal distinct dynamical regimes, with
slow regions (clusters, dark gray) where trajectories linger and fast regions (transitions, orange)
where rapid output switching occurs. Center-left: distributions of average sign changes in the
logit gradient exhibit a robust bimodal structure separating stable clusters from directed transition
flows. Center-right: the average number of unstable directions (via Möbius-transformed Jacobian
eigenvalues) peaks in intermediate RTs, identifying kick-zones that mediate transitions. Right: spatial
maps of the number of eigenvalues with positive real part confirm local instability confined to these
zones. The coherent structure across all HMM configurations demonstrates that the RNNs converge
on a common solution: orbital dynamics divided into slow clusters, unstable kick-zones, and rapid
transitions, suggesting a generic mechanism by which RNNs can emulate discrete stochastic HMMs
emissions through continuous dynamics.

28

Figure 18: Residency analyses for fully-connected HMMs. Each row corresponds to the principal
space or one of the three principal subspaces identified in the RNN trained to reproduce the emission
statistics of a fully-connected HMM (panels A–D). Left: PCA projections of the latent trajectories
colored by residency time (RT) reveal distinct dynamical regimes, with slow regions (clusters, dark
gray) where trajectories linger and fast regions (transitions, orange) where rapid output switching
occurs. Center-left: distributions of average sign changes in the logit gradient exhibit a robust
bimodal structure separating stable clusters from directed transition flows. Center-right: the average
number of unstable directions, computed from Möbius-transformed Jacobian eigenvalues, peaks in
intermediate RTs, identifying locally unstable kick-zones that mediate transitions. Right: spatial maps
of the number of eigenvalues with positive real part confirm that instability is confined to kick-zones
while clusters remain locally stable. Together, these results show that the RNN decomposes the
fully-connected HMM into three coupled dynamical subspaces, each expressing the same tripartite
organization of clusters, kick-zones, and transitions described for the linear-chain architectures —
supporting the compositional reuse of the same dynamical primitive across HMM families.

29

Figure 19: Residency analyses. Each row corresponds to the principal space or one of the two
principal subspaces identified in the RNN trained to reproduce the emission statistics of a cyclic
HMM (panels A–C). Left: PCA projections of the latent trajectories colored by residency time (RT)
reveal distinct dynamical regimes, with slow regions (clusters, dark gray) where trajectories linger
and fast regions (transitions, orange) where rapid output switching occurs. Center-left: distributions
of average sign changes in the logit gradient exhibit a robust bimodal structure separating stable
clusters from directed transition flows. Center-right: the average number of unstable directions,
computed from Möbius-transformed Jacobian eigenvalues, peaks in intermediate RTs, identifying
locally unstable kick-zones that mediate transitions. Right: spatial maps of the number of eigenvalues
with positive real part confirm that instability is confined to kick-zones while clusters remain locally
stable. Together, these results show that cyclic architectures preserve the same dynamical primitive
observed in simpler HMMs.

30

Figure 20: Noise sensitivity analyses for linear-chain HMMs. Each row corresponds to an RNN
trained to reproduce the emission statistics of a linear-chain HMM with M ∈ {2, 3, 4, 5} latent states
(panels A–D). Left to right: Sampled initial conditions (black stars) are taken from representative
cluster (left triplets) and transition (right triplets) regions in the latent space. From each location, 30
trajectories (magenta) are simulated under three levels of input-noise resampling: identical (γ = 0),
partially resampled (γ = 0.5), and fully independent (γ = 1). In all configurations, transitions remain
compact and exhibit robust, quasi-deterministic flow once the kick-zone is crossed, whereas clusters
show increasing divergence with noise resampling, reflecting high noise sensitivity.

31

Figure 21: Quantification of noise sensitivity for linear-chain HMMs. Each column corresponds
to an RNN trained to reproduce the emission statistics of a linear-chain HMM with M ∈ {2, 3, 4, 5}
latent states (panels A–D). For each configuration, we quantify the dispersion of latent trajectories
initialized from representative cluster (purple and blue) and transition (orange and red) regions
under two levels of noise resampling (γ = 0.5, 1). A: the trace of the trajectory covariance matrix
captures the overall spread of trajectories in latent space. B: the average Euclidean distance to the
mean trajectory reflects deviations across trials. In all configurations, transitions remain compact
and exhibit robust, quasi-deterministic flow once the kick-zone is crossed, whereas clusters show
progressively larger divergence with increasing noise resampling, reflecting high noise sensitivity.

32

J Kick-Neurons Activity

Figure 22: Pre-activation values of kick-neurons. Latent trajectories projected onto the first two
principal components (PC1 and PC2) of the RNN trained on a 2-state HMM. Each point along a
trajectory corresponds to one time step and is colored by the pre-activation value of a specific neuron.
The first row shows the three neurons forming Kick Group 1, while the second row displays the
three neurons of Kick Group 2, which mediate transitions in the opposite direction. In both groups,
pre-activations are strongly negative within one of the two clusters, increase to near-zero values in
the kick-zones, and become positive during transitions and in the subsequent cluster. These dynamics
reveal a clear functional role: within clusters, the neurons are fully suppressed (ReLU outputs zero),
while in the kick-zones, pre-activation values fluctuate near the ReLU threshold. This intermediate
regime places the units near the ReLU activation threshold, where small variations in input can
determine the opening of the ReLU gate.

33

K Recurrent weight matrices and Kick-circuits

Figure 23: Recurrent weight matrices and Kick-circuits for linear-chain HMMs. Each row
(A–D) corresponds to an RNN trained to reproduce the emission statistics of a linear-chain HMM
with M ∈ {2, 3, 4, 5} latent states. Left: Sub-matrices of the recurrent weights Whh restricted to
the identified kick-neurons. Within-triplet connections are predominantly excitatory (red), while
cross-triplet connections are inhibitory (blue), indicating mutual excitation and reciprocal inhibition
between opposing kick groups. Center: Weights from the noise-integrating populations to the
kick-neurons (sorted). Each population excites one kick-neuron triplet while inhibiting the other,
implementing selective gating of transition direction. Right: Recurrent weights within and across the
two noise-integrating populations, showing strong within-population excitation and cross-population
inhibition. Across all architectures, this structured connectivity forms a kick-circuit: two self-exciting,
mutually inhibiting loops that project to opposing kick-neurons, enabling noise-driven, direction-
selective transitions between cluster regions.

34

Figure 24: Recurrent weight matrices and Kick-circuits for fully-connected HMMs. Each row
(A–C) corresponds to one of the three principal subspaces identified in the RNN trained to reproduce
the emission statistics of a fully-connected HMM. Within each subspace, we isolate the kick-neurons
and associated noise-integrating populations that together implement a self-contained instance of the
dynamical primitive described for the linear-chain architectures. Left: sub-matrices of the recurrent
weights Whh restricted to the identified kick-neurons. Within-group connections are predominantly
excitatory (red), while cross-group connections are inhibitory (blue), indicating mutual excitation
and reciprocal inhibition between opposing kick groups. Center: weights from the two noise-
integrating populations to the corresponding kick-neurons (sorted). Each population excites one
kick group while inhibiting the other, implementing selective gating of transition direction. Right:
recurrent weights within and across noise-integrating populations, showing strong within-population
excitation and cross-population inhibition, mirroring the architecture observed in linear-chain models.
Together, these subspaces (A–C) represent three instances of the same kick-circuit motif, confirming
that the RNN decomposes the fully-connected HMM into compositional dynamical primitives that
each generate noise-driven, direction-selective transitions. The notation population′ (panel B) and
population′′ (panel C) indicates that population groups are re-identified independently for each
subspace, whereas the kick-groups remain fixed across panels. D: at the higher compositional level,
the recurrent weights among the three kick-groups show the same organization — self-excitation
within each group and cross-inhibition between groups — revealing that the same circuit principle
recurs hierarchically across levels, from single-neuron motifs to multi-orbit compositions.

35

L Alignment of Output Dimensions with Orbits Plane

Figure 25: Alignment of output dimensions with orbit plane. Mean ± s.d. projection of the
three output readout axes onto the principal plane spanned by the orbital dynamics, computed
across three independently trained RNNs (|h| = 150, d = 100) for each linear-chain HMM with
M ∈ {2, 3, 4, 5} latent states. As the number of latent states increases, the alignment between the
readout axes and the orbit plane systematically decreases, indicating that the networks progressively
encode output probabilities through subtler modulations within a shared low-dimensional dynamical
manifold rather than by forming additional slow regions or distinct attractors. This geometric
reorientation provides a mechanistic account of how RNNs approximate increasingly fine latent
discretizations — transitioning from discrete to quasi-continuous regimes — by reusing the same
dynamical primitive while generating smoother, less skewed output distributions.

36

M Limitations and Broader Impact

M.1 Discussion of Limitations

This work focuses on RNNs trained to emulate relatively simple HMM structures. Despite the
diversity of HMM families examined (linear-chain, fully-connected and cyclic), the target models
share symmetric transition graphs and emission probabilities constrained to two or three output
classes. While this design allows for clear interpretation and mechanistic analysis, natural behaviors
are often governed by richer latent structures featuring asymmetric transitions and more diverse
emission profiles. Extending the present framework to capture these more complex dynamics remains
an important direction for future work. Nevertheless, preliminary analyses on naturalistic animal
behavior suggest that the core dynamical primitive and its underlying mechanisms identified here
generalize beyond the simplified settings considered, providing a potential foundation for modeling
spontaneous behavioral sequences in biological systems.

M.2 Broader Impact

This work aims to advance our understanding of how Recurrent Neural Networks (RNNs) can
represent discrete, stochastic latent structure through continuous dynamics. By reverse-engineering
trained RNNs, we uncover a mechanistic account of how such representations can emerge in the
absence of explicit structural constraints. This contributes to a growing body of work exploring how
neural architectures can serve as data-driven models of behavior.

A key implication is that RNNs may offer a powerful alternative to traditional models like Hidden
Markov Models (HMMs) for inferring latent structure in naturalistic behaviors. Unlike HMMs, which
impose strong assumptions about the topology of the latent state space, RNNs allow for both discrete
and continuous structures to emerge directly from the data. This flexibility has the potential to yield
more biologically plausible representations of the computations underlying behavior.

More broadly, the dynamical mechanisms we identify — particularly how structured connectivity and
noise interactions give rise to stochastic, quasi-periodic transitions — may inspire novel hypotheses
about the neural representations of spontaneous, sequential behaviors in biological systems.

We do not foresee any direct negative societal impacts arising from this work.

37

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction in this paper accurately reflect the paper’s
contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss limitations in the Appendix M.1.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]

38

Justification:
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: All the results in this paper can be reproduced.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

39

Answer: [Yes]
Justification: We provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The paper specify all the training and test details necessary to understand the
results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments in this paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

40

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The paper provide sufficient information on the computer resources needed to
reproduce the experiments in B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The paper discuss both potential positive societal impacts and negative societal
impacts of the work performed in Appendix M.2.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

41

https://neurips.cc/public/EthicsGuidelines

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The creators or original owners of assets used in the paper are properly credited
and the license and terms of use are explicitly mentioned and properly respected.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

42

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

43

paperswithcode.com/datasets

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

44

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Related Work
	Approximating HMMs with RNNs
	Families of HMM architectures
	Training Networks with Sinkhorn Loss Function and Performance Metrics

	Mechanistic Interpretability: Latent Dynamics
	Global Latent Dynamics: Noise-sustained Orbital Dynamics
	Local Latent Dynamics: Clusters, Transitions, and Kick‑Zones

	Mechanistic Interpretability: single neuron computations and connectivity
	Stochastic Resonance
	Conclusion
	Appendix
	Hidden Markov Models Architectures
	Training Regime and Computational Resources
	Performance Metrics
	Sinkhorn-Aligned Euclidean Distances
	Transition Matrices Squared Differences

	Trajectories for RNNs trained on HMMs
	Trajectories for Linear-Chain HMMs
	Trajectories for Fully-Connected and Cyclic HMMs

	Learning Trajectories Across Training Epochs
	Loss Curves
	Jacobian Linearization and Stability Analysis via Möbius Transformation
	Second Order Perturbation
	Residency times and noise sensitivity
	Kick-Neurons Activity
	Recurrent weight matrices and Kick-circuits
	Alignment of Output Dimensions with Orbits Plane
	Limitations and Broader Impact
	Discussion of Limitations
	Broader Impact

