
GlanceNets: Interpretabile, Leak-proof Concept-based Models

Abstract

There is growing interest in concept-based mod-
els (CBMs) that combine high-performance and
interpretability by acquiring and reasoning with
a vocabulary of high-level concepts. A key re-
quirement is that the concepts be interpretable.
Existing CBMs tackle this desideratum using a
variety of heuristics based on unclear notions of
interpretability, and fail to acquire concepts with
the intended semantics. We address this by provid-
ing a clear definition of interpretability in terms
of alignment between the model’s representation
and an underlying data generation process, and
introduce GlanceNets, a new CBM that exploits
techniques from disentangled representation learn-
ing and open-set recognition to achieve alignment,
thus improving the interpretability of the learned
concepts. We show that GlanceNets, paired with
concept-level supervision, achieve better alignment
than state-of-the-art approaches while preventing
spurious information from unintendedly leaking
into the learned concepts.

1 INTRODUCTION

Concept-based models (CBMs) are an increasingly popu-
lar family of classifiers that combine the transparency of
white-box models with the flexibility and accuracy of regu-
lar neural nets [Alvarez-Melis and Jaakkola, 2018, Li et al.,
2018, Chen et al., 2019, Losch et al., 2019, Chen et al.,
2020]. At their core, all CBMs acquire a vocabulary of con-
cepts capturing high-level, task-relevant properties of the
data, and use it to compute predictions and produce faithful
explanations of their decisions [Rudin, 2019].

The central issue in CBMs is how to ensure that the con-
cepts are semantically meaningful and interpretable for (suf-
ficiently expert and motivated) human stakeholders. Current

approaches struggle with this. One reason is that the notion
of interpretability is notoriously challenging to pin down,
and therefore existing CBMs rely on different heuristics—
such as encouraging the concepts to be sparse [Alvarez-
Melis and Jaakkola, 2018], orthonormal to each other [Chen
et al., 2020], or match the contents of concrete exam-
ples [Chen et al., 2019]—with unclear properties and incom-
patible goals. A second, equally important issue is concept
leakage, whereby the learned concepts end up encoding spu-
rious information about unrelated aspects of the data, mak-
ing it hard to assign them clear semantics [Mahinpei et al.,
2021]. Notably, even concept-level supervision is insuffi-
cient to prevent leakage [Margeloiu et al., 2021], cf. Fig. 3.

Prompted by these observations, we define interpretability
in terms of alignment: learned concepts are interpretable
if they can be mapped to a (partially) interpretable data
generation process using a transformation that preserves
semantics. This is sufficient to unveil limitations in exist-
ing strategies, build an explicit link between interpretabil-
ity and disentangled representations, and provide a clear
and actionable perspective on concept leakage. Building
on our analysis, we also introduce GlanceNets (aliGned
LeAk-proof coNCEptual Networks), a novel class of CBMs
that combine techniques from disentangled representation
learning [Schölkopf et al., 2021] and open-set recogni-
tion [Scheirer et al., 2012] to actively pursue alignment
– and guarantee it under suitable assumptions – and avoid
concept leakage.

Contributions: Summarizing, we: (i) Provide a defini-
tion of interpretability as alignment that facilitates tapping
into ideas from disentangled representation learning; (ii)
Show that concept leakage can be viewed from the per-
spective of out-of-distribution generalization; (iii) Intro-
duce GlanceNets, a novel class of CBMs that acquire inter-
pretable representations and are robust to concept leakage;
(iv) Present an extensive empirical evaluation showing that
GlanceNets are as accurate as state-of-the-art CBMs while
attaining better interpretability and avoiding leakage.
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Figure 1: Left: The data generation process. Center: Architecture of GlanceNets showing the encoder qφ, decoder pθ,
classifier pW , and open-set recognition step. Right: GlanceNets prevent leakage by identifying and rejecting open-set inputs
using a combined strategy, shown here for a model trained on digits “4” and “5” only: the “3” is rejected as its embedding
falls far away from classes prototypes (colored blobs), while the “8” is rejected as its reconstruction loss is too large.

2 CONCEPT-BASED MODELS

Concept-based models (CBMs) comprise two key elements:
(i) A learned vocabulary of k high-level concepts meant
to enable communication with human stakeholders [Kamb-
hampati et al., 2022], and (ii) a simulatable [Lipton, 2018]
classifier whose predictions depend solely on those concepts.
Formally, a CBM f : Rd → [c], with [c] := {1, . . . , c},
maps instances x to labels y by measuring how much each
concept activates on the input, obtaining an activation vector
z(x) := (z1(x), . . . , zk(x)) ∈ Rk, aggregating the activa-
tions into per-class scores sy(x) using a linear map [Alvarez-
Melis and Jaakkola, 2018, Chen et al., 2019, 2020], and then
passing these through a softmax, i.e.,

sy(x) :=
∑
j wyjzj(x), p(y | x) := softmax(s(x))y.

(1)
Each weight wyj ∈ R encodes the relevance of concept zj
for class y. The activations themselves are computed in a
black-box manner, often leveraging pre-trained embedding
layers, but learned so as to capture interpretable aspects of
the data using a variety of heuristics, discussed below.

Now, as long as the concepts are interpretable, it is straight-
forward to extract human understandable local explanations
disclosing how different concepts contributed to any given
decision (x, y) by looking at the concept activations and
their associated weights, thus abstracting away the under-
lying computations. This yields explanations of the form
{(wyj , zj(x)) : j ∈ [k]} that can be readily summarized1

and visualized [Hase and Bansal, 2020, Guidotti et al., 2018].
Importantly, the score of class y is conditionally indepen-
dent from the input x given the corresponding explanation,
i.e., sy(x) ⊥⊥ x | E(x, y), ensuring that the latter is faithful
to the model scores. GlanceNets inherit all of these features.

Heuristics for interpretability. Crucially, CBMs are only
interpretable insofar as their concepts are. Existing ap-
proaches implement special mechanisms to this effect, often
pairing a traditional classification loss (such as the cross-

1For instance, by pruning those concepts that have little effect
on the outcome to simplify the presentation.

entropy loss) with an auxiliary regularization term [Alvarez-
Melis and Jaakkola, 2018, Chen et al., 2019, 2020].

We are interested in particular to variants of concept bot-
tleneck models (CBNMs) [Koh et al., 2020, Losch et al.,
2019], which align the concepts using concept-level su-
pervision, possibly obtained from a separate source, like
ImageNet [Deng et al., 2009]. From a statistical perspective,
this seems perfectly sensible: if the supervision is unbiased
and comes in sufficient quantity, and the model has enough
capacity, this strategy appears to guarantee the learned and
ground-truth concepts to match.

Concept leakage in concept-bottleneck models. Unfortu-
nately, concept-level supervision is not sufficient to guar-
antee interpretability. [Mahinpei et al., 2021] have demon-
strated through simple examples that concepts acquired by
CBNMs pick up spurious properties of the data. This phe-
nomenon is known as concept leakage.

Intuitively, leakage occurs because in CBNMs the concepts
end up unintentionally capturing distributional information
about unobserved aspects of the input, failing to provide
well-defined semantics. However, a clear definition of leak-
age is missing, and so are strategies to prevent it: a key
contribution of our paper is showing that leakage can be
understood from the perspective of domain shift and dealt
with using open-set recognition [Scheirer et al., 2012].

3 INTERPRETABILITY AND LEAKAGE

The main issue with heuristics used by CBMs is that they
are based on unclear notions of interpretability. In order
to develop effective algorithms, we propose to view inter-
pretability as a form of alignment between the machine’s
representation and that of its user. This enables us to iden-
tify conditions under which interpretability can be achieved,
build links to well-understood properties of representations,
and leverage state-of-the-art learning strategies.

Interpretability. We henceforth focus on the (rather gen-
eral) generative process shown in Fig. 1 the observations
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X ∈ Rd are caused by n generative factors G ∈ Rn, them-
selves caused by a set of confounds C (including the label
Y [Schölkopf et al., 2012]). Notice that the generative fac-
tors can be statistically dependent due to the confounds C,
but as noted by [Suter et al., 2019], the total causal effect
Peters et al. [2017] between Gi and Gj is zero for all i 6= j.
The generative factors capture all information necessary to
determine the observation [Reddy et al., 2022], so the goal
is to learn concepts Z ∈ Rk that recover them. The variable
T will be introduced later on.

We posit that a (learned) representation is only interpretable
if it supports symbolic communication between the model
and the user, in the sense that it shares the same (or similar
enough) semantics to the user’s representation. The latter
is however generally unobserved. Then, we make a second,
critical assumption that some of the generative factors GI ⊆
G are interpretable to the user, i.e., they can be used as a
proxy for the user’s internal representation. Naturally, not
all generative factors are interpretable [Gabbay et al., 2021],
but in many applications some of them are, e.g., the hair
color or noise size in CelebA [Liu et al., 2015].

Interpretability as alignment. Under this assumption, if
the variables ZJ ⊆ Z are aligned to the generative factors
GI by a map α : g 7→ zJ that preserves semantics, they are
themselves interpretable. One desirable property is that α
does not “mix” multiple G’s into a single Z. This property
can be formalized in terms of disentanglement [Eastwood
and Williams, 2018, Suter et al., 2019, Schölkopf et al.,
2021]. This is however insufficient: we wish the map be-
tween Gi and its associated factor Zj to be “simple”, so as
to conservatively guarantee that it preserves semantics. This
makes alignment strictly stronger than disentanglement.

Motivated by this, we say that ZJ is aligned to GI if: (i)
there exists an injective map between indices π : [nI ]→ [k],
where [nI ] identifies the subset of generative factors in-
dexes in GI , such that, for all i, i′ ∈ [nI ], i 6= i′, and
j = π(i), it holds that fixing Gi is enough to fix Zj re-
gardless of the value taken by the other generative fac-
tors Gi′ , and (ii) the map α can be written as α(g) =
(µ1(gπ(1)), . . . , µn(gπ(nI))), where the µi’s are monotone
functions. This holds, for instance, for linear transformations
of the form A(gπ(1), . . . , gπ(nI)), where A ∈ RnI×k is a
matrix with no non-zero off-diagonal entries. This second
requirement can be relaxed depending on the application.

Measuring alignment with DCI. Disentanglement can be
measured in a number of ways [Zaidi et al., 2020], but most
of them provide little information about how simple the map
α is. In order to estimate alignment, we repurpose DCI, a
measure of disentanglement introduced by Eastwood and
Williams [2018], by fitting a linear model from zJ to gI .
Further details are included in the Supplementary Material.

Achieving alignment with concept-level supervision. It
has been shown that disentanglement cannot be achieved in

the purely unsupervised setting [Locatello et al., 2019]. This
immediately entails that alignment is also impossible in that
setting, highlighting a core limitation of [Alvarez-Melis and
Jaakkola, 2018]. However, disentanglement can be attained
if supervision about the generative factors is available, even
only for a small percentage of the examples [Locatello et al.,
2020]. As a matter of fact, supervision is used in representa-
tion learning to achieve identifiability, a stronger condition
than – and that entails both of – disentanglement and align-
ment [Khemakhem et al., 2020]. Thus, following CBNMs,
we seek alignment by leveraging concept-level supervision.

Interpretability and concept leakage. Intuitively, concept
leakage occurs when a model is trained on a data set on
which (i) some generative factors GV ⊂ G vary, while the
others GF = G \GV are fixed, and (ii) the two groups
of factors are statistically dependent. For instance, in the
even vs. odd experiment of [Mahinpei et al., 2021], no
training examples are annotated with concepts besides 4
and 5. CBNMs with access to supervision on GV tend
to acquire a latent representation that approximates these
factors, and that because of (ii) correlates with the fixed
factors GF .

In contrast with previous assessments [Mahinpei et al.,
2021, Margeloiu et al., 2021], we notice that point (i) can
be viewed as a special form of domain shift: the train-
ing examples are sampled from a ground-truth distribution
p(X,G | T = 1) in which GF is approximately fixed, e.g.,
p(GF | T = 1) = δ(g′F ) for some vector g′F , and the
test set from a different distribution p(X,G | T = 0) in
which GF is no longer fixed. Here, T is a random variable
that selects between training and test distribution, see Fig. 3.
Since regular CBMs have no strategy to cope with domain
shift, they fail to adapt when this occurs.

Motivated by this, we propose then to tackle concept leakage
by designing a CBM specifically equipped with strategies
for detecting instances that do not belong to the training dis-
tribution using open-set recognition [Scheirer et al., 2012].
By estimating the value of the variable T at inference time,
we are essentially predicting whether an input was sampled
from a distribution similar enough to the training distribu-
tion, and therefore can be handled by a model learned on this
distribution, or not. This strategy proves very effective in
practice, as shown by our empirical evaluation (Section 5.2).

4 GLANCENETS

GlanceNets combine a VAE-like architecture [Kingma and
Welling, 2014, Rezende et al., 2014] for learning disen-
tangled concepts with a prior and classifier designed for
open-set prediction [Sun et al., 2020]. In order to accommo-
date for non-interpretable factors, the latent representation
of GlanceNets Z is split into two: (i) k concepts ZJ , aligned
to the interpretable generative factors GI , that are used for
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prediction, and (ii) k̄ opaque factors ZJ̄ that are only used
for reconstruction. Specifically, a GlanceNet comprises an
encoder qφ(Z | X) and a decoder pθ(X | Z), both param-
eterized by deep neural networks, as well as a classifier
pW (Y | ZJ) feeding off the interpretable concepts only.
Following other CBMs, the classifier is implemented using
a dense layer with parameters W ∈ Rv×k followed by a
softmax activation, i.e., pW (Y | zJ) := softmax(WzJ),
and the most likely label is used for prediction. The overall
architecture is shown in Fig. 1.

In contrast to regular VAEs, GlanceNets associate each class
to a prototype in latent space through the prior p(Z | Y),
which is conditioned on the class and modelled as a mixture
of gaussians with one component per class. The encoder,
decoder, and prior are fit on data so as to maximize the
evidence lower bound, defined as [Kingma and Welling,
2019] EpD(x,y)[L(θ,x, y;β)] with:

L(θ,x, y;β) :=Eqφ(z|x)[log pθ(x | z) + log pW (y | zJ)]

− β · KL(qφ(z | x) ‖ p(z | y)) (2)

Here, pD(x, y) is the empirical distribution of the training
set D = {(xi, yi) : i = 1, . . . ,m}. The first term of Eq. (2)
is the likelihood of an example after passing it through the
encoder distribution.

The second term penalizes the latent vectors based on how
much their distribution differs from the prior and encourages
disentanglement. As mentioned in Section 3, learning dis-
entangled representations is impossible in the unsupervised
i.i.d. setting [Locatello et al., 2019]. Following [Locatello
et al., 2020], and similarly to CBNMs, we assume access to
a (possibly separate) data set D̃ = {(x`,gI,`)} containing
supervision about the interpretable generative factors GI

and integrate it into the ELBO by replacing the per-example
loss L in Eq. (2) with:

L(θ,x, y;β) + γ · EpD̃(x,g)Eqφ(z|x) [Ω(z,g)] (3)

where γ > 0 controls the strength of the concept-level super-
vision. Following Locatello et al. [2020], the term Ω(z,g)
penalizes encodings sampled from qφ(z |x) for differing
from the annotation g. We implement this term using the
average cross-entropy loss Ω(z,g) := −

∑
k gk log σ(zk)+

(1 − gk) log(1 − σ(zk)), where the annotations gk are
rescaled to lie in [0, 1] and σ is the sigmoid.

In order to tackle concept leakage, GlanceNets integrate
the open-set recognition strategy of [Sun et al., 2020]. This
strategy identifies out-of-class inputs by considering the
class prototype µy := Ep(z|y)[z] in Rk defined by the
prior distribution and the decoder pθ(x|z). During training,
GlanceNets use the training data to estimate: (i) a distance
threshold ηy, which defines a spherical subset in the latent
space Zy = {z : ||µy − z|| < ηy } centered around the
prototype of class y, and (ii) a maximum threshold on the
reconstruction error ηthr. If new data points have reconstruc-
tion error above ηthr or they do not belong to any subset

Zy , they are inferred as open-set instances, i.e., T̂ = 0. This
procedure is illustrated in Fig. 1.

Remark. Other disentanglement strategies can be natu-
rally included in GlanceNets to increase its alignment, e.g.,
with various methods in [Esmaeili et al., 2019], or JL1-
VAEs [Rhodes and Lee, 2021]. Since our experiments al-
ready show substantial benefits for GlanceNets building on
β-VAEs, we leave these extensions to future work.

5 EMPIRICAL EVALUATION

In this section, we present results on several tasks showing
that GlanceNets outperform CBNMs [Chen et al., 2020] in
terms of alignment and robustness to leakage, while achiev-
ing comparable prediction accuracy. The details on the hard-
ware, architectures and hyperparameters are collected in the
Supplementary Material.

5.1 EVALUATING ALIGNMENT

In a first experiment, we compared GlanceNets with CB-
NMs on three classification tasks for which supervision on
the generative factors is available. In order to evaluate the
impact of this supervision on the different competitors, we
varied the amount of training examples annotated with it
from 1% to 100%. For each increment, we measured predic-
tion performance using accuracy, alignment and explicitness
using the lasso variant of DCI.

Data sets. We carried out our evaluation on two data sets
taken from the disentanglement literature dSprites [Matthey
et al., 2017] and MPI3D [Gondal et al., 2019], and a very
challenging real world dataset, CelebA-64 [Liu et al., 2015].
They all consist in 64× 64 annotated images, with only one
channel for dSprites and three for the others. For CelebA,
since we are interested in measuring alignment, we consid-
ered only those 10 binary generative factors that CBNMs
can fit well (in the Appendix). We also dropped all those ex-
amples for which hair color is not unique, obtaining approx.
127k examples. For dSprites and MPI3D, we used a ran-
dom 80/10/10 train/validation/test split, while for CelebA
we kept the original split Liu et al. [2015].

We generated the ground-truth labels y as follows. For
dSprites, we labeled images according to a random but
fixed linear separator defined over the continuous generative
factors, chosen so as to ensure that the classes are balanced.
For MPI3D and CelebA, we focused on the categorical
factors instead. Specifically, we clustered all images using
the algorithm of Huang [1997], for a total of 10 and 4 clus-
ters for MPI3D and CelebA respectively, and then labeled
all examples based on their reference cluster. This led to
slightly unbalanced classes containing different percentages
of examples, ranging from 5% to 16% in MPI3D and from
21% to 29% in CelebA.
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Figure 2: GlanceNets are better aligned than CBNMs. Each row is a data set and each column reports a different metric.
The horizontal axes indicate the % of training examples for which supervision on the generative factors is provided.

Results and discussion. The results of this first experiment
are reported in Fig. 2. All models were tested with as many
latent components as the number of supervised generative
factors for each dataset. The behavior of both competitors
on dSprites and MPI3D was extremely stable, owing to the
fact that these data sets cover an essentially exhaustive set of
variations for all generative factors, so we report their hold-
out performance on the test set. Since for CelebA variance
was non-negligible, we ran both methods 7 times varying
the random seed used to initialize the network.

The plots clearly show that, although the two methods
achieve high and comparable accuracy in all settings,
GlanceNets attain better alignment in all data sets and for
all supervision regimes than CBNMs, with a single excep-
tion in CelebA using low values of supervision, for a total
of 13 wins out of 15 cases. In all disentanglement data
sets, there is a clear margin between the alignment achieved
by GlanceNets and that of CBNMs: performances vary up
to maximum of 15% in dSprites, and a minumum of 8% in
MPI3D. In CelebA, the gap is evident with full supervision
(almost 8% of difference in alignment), and GlanceNets
still attain overall better scores in the 25% and 50% regime.
On the other hand, performance are lower, but comparable,
with 10% supervision. The case at 1% refers to an extreme
situation where both CBNMs and GlanceNets struggle to
align with generative factors, as is clear also from the very
low explicitness. In dSprites and MPI3D, both GlanceNets
and CBNMs quickly achieve very high alignment at 1%
supervision, as expected Locatello et al. [2020], whereas
better results in CelebA are obtained with growing supervi-
sion. Furthermore, both models display similar stability on
this data set, as shown by the error bars in the plot.

5.2 EVALUATING LEAKAGE

Next, we evaluated robustness to concept leakage in two sce-
narios that differ in whether the unobserved generative fac-
tors are disentangled with the observed ones or not, see Sec-
tion 3. In both experiments, we compare GlanceNets with a
CBNM and a modified GlanceNet where the open-set recog-
nition component has been removed (denoted CG-VAE).

Leakage due to unobserved entangled factors. We start
by replicating the experiment of Mahinpei et al. [2021]: the
goal is to discriminate between even and odd MNIST images
using a latent representation Z = (Z4, Z5) obtained by
trained (with complete supervision on the generative factors)
only on examples of 4’s and 5’s. Leakage occurs if the
learned representation can be used to predict the remaining
eight digits better than random. During training, we use digit
labels for conditioning the prior p(Z | Y) of the GlanceNet.

Fig. 3 (a, b) illustrates the latent representations of the train-
ing and test set output by a GlanceNet: since the two digits
are mutually exclusive, the model has learned to map all
instances along the (z4, z5) diagonal. This is where open-set
recognition kicks in: if an input is identified as open-set, the
GlanceNet rejects it. In all leakage experiments, we imple-
ment rejection by predicting a random label. Since MNIST
is balanced, we measure leakage by computing the differ-
ence in accuracy between the classifier and an ideal random
predictor, i.e., 2 · |acc − 1

2 |: the smaller, the better. The
results, shown in Fig. 3 (c), show a substantial difference
between GlanceNet and the other approaches. Consistently
with the values reported in [Mahinpei et al., 2021], CBNMs
are affected by a considerable amount of leakage, around
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(a) (b) (c) (d) (e) (f)

Figure 3: GlanceNets are leak-proof. (a) MNIST training set embedded using GlanceNet; axes indicate z4 and z5 and color
the concept label (4 and 5). (b) Latent representations of the test images, divided in even vs. odd. Every ball in light gray
denotes the region Zy for each class y. (c) Leakage % for CBNM, CG-VAE and GlanceNet. (d) dSprites: the variations over
pos_x and pos_y for the training set, and for the test set, divided in positives vs. negatives. (e) PCA reduction for GlanceNet.
(f ) Leakage % for CBNM, CG-VAE and GlanceNet.

28%. This is not the case for our GlanceNet: most (approx.
85%) test images are correctly identified as open-set and
rejected, leading to a very low (about 2%) leakage, 26%
less than CBNMs. The results for CG-VAE also indicate
that removing the open-set component from GlanceNets
dramatically increases leakage back to around 30%.

Leakage due to unobserved disentangled factors. Next,
we analyze concept leakage between disentangled gener-
ative factors using the dSprites data set. To this end, we
defined a binary classification task in which the ground-
truth label depends on position_x and position_y only. In
particular, instances within a fixed distance from (0, 0) are
annotated as positive and the rest as negative, as shown
in Fig. 3(a). In order to trigger leakage, all competitors are
trained (using full concept-level supervision) on training
images where shape, size and rotation vary, but position_x
and position_y are almost constant (they range in a small
interval around (0.5, 0.5), cf. Fig. 3(d)). leakage occurs if
the learned model can successfully classify test instances
where position_x and position_y are no longer fixed.

For both competitors, we encode shape using a 3D one-hot
encoding and size and rotation as continuous variables. Dur-
ing training, we use the shape annotation for conditioning
the prior p(Z | Y) of the GlanceNet. The first two PCA
components of the latent representations acquired by our
GlanceNet are shown, rotated so as to be separable on the
first axis, in Fig. 3 (e): in particular, it is possible to separate
positives from negatives based on the obtained represen-
tations in the five latent dimensions. As shown in Fig. 3
(f), this means that both CBNM and CG-VAE suffer from
very large leakage, 80% and 98%, respectively. In contrast,
open-set recognition allows GlanceNet to correctly identify
and reject almost all test instances, leading to negligible
leakage.

6 RELATED WORK

Concept-based explainability. Concepts lie at the heart of
AI [Muggleton and De Raedt, 1994] and have recently resur-

faced as a natural medium for communicating with human
stakeholders [Kambhampati et al., 2022]. In explainable
AI, this was first exploited by approaches like TCAV [Kim
et al., 2018], which extract local concept-based explanations
from black-box models using concept-level supervision to
define the target concepts. Post-hoc explanations, however,
are notoriously unfaithful to the model’s reasoning [Sixt
et al., 2020]. CBMs, including GlanceNets, avoid this issue
by leveraging concept-like representations directly for com-
puting their predictions. Existing CBMs model concepts
using prototypes [Li et al., 2018, Chen et al., 2019] or other
representations [Koh et al., 2020, Chen et al., 2020], but
they seek interpretability using heuristics, and the quality of
concepts they acquire has been called into question [Nauta
et al., 2021, Margeloiu et al., 2021]. Our work shows that
disentangled representation learning helps in this regard.

Disentanglement and interpretability. Interpretability is
one of the main driving factors behind the development of
disentangled representation learning [Bengio et al., 2013,
Kulkarni et al., 2015, Chen et al., 2016]. These approaches
however make no distinction between interpretable and non-
interpretable generative factors and generally focus on prop-
erties of the world, like independence between causal mech-
anisms [Schölkopf et al., 2021] or invariances [Higgins
et al., 2016]. Interpretability, however, depends on human
factors that are not well understood and therefore usually ig-
nored [Miller, 2019]. The link between disentanglement and
interpretability has never been made explicit. Importantly, in
contrast to alignment, disentanglement does not require that
the map between matching generative and learned factors
preserves semantics. Other VAE-based classifiers either do
not tackle disentanglement or are unconcerned with concept
leakage [Xu and Sun, 2016, Sun et al., 2020].

Disentanglement and CBMs. Neither the literature on dis-
entanglement nor the one on CBMs have attempted to for-
malize the notion of interpretability or to establish a proper
link between the latter and disentanglement. The work of
Kazhdan et al. [2021] is the only one to compare disen-
tanglement and concept acquisition, however it makes no
attempt at linking the two notions. Our work fills this gap.
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A IMPLEMENTATION DETAILS

A.1 GLANCENET AND CBNM ARCHITECTURES

All experiments were implemented using Python 3 and Pytorch [Paszke et al., 2019] and run on a server with 128 CPUs,
1TiB RAM, and 8 A100 GPUs. GlanceNets were implemented on top of the disentanglement-pytorch [Abdi et al.,
2019] library. All alignment and disentanglement metrics were computed with disentanglement_lib [Locatello et al.,
2019] for dSprites and MPI3D. Code for the complete experimental setup is available on GitHub, and will be released upon
acceptance. For each experiment, we used exactly the same architecture and number of latent variables for both GlanceNets
and CBNMs to ensure a fair comparison.

Encoder architectures:

• dSprites: We chose a rather standard architecture [Abdi et al., 2019]. It comprises six 2D convolutional layers of depth
32, 32, 64, 128, 256, and 256, respectively, all with a kernel of size 4, stride 2, and padding 1, and followed by ReLU
activations. The output is flattened to a vector and passed through a dense layer to obtain the mean µ(x) and (diagonal)
variance σ(x) of the encoder distribution N (Z | µ(x),diag(σ(x))).

• MPI3D: We used the same architecture with slightly different convolutional depths of 32, 32, 64, 64, 128, and 256,
changing also the kernel size to 3 and removing padding, as per [Abdi et al., 2019].

• CelebA: We leveraged the architecture of Ghosh et al. [2020], which is a common reference for VAE models on CelebA-
64 [Tolstikhin et al., 2018]. The encoder is composed of four convolutions of depth 128, 256, 512, 1024 respectively, all
with kernel size of 5, stride of 2, followed batch normalization and ReLU activation.

The models had exactly as many latent variables as generative factors for which supervision is available, which in our three
data sets are 7, 21, and 10, respectively.

Decoder architecture: All models share the same decoder architecture, obtained by stacking:

• A 2D convolution on the latent space with a filter depth of 256, kernel size of 1, and stride of 2, followed by the ReLU
activation;

• Five transposed 2D convolutions of depth 256, 256, 128, 128, 64, 64, and num_channels, respectively, all with kernel
of size 4 and stride 2.

Here, num_channels is either 1 (dSprites) or 3 (MPI3D and CelebA). The shape of the last layer was chosen so as to
match the dimension of the input image. Additional details can be found in the various Tables in this appendix.

A.2 SUPERVISION AND TRAINING

Concept-level supervision. Depending on the supervision provided, only a fraction of the inputs was made available
during training with their generative factors. In dSprites and MPI3D all generative factors are matched by the models,
whereas in the case of CelebA we restricted learning to those 10 attributes that are best fit by the CBNMs, namely:
bald, black hair, brown hair, blonde hair, eyeglasses, gray hair, male, no beard, smiling,
and wearing hat.

Optimization setup. In all experiments, we used the Adam optimizer [Kingma and Ba, 2015] with default parameters
β1 = 0.9 and β2 = 0.999. For dSprites, we used a batch size of 64 and fixed learning rate to η = 4 · 10−4, while for MPI3D
and CelebA we used a batch size of 100 and annealed the learning rate from 10−7 to ηMPI = 10−3 and ηCelebA = 10−4,
respectively. To prevent overfitting, in CelebA we multiplu the learning rate by a factor of 0.95 in each epoch and apply
early stopping on the validation set, with a patience of 10 epochs.

Prior to training, we selected a reasonable value for the following hyper-parameters:

• β: the weight of the KL divergence in Eq. (2).

• γ: the weight of the loss on the generative factors in Eq. (3).

• λ: the weight of the cross-entropy loss over the label, which is left implicit in Eq. (2).
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Table 1: Structure of the encoder network used for dSprites.

INPUT SHAPE LAYER TYPE PARAMETERS ACTIVATION

(64, 64, 1) Convolution depth=32, kernel=4, stride=2, padding=1 ReLU
(32, 32, 32) Convolution depth=32, kernel=4, stride=2, padding=1 ReLU
(16, 16, 32) Convolution depth=64, kernel=4, stride=2, padding=1 ReLU
(8, 8, 64) Convolution depth=128, kernel=4, stride=2, padding=1 ReLU
(4, 4, 128) Convolution depth=256, kernel= 4, stride=2, padding=1 ReLU
(2, 2, 256) Convolution depth=256, kernel=4, stride=2, padding=1 ReLU
(1, 1, 256) Flatten
(1, 256) Linear dim=7+7, bias = True

Table 2: Structure of the encoder network used for MPI3D.

INPUT SHAPE LAYER TYPE PARAMETERS ACTIVATION

(64, 64, 3) Convolution depth=32, kernel=3, stride=2 ReLU
(32, 32, 32) Convolution depth=32, kernel=3, stride=2 ReLU
(16, 16, 32) Convolution depth=64, kernel=3, stride=2 ReLU
(8, 8, 64) Convolution depth=64, kernel=3, stride=2 ReLU
(4, 4, 64) Convolution depth=128, kernel= 3, stride=2 ReLU
(2, 2, 128) Convolution depth=256, kernel=3, stride=2 ReLU
(1, 1, 256) Flatten
(1, 256) Linear dim=21+21, bias = True

Table 3: Structure of the encoder network used for CelebA.

INPUT SHAPE LAYER TYPE PARAMETERS FILTER ACTIVATION

(64, 64, 3) Convolution depth=128, kernel=5, stride=2 BatchNorm ReLU
(30, 30, 128) Convolution depth=256, kernel=5, stride=2 BatchNorm ReLU
(13, 13, 256) Convolution depth=512, kernel=5, stride=2 BatchNorm ReLU
(5, 5, 512) Convolution depth=1028, kernel=5, stride=2 BatchNorm ReLU
(1, 1, 1028) Flatten
(1, 1028) Linear dim=10+10, bias = True

Table 4: Structure of the decoder network.

INPUT SHAPE LAYER TYPE PARAMETERS ACTIVATION

(dim(z)) Unsqueeze
(dim(z), 1, 1) Convolution depth=256, kernel=1, stride=2 ReLU
(256, 1, 1) Deconvolution depth=256, kernel=4, stride=2 ReLU
(256, 2, 2) Deconvolution depth=128, kernel=4, stride=2 ReLU
(128, 6, 6) Deconvolution depth=128, kernel=4, stride=2 ReLU

(128, 14, 14) Deconvolution depth=64, kernel=4, stride=2 ReLU
(64, 30, 30) Deconvolution depth=64, kernel=4, stride=2 ReLU
(64, 62, 62) Deconvolution depth=num_channels, kernel=4, stride=2
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For dSprites, we found a good balance for λ = γ = 100, while for MPI3D we achieved good performance with λ = 103 and
γ = 7 · 103. We adopted the same hyperparameters choice for CelebA, with the exception that we reduced the reconstruction
error by 0.01. For all data sets, we cross-validated over different values of β but we obtained better alignment performances
with β ≈ 1. This happens because we inject supervision on the latent factors (which is absent in regular β-VAEs Higgins
et al. [2016]).

A.3 IMPLEMENTATION OF LEAKAGE TESTS

MNIST. For this dataset, we considered only Multi-Latyer Perceptrons instead of convolutions. Both the encoder and the
decoder are composed by two linear layers with depth 128, and a dense layer connected to the latent space and to the input
space, respectively. Further details are on Table 5.

For the GlanceNet we considered a latent space of dimension 10 where the supervision on the 4 and 5 digits is used to fit the
{z4, z5} latent factors. These two, constitute the latent subspace where leakage occurs, while the other are useful only for
reconstruction. Conversely, for the CBNM we considered only two latent factors.

During training of the latent encodings, we used stochastic gradient descent with learning rate η = 0.001, reducing it by
0.95 in each epoch for both CBNMs and GlanceNets. The training was performed only on the 4 and 5 digits (in the usual
training set partition for MNIST), for almost 50 epochs. Afterwards, we considered the open-set representations, restricted to
{z4, z5}, as inputs for training a logistic regression for parity recognition. During the training, only the digits in the MNIST
training set partition (exception made for 4 and 5) are considered, while performance are calculated on the test set.

dSprites. We adopted the same architecture in the upper section, except that we reduced the latent space to 5 dimensions.
As a reminder, during training all sprites are almost fixed at the center, therefore additional factors of variations for its
position are needless. The training was performed over 300 epochs for both GlanceNets and CBNMs, with η = 4 · 10−4.
After training, the representations of the open-set sprites (in which position is no longer fixed) are used to fit a logistic
regression. In this case, the labels depend on whether the sprite is located at bottom-left corner or at the upper-right one, for
more information refer to Fig. 3. The classification performance was evaluated on a held-out test set for both models, under
an 80/20 train/test split.

Table 5: Encoder and Decoder structures for MNIST

TYPE INPUT SHAPE LAYER TYPE PARAMETERS ACTIVATION

ENCODER
(28, 28) Flatten
(784) Linear dim=128, bias=True ReLU
(128) Linear dim=128, bias=True ReLU
(128) Linear dim=10+10, bias=True

DECODER
(dim(z)) Linear dim=128, bias=True ReLU

(128) Linear dim=128, bias=True ReLU
(128) Linear dim=728, bias=True
(728) Unsqueeze
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B DCI FRAMEWORK

In our case study, we are interested into DCI maps that linearly connect the g′s to the z′s. In order to evaluate alignment
performances, the inverse map α−1 : Rk → RnI is constructed from the latent space to the span of the nI generative factors.
The latent representations and generative factors were normalized in the [0, 1] interval prior to learning.

B.1 ALIGNMENT AND EXPLICITNESS

The importance weights of this map are the absolute-values of the weights in the linear matrix of α−1, indicated as
B ∈ Rk×nI in the main text, see Section 3. Then, the importance weights are used to evaluate the dispersion of the learned
weights. To this end, we measure each Shannon entropy hj on all k latent factors:

Hj = −
nI∑
i∈1

b̄ji logn b̄ji where b̄ji = bji
/ nI∑
`=1

bj`

Then, the average alignment is calculated as:

alignment = 1−
k∑
j=1

ρjHj where ρj =

nI∑
i=1

bji

/ k,nI∑
j′=1,i=1

bj′i

varying from 0 to 1. We also calculate the explicitness of the map α, which is related to the mean squared error (MSE) of the
prediction. Since the MSE for random guessing for a variable in the [0, 1] interval is equal to 1/6, the explicitness becomes:

explicitness = 1− 6 ·MSE

B.2 EMPIRICAL EVALUATION

For dSprites and MPI3D, all DCI quantities were calculated with the built-in evaluation code provided by
disentanglement_lib, Locatello et al. [2019]. For CelebA, since the 40 attributes in CelebA are not exhaustive
for the image generation, we implemented computed DCI as follows: (i) we first converted the J attributes zJ and gJ
connected to hair type to a single concept h and fit the model with Lasso regression to predict gh from z. Then, (ii) we
trained a Logistic Regression with l1 penalty to predict the remaining g′s. Finally, we took both weights in (i) and in (ii)
to compute the matrix B ∈ R6×6. In this way, we determined alignment and explicitness for CelebA. We chose the lasso
coefficient λ = 0.01 for both regressions.
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C QUALITATIVE RESULTS FOR CONCEPT LEAKAGE IN MNIST

In Fig. 4, we show the latent space representations for different models on the MNIST leakage test, for both closed-set and
open-set data points. To illustrate the contribution of our mixture prior, in addition to the CBNM and GlanceNet models, we
also considered a simpler supervised VAE model. This model has the same encoder, decoder, and classifier as the GlanceNet,
but uses a regular Gaussian prior2. We found that this model achieved a similar level of leakage to CG-VAE. We display
in Fig. 5 the reconstruction of a few random examples output by GlanceNet: the reconstructions of all instances belonging to
the open-set greatly deviate from the original.
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Figure 4: Latent space representation for MNIST. On the first row, we report the representations for 4 and 5 as fitted by
CBNM, VAE and GlanceNet, respectively. On the second row, we display the scattering plot for points only belonging to the
open set. For CBNM, we separated even and odd instances by ∆y = 2, since their representations strongly overlap. All
plots comprise only the z4, z5 axes.

Figure 5: MNIST reconstruction with GlanceNet. On the left we reported the original digits, whereas on the right the
reconstruction with the learned decoder. All images have been inverted in the black and white scale.

2For the VAE model, we chose the Gaussian prior in Kingma and Welling [2014], i.e., p(z) = N (z|0, 1).
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D QUALITATIVE RESULTS FOR CONCEPT LEAKAGE ON DSPRITES

We also include qualitative results for GlanceNet and on dSprites for closed set and open set data points. In Fig. 6 we
display the projections of train and test points on the two different latent subspaces (see caption). In both of them, positives
and negatives representations are well separated from each other, implying substantia leakage. We also evaluated the
reconstruction quality during training and testing and reported some of them in Fig. 7. Notably, almost all points are
recognized to be open set instances thanks to the reconstruction threshold.

Figure 6: Concept space representation of GlanceNet for dSprites. On the left, we show the projections on the one-
hot encoded shape subspace, whereas on the right we project on the {size, rotation} subspace. We include the
representations for training points, positive and negative ones.
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Figure 7: Reconstruction for dSprites on train and test with GlanceNet. On the upper panel, we report the reconstructions
of the sprites belonging to the closed set. On the lower one, the reconstructions of the open set points. Like MNIST, all
images have been inverted in the black and white scale.
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