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ABSTRACT

Scientific data analysis often involves making use of a large number of correlated
predictor variables to predict multiple response variables. Understanding how
the predictor and response variables relate to one another, especially in the pres-
ence of relatively scarce data, is a common and challenging problem. Here, we
leverage the recently popular concept of “double descent” to develop a particular
treatment of the problem, including a set of key theoretical results. We also apply
the proposed method to a novel experimental dataset consisting of human ratings
of social traits and social decision making tendencies based on the facial features
of strangers, and resolve a scientific debate regarding the existence of a “beauty
premium” or “attractiveness halo,” which refers to a (presumed) advantage attrac-
tive people enjoy in social situations. We demonstrate that more attractive faces
indeed enjoy a social advantage, but this is indirectly due to the facial features
that contribute to both perceived attractiveness and trustworthiness, and that the
component of attractiveness perception due to facial features (unrelated to trust-
worthiness) actually elicit a “beauty penalty.”. Conversely, the facial features that
contribute to trustworthiness and not to attractiveness still contribute positively
to pro-social trait perception and decision making. Thus, what was previously
thought to be an attractiveness halo/beauty premium is actually a trustworthiness
halo/premium plus a “beauty penalty.” Moreover, we see that the facial features
that contribute to the trustworthiness halo primarily have to do with how smiley a
face is, while the facial features that contribute to attractiveness but actually acts as
a beauty penalty is related to anti-correlated with age. In other words, youthfulness
and smiley-ness both contribute to attractiveness, but only smiley-ness positively
contributes to pro-social perception and decision making, while youthfulness ac-
tually negatively contribute to them. A further interesting wrinkle is that youth-
fulness as a whole does not negatively contribute to social traits/decision-making,
only the component of youthfulness contributing to attractiveness does.

1 INTRODUCTION

Scientific data analysis often involves building a linear regression model between a large number of
predictor variables and multiple response variables. Understanding how the predictor and response
variables relate to one another, especially in the presence of relatively scarce data, is an important
but challenging problem. For example, a geneticist might have a genomic dataset with many genetic
features as predictor variables and disease prevalence data as response variables: the geneticist may
want to know how the different types of disease are related to each other through their genetic
underpinnings. Another example is that a social psychologist might have a set of face images (with
many facial features) that have been rated by a relatively small set of subjects for perceived social
traits and social decision making tendencies, and wants to discover how the different social traits
and decision making tendencies relate to each other through the underlying facial features.

A common problem encountered in these types of problems is that the large number of features
relative to the number of data points typically entails some kind of dimensionality reduction and
feature selection, and this process needs to be differently parameterized in order to optimize for each
response variable, making direct comparison of the features underlying different response variables
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challenging. In the worst case, there may not be any subset of features that can predict all response
variables better than chance level. Here, we leverage the “double descent” phenomenon to develop
and present a novel analysis framework that obviates such issues by relying on a universal, overly
parameterized feature representation. As a case study, we apply the framework to better understand
the underlying facial features that contribute separately and conjointly to human trait perception and
social decision making.

Humans readily infer social traits, such as attractiveness and trustworthiness, from as little as a 100
ms exposure to a stranger’s face (Willis & Todorov, 2006). Though the veracity of such judgments
is still an area of active research (Valla et al., 2011; Todorov et al., 2015), such trait evaluations have
been found to predict important social outcomes, ranging from electoral success (Todorov et al.,
2005; Ballew & Todorov, 2007; Little et al., 2007) to prison sentencing decisions (Blair et al., 2004;
Eberhardt et al., 2006).

In particular, psychologists have observed an “attractiveness halo”, whereby humans tend to ascribe
more positive attributes to more attractive individuals (Eagly et al., 1991; Langlois et al., 2000), and
economists have observed a related phenomenon, the “beauty premium”, whereby more attractive
individuals out-earn less attractive individuals in economics games (Mobius & Rosenblat, 2006).
However, these claims are not without controversy (Andreoni & Petrie, 2008; Willis & Todorov,
2006), as more attractive people can also incur a “beauty penalty” in certain situation. Moreover,
a robust correlation between attractiveness and trustworthiness (Willis & Todorov, 2006; Oosterhof
& Todorov, 2008; Xu et al., 2012; Ryali et al., 2020) has also been reported, making it unclear how
much of the attractiveness halo effect might be indirectly due to perceived trustworthiness.

To tease apart the contributions of trustworthiness and attractiveness to social perception and
decision-making, we perform linear regression of different responses variables, consisting of sub-
jects’ ratings of social perception and social decision-making tendencies, against features of the
Active Appearance Model (AAM), a well-established computer vision model (Cootes et al., 2001),
whose features have been found to be linearly encoded by macaque face-processing neurons (Chang
& Tsao, 2017). A similar regression framework has been adopted by previous work modeling human
face trait perception (Oosterhof & Todorov, 2008; Said & Todorov, 2011; Song et al., 2017; Guan
et al., 2018; Ryali et al., 2020), using features either from AAM or deep neural networks. Because
the number of features is typically quite large, usually larger than the number of rated faces, previous
approaches have all used some combination of dimensionality reduction and feature selection. This
approach gives rise to a dilemma when one wants to compare the facial features contributing to dif-
ferent types of social perceptions (response variables), since the number of features that optimizes
prediction accuracy for each task can be quite different (see Figure 1). Either one optimizes this
quantity separately for each task, thus not having a common set of features to compare across; or
one can fix a particular set of features for all tasks, but then having suboptimal prediction accuracy
(in the worst case, perhaps worse than chance level performance).

To overcome this challenge, we appeal to ‘the ‘double descent” (Belkin et al., 2019; 2020) trick,
the use of a highly overparameterized representation (more features than data points) to achieve
good performance. In particular, if we use the original AAM feature representation, while foregoing
any kind of dimensionality reduction or feature selection, then we have a universal representation
that may also have great performance on all tasks, even novel tasks not seen before, or responses
corresponding to predictor variable settings totally different than previously seen. While overpa-
rameterized linear regression has chiefly been used as an analytically tractable case study (Belkin
et al., 2019; Xu & Hsu, 2019; Belkin et al., 2020) to gain insight into the theoretical basis and prop-
erties of “double descent”, we use it as a practical setting for scientific data analysis. Notably, while
previous papers on overparameterized regression defined statistical assumptions and constraints in
the generative sense, we work for pragmatic reasons purely with sample statistics (e.g. whether
two features are “truly” decorrelated (Xu & Hsu, 2019)), we work directly with sample statistics
(e.g. whether two feature vectors across a set of data points have a correlation coefficient of 0). For
this reason, our theoretical results are distinct from and novel with respect to those prior results.
Finally, it is noteworthy that the human visual pathway also exhibits feature expansion rather than
feature reduction, from the sensory periphery to higher cortical areas (Wandell, 1995) – this raises
the intriguing possibility that the brain has also discovered an overparameterized representation as
a universal representation for learning to perform well on many tasks, including novel ones not
previously encountered.
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In Section 2, we use over-parameterized linear regression to develop a framework that generalizes
well across both tasks and data space. We provide theoretical conditions under which the complete
over-parameterized representation is 1) guaranteed to yield linear estimators that perform better
than chance, and 2) are optimal among the class of hard regularizers. We also provide exact error
expressions for these estimators, as well as an exact measure of how far the estimators are from the
optimal hard regularizers when the over-parameterized estimators are suboptimal.

In Section 3, we verify the practical usefulness of our theoretical framework by comparing
the prediction accuracy of over-parameterized regression against task-specific classical (under-
parameterized) regression that optimizes feature selection for each task, on original data collected
from a face-based social perception and decision-making study.

In Section 4, we apply our mathematical and computational framework to show that the halo ef-
fect appears to arise from trustworthiness rather than attractiveness per se, and that attractiveness
unrelated to trustworthiness actually induces a beauty penalty, while trustworthiness unrelated to
attractiveness induces a premium, thus reconciling conflicting results in the literature regarding the
existence of an attractiveness halo. Finally, we present a novel finding that the component of attrac-
tiveness related to pro-social perception and judgment is related to how smiley a face appears, while
the component of attractiveness unrelated to attractiveness is related to the youthfulness of facial
appearance.

# PCs

m
se

(̂ y)

Figure 1: Loss (prediction MSE), as a function of number of features for face-based social-
perception tasks, using cross-validation as specified in section 3. The vertical dashed lines indicate
the minimum error in the under-parameterized regime for the different tasks (repsonse variables),
illustrating the difficulty of finding a common number of features to use for all tasks in the under-
parameterized regime. The fully over-parameterized regression results in better-than-chance MSE
for all tasks. Horizontal dashed line: variance of collected responses, normalized to 1 in all tasks for
ease of visual comparison; error bars: standard error of the mean.

2 MATHEMATICAL FRAMEWORK

We consider a linear regression problem where each response y is a linear function of n real-valued
variables x ∈ Rn, parameterized by a vector β ∈ Rn, in addition to some noise (ϵ). More formally
for m datapoints (with n ≥ m), we assume:

y = Xβ + ϵ, ϵ ∼ N (0, σ2
ϵ ). (1)

with both β and ϵ zero-mean and i.i.d.. We further assume, without loss of generality, that both the
design matrix X ∈ Rm×n and the vector of responses y ∈ Rm are centered, and that X is full rank,
with rank denoted by r. Note that for an over-parameterized, centered full rank matrix, r = m− 1.

We use the pseudoinverse to obtain the n-dimensional minimum L2-norm estimator β̂ of β,

β̂ = X†y, (2)
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and the mean squared error (MSE) to evaluate the estimator β̂:

mse(β̂) = trE[(β − β̂)(β − β̂)T ], (3)

where tr(·) denotes the matrix trace and E[·] the expected value. We also use || · || to denote the
L2-norm.

2.1 THEORETICAL CONDITIONS FOR A GOOD ESTIMATOR β̂

Estimator Condition 1. If the noise-variance in y (σ2
ϵ ) is less than or equal to half the signal-

variance in y (σ2
y), then β̂ is an above chance estimator, i.e.

σ2
ϵ ≤

σ2
y

2
⇐⇒ mse(β̂) ≤ σ2

β , (4)

where σ2
β is the variance of the parameter vector β.

Proof Sketch. This follows from the definition of mse(β̂) and σ2
β , the cyclical properties of the trace

and linearity of expectation, as well as the i.i.d. assumptions on β and ϵ. See the appendix for an
explicit derivation.

Estimator Condition 2. If the smallest singular value (sr) of the design matrix X satisfies,

s2r ≥ σ2
ϵ

||β||2/r
, (5)

then β̂ is the minimum MSE (MMSE) estimator among the class of hard regularizers subject to
linear constraints.

Proof Sketch. Park (1981) proved the above for the prediciton MSE of a PCR estimator in the under-
parameterized regime. An extension to the over-parameterized regime follows as 1) the MSE is
invariant under orthogonal transformations, and 2) any over-parameterized estimator has an ”equiv-
alent” under-parameterized estimator (equivalent in the sense that the estimators yield the same
MSE). See the appendix for a detailed proof.

2.2 EXACT ERROR EXPRESSIONS

Error Expression 1. The MSE of the over-parameterized estimator β̂ is given by

mse(β̂) = σ2
ϵ

r∑
i=1

1

s2i
, (6)

where s1, ..., sr are the singular values of the design matrix X.

Proof Sketch. Once again, this follows from the definition of mse(β̂), the cyclical properties of the
trace and linearity of expectation, as well as the i.i.d. assumptions on β and ϵ. See the appendix for
an explicit derivation.

Error Expression 2. Suppose the MMSE estimator θ̂∗ has p components. Then the difference in
MSEs between the MMSE estimator and the fully over-parameterized estimator is given by,

mse(β̂)−mse(θ̂∗) = σ2
ϵ

r∑
i=p+1

1

s2i
− ||β||2

r
(r − p). (7)

Proof Sketch. This follows from extending Park (1981) to the over-parameterized regime, in addition
to the definition of MSE, the cyclical properties of the trace and linearity of expectation, as well as
the i.i.d. assumptions on β and ϵ. See the appendix for a detailed proof.
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3 EXPERIMENTAL VALIDATION & COMPUTATIONAL FRAMEWORK

As the theoretical conditions and error expressions established in the previous section depend on
variables that are unknown in real data (such as noise and signal variance, the norm of the true
parameter vector etc.), and as real data may violate the theoretical assumptions, we validate how
well the over-parameterized representation generalizes in practice using data collected in a face-
based social decision-making study (Figure 2).

3.1 SOCIAL DECISION-MAKING EXPERIMENT

613 undergraduate students at the University of California, San Diego participated in a 3 block hour
long study in which they were asked to rate social traits (block A), make decisions in social scenarios
(block B), and play economic games (block C) with novel face images (Figure 2). All blocks were
counterbalanced across subjects.

Inclusion/exclusion criteria. Participants who had a response entropy and/or a CC between their
response and the average response below two standard deviations of the mean were excluded, re-
sulting in standardized responses from 485 subjects being included in the analysis.

Face stimuli. 72 white female faces with direct gaze and natural expressions were sampled from the
10K US Adult Faces Database (Bainbridge et al., 2013). A sub-sample of 52 faces was then used in
blocks A and C, while 36 face pairings were used in block B. The 52 face images used in all blocks
were included in the analysis.

1. Dating App. Suppose two people on a dating app sent you a 
greeting message. Which of them would you (or your friend 
of the appropriate sexual orientation) be more willing to 
respond to? 

2. Job Interview. Suppose you represent a company at a job 
fair, and two individuals approached you to discuss job 
openings. Which of them would you more willing to talk 
to? 

3. Eye Witness. Suppose two people are eye witnesses of a 
gas station robbery and gave contrary accounts. Which of 
them would you be more willing to believe? 

4. Election. Suppose two people are candidates for a state-
wide election. Which of them are you more likely to vote 
for? 

5. Stranded Motorist. Suppose two drivers are standing next 
to broken-down cars on the side of the highway. Which of 
them would you be more willing to help?

A. Social Decision Making Tasks B. Social Scenarios

Figure 2: Overview of the face-based social decision-making experiment. (A) The trait rating tasks
(block A), social scenario tasks (block B) and economic games (block C) with sample screenshots
from the experiment display. For each task, participants respond on a scale of 1-9. For the social
scenario tasks, 1/9 indicates maximal preference for the face on the left/right, while 5 indicates
equally preferable. In Prisoner’s Dilemma (PD; Kremp et al., 1982) participants are asked how likely
they are to cooperate (rather than defect). In the Ultimatum Game (UG; Solnick and Schweitzer,
1999) and Trust Game (TG; Wilson and Eckel, 2006) participants are asked how much money (in $)
they would invest (TG) or propose (UG). (B) Questions displayed in the five social scenario tasks.
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3.2 COMPUTATIONAL FRAMEWORK

Feature Representation. We train a three-color-channel AAM on the Chicago Face Database (Ma
et al., 2015) plus the 10K US Adult Face Database (Bainbridge et al., 2013). Like conventional
practice, we perform principal component analysis (PCA) on the faces the AAM was trained on, but
unlike conventional practice, we do not reduce the number of principal components, resulting in a
representation with n = 10, 764 features.

Model Evaluation. Using leave-one-out cross-validation (m = 52), we evaluate the prediction
MSE on held-out test data. More formally, for each held-out face xi, we predict a social decision
(ŷi):

ŷi = xT
i β̂, (8)

where β̂ is the minimum L2-norm estimator specified in Section 2. We then evaluate:

mse(ŷ) =
1

m

m∑
i=1

(yi − ŷi)
2. (9)

3.3 VALIDATION

Using the computational framework, as well as the responses collected in the social decision making
study, we observe the prediction MSE on unseen test data is 1) within the standard error of the mean
of the MMSE estimator, and 2) well below chance for a wide variety of social decision-making tasks,
indicating the over-parameterized representation generalizes well across tasks in practice (Figure 3).
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Figure 3: Experimental validation of our mathematical framework for several social decision tasks.
For all tasks, the fully over-parameterized estimator (orange bars, right) is within the error bounds
(standard error of the mean) of the MMSE estimator (blue bars, left) and below chance level (+;
variance of collected responses) for all tasks (except dominance, which cannot be predicted better
than chance by any model), indicating the over-parameterized representation generalizes well across
tasks in practice. Note that the below-chance dominance estimator will not be used in any subsequent
analysis.

4 APPLICATION: BEAUTY PENALTY AND TRUSTWORTHINESS HALO

Consistent with previous studies, we observe a strong positive correlation between collected at-
tractiveness ratings and social decisions in both social scenarios and economic games (Figure 4A),
indicating both an attractiveness halo and a beauty premium. We observe an even stronger posi-
tive correlation between trustworthiness ratings and social decisions (Figure 4A), which indicates
both a trustworthiness halo (this typically refers to trait perception and decision making in social
scenarios) and a trustworthy premium (this typically refers to decision making in economic games).
However, the strong positive correlation between attractiveness and trustworthiness (CC = 0.53,
p-value ≤ 0.001) makes it impossible to separate the contributions of attractiveness and trustworthi-
ness to the halo and premium effects from collected responses alone.
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To tease these contributions apart, we use the mathematical and computational framework devel-
oped above. Using leave-one-out cross-validation, we compute predicted social decisions using
orthogonalized estimators (β̂A⊥T and β̂T⊥A), then compute the correlation between these predic-
tions (ŷA⊥T and ŷT⊥A) and social decisions. This orthogonalized estimators contain facial feature
information unique to that trait (task) and not related to the other trait. To orthogonalize the esti-
mators, we calculate the normalized projections of one estimator onto the other. We calculate the
orthogonal projection of β̂T onto β̂A as

β̂T⊥A = β̂T − (β̂A · β̂T )β̂A, (10)

where (·) denotes the normalized dot product, and vice versa for the projection of β̂A onto β̂T .

We observe (Figure 4A) attractiveness unrelated to trustworthiness is not significantly correlated
with any social scenarios (except dating app), while trustworthiness unrelated to attractiveness is
significantly correlated with all social scenarios (except dating app). This indicates the halo effect
is driven by trustworthiness, rather than attractiveness, though it appears as an attractiveness effect
due to the facial features that contribute to both attractiveness and trustworthiness.

We also observe (Figure 4B) attractiveness unrelated to trustworthiness is significantly anti-
correlated with two out of three economic games, while trustworthiness unrelated to attractiveness
is significantly correlated with all economic games. Once again, it seems what masquerades as an
attractiveness effect is truly a trustworthiness effect, and that rather than inducing a beauty premium,
attractiveness by itself (excluding those facial features also contributing to trustworthiness) induces
a beauty penalty. Without teasing apart the two components using feature orthogonalization, the
beauty penalty effect is masked by the strong beauty/trustworthiness premium effect.

A.

B.
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Figure 4: Heatmap of correlation coefficients (CCs) between social traits (cols. 1-6), social sce-
nario decisions (cols. 10-14), economic games (cols. 7-9) with significance levels (*: p-value ≤
0.05, **: p-value ≤ 0.01, ***: p-value ≤ 0.001). (A) Both attractiveness (first row) and trust-
worthiness (second row) are significantly positively correlated with all economic games and social
scenarios (except trustworthiness and dating app). However, the strong positive correlation between
attractiveness and trustworthiness (CC = 0.53, p-value < 0.001) makes it impossible to tease the
contributions of these two traits apart using just the collected responses. (B) When attractiveness
is unrelated to trustworthiness (first row), the significant positive correlation with social scenarios
disappears (except dating app), dispelling an attractiveness halo effect. The positive correlation
with two of the three economic games (PD and TG) also becomes significantly negative, indicating
a beauty penalty. When trustworthiness is unrelated to attractiveness (second row), on the other
hand, the significant positive correlation remains. This shows a trustworthiness halo effect in social
scenario decisions, as well as a trustworthiness premium in economic games. Note that there is a
significant anti-correlation between the attractiveness and unrelated trustworthiness (row 1, col. 2),
indicating non-linear effects in the responses, which cannot be captured by the linear models.
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Since AAM readily generates faces for any coordinates in the feature space, we can visualize the es-
timator (regression coefficient) axes and their orthogonalized versions (Figure 5). Visual inspection
reveals both more attractive (top row) and trustworthy (bottom row) faces smile more, while less
attractive faces also appear older. More interestingly, orthogonalizing the attractiveness estimator
against the trustworthiness is no longer related to smiley-ness but appears anti-correlated with age
(more youthful-looking faces are more attractive, which has previously been observed (Sutherland
et al., 2013). Notably, the projections of the face stimuli used in the experiment along this dimen-
sion are indeed significantly correlated (CC = −0.29, p-value< 0.05), with previously collected age
ratings of these faces Bainbridge et al. (2013), while these projections are significantly negatively
correlated with ratings in economic games (Figure 4). To summarize, the above results imply that
the youthfulness-related component of attractiveness drive a “beauty penalty” effect in economic
games, while the facial features that drive both attractiveness and trustworthiness perception are
what give rise to an attraction/trustworthiness halo. In addition, when we orthogonalize trustworthi-
ness against attractiveness, a strong smiley-ness effect remains (just as in the unorthogoalized case),
while the age effect mostly disappears. Moreover, we find that this residual component unrelated to
attractiveness is still positively correlated with social scenario and economic games.

A. B.

̂βA

̂βT

̂βA⊥T

̂βT⊥A

̂β0 +Δ−Δ ̂β0 +Δ−Δ

Figure 5: Face visualization along regression coefficient (estimators) directions without (A) and
with (B) orthogonalization. Top row: attractiveness; bottom row: trustworthiness. The middle face
in each triplet is the average face (corresponding to feature coordinates that average over all 52
faces used in the study). Visualization moves in equal steps along the estimator axes (left: negative
direction, right: positive direction).

5 DISCUSSION

In this paper, we provided conditions under which an over-parameterized representation is guaran-
teed to yield optimal, as well as better than chance, generalization performance in a linear regression
setting with hard constraints. We also provided exact expression for the estimator error, as well as
an exact expression for how far the fully over-parameterized estimator is from the optimal hard-
regularizer. We next validated the usefulness of our mathematical framework by applying it to a
wide range of social decision-making tasks, in which the fully over-parameterized estimator per-
formed within the error bounds (standard error of the mean) of the theoretically optimal estimator
on all tasks. We then used this framework to show 1) the halo effect appears to arise from trust-
worthiness rather than attractiveness, and 2) trustworthiness unrelated to attractiveness induces a
premium in economic games, while attractiveness unrelated to trustworthiness induces a penalty, in-
dicating a trustworthiness premium and beauty penalty, which helps reconciling conflicting reports
in the existing literature. Moreover AAM-based visualization indicated that the trustworthiness
halo/premium is underpinned by smiley-ness and the beauty premium by youthfulness (through the
component specifically important for attractiveness).

While some of the statistical analyses among traits, social scenarios, and economic games could
have been done using only ratings, the ability of grounding those ratings in an image-computable
and generative model representation is highly valuable. Without the latter, we wouldn’t have been
able to orthogonalize estimated regression coefficient vectors against one another (orthogonalization
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makes no sense if feature vectors do not live in the same feature space), or visualize faces along
those vectors. Such visualizations (Figure 5) reveal that both trustworthiness and trustworthiness
unrelated to attractiveness appear highly correlated with smiling. This begs the question of how
smiling, or emotional states such as happiness, contribute to the halo effect. Such data can be
collected framework helps to identify concrete directions for future research endeavors. Having a
universal, overparameterized representation that serve all tasks can assist with iterative scientific
analysis and hypothesis generation, as new experiments are designed and data collected, and new
conclusions are drawn.

One limitation of our framework is that it does not include contributions from non-linear compo-
nents, which have been found to contribute to trait ratings, including attractiveness (Ryali & Yu,
2018; Todorov & Oosterhof, 2011) and trustworthiness (Todorov & Oosterhof, 2011). A further
limitation of our study is that we only focused on female faces. There is evidence dominance and
trustworthiness are rated using gender-based internal models (He & Yu, 2021), which could also be
true of social decisions. In addition, a strong correlation between dominance and election success
has been established in the literature for male faces (Berinsky et al., 2019). However, a preliminary
analysis of dominance ratings collected in the social decision-making experiment reveals no such
correlation for female faces (Figure 6), indicating different traits might contribute to halo effects for
female and male faces. These questions remain exciting avenues for future work.

The more general limitations of our theoretical framework is that the optimality conditions only
hold for hard regularizers, and that our error expressions are for estimator MSE rather than predic-
tion MSE. Extending the general theoretical results to soft-regularizers (such as ridge- and lasso-
regression) and the more practically useful prediction MSE are also exciting future directions.

5.1 RELATED THEORETICAL WORK IN OVER-PARAMETERIZED LINEAR REGRESSION

Our PCR approach might at first glance seem identical to that of Xu & Hsu (2019). However, while
Xu & Hsu (2019) analyze what they call an ”oracle” estimator, which uses the generative (“true”)
covariance matrix, we use the more classical version of PCR, which is based on the sample covari-
ance matrix. This results in quite different behavior. For instance, there is no over-parameterized
regime in PCR, as m data points can be expressed by most m linearly independent features (m− 1
when the data is centered). As such, there is no “second descent” in PCR. Xu & Hsu (2019) also
noted that a full analysis that accounts for estimation errors in PCR remains open, though it is worth
noting that an extensive analysis of the under-parameterized regime was done by Park (1981).

Also worth noting is that there seems to be a sharp divide between the“classical” under-
parameterized and the ”modern” over-parameterized regime in the literature, with an understanding
of the latter “now only starting to emerge” (Belkin et al., 2020). We offer a different view by showing
any over-parameterized representation has an “equivalent” under-parameterized representation, and
as such, the over-parameterized regime can be fully understood in terms of the under-parameterized
regime.
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Figure 6: Heatmap of CCs between dominance and social traits (cols. 1-6), social scenario decisions
(cols. 10-14), economic games (cols. 7-9) with significance levels (*: p-value ≤ 0.05, **: p-value
≤ 0.01, ***: p-value ≤ 0.001). None of the CCs between dominance and social scenarios/economic
games are significant, indicating dominance does not significantly contribute to decisions in these
tasks. As there is an established correlation between dominance and election for male faces in the
literature, this indicates different traits might contribute to halo effects for male and female faces.

9



Under review as a conference paper at ICLR 2023

REFERENCES

James Andreoni and Ragan Petrie. Beauty, gender and stereotypes: Evidence from laboratory ex-
periments. Journal of Economic Psychology, 29(1):73–93, 2008.

Wilma A Bainbridge, Phillip Isola, and Aude Oliva. The intrinsic memorability of face photographs.
Journal of Experimental Psychology: General, 142(4):1323, 2013.

Charles C Ballew and Alexander Todorov. Predicting political elections from rapid and unreflective
face judgments. Proceedings of the National Academy of Sciences, 104(46):17948–17953, 2007.

Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling modern machine-
learning practice and the classical bias&#x2013;variance trade-off. Proceedings of the Na-
tional Academy of Sciences, 116(32):15849–15854, 2019. doi: 10.1073/pnas.1903070116. URL
https://www.pnas.org/doi/abs/10.1073/pnas.1903070116.

Mikhail Belkin, Daniel Hsu, and Ji Xu. Two models of double descent for weak features. SIAM
Journal on Mathematics of Data Science, 2(4):1167–1180, 2020. doi: 10.1137/20M1336072.
URL https://doi.org/10.1137/20M1336072.

Adam J Berinsky, Sara Chatfield, and Gabriel Lenz. Facial dominance and electoral success in times
of war and peace. The Journal of Politics, 81(3):1096–1100, 2019.

Irene V Blair, Charles M Judd, and Kristine M Chapleau. The influence of afrocentric facial features
in criminal sentencing. Psychological science, 15(10):674–679, 2004.

Le Chang and Doris Y Tsao. The code for facial identity in the primate brain. Cell, 169(6):1013–
1028, 2017.

Timothy F. Cootes, Gareth J. Edwards, and Christopher J. Taylor. Active appearance models. IEEE
Transactions on pattern analysis and machine intelligence, 23(6):681–685, 2001.

Alice H Eagly, Richard D Ashmore, Mona G Makhijani, and Laura C Longo. What is beautiful
is good, but. . . : A meta-analytic review of research on the physical attractiveness stereotype.
Psychological bulletin, 110(1):109, 1991.

Jennifer L Eberhardt, Paul G Davies, Valerie J Purdie-Vaughns, and Sheri Lynn Johnson. Look-
ing deathworthy: Perceived stereotypicality of black defendants predicts capital-sentencing out-
comes. Psychological science, 17(5):383–386, 2006.

Jinyan Guan, Chaitanya K Ryali, and J Yu Angela. Computational modeling of social face percep-
tion in humans: Leveraging the active appearance model. bioRxiv, pp. 360776, 2018.

Zoe W He and Angela J Yu. Gender differences in face-based trait perception and social decision
making. In Proceedings of the Annual Meeting of the Cognitive Science Society, volume 43, 2021.

Judith H Langlois, Lisa Kalakanis, Adam J Rubenstein, Andrea Larson, Monica Hallam, and Monica
Smoot. Maxims or myths of beauty? a meta-analytic and theoretical review. Psychological
bulletin, 126(3):390, 2000.

Anthony C Little, Robert P Burriss, Benedict C Jones, and S Craig Roberts. Facial appearance
affects voting decisions. Evolution and Human Behavior, 28(1):18–27, 2007.

Debbie S Ma, Joshua Correll, and Bernd Wittenbrink. The chicago face database: A free stimulus
set of faces and norming data. Behavior research methods, 47(4):1122–1135, 2015.

Markus M Mobius and Tanya S Rosenblat. Why beauty matters. American Economic Review, 96
(1):222–235, 2006.

Nikolaas N Oosterhof and Alexander Todorov. The functional basis of face evaluation. Proceedings
of the National Academy of Sciences, 105(32):11087–11092, 2008.

Sung H. Park. Collinearity and optimal restrictions on regression parameters for estimating re-
sponses. Technometrics, 23(3):289–295, 1981. ISSN 00401706. URL http://www.jstor.
org/stable/1267793.

10

https://www.pnas.org/doi/abs/10.1073/pnas.1903070116
https://doi.org/10.1137/20M1336072
http://www.jstor.org/stable/1267793
http://www.jstor.org/stable/1267793


Under review as a conference paper at ICLR 2023

Chaitanya Ryali and Angela J Yu. Beauty-in-averageness and its contextual modulations: A
bayesian statistical account. Advances in Neural Information Processing Systems, 31, 2018.

Chaitanya K Ryali, Stanny Goffin, Piotr Winkielman, and Angela J Yu. From likely to likable: The
role of statistical typicality in human social assessment of faces. Proceedings of the National
Academy of Sciences, 117(47):29371–29380, 2020.

Christopher P Said and Alexander Todorov. A statistical model of facial attractiveness. Psychologi-
cal Science, 22(9):1183–1190, 2011.

Amanda Song, Linjie Li, Chad Atalla, and Gary Cottrell. Learning to see people like people: Pre-
dicting social perceptions of faces. In CogSci, 2017.

Clare AM Sutherland, Julian A Oldmeadow, Isabel M Santos, John Towler, D Michael Burt, and
Andrew W Young. Social inferences from faces: Ambient images generate a three-dimensional
model. Cognition, 127(1):105–118, 2013.

Alexander Todorov and Nikolaas N Oosterhof. Modeling social perception of faces [social sciences].
IEEE Signal Processing Magazine, 28(2):117–122, 2011.

Alexander Todorov, Anesu N Mandisodza, Amir Goren, and Crystal C Hall. Inferences of compe-
tence from faces predict election outcomes. Science, 308(5728):1623–1626, 2005.

Alexander Todorov, Christopher Y Olivola, Ron Dotsch, Peter Mende-Siedlecki, et al. Social attri-
butions from faces: Determinants, consequences, accuracy, and functional significance. Annual
review of psychology, 66(1):519–545, 2015.

Jeffrey M Valla, Stephen J Ceci, and Wendy M Williams. The accuracy of inferences about crim-
inality based on facial appearance. Journal of Social, Evolutionary, and Cultural Psychology, 5
(1):66, 2011.

Brian A Wandell. Foundations of vision. Sinauer Associates, 1995.

Janine Willis and Alexander Todorov. First impressions: Making up your mind after a 100-ms
exposure to a face. Psychological science, 17(7):592–598, 2006.

Fen Xu, Dingcheng Wu, Rie Toriyama, Fengling Ma, Shoji Itakura, and Kang Lee. Similarities
and differences in chinese and caucasian adults’ use of facial cues for trustworthiness judgments.
PLoS One, 7(4):e34859, 2012.

Ji Xu and Daniel J Hsu. On the number of variables to use in principal component regression.
Advances in neural information processing systems, 32, 2019.

A APPENDIX

A.1 PROOFS

A.1.1 PRELIMINARIES

Recall, we consider an over-parameterized linear regression setting (n ≥ m),

y = Xβ + ϵ, ϵ ∼ N(0, σ2
ϵ ) (11)

with both β ∈ Rn and ϵ ∈ Rm assumed to be zero-mean and i.i.d, and rank of X ∈ Rm×n denoted
by r.

We use the fact that any matrix X can be written in terms of its singular value decomposition as
X = UΣVT , and X expressed in its principal component (PC) representation is simply UΣ,
which we denote by Z.

We also use the PCR setting,

y = Zθ + ϵ, ϵ ∼ N(0, σ2
ϵ ) (12)

θ̂ = Z†y (13)

11
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where Z ∈ Rm×r is the design matrix expressed in terms of its PCs and θ̂ is the PCR estimator.

Note on terminology. By the MMSE estimator, we mean the minimum mean squared error esti-
mator among the class of hard regularizers subject to linear constraints (this does not include soft-
regularizers, such as ridge and lasso estimators).

A.1.2 PROOFS

Lemma 1. The PCR estimator with all PCs is an orthogonal transformation of the over-
parameterized estimator with all features.

Proof. This follows from the definitions. Let θ̂ denote the PCR estimator and β̂ denote the over-
parameterized estimator. Then,

β̂ = X†y

= VΣ†UTy

= VZ†y

= Vθ̂.

Lemma 2. Estimator MSE is invariant under orthogonal transformations.

Proof. Let β denote the estimator and V denote an orthogonal matrix. Then,

mse(Vβ̂) = trE[(Vβ −Vβ̂)(Vβ −Vβ̂)T ]

= trE[V(β − β̂)(β − β̂)TVT ]

= trVE[(β − β̂)(β − β̂)T ]VT

= trE[(β − β̂)(β − β̂)T ]VTV

= trE[(β − β̂)(β − β̂)T ]

= mse(β̂)

Lemma 3. The MSE of the PCR estimator with all PCs equals the MSE of the over-parameterized
estimator with all features.

Proof. This follows from Lemmas 1 and 2. Let θ̂ denote the PCR estimator and β̂ denote the
over-parameterized estimator. Then,

mse(θ̂)
(1)
= mse(Vθ̂)

(2)
= mse(β̂).

Lemma 4. The MSE of the minimum MSE PCR estimator lower bounds the MSE of the over-
parameterized estimator with all n features.

Proof. This follows from the definition of the minimum MSE, as well as Lemma 3. Denote the
minimum MSE PCR estimator as θ̂∗, the PCR estimator with all PCs as θ̂ and the over-parameterized
estimator with all features as β̂. Then,

mse(θ̂∗)
(def)
≤ mse(θ̂)

(3)
= mse(β̂).

Lemma 5. The MSE of the minimum MSE PCR estimator lower bounds the MSE of an over-
parameterized, feature reduced estimator.

Proof. This follows from Lemma 3, as well as Park (1981). Let Xn be the original design matrix
with all n features, and denote the minimum PCR estimator of this design matrix as θ̂∗. Let Xp be
a feature reduced design matrix, expressed in any of the p < n original features, and denote the p

dimensional estimator of Xp as α̂. Denote ϕ̂∗ and ϕ̂ as the minimum MSE PCR estimator and PCR
estimator with all PCs respectively. Note that these estimators are under-parameterized estimators.
It then follows that,

12
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mse(α̂)
(3)
= mse(ϕ̂)

(def)
≥ mse(ϕ̂∗)

Park (1981)
≥ mse(θ̂∗).

Theorem 1. The MSE of the minimum MSE PCR estimator lower bounds the MSE in both the
over-parameterized and under-parameterized regimes.

Proof. This follows as the minimum MSE PCR estimator lower bounds the MSE of under-
parameterized estimators (Park, 1981), as well as over-parameterized estimators (lemmas 4 and
5).

Park 1. If the p-th singular value (sp) of the design matrix X satisfies,

s2p ≥ σ2
ϵ

||β||2/r
, (14)

then θ̂p is the MMSE PCR estimator (Park, 1981).

Proof. See Park (1981).

Estimator Condition 2. If the smallest singular value (sr) of the design matrix X ∈ Rm×n satisfies,

s2r ≥ σ2
ϵ

||β||2/r
, (15)

then the over-parameterized estimator with all n features is the minimum MSE estimator.

Proof. This follows from Park 1, as well as Theorem 1. Denote the minimum MSE PCR estimator
as θ̂∗, the PCR estimator with all PCs as θ̂, and the over-parameterized estimator with all n features
as β̂, and suppose the threshold is satisfied for the r-th singular value. Then,

mse(θ̂∗) = mse(θ̂) = mse(β̂), (16)
which we know from Theorem 1 lower bounds the MSE in both the under-parameterized and over-
parameterized regimes. As such, β̂ is an MMSE estimator.

Error Expression 1. The MSE of the over-parameterized estimator without feature reduction is
given by

mse(β̂) = σ2
ϵ

r∑
i=1

1

s2i
, (17)

where σ2
ϵ is the noise variance, and s1, .., sr the singular values of the design matrix X.

Proof. Note that β can be written in terms of X, y, and ϵ, as β = X†(y − ϵ).

Then,
mse(β̂) : = trE[(β − β̂)(β − β̂)T ]

= trE[(X†ϵ)(X†ϵ)T ]

= trE[X†ϵϵTX†T ]

= tr(X†E[ϵϵT ]X†T )

= σ2
ϵ tr(X

†X†T )

= σ2
ϵ tr(UΣ†2UT )

= σ2
ϵ tr(Σ

†2UTU)

= σ2
ϵ trΣ

†2

= σ2
ϵ

r∑
i=1

1

s2i
.

Lemma 6. The variance of the true parameter vector β̂ is given by

σ2
β = (σ2

y − σ2
ϵ )

r∑
i=1

1

s2i
, (18)

13



Under review as a conference paper at ICLR 2023

where σ2
y is signal variance, σ2

ϵ the noise variance, and s1, .., sr are the singular values of the design
matrix.

Proof.

σ2
β : = trE[ββT ]

= trE[X†(y − ϵ)(y − ϵ)TX†T ]

= tr(X†E[(y − ϵ)(y − ϵ)T ]X†T )

= trX†(E[yyT ]− E[ϵϵT ])X†T

= (σ2
y − σ2

ϵ ) tr(X
†X†T )

= (σ2
y − σ2

ϵ )

r∑
i=1

1

s2i
.

Estimator Condition 1. If the noise-variance in y (σ2
ϵ ) is less than or equal to half the signal-

variance in y (σ2
y), then β̂ is an above chance estimator, i.e.

σ2
ϵ ≤

σ2
y

2
⇐⇒ mse(β̂) ≤ σ2

β , (19)

where σ2
β is the variance of the parameter vector β.

Proof. This follows from Error Expression 1 and Lemma 6.

mse(β̂) ≤ σ2
β

⇐⇒ σ2
ϵ

r∑
i=1

1

s2i
≤ (σ2

y − σ2
ϵ )

r∑
i=1

1

s2i

⇐⇒ σ2
ϵ ≤ σ2

y − σ2
ϵ

⇐⇒ 2σ2
ϵ ≤ σ2

y

⇐⇒ σ2
ϵ ≤

σ2
y

2

Lemma 7. The MSE of the feature reduced PCR estimator θ̂p (with p ≤ r coefficients) is given by,

mse(θ̂p) =
||β||2

r
(r − p) + σ2

ϵ

p∑
i=1

1

s2i
(20)

Proof. Recall that θ can be written in terms of Z, y, and ϵ, as θ = Z†(y − ϵ). First note that the
feature reduced PCR estimator θ̂p is given by,

θ̂p : = Z†
py

= Z†
p(Zθ + ϵ)

= Z†
pZθ + Z†

pϵ

= Σ†
pU

TUΣθ + Z†
pϵ

= Σ†
pΣθ + Z†

pϵ

= Ipθ + Z†
pϵ,

where Ip is an m× r dimensional matrix with ones on the diagonal for the first p entries and zeros
on the remainder.
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It then follows that,

mse(θ̂p) : = trE[(θ − θ̂p)(θ − θ̂p)
T ]

= trE[((Ir − Ip)θ + Z†
pϵ)(ϵ

TZ†T
p + θT (Ir − Ip)

T )]

= trE[(Ir − Ip)θθ
T (Ir − Ip)

T ] + trE[Z†
pϵϵ

TZ†T
p ]

= tr(Ir − Ip)E[θθT ](Ir − Ip)
T + σ2

ϵ trΣ
†
p

=
||θ||2

r
tr(Ir − Ip)

2 + σ2
ϵ trΣp

=
||θ||2

r
(r − p) + σ2

ϵ

p∑
i=1

1

s2i

=
||β||2

r
(r − p) + σ2

ϵ

p∑
i=1

1

s2i
.

Error Expression 2. Suppose the MMSE PCR estimator θ̂∗ has p ≤ r components. Then the
difference in MSEs between the MMSE estimator and the fully over-parameterized estimator is
given by,

mse(β̂)−mse(θ̂∗) = σ2
ϵ

r∑
i=p+1

1

s2i
− ||β||2

r
(r − p). (21)

Proof. This follows from Lemma 7 as well as Error Expression 1.

mse(β̂)−mse(θ̂∗) = σ2
ϵ

r∑
i=1

1

s2i
− (

||β||2

r
(r − p) + σ2

ϵ

p∑
i=1

1

s2i
)

= σ2
ϵ (

r∑
i=1

1

s2i
−

p∑
i=1

1

s2i
)− ||β||2

r
(r − p)

= σ2
ϵ

r∑
i=p+1

1

s2i
− ||β||2

r
(r − p)
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