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ABSTRACT

Symbolic regression searches the space of mathematical expressions to find the
model that best fits a given dataset. Therefore, it can successfully integrate mathe-
matical expressions and underlying physical laws to improve data-driven power
flow modeling and analysis. We introduce physics-based symbolic regression
for power flow modeling and analysis by taking inspiration from ’AI Feynman’
(Udrescu & Tegmark, 2020). A physics-informed neural network is integrated
into the proposed symbolic regression algorithm in Udrescu & Tegmark (2020).
The results show that, for power flow analysis and modeling of a low-voltage dis-
tribution network, the physics-based symbolic regression outperforms the original
algorithm, where a black-box neural network is used as a part of the algorithm.
The contribution of this paper is, therefore to introduce the idea of integrating
physical laws and constraints into the physics-inspired symbolic regression algo-
rithm using physics-informed neural networks.

1 INTRODUCTION

Data-driven approaches, e.g., supervised machine learning and reverse engineering, have been suc-
cessfully used for the modeling and analysis of modern power systems (e.g., Zafar et al. (2022);
Mishra & Rout (2018)). Recently, research has shown that the integration of prior knowledge, i.e.,
physical laws and mathematical models, into data-driven approaches improves accuracy and effi-
ciency but also reduces the computational burden (e.g., Hu et al. (2021); Yang et al. (2020)). In
this perspective, symbolic regression offers the possibility of simultaneously integrating the physi-
cal laws and mathematical models in order to unveil a physics-based expression of the system under
study, such as modern power systems (e.g, Sarić et al. (2021)).

Among other data-driven approaches, symbolic regression algorithms are used to search the space of
mathematical expressions and find a mathematical model that can best describe underlying physical
laws based on a given dataset (Vaddireddy et al., 2020). However, increasing the space of math-
ematical expressions and/or the dataset size makes symbolic regression algorithms challenging or
even intractable (ref.). Research has shown that evolutionary algorithms and neural networks are
promising to address the issue (e.g., Lu et al. (2016); Petersen et al. (2021)). Despite recent ad-
vances in training neural networks to solve complex problems, the integration of neural networks
and symbolic regression has not yet been fully explored Udrescu & Tegmark (2020).

Therefore, in this paper, we introduce physics-based symbolic regression for power flow modeling
and analysis. We integrate a physics-informed neural network to the proposed algorithm in (Udrescu
& Tegmark, 2020) for the application of power flow analysis and modeling. The approach is also
applied to a small distribution network.

2 METHODOLOGY

In this paper, a small-size distribution network is modeled from data using a modified version of the
symbolic regression algorithm ’AI Feynman’ Udrescu & Tegmark (2020). The proposed approach
in this paper, physics-based symbolic regression, involves three main parts: (i) power flow analysis,
(ii) symbolic regression, and (iii) physics-informed neural network. Detail information about each
part is provided in the following subsections:

1



Submitted to the ICLR 2023 Workshop on Physics for Machine Learning

Figure 1: 34-node distribution network.

2.1 POWER FLOW ANALYSIS

In this paper, a small-size distribution network consisting of 34 nodes that operates at a low volt-
age distribution level is selected as the case study, as shown in figure 2.1. Note that the state of
distribution networks can be described once the voltages at all nodes are calculated. Traditionally,
numerical methods are used to calculate the voltages based on the given variables, e.g., active power
consumption/generation. The given variables are different for different types of nodes. For exam-
ple, in the distribution network shown in figure 2.1, a reference node and 33 PQ nodes are involved,
which means that the given variables for the PQ nodes are active and reactive power consumption.
The state of the distribution network can be represented by the balanced linear power flow equations
(e.g., Pinzon et al. (2019)). The active and reactive power balance are described by equations (1)
and (2), respectively:
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active and reactive generations, respectively. The voltage drop in lines and the current magnitude
through lines are represented by equations (3) and (4), respectively:
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Finally, the voltage and current magnitude limits are represented by equations (5) and (6), respec-
tively:
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Based on the proposed model equations, a dataset of 1000 data points is generated to develop the
symbolic regression but also the physics-based neural network. For each data point, the amount of
active and reactive power is considered as input variables, and the voltage magnitude at each node
is considered as the output.

2.2 SYMBOLIC REGRESSION

Taking inspiration from ’AI Feynman’ (Udrescu & Tegmark, 2020), a physics-based symbolic re-
gression approach is introduced for power flow analysis and modeling1. AI Feynman is a physics-
inspired method for symbolic regression that involves different steps to discover hidden simplicity,
such as symmetry and separability, in a given dataset. It uses black-box neural networks to recur-
sively break harder problems into simpler ones with fewer variables. The algorithm is applied to 100
equations from the Feynman Lectures on Physics, and it discovers all of them. More information
about AI Feynman can be found in Ref. Udrescu & Tegmark (2020).

According to Udrescu & Tegmark (2020), for power flow analysis and modeling, the function and
the variables, i.e., active and reactive power and voltage magnitude, have known physical units. It
is also continuous and can be written as a composition of a small set of functions and/or a sum or
product of two parts with no variables in common. Based on the definition, the polynomial fit step
is skipped in this paper. Therefore, the flowchart of the approach is modified, as shown in figure 2.2:

Figure 2: Schematic illustration of the modified AI Feynman algorithm.

2.3 PHYSICS-INFORMED NEURAL NETWORK

The black-box neural network developed for the AI Feynman algorithm is replaced with a physics-
informed neural network where the underlying physical laws of the application under study, i.e.,
power flow analysis and modeling, are incorporated into the neural network training process. Figure
2.3 shows the physics-informed neural network architecture used in this paper for power system
analysis and modeling. The simplified equations of branch flows, i.e., physical loss terms, are
added to the supervised loss term to improve the prediction accuracy. Equation (7) and () represents
the supervised loss term and physical loss terms, respectively. Detailed information about the loss
function can be found in (Yang et al., 2020).∑

i∈L
(Vi − f(Pi, Qi))

2 (7)
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1Data is available on https://github.com/SJ001/AI-Feynman
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Figure 3: Physics-informed neural network architecture for power flow analysis and modeling of
distribution networks.

3 RESULTS

The performance of the proposed algorithm is compared with the original algorithm AI Feynman
for power flow analysis and modeling of a distribution network. Equation (9) represents the result
obtained from the original algorithm. Numbers are rounded for a better representation. Using this
expression, the average deviation from the actual values is 32.7% for the test dataset, which means
that the original algorithm is not applicable to complex problems, such as ad power flow analysis
and modeling, even for small cases.

|V | = (32.57× P 2 − 9.54× P ×Q+ 4872.88×Q2)
0.001

+ 163.69 + 3.27 ∗ 10−11 (9)

By adding the physical loss terms to the training process of the neural network in the original al-
gorithm, the overall performance of the algorithm improved substantially. Equation (10) represents
the result obtained from the modified algorithm. Using this expression, the average deviation from
the actual values is reduced to 9.4% for the test dataset, which means an improvement of more than
3 times is achieved by replacing the black-box neural network with the physics-informed neural
network.

|V | = (26.55× P 2 − 9.46× P ×Q+ 4826.93×Q2)
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+
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(exp(P ) + 1)× (exp(

√
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4 DISCUSSION AND CONCLUSION

In this work, the physics-inspired symbolic regression algorithm (AI Feynman) is modified by re-
placing the black-box neural network with a physics-informed neural network where the loss func-
tion involves physical loss terms. The algorithm is applied to a low-voltage distribution network
for power flow modeling and analysis. The results show that the prediction accuracy of the modi-
fied algorithm with a physics-informed neural network is improved by up to 3 times compared to
the original algorithm with a black-box neural network. Future work can investigate the applicabil-
ity of the proposed idea, physics-based symbolic regression, for larger and more complicated grid
topologies.
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