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ABSTRACT

While differentiable logic gates have shown promise in feedforward networks, their
application to sequential modeling remains unexplored. This paper presents the
first implementation of Recurrent Deep Differentiable Logic Gate Networks (RD-
DLGN), combining Boolean operations with recurrent architectures for sequence-
to-sequence learning. Evaluated on WMT’14 English-German translation, RD-
DLGN achieves 5.00 BLEU and 30.9% accuracy during training, approaching
GRU performance (5.41 BLEU) and graceful degradation (4.39 BLEU) during
inference. This work establishes recurrent logic-based neural computation as vi-
able, opening research directions for FPGA acceleration in sequential modeling
and other recursive network architectures.

1 INTRODUCTION
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Figure 1: Training accuracy vs. node count (log-
scale, 0.01M to 50M) for GRU, RNN, and RD-
DLGN models. For RNN/GRU, node count is total
parameters minus input embedding; for RDDLGN,
it is the sum of all logic layer sizes. Log-linear
fit slopes (R2): GRU 14.29 (0.98), RNN 10.34
(0.97), RDDLGN 13.31 (0.94).

Large Language Models (LLMs) have become
increasingly popular, with applications ranging
from everyday productivity tools to scientific re-
search Bommasani et al. (2022). As these mod-
els are widely used, the cost of running them has
increased. This increase not only leads to higher
financial cost, but also raises concerns about
energy use and environmental impact Luccioni
et al. (2023). Reducing the cost of inference,
both in terms of compute and energy, is an im-
portant goal for making LLMs more sustainable
and widely accessible Patterson et al. (2021).

Deep Differentiable Logic Gate Networks
(DDLGNs) are a new way to make neural net-
works more efficient using the low cost of logic
gates. Recent work Petersen et al. (2022; 2024)
has shown that DDLGNs can reach strong per-
formance on image classification tasks while us-
ing only a small number of active parts. These
networks make use of logic-based operations
to reduce energy and computation needs. How-
ever, current versions of DDLGNs only work
with feed-forward and convolutional architectures, and do not use sequential logic elements such as
flip-flops or latches. Such elements are common in hardware systems, such as processors and FPGAs,
where they help store state and process information over time Patterson & Hennessy (2013).

In this work, we introduce Recurrent Deep Differentiable Logic Gate Networks (RDDLGNs), a new
model that brings sequential computation into the DDLGN framework. This idea builds on how
recurrent neural networks (RNNs), LSTMs Hochreiter & Schmidhuber (1997), and GRUs Chung
et al. (2014) use shared weights over time to model sequences. Newer models, such as Mamba Gu
& Dao (2024), also use unrolled temporal computation to capture long-term patterns in language.
RDDLGNs follow this principle, combining logic gates with sequential state to support efficient
computation over time. We evaluate this new model on the WMT 2014 English-to-German translation
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task Bojar et al. (2014) to test translation quality. Our results show that RDDLGNs are a promising
step toward developing language models that are more cost-effective and environmentally friendly.

2 RELATED WORK

Deep Differentiable Logic Gate Networks (DDLGN) and Efiicent Architectures Reducing the
computational and energy cost of neural networks is a central concern in academic and industrial
settings, given the computational and environmental footprints required to train modern models
Luccioni et al. (2023); Faiz et al. (2024). Classic compression methods such as pruning, quantization,
and weight clustering Han et al. (2016); Hubara et al. (2018); Gale et al. (2019) have demonstrated that
large models can be reduced by orders of magnitude while maintaining accuracy. These techniques
serve as foundational tools for model deployment on mobile and embedded devices Liu et al. (2024).
For example, extreme quantization can use -1 and +1 for the model weights Courbariaux et al. (2016).

Logic gate networks are a highly energy-efficient alternative to standard neural networks. They
replace floating-point matrix operations with sparse binary logic, reducing compute requirements.
Unlike traditional networks that rely on many multiply-accumulate operations, logic gate networks
use simple two-input gates, such as AND, OR, and XOR. Each gate takes two Boolean inputs and
produces one Boolean output, enabling very fast and low-power inference on hardware such as
CPUs or FPGAs. Because only a small subset of gates is active per layer, these models achieve high
throughput with minimal energy use (Petersen et al., 2022; 2024).

However, training such networks is not straightforward, as the search space of possible logic gate
networks is exponentially large, and the gates are discrete and non-differentiable, making them
incompatible with gradient-based learning methods, such as backpropagation LeCun et al. (2015).
Petersen et al. (2022) overcame these issues by introducing two relaxations (see Section 3 for details).
Through this Petersen et al. (2022) match standard Multi Layer Perceptron (MLP) accuracy on
MNIST while able to perform over one million inferences per second on a single CPU core.

Later work by Petersen et al. (2024) introduced a convolutional variant of DDLGNs, CDDLGNs,
where convolutional kernels were constructed from small trees consisting of logic gates. Thus, they
gain the benefits of the conventional operation on spatial data LeCun et al. (1999); Krizhevsky et al.
(2012); Ronneberger et al. (2015); Springenberg et al. (2015); He et al. (2016). This allowed the
model to achieve 86.3% accuracy on CIFAR-10 while using 29 times fewer logic operations than
earlier methods, thus demonstrating that logic-based networks can scale to more challenging tasks
while remaining sparse and efficient. Nonetheless, the models still have gradient issues, making
model training non-trivial Yousefi et al. (2025).

Sequential Neural Architectures for Machine Translation The RNN encoder–decoder framework
Cho et al. (2014) uses one recurrent network to read an input sequence into a fixed-size context vector
and a second network to generate the output sequence from that vector. While this method improved
over phrase-based statistical systems, reaching BLEU scores around 31.20 on English–German
benchmarks, it suffered from vanishing gradients and limited ability to model long contexts Cho
et al. (2014). To overcome these issues, architectures with gating mechanisms were introduced. Long
Short-Term Memory networks (LSTMs) Hochreiter & Schmidhuber (1997) added memory cells and
gates to control information flow, improving long-range dependency learning. Gated Recurrent Units
(GRUs) Chung et al. (2014) simplified this design by combining gates, achieving similar performance
with fewer parameters. Luong et al. (2015) showed in their seminal work that attention can drastically
improve language models for machine translation. With the transformer models, recurrence is entirely
replaced by self-attention and feedforward blocks, allowing for parallel sequence processing and
significantly boosting translation quality Vaswani et al. (2017). Despite these gains, the quadratic
cost of self-attention has driven interest in more efficient sequence models. State-space models,
such as Mamba Gu & Dao (2024), use linear recurrence and kernel-based parameterizations to
capture long-range dependencies with subquadratic complexity. Despite this rich history of temporal
architectures, no prior work has explored using discrete logic operations for sequence modeling
in neural translation. Our Recurrent DDLGN (RDDLGN) approach fills this gap by embedding
sequential logic gates, analogous to flip-flops and latches in hardware, into a differentiable framework.
This design aims to inherit the efficiency and interpretability of logic-gate networks while supporting
the weight sharing and stateful computation that underlie successful recurrent and state-space models.
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3 BACKGROUND ON DEEP DIFFERENTIABLE LOGIC NETWORKS

As mentioned earlier, the Differentiable Logic Gate Network (DDLGN) framework did two relax-
ations to allow gradient-based learning of the networks Petersen et al. (2022).

Inputs are relaxed to real numbers in [0,1], and smooth surrogate functions replace the Boolean
gates. For example, given inputs x1, x2 ∈ [0,1], AND is relaxed to x1 ⋅ x2, and OR is relaxed to
x1 + x2 − x1 ⋅ x2. These continuous approximations allow gradients to flow during training.

The choice of gate at each neuron is done through a soft mixture over all 16 possible two-input gates.
Learnable logits zj,0...15 parameterize a softmax, giving a probability for each gate choice. The
neuron output is computed as the weighted sum of all 16 surrogate gate outputs:

ϕj =
15

∑
l=0

exp(zj,g)
∑15

h=0 exp(zj,h)
gl(xij , xkj

),

where (ij , kj) index two inputs chosen by a fixed random connectivity and gl are the 16 relaxed
boolean gates.

A LogicLayer with width w consists of w neurons in parallel. While the number of trainable
parameters for a layer is 16w we report the size of a logic layer as w, i.e., the effective parameter
counts (the number of non-zero weights after training), consistent with prior work on neural sparsity
and pruning Gale et al. (2019); Frankle & Carbin (2019); Blalock et al. (2020).

After the final layer, to convert the high-dimensional Boolean outputs into class scores, DDLGN uses
a GroupSum operation. GroupSum splits the w-dimensional output into G groups (one per class) of
size k and computes

GroupSum(x)g =
1

τ

k

∑
i=1

x(g−1)k+i.

This gives a likelihood for each class and softmax can be used to produce normalized predictions.

After training, the inputs are binarized, the gates use the non-relaxed variants, and each neuron is
discretized by selecting its highest-probability gate, yielding a fully Boolean network; this network is
in “inference mode” and has been Collapsed. This enables fast inference and allows the models
to be effectively implemented on FPGAs.

For more details, we refer the reader to Petersen et al. (2022; 2024); Miotti et al. (2025).

4 METHODOLOGY

4.1 MODEL ARCHITECTURE

Our model extends the classic RNN encoder–decoder Cho et al. (2014) by replacing dense layers with
differentiable logic gate layers. The encoder ingests a source token sequence and produces a fixed-size
context vector. The decoder consumes this context and generates target tokens autoregressively.
Figure 2 illustrates the full architecture.

4.1.1 EMBEDDING

Input sequences are first transformed through an embedding layer that maps discrete token indices
to continuous vector representations. Given an input sequence of token indices s = (s1, s2, . . . , sT )
where st ∈ {1,2, . . . , V } and V is the vocabulary size, the embedding layer produces:

Et = Embedding(st) ∈ Rdemb

where demb = 1024 represents the embedding dimension. Logic gate networks expect Boolean inputs.
We therefore relax each token embedding into a continuous value in the range [0,1] by applying a
sigmoid:

xt = σ(Et) .
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Figure 2: Architecture of the Recurrent Deep Differentiable Logic Gate Networks (RDDLGN).
The encoder (left) processes input tokens sequentially through: (1) Embedding layer, (2) Sigmoid
activation, and (3) Vertical N-layers. Horizontal K-layers propagate hidden states between S = 3
timesteps. The decoder (right) follows a similar structure with L-layers and P-layers, with the
shifted target as input tokens. Final encoder state (context vector) is broadcast to all decoder steps.
Output probabilities are generated via M-layers, GroupSum followed by Softmax. Color coding:
Embeddings (red), Sigmoid (green), GroupSum (yellow), Differentiable Logic Gate Layers (blue),
Softmax (violet). Where < BOS > is the beginning of the sentence token.

To encourage the model to produce more decisive binary-like representations, we introduce an
embedding regularization loss:

Lemb =
1

T ⋅ demb

T

∑
t=1

demb

∑
i=1

xt,i ⋅ (1 − xt,i)

This regularization term is minimized when embedding values approach either 0 or 1, promoting
discrete-like representations while maintaining differentiability. The final embedded representations
xt are then passed to subsequent layers.

4.1.2 ENCODER

The encoder consists of two distinct layer groups: N-layers for representation learning and K-layers
for temporal encoding.

N-layer Group: The encoder begins with a group of DN differentiable logic gate layers that
transform embedded input tokens into intermediate representations. Each layer within the N-group
applies logic gate operations in feedforward mode:

h(n) = LogicLayern(h
(n−1)), n = 1, . . . ,DN

where h(0) represents the embedded input tokens, and h(DN ) is the final N-group output.

K-layer Group: Following the N-layers, a group of DK differentiable logic gate layers processes the
sequence temporally from left to right. At each time step t ∈ {1,2, . . . , S} where S = 16 represents
the sequence length, the K-layers maintain a hidden state kt computed through the entire K-group:

k
(0)
t = [h(DN )

t ;k
(DK)

t−1 ]

k
(k)
t = LogicLayerk(k

(k−1)
t ), k = 1, . . . ,DK .
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[⋅; ⋅] denotes concatenation, k(DK)

t−1 is the final output of the K group from the previous time step, and
k
(DK)

0 is initialized with Gaussian noise. Other strategies can be found in Table 6 in Section C.1.2.
The final encoder representation is c = k(DK)

S , serving as the context vector.

4.1.3 DECODER

The decoder employs three layer-groups: L-layers, P-layers, and M-layers for output generation.

L-layer Group: A group of DL differentiable logic gate layers processes embedded target tokens
through feedforward operations:

l
(0)
t = yt

l
(l)
t = LogicLayerl(l

(l−1)
t ), l = 1, . . . ,DL.

yt represents the embedded target token at position t.

P-layer Group: A group of DP differentiable logic gate layers implements autoregressive decoding
through recurrent logic operations. The P-group processes three input sources at each step t:

p
(0)
t = [p(DP )

t−1 ;c; l
(DL)

t ],

p
(p)
t = LogicLayerp(p

(p−1)
t ), p = 1, . . . ,DP .

Where p
(DP )

0 is initialized with Gaussian Noise.

M-layer Group: A group of DM differentiable logic gate layers generates output predictions:

m
(0)
t = [p(DP )

t ;c; l
(DL)

t ]

m
(m)
t = LogicLayerm(m

(m−1)
t ), m = 1, . . . ,DM .

The output of the final M-layer is processed through a GroupSum operation followed by a softmax
activation to produce the final probability distribution:

rt = GroupSum(m(DM )

t )
P (yt∣x,y<t) = softmax(rt).

The softmax operation is implicitly computed within the categorical cross-entropy loss during training.

4.2 MODEL CONFIGURATION

Table 1: The number of layers, the layer sizes, and the
number of trainable parameters for each layer group.
The layer sizes indicate the number of nodes in each
LogicLayer. The number of trainable parameters (# Pa-
rameters) are computed as sum(sizes) × 16, and the
number of embedding parameters as embedding dim
× vocab size.

LAYER LAYER SIZES # PARAMETERS

EMBEDDING 1024 16.384M
K (DK = 2) [54K, 32K] 1.376M
L (DL = 2) [12K, 12K] 0.384M
M (DM = 3) [400K, 400K, 480K] 20.480M
N (DN = 2) [12K, 12K] 0.384M
P (DP = 2) [64K, 48K] 1.792M

TOTAL - 40.8M

We determine the final model architec-
ture through a hyperparameter search,
with the setup listed in Table 1. Details
of the tested configurations and their re-
sults are shown in Table 5 in Section C.1.
The embeddings for DDLGN need to
be higher-dimensional than for the other
models, since it works with binary ele-
ments instead of continuous values.

4.3 LOSS FUNCTION

Our training framework employs a com-
posite loss function combining the pri-
mary supervised objective with sched-
uled auxiliary losses. These auxiliary
losses are designed to reduce the discreti-
sation gap by encouraging the model to
select a specific gate, helping the DDLGN better approximate the final discrete logic gate network
Yousefi et al. (2025).
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Primary Loss Function We use categorical cross-entropy with label smoothing Szegedy et al.
(2016); Müller et al. (2020) with α = 0.1 for the sequence-to-sequence learning task:

Lmain = −
N

∑
i=1

C

∑
j=1

ỹi,j log(ŷi,j)

where ỹi,j is the label-smoothed target distribution.

Auxiliary Loss Scheduling Our framework supports multiple auxiliary losses with independent
scheduling. The primary auxiliary loss employed is binary regularization, which encourages embed-
dings to approach binary values. This loss is scheduled using a linear ramp from weight w = 0.0 to
w = 0.1 between training steps 1K and 100K:

Ltotal(t) = Lmain +
K

∑
i=1

wi(t) ⋅ Lauxi

where wi(t) represents the time-dependent weight for auxiliary loss i. The linear ramp allows the
model to first learn basic mappings before enforcing additional constraints on the representations.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

5.1.1 TRAINING DATA

We train our model on the WMT’14 English-German dataset with 4.5 million sentence pairs Patterson
et al. (2021). The data is tokenized at the word level using regex-based splitting, with a shared
16,000-token vocabulary for English and German. This setup was chosen based on the experiments
in Table 2 in Section 5.2.

All sequences are truncated or padded to 16 tokens, with longer sequences filtered during prepro-
cessing. Training uses token-based batching with approximately 1024 tokens per batch, dynamically
adjusting batch sizes. The preprocessing pipeline filters invalid samples including empty sequences
and all-padding samples to ensure training stability.

5.1.2 BASELINES

We evaluate our RDDLGN on the WMT’14 English-German translation benchmark against three
baseline architectures (see below). All models were trained under consistent conditions with some
architecture-specific optimizations. Table 3 shows that RDDLGN uses orders of magnitude fewer
logical operations, allowing lower energy usage.

• Transformer: Standard architecture with 2 layers, 8 attention heads, 256-dimensional
embeddings, and 1024-dimensional feed-forward layers (16.0M parameters)

• GRU: Gated Recurrent Unit encoder-decoder with 256-dimensional embeddings and hidden
states (9.0M parameters)

• RNN: Vanilla recurrent encoder-decoder with 256-dimensional embeddings and hidden
states (8.5M parameters)

• RDDLGN: Our differentiable logic gate architecture with 1024-dimensional embeddings
and variable layer sizes (40.8M trainable parameters, 1.526M gates, and 16.384M parameters
in the encoder, model size 17.91M)

5.1.3 TRAINING CONFIGURATION

All models used a sequence length of 16 tokens, a batch size of 1024 tokens, label smoothing
(α = 0.1), and AdamW optimization. The Transformer employed learning rate warmup scheduling,
while the others used plateau-based learning rate reduction. Baseline models were configured to
provide fair comparisons against RDDLGN (more details in Section B)
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Table 2: Impact of tokenizer parameters on RDDLGN performance. We report the mean ± standard
deviation on the validation set across different sequence lengths (A1-A4), vocabulary sizes and
sharing strategies (B1-B7), and tokenization levels (C1).

SEQ LEN VOCAB SIZE SHARED VOCAB TK LEVEL ACC (%) ↑ BLEU ↑ PPL ↓

BASE 16 16000 TRUE WORD 23.28±1.96 3.59±0.33 209±10

A1 4 17.17±9.74 3.87±1.91 3616±959
A2 8 27.23±3.46 5.11±0.93 224±28
A3 32 23.61±0.98 3.18±0.20 158±5
A4 64 7.56±13.09 0.78±1.28 11337±9693

B1 8000 FALSE 25.29±1.22 3.94±0.31 166±8
B2 8000 TRUE 30.01±0.83 4.80±0.05 95±3
B3 16000 FALSE 20.42±0.35 3.14±0.07 290±5
B4 20000 FALSE 17.98±1.73 2.68±0.24 388±21
B5 20000 TRUE 22.34±1.41 3.39±0.25 259±14
B6 32000 FALSE 16.53±1.09 2.41±0.16 540±17
B7 32000 TRUE 18.98±0.48 2.82±0.07 400±5

C1 SUBWORD 11.08±0.25 1.76±0.04 1241±21

5.2 DATASET AND TOKENIZER

Sequence Length (Table 2 Rows A): Sequence length affects both context availability and pre-
diction complexity, with accuracy calculated only on non-padding tokens. Very short sequences
(A1: 4 tokens) lack context (17.17% accuracy), while very long sequences (A4: 64 tokens) increase
prediction errors (7.56%). Moderate lengths (A2: 8 tokens) perform best (27.23%).

Vocabulary Size and Sharing (Table 2 Rows B): Smaller vocabularies reduce classification com-
plexity. Shared vocabularies (B2: 8K shared, 30.01%) consistently outperform separate vocabularies
(B1: 8K separate, 25.29%) through better parameter sharing. Performance degrades with larger
vocabularies due to increased prediction difficulty.

Tokenization Level (Table 2 Rows C): Subword tokenization (C1: 11.08%) severely underper-
forms word-level baseline (23.28%). This occurs because subword tokens require more predictions
per semantic unit and provide less coherent targets for discrete logic operations.

Key findings: Accuracy is sensitive to prediction complexity - shorter sequences and smaller
vocabularies reduce error opportunities. Shared vocabularies enable better cross-lingual learning.
Word-level tokenization suits logic-based architectures better than subword fragmentation.

5.3 LANGUAGE TRANSLATION

Table 3 and Figure 3 presents our experimental results comparing RDDLGN performance in both
standard and collapsed configurations against baseline models.

The uncollapsed RDDLGN achieves 5.00 BLEU and 30.9% accuracy, successfully outperforming
the RNN baseline (4.59 BLEU) and positioning itself between RNN and GRU performance levels.
This demonstrates that differentiable logic gates can effectively model sequential dependencies in
translation tasks.

When using the inference model, performance drops to 4.39 BLEU and 27.7% accuracy—a controlled
degradation that still achieves good results. The collapse mechanism switches from continuous
softmax to discrete argmax operations and uses the Heaviside function instead of sigmoid for
embeddings. While the model size technically is larger than any of the baseline models one must
remember that out of the 17.91M parameters, 16.384M are used for the embeddings (4 times more
than for the baselines). This was done as the embeddings for RDDLGN are binary vectors rather
than vectors of floats, thus decreasing their expressiveness. To highlight this difference we show in
Table 3 the model sizes with and without the embedding layer for each model.
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Table 3: Performance comparison on WMT’14 English-German translation task. RDDLGN (first
row) represents the uncollapsed model with standard softmax operations and full embeddings. The
collapsed variant uses argmax operations and fully collapsed embeddings, demonstrating controllable
performance-efficiency trade-offs. Model sizes are shown with and without embedding parameters;
for RDDLGN, we set “Parameters” as the number of trainable parameters, while Collapsed shows
the model size as discussed in Section 4.2. The collapsed RDDLGN uses far fewer parameters
outside embeddings while achieving performance comparable to recurrent baseline models. The table
also shows floating-point operations (FLOPs) and logic operations (Logic OPs) required for trained
models. For the baseline models, the logic operations are estimated as in Petersen et al. (2022).

MODEL SIZE
MODEL BLEU ↑ ACCURACY ↑ WITH EMB. WITHOUT EMB. FLOPS LOGIC OPS

TRANSFORMER 5.98 35.3% 16.0 M 11.9 M 80.04M (80.04G)
GRU 5.41 34.2% 9.0 M 4.9 M 37.49M (37.49G)
RNN 4.59 29.6% 8.5 M 4.4 M 35.36M (35.36G)
RDDLGN (OURS) 5.00 30.9% 40.8 M 24.42 M – –

COLLAPSED 4.39 27.7% 17.91 M 1.53 M – 1.53M

GRU Tra. RNNRDDLG
N
RDDLG

N*

101

102

Sc
or
e

5.
8

6.
0

4.
3 5.
0

4.
4

36
.2

83
.1 12

3.
2

12
6.
9

14
7.
7

36
.8

35
.3

26
.8

30
.9

27
.7

Bleu
Perplexity
Accuracy

Figure 3: Comparison of test BLEU score, per-
plexity, and accuracy across the four architec-
tures: Tra. (Transformer), GRU, RNN, and
RDDLGN. “RDDLGN*” indicates RDDLGN
evaluated in the Collapsed mode.
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ing preprocessing. A factor of 4 means the mod-
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over 4 time steps.

5.4 MEMORIZATION CAPABILITIES

To further assess the ability of each model to retain and recall information over long sequences, we
evaluated the RNN, GRU, and RDDLGN decoders on a shifted monolingual prediction task using
a data subset of 0.5M sentences. The shift factor determines how many positions the target tokens
are offset with respect to the input, thus probing each architecture’s memory span and robustness to
temporal distance. For example, with input [the, cat, sat, on, the, mat] and shift 2,
the target is [<PAD>, <PAD>, the, cat, sat, on].

Our results show that the RDDLGN decoder exhibits substantially enhanced memorization compared
to classical recurrent architectures. While RNN and GRU models experience sharp declines in
accuracy as the shift factor increases, RDDLGN maintains high test accuracy even for large temporal
shifts. For shift factors up to 4, RDDLGN achieves over 97% accuracy, whereas the RNN and GRU
baselines drop below 55%. Even at a shift of 12, RDDLGN still records 64.6% accuracy, markedly
outperforming the RNN (2.1%) and GRU (28.1%) counterparts, further illustrated in Figure 4.
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5.5 GRADIENT ANALYSIS

Table 4: Final per-group gradient statistics: mean, std, and
std/mean for ∣∇wL∣ at training end.

LAYER MEAN STD STD/MEAN

K0 5.90E+04 4.68E+05 7.936E+00
L0 1.02E+04 8.11E+04 7.931E+00
M0 7.37E+04 5.85E+05 7.932E+00
M1 4.83E+04 3.83E+05 7.936E+00
M2 4.83E+04 3.83E+05 7.937E+00
M3 4.83E+04 3.81E+05 7.884E+00
M4 4.83E+04 3.83E+05 7.933E+00
M5 1.20E+05 9.52E+05 7.936E+00
M6 1.20E+05 9.52E+05 7.935E+00
N0 8.82E+03 6.90E+04 7.819E+00
P0 7.82E+04 6.20E+05 7.927E+00

We assess gradient propagation and train-
ing stability in our RDDLGN by evalu-
ating final layerwise gradient statistics.
As shown in Table 4, all layer groups (K,
L, M, N, P) maintain nonzero and con-
sistently scaled gradients at the end of
training, confirming the absence of van-
ishing or exploding gradients–major pit-
falls in deep sequence models. Standard
RNNs often suffer from vanishing gradi-
ents in the lower layers, but RDDLGN
exhibits robust and uniform gradient flow
throughout all layers, supporting stable
and efficient learning.

Gradient Flow Explanation and Expectation The gradient flow mechanism in RDDLGN stems
from the sum of weighted operators formulation. The gradient with respect to the i-th logit wi is:

∂y

∂wi
= pi
⎛
⎝
fi(x1,x2) −

M

∑
j=1

pjfj(x1,x2)
⎞
⎠

The expected gradient behavior can be analyzed through its components:

E [ ∂y
∂wi
] = E[pifi] −E

⎡⎢⎢⎢⎣
pi

M

∑
j=1

pjfj
⎤⎥⎥⎥⎦

This expectation remains non-zero as long as the experts produce diverse outputs (fi ≠ fj for some
i, j) and the selection probabilities are correlated with expert performance. The gradient magnitude
is proportional to the discrepancy between expert outputs, preventing vanishing gradients when the
experts are diverse. Thus, it maintains stable gradient flow throughout all layers during optimization.

6 CONCLUSION

This work presents the first application of differentiable logic gate networks to sequence-to-sequence
learning tasks, introducing a novel architectural paradigm for neural machine translation. Our
RDDLGN demonstrates the feasibility of replacing traditional neural building blocks with logic-based
computation, achieving performance comparable to GRU baselines on WMT’14 English-German
translation (5.00 vs. 5.41 BLEU). This competitive performance indicates that logic gate architectures
can potentially solve other sequential modeling problems, opening new research directions in neural
computation on FPGAs.

The proposed approach faces some challenges. Training requires more parameters for embeddings
(16.384M vs. 4.096M for baselines), making the total trainable parameter counts much higher for RD-
DLGNs. Our recurrent model faces the same issues as the original DLGN, with longer training times
to achieve comparable performance to conventional models. Additionally, the architecture suffers
from vanishing gradient problems, particularly for longer sequences and deeper layer configurations.

Several promising research directions emerge from this work. Two key technical improvements
warrant investigation: weight reparametrization approaches to address vanishing gradients, and
hardware implementation through FPGA synthesis to exploit the model’s discrete logic operations.
Most significantly, incorporating associative recurrent blocks could transform training efficiency from
linear to logarithmic complexity (O(logn) training time, O(n logn) computational complexity), as
demonstrated by Orvieto et al. (2023), potentially making logic-based architectures competitive for
long-sequence modeling tasks.
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REPRODUCIBILITY STATEMENT

All code used in our experiments is included in the supplementary material, along with a README
describing how to run the training and evaluation scripts. The training and test data are publicly avail-
able through PyTorch’s torchtext, Kaggle, and Huggingface. The code will be made publicly available
on GitHub with the camera-ready version. Details of model architectures, training procedures, and
datasets are provided in Sections B and 4.
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A USAGE OF LLMS

We have made use of several large language models (LLMs) during the preparation of this work.
ChatGPT, Claude, Gemini, and Grammarly were employed to assist with spellchecking, improving
wording, and shortening text for clarity and readability. In addition, ChatGPT, Claude, and Cursor
were used for analyzing and explaining code, providing code completions, and generating visualiza-
tions to support our implementation and experiments. These tools were applied as auxiliary aids to
polish the writing and streamline the development process, while the core research contributions,
experimental design, and interpretation of results remain entirely our own.

B TRAINING DETAILS

B.1 OPTIMIZER

Our training framework employs the AdamW Loshchilov & Hutter (2019); Kingma & Ba (2017)
optimizer with standard hyperparameters suitable for sequence-to-sequence learning Wu & Xing
(2024). Specifically, we use AdamW with a learning rate of 0.05 (managed by a scheduler), weight
decay λ = 0.001 for L2 regularization, momentum parameters β1 = 0.9 and β2 = 0.999, and the
default epsilon value ϵ = 10−8.

The relatively high base learning rate is modulated by the scheduler to ensure stable training.
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B.2 SCHEDULER

Our learning rate scheduling employs a single adaptive mechanism that monitors training progress
and adjusts the learning rate globally across all parameters.

Adaptive Learning Rate Scheduling We employ a ReduceLROnPlateau Paszke et al. (2019)
strategy that monitors validation loss and adaptively reduces the learning rate when training plateaus:

η(t + 1) = {η(t) ⋅ γ if validation loss plateaus for p steps
η(t) otherwise

(1)

with reduction factor γ = 0.8 and patience p = 10K steps. The learning rate is applied uniformly
across all parameter groups, with the base rate initialized to η0 = 0.05.

C HYPERPARAMETER STUDIES

This section presents a comprehensive empirical analysis of hyperparameter effects on our RDDLGN
model performance. We systematically investigate model parameters, training configurations, stochas-
tic components and dataset-tokenizer interactions.

Each study employs controlled experimentation with multiple random seeds (typically 3) to ensure
statistical reliability. Performance is evaluated using accuracy (ACC), BLEU score, and perplexity
(PPL) on the WMT14 German-English translation task with training for only for 1 epoch on 10% of
the dataset. Results are reported as mean ± standard deviation to capture both central tendency and
variability.

C.1 MODEL PARAMETER

We systematically investigate architectural configurations using our baseline model.

C.1.1 LAYER SIZES

N-layers (Table 5 Rows A): Representation learning layers show modest variations around baseline
performance. Configuration A4 [20K,10K] achieves the highest accuracy in this group (25.46 ±
0.71%), though given the baseline’s standard deviation (23.28 ± 1.96%), this represents a modest
improvement. The two-layer configurations (A2, A4, A6) tend to perform slightly better than single-
layer variants, with A4 also showing the best BLEU score (3.91±0.17) and lowest perplexity (191±4)
in this group.

K-layers (Table 5 Rows B): Temporal encoding layers demonstrate some architectural sensitivity.
Configuration B3 [50K,50K] achieves the highest accuracy (25.52 ± 0.40%) and best BLEU score
(3.93±0.09) in this group. While this appears to outperform baseline, the improvement is modest given
the measurement variability. The single-layer configuration B1 performs similarly (25.23 ± 0.21%),
while the three-layer setup B4 shows somewhat reduced performance.

L-layers (Table 5 Rows C): Shifted target token processing layers show performance generally
comparable to baseline, with C2 [16K,8K] and C5 [22K,11K,6K] achieving slightly higher accura-
cies (25.12 ± 0.75% and 25.17 ± 1.22% respectively). Most configurations in this group maintain
performance within the expected variation range of baseline.

P-layers (Table 5 Rows D): Autoregressive decoding layers with single large configuration (D3
[96K]) perform best in this group (25.31 ± 0.72% accuracy, 3.94 ± 0.09 BLEU), showing a modest
improvement over baseline. Multi-layer variants (D2, D4, D6) generally perform at or slightly below
baseline levels, though differences are within typical measurement variation.

M-layers (Table 5 Rows E): Output generation layers show stable performance across con-
figurations, with most variants performing within the noise level of baseline. Configuration E2
[160K,80K,480K] achieves the highest accuracy (24.87 ± 0.95%) in this group, though the improve-
ment over baseline is marginal.
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N K L P M Emb k ACC (%) BLEU PPL

BASE 12K,12K 54K,32K 12K,12K 64K,48K 400K,400K,480K 1024 30 23.28±1.96 3.59±0.33 209±10

A1 18K 24.21±0.59 3.76±0.10 199±5
A2 16K,8K 24.46±0.96 3.76±0.16 200±8
A3 24K 24.17±1.13 3.75±0.20 199±6
A4 20K,10K 25.46±0.71 3.91±0.17 191±4
A5 22K,11K,6K 24.23±0.58 3.75±0.12 197±2
A6 28K,14K,7K 25.23±0.59 3.87±0.11 194±6

B1 48K 25.23±0.21 3.89±0.09 195±0
B2 50K,28K 24.12±0.73 3.80±0.08 198±6
B3 50K,50K 25.52±0.40 3.93±0.09 197±3
B4 50K,48K,38K 24.03±0.71 3.70±0.13 205±5
B5 80K,60K,48K 24.57±0.80 3.80±0.12 202±5

C1 18K 23.88±0.45 3.66±0.18 197±2
C2 16K,8K 25.12±0.75 3.85±0.06 201±6
C3 24K 23.35±1.08 3.59±0.25 198±6
C4 20K,10K 24.12±0.72 3.73±0.13 205±7
C5 22K,11K,6K 25.17±1.22 3.89±0.13 205±8
C6 28K,14K,7K 24.60±0.26 3.82±0.11 205±5

D1 48K 24.49±0.22 3.80±0.07 201±0
D2 50K,28K 23.56±0.39 3.60±0.06 202±3
D3 96K 25.31±0.72 3.94±0.09 200±4
D4 50K,50K 24.18±0.35 3.69±0.12 201±3
D5 50K,48K,38K 24.29±0.66 3.74±0.14 198±2
D6 80K,60K,48K 23.54±0.96 3.55±0.19 201±7

E1 120K,60K,480K 24.66±0.89 3.82±0.15 199±7
E2 160K,80K,480K 24.87±0.95 3.89±0.13 198±6
E3 240K,480K 24.15±0.48 3.75±0.06 204±1
E4 200K,100K,50K,480K 24.31±0.18 3.71±0.11 198±4
E5 480K,480K 23.90±0.55 3.64±0.10 206±3
E6 320K,160K,80K,480K 24.24±0.76 3.71±0.22 197±6

F1 512 24.29±0.62 3.69±0.21 200±3
F2 768 24.40±0.87 3.77±0.07 199±8
F3 1536 24.82±1.28 3.88±0.19 199±6

G1 400K,400K,256K 16 17.55±1.75 3.28±0.32 293±2
G2 400K,400K,384K 24 23.62±0.81 3.58±0.11 216±4
G3 400K,400K,512K 32 23.80±0.30 3.66±0.03 197±5
G4 400K,400K,640K 40 25.06±0.33 3.88±0.06 188±4

Table 5: Impact of layer architecture variations on model test performance. Results show mean ±
standard deviation across 3 random seeds. All configurations use the base model hyperparameters
unless specified. Architectural components: N , K , L , P , M , Emb (embedding dimension), k
(group factor). Metrics: Accuracy (ACC), BLEU, and perplexity (PPL).

Embedding Dimension (Table 5 Rows F): Increasing embedding dimension from 512 to 1536 (F1–
F3) shows a gradual trend of improvement. F3 [1536] achieves the highest accuracy (24.82 ± 1.28%)
in this group, though given the large standard deviation, the improvement over baseline is within
measurement uncertainty.

Group Factor (Table 5 Rows G): Group factor tuning reveals the clearest performance differences
in the study. Configuration G1 (k = 16) shows substantially lower performance (17.55 ± 1.75%
accuracy) compared to baseline, while G4 (k = 40) achieves better performance (25.06±0.33%) with
lower perplexity (188 ± 4). This represents one of the few cases where the performance differences
exceed typical measurement variation.

Key findings: (1) Most architectural modifications yield performance changes within measurement
uncertainty; (2) Group factor selection shows the clearest impact on performance, with very low
values (k=16) notably underperforming; (3) While some configurations (A4, B3, D3) show promising
trends, the improvements are generally modest relative to baseline variability; (4) The results suggest
that the baseline architecture is reasonably well-tuned, with most alternatives providing only marginal
gains.

C.1.2 INITIALIZATION METHODS

Node Initialization (Table 6 Rows A): Node initialization strategies show minor variations around
baseline. Gaussian initialization (A1) performs best (24.51 ± 0.71% accuracy), while other methods
(A2-A4) remain close to baseline levels. Differences are within measurement uncertainty.
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NODE HIDDEN STATE
BASE RESIDUAL GAUSSIAN 23.28±1.96 3.59±0.33 209±10

A1 GAUSSIAN 24.51±0.71 3.83±0.08 199±6
A2 ONE 24.26±1.31 3.65±0.24 203±11
A3 UNIFORM 23.72±0.40 3.61±0.11 208±2
A4 ZERO 24.30±1.47 3.77±0.15 201±6

B1 GAUSSIAN 22.59±0.89 3.35±0.14 260±10
B2 RESIDUAL 24.63±0.42 3.79±0.16 199±4

Table 6: Impact of initialization methods on model test performance. Comparison of different node
initialization and hidden state initialization strategies. Metrics show validation mean ± standard
deviation across multiple runs with 3 different seeds.

Hidden State Initialization (Table 6 Rows B): Hidden state initialization shows clearer effects.
Gaussian initialization (B1) notably degrades performance (22.59 ± 0.89% accuracy, 260 ± 10 per-
plexity), while Residual initialization (B2) maintains baseline performance (24.63 ± 0.42%).

Key findings: Node initialization methods yield minimal differences, while hidden state initialization
significantly impacts performance, with Gaussian initialization being detrimental compared to the
baseline Residual approach.

C.2 TRAINING PARAMETER

C.2.1 LEARNING RATE AND GRADIENTS

LR WD N K L P M ACC (%) BLEU PPL

BASE 0.050 0.001 23.28±1.96 3.59±0.33 209±10

A1 0.001 0.44±0.03 0.21±0.08 12729±418
A2 0.010 12.36±0.21 1.74±0.03 987±36
A3 0.050 23.66±1.96 3.65±0.33 203±12
A4 0.100 24.42±0.76 3.83±0.14 205±5
A5 0.500 22.46±0.42 3.47±0.10 266±7

B1 1.0E-05 24.04±0.72 3.68±0.15 205±8
B2 1.0E-04 24.06±0.84 3.63±0.16 205±7
B3 5.0E-04 23.67±0.47 3.62±0.15 207±4
B4 0.001 23.49±0.82 3.67±0.13 203±5
B5 0.010 23.59±0.86 3.63±0.17 205±7

C1 23.79±1.81 3.66±0.30 203±10
C2 ❉ 22.69±0.53 3.52±0.15 208±6
C3 ❉ 23.37±1.00 3.60±0.23 208±8
C4 ❉ 22.64±0.71 3.53±0.15 214±4
C5 ❉ 21.80±0.26 3.28±0.06 236±2
C6 ❉ 23.58±0.16 3.61±0.05 223±1

Table 7: Impact of learning rate, weight decay, and frozen layers on model performance. LR denotes
learning rate, WD denotes weight decay. ❉ indicates frozen layer groups. Metrics are test mean ± std
across runs with different seeds.

Learning Rate (Table 7 Rows A): Learning rate selection shows strong sensitivity. Very low
rates (A1: 0.001) completely fail to train (0.44 ± 0.03% accuracy), while moderate rates (A2: 0.010)
severely underperform (12.36 ± 0.21%). The baseline rate (A3: 0.050) and higher rate (A4: 0.100)
perform similarly well, with A4 showing modest improvement (24.42 ± 0.76%). Very high rates (A5:
0.500) degrade performance slightly.
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Weight Decay (Table 7 Rows B): Weight decay variations show minimal impact on performance.
All tested values (B1-B5) yield accuracies within ±1% of baseline, with differences well within
measurement uncertainty. The baseline value (0.001) appears adequate.

Frozen Layers (Table 7 Rows C): Freezing individual layer groups generally maintains or slightly
reduces performance. Freezing P-layers (C5) shows the largest degradation (21.80 ± 0.26% accu-
racy), while other frozen configurations (C2-C4, C6) remain close to baseline levels. All frozen
configurations underperform the fully trainable baseline (C1).

Key findings: Learning rate is critical, with very low values causing training failure and moderate-to-
high values (0.050-0.100) working well. Weight decay has minimal impact within reasonable ranges.
Freezing any layer group slightly degrades performance, suggesting all components benefit from
training.

C.3 STOCHASTIC COMPONENTS

DROPOUT LABEL SMOOTH GUMBEL τ GROUP SUM τ ACC (%) BLEU PPL

BASE 0 0.1 2 23.28±1.96 3.59±0.33 209±10

A2 0.05 23.33±1.36 3.52±0.31 231±11
A3 0.1 22.07±1.09 3.41±0.24 277±20
A4 0.2 21.32±0.80 3.41±0.18 378±26
A5 0.3 14.54±7.06 2.44±0.99 1146±366

B1 0 23.03±0.46 3.55±0.11 211±1
B2 0.01 23.93±0.18 3.74±0.11 208±1
B4 0.2 23.91±0.44 3.58±0.10 210±4
B5 0.5 23.38±0.57 3.60±0.04 267±5

C1 0.01 19.76±1.21 2.96±0.24 533±20
C2 0.1 20.78±0.78 3.13±0.09 362±12
C3 0.5 20.42±0.28 3.06±0.04 307±8
C4 1 19.82±0.20 2.95±0.02 309±5

D1 0.25 4.45±0.86 1.04±0.16 46932±16532
D2 0.5 16.44±1.25 2.90±0.20 769±83
D3 1 22.66±0.88 3.61±0.17 229±2
D5 4 21.01±0.13 2.58±0.01 323±1
D6 8 20.93±0.00 2.58±0.00 1444±3

Table 8: Impact of regularization and loss parameters on model performance. Metrics are mean ± std
on validation set.

Dropout (Table 8 Rows A): Dropout regularization is applied after each logic layer group (N, K,
L, P, M layers) and after embedding, with separate dropout modules for each layer group. For a given
layer output h, dropout applies:

hdropout = h⊙m

where m ∼ Bernoulli(1−p) is a binary mask and p is the dropout probability. Light dropout (A2: 0.05)
maintains baseline performance, while moderate dropout (A3: 0.1, A4: 0.2) progressively degrades
accuracy and increases perplexity. Heavy dropout (A5: 0.3) severely impairs training (14.54 ± 7.06%
accuracy), suggesting the model’s logic layers are particularly sensitive to regularization, likely
because dropout disrupts the discrete logic operations.

Label Smoothing (Table 8 Rows B): Label smoothing modifies the target distribution by mixing
the one-hot encoded labels with a uniform distribution:

ysmooth = (1 − α)ytrue +
α

K
1

where α is the smoothing parameter, K is the number of classes, and 1 is the all-ones vector. Light
smoothing (B2: 0.01) achieves slight improvement (23.93 ± 0.18%), while other values (B1, B4, B5)
remain close to baseline. The baseline value (0.1) appears appropriate.
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Gumbel Temperature (Table 8 Rows C): The Gumbel-Softmax temperature parameter controls
the stochasticity of logic gate selection in the neural logic layers. Each neuron computes ϕj =
fzj(xij , xkj) using softmax weights. With Gumbel-Softmax, this becomes:

ϕj =
15

∑
i=0

exp((zj,i +Gi)/τ)
∑15

ℓ=0 exp((zj,ℓ +Gℓ)/τ)
⋅ gi(xij , xkj)

where Gi ∼ − log(− log(U(0,1))) is Gumbel noise and τ is the temperature parameter. Lower
temperatures make selections more discrete, while higher temperatures increase randomness. All
tested values (C1-C4) substantially underperform baseline, with C2 (τ = 0.1) performing best in this
group (20.78 ± 0.78%) but still notably below baseline performance.

Group Sum Temperature (Table 8 Rows D): Group sum temperature modifies the GroupSum
operation. The temperature-scaled GroupSum becomes:

GroupSumτ(x) =
1

τ

d/k−1

∑
j=0

xj⋅k∶(j+1)⋅k

where τ controls the magnitude of the aggregated outputs before softmax normalization. Very low
values (D1: 0.25) cause training failure (4.45 ± 0.86%) by making the pre-softmax logits too large,
leading to numerical instability. Moderate values around the baseline (D3: τ = 1) maintain good
performance (22.66 ± 0.88%). Higher temperatures (D5, D6) progressively degrade performance by
making the logits too small, reducing the model’s ability to make confident predictions.

Key findings: The model shows high sensitivity to stochastic components. Dropout, applied after each
layer group, should be minimal or avoided due to its interference with discrete logic operations. Label
smoothing has little impact within reasonable ranges. Gumbel-Softmax consistently underperforms
the baseline discrete approach, suggesting deterministic gate selection works better for logic-based
architectures. Group sum temperature is critical for numerical stability and prediction confidence,
with values around 1-2 being optimal.

D COMPUTATIONAL SETUP

The model was trained for 130K steps on NVIDIA GeForce RTX 3090 and NVIDIA TITAN Xp
GPUs, with average step times of 0.2 seconds and 0.6 seconds, respectively, corresponding to total
training times of approximately 7.2 hours and 21.7 hours.
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