CAST: Time-Varying Treatment Effects with Application to Chemotherapy and Radiotherapy on Head and Neck Squamous Cell Carcinoma

Anonymous Author(s)

Affiliation Address email

Abstract

Causal machine learning (CML) enables individualized estimation of treatment effects, offering critical advantages over traditional correlation-based methods. However, existing approaches for medical survival data with censoring such as causal survival forests estimate effects at fixed time points, limiting their ability to capture dynamic changes over time. We introduce Causal Analysis for Survival Trajectories (CAST), a novel framework that models treatment effects as continuous functions of time following treatment. By combining parametric and non-parametric methods, CAST overcomes the limitations of discrete time-point analysis to estimate continuous effect trajectories. Using the RADCURE dataset [1] of 2,651 patients with head and neck squamous cell carcinoma (HNSCC) as a clinically relevant example, CAST models how chemotherapy and radiotherapy effects evolve over time at the population and individual levels. By capturing the temporal dynamics of treatment response, CAST reveals how treatment effects rise, peak, and decline over the follow-up period, helping clinicians determine when and for whom treatment benefits are maximized. This framework advances the application of CML to personalized care in HNSCC and other life-threatening medical conditions.

Introduction

2

8

9

10

11

12

13

14 15

16

17

24

25

- Methodological gap: A critical limitation in most traditional statistical and machine learning (ML) 19 methods applied to clinical outcomes data is their correlational nature. These methods are designed 20 to identify associations between variables but are not equipped to answer causal questions, which are central to understanding treatment effects. In clinical research, the key questions—such as how a treatment impacts survival or which patients benefit most—are inherently causal. However, 23 correlational approaches cannot disentangle confounding factors or provide interpretable estimates of causal relationships, leaving a significant methodological gap [2, 3].
- Causal machine learning (CML) offers a promising solution by explicitly modeling causal effects 26 rather than associations. CML is rapidly advancing, providing tools to estimate individualized and 27 subgroup-specific treatment effects [4]. However, current causal forest methods adapted for survival data fall short in one crucial aspect: they estimate treatment effects only at discrete time horizons after treatment [5, 6, 7]. This approach fails to capture the continuous evolution of treatment effects 30 over time, limiting their ability to address dynamic clinical questions. 31
- Proposed approach: Our novel method, CAST (Causal Analysis for Survival Trajectories), fills 32 this gap by extending causal survival forests to provide continuous treatment effect estimates as 33 a function of time after treatment. CAST combines parametric and non-parametric techniques to

model the temporal dynamics of treatment effects, offering a more nuanced and clinically relevant understanding of how treatments impact outcomes over time [8, 9]. We build upon previous work by Shuryak et al. [10] to extend it to chemotherapy and continuous-time causal modeling. By addressing this methodological gap, CAST enables clinicians to answer the causal questions that matter most for personalized care and evidence-based decision-making. While traditional approaches estimate treatment effects at discrete time points [11, 12], CAST provides a continuous mathematical framework, analyzing how treatment benefits evolve over the entire follow-up period. In the context of cancer therapy, this is key: biological responses unfold through complex temporal dynamics that include initial tumor control followed by potential diminishing returns due to repopulation, late toxicities, and other factors [13, 14, 15].

Clinical motivation: We evaluate CAST in the context of head and neck squamous cell carcinoma (HNSCC), where treatment responses evolve over time and vary across patient subgroups. HNSCC, ranked as the seventh most prevalent cancer worldwide, includes malignancies of the oral cavity, pharynx, larynx, and other surrounding regions of the head and neck. With incidence rates rising rapidly, HNSCC is projected to increase nearly 30 % annually by 2030 [16]. Historically, most HNSCC cases were attributed to excessive alcohol and tobacco use, with heavy exposure increasing risk by up to 40-fold [17]. However, the past two decades have seen an increase in human papillomavirus-related (HPV) cases, and HPV-associated HNSCC is expected to surpass tobacco and alcohol induced tumors in the next five years. This has caused a shift in the demographic profile of HNSCC patients: HPV-related cases tend to occur among younger populations (<65), particularly in men [18, 19, 20].

To treat HNSCC, clinicians use combinations of surgery, chemotherapy, and radiation. Intensity-modulated radiation therapy (IMRT) has become the standard of care for its precision in targeting tumors while sparing healthy tissue [21, 22]. Studies show that IMRT's impact on patient quality of life follows a time-varying trajectory, with distinct peaks of symptom burden and phases of recovery [23, 24]. In a similar vein, chemotherapy—involving agents that disrupt the DNA of rapidly dividing cells—follows a variable treatment timeline [25]. Patients are often advised that responses can differ widely based on individual factors, with effects emerging gradually and no fixed timeline for when benefits or side effects will manifest [26, 27].

The challenge of analyzing radiation therapy and chemotherapy outcomes lies not just in the complexity of the treatment itself, but in the multitude of factors that influence both treatment assignment and patient response. Traditional correlation-based analyses can mask important causal relationships, leading to suboptimal treatment decisions. To the best of our knowledge, CAST represents the first causal machine learning framework to explicitly model how chemotherapy benefits for patient survival rise and fall over the entire follow-up period.

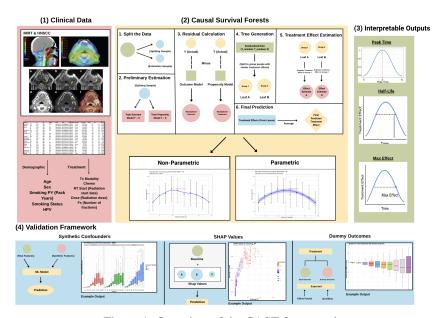


Figure 1: Overview of the CAST framework

Modeling philosophy: Our novel machine learning approach leverages causal survival forests to handle high-dimensional data while automatically discovering treatment effect heterogeneity, and differs from conventional survival analysis methods by focusing explicitly on estimating causal treatment effects while accounting for confounding factors through careful propensity score modeling. As demonstrated in Figure 1, the framework incorporates both parametric modeling to capture characteristic rise and fall patterns of chemotherapy effects and non-parametric approaches to reveal subtle inflection points corresponding to biological phase transitions in treatment response.

We implemented a variety of methods to ensure a robust assessment of the data and to verify key causal inference assumptions, such as overlap (positivity) and no unmeasured confounding (ignorability). We used elastic net logistic regression with repeated k-fold cross-validation to estimate propensity scores for chemotherapy. Patients with scores outside the range [0.1, 0.9] were trimmed to ensure overlap between treatment groups. We then conducted refutation tests, including dummy outcome and negative control analyses, to assess the robustness of our causal effect estimates. Using SHapley Additive exPlanations (SHAP) values, we generated interpretable insights into how patient and disease characteristics impact treatment outcomes, allowing for practical application in clinical settings.

Significance: This research applies causal survival forests to identify how patient and disease characteristics—like age and HPV status—influence treatment effectiveness. By combining advanced causal inference with CAST's temporal modeling, we can determine not just who benefits most from chemotherapy, but also when these benefits peak and fade. This temporal insight is key for designing targeted interventions and optimizing outcomes in HNSCC. CAST also demonstrates the broader potential of integrating machine learning into personalized cancer care.

91 Our contributions are as follows:

- CAST is, to our knowledge, the first framework to unify causal survival forests with *parametric* and *non-parametric* models for estimating continuous-time treatment effects, offering a new paradigm for temporal causal inference in survival analysis.
- CAST produces clinically interpretable metrics such as *peak effect time*, *maximum benefit*, and *effect half-life*, enabling richer understanding of treatment response dynamics.
- We introduce a rigorous validation framework incorporating *propensity score modeling*, *dummy outcome tests*, *synthetic tests*, and *SHAP-based heterogeneity analysis*.
- We apply CAST to a large real-world chemotherapy and radiotherapy dataset (RADCURE), uncovering actionable insights into when and for whom treatment benefits peak and decline.

2 Related Work

Clinical predictors of treatment response: Numerous studies have shown that treatment response in HNSCC patients is highly heterogeneous, influenced by clinical and demographic factors such as HPV status, gender, and disease stage. For instance, HPV-positive HNSCC—more common among younger patients—tends to be more sensitive to treatment and is associated with more favorable survival outcomes compared to HPV-negative disease [28]. Historically, studies that group patients by their clinical characteristics reveal significant variation in survival [29, 30]. These findings motivate the need for methods that can model treatment effect heterogeneity as well as average treatment effects (ATE)—an aim CAST directly addresses.

Predictive survival models: Traditional models such as the Cox proportional hazards model assume proportional hazards and constant treatment effects over time, limiting their flexibility in capturing nonlinear and time-varying dynamics [31, 32]. More flexible models—including random survival forests (RSF), deep survival models (e.g., DeepSurv), and Bayesian additive regression trees (BART)—have demonstrated improved risk prediction performance [33], notably in applications such as cervical cancer survival [34, 35]. However, these models are fundamentally *predictive*, not causal—they estimate outcome risk without isolating treatment effects or correcting for confounding unless explicitly adapted with causal modeling components.

Causal inference for survival analysis: Recent advances in causal machine learning have introduced methods designed to estimate individualized treatment effects (ITEs) from observational time-to-event data [36, 37]. These include meta-learners (e.g., T-learner, S-learner) [38], G-formula-based two-learners [39], double robust estimators (e.g., AIPCW and AIPTW) [40], and causal survival forests

122 [41]. While these causal approaches are advantageous for treatment effect estimation compared with 123 traditional survival analysis, they typically estimate effects at discrete time points, limiting their 124 ability to model how treatment responses evolve continuously throughout follow-up [42, 43].

Modeling time-varying treatment effects: In oncology, treatment effects often unfold through 125 distinct biological phases—initial tumor control, plateauing benefit, and eventual decline due to 126 late toxicities or tumor repopulation [44, 45]. Studies have revealed that the prognostic influence 127 of covariates such as age, race, and sex changes over the follow-up period [46, 47]. However, most 128 existing methods either assume constant effects or treat follow-up intervals independently. CAST 129 addresses this gap by modeling treatment effects as continuous functions of time. By integrating 130 both parametric (e.g., quadratic fits) and non-parametric (e.g., smoothing splines) components, CAST 131 captures biologically grounded patterns in treatment efficacy over time. Unlike previous approaches, 132 CAST provides a unified, continuous-time framework that reveals the full temporal trajectory of 133 treatment response, enabling more precise and interpretable causal insights.

3 Methodology

135

139

140

141

142

148

156

157

158

159

160

161

166

Problem Formulation: We address the challenge of estimating time-varying treatment effects in survival analysis, specifically focusing on how the impact of medical interventions evolves over time. Let $\mathcal{D} = \{(X_i, W_i, T_i, \delta_i)\}_{i=1}^n$ represent our dataset where:

- $X_i \in \mathbb{R}^p$ is a vector of covariates for subject i
- $W_i \in \{0,1\}$ is the treatment indicator
- T_i is the observed survival time (either event time or censored time)
 - δ_i is the event indicator (1 if event observed, 0 if censored)

The causal survival forest method is a powerful tool for estimating average and subgroup-specific treatment effects for survival outcomes, but it estimates the effects only at specific discrete times after treatment. This fails to capture the continuous temporal evolution of treatment responses, particularly in contexts like radiation therapy and chemotherapy where biological effects can substantially rise and fall over time.

3.1 Causal Machine Learning Framework

Our approach uses a CML framework to isolate treatment effects beyond traditional correlational methods. While conventional machine learning identifies correlations between variables, CML allows us to understand the causal impact of interventions [48]. This distinction is fundamental to our study: our goal is not just to predict outcomes but to dissect how treatments shape survival outcomes across patient subgroups.

Given the observational non-randomized nature of our clinical data, we rely on the following assumptions:

- **Unconfoundedness**: Treatment assignment is independent of potential outcomes conditional on observed covariates (also called ignorability or no unmeasured confounding)
- Positivity (Overlap): Every subject has a non-zero probability of receiving each treatment
- Consistency: A subject's observed outcome under their received treatment equals their potential outcome for that treatment
- Non-interference: One subject's treatment does not affect another subject's outcome

To address selection bias in observational data, we performed propensity score modeling using elastic net logistic regression: $\hat{e}(X) = P(W=1|X)$ with hyperparameters optimized through 10-fold cross-validation. Patients with extreme propensity scores (outside [0.10,0.90]) are trimmed to ensure overlap between treatment groups. See Appendix C.1 for balance diagnostics.

3.2 CAST: Causal Analysis for Survival Trajectories

The theoretical foundation of CAST rests on modeling the effect trajectory as a function of time. Our target estimand is the conditional average treatment effect (CATE) at time t, given covariates X:

$$\tau(x,t) = \mathbb{E}[Y(1,t) - Y(0,t) \mid X = x] \tag{1}$$

where Y(w,t) represents the potential outcome at time t under treatment w, and x denotes an individual's covariates. We consider two types of time-varying estimands: the difference in restricted mean survival time (RMST) and the difference in survival probability (SP) between treatment groups. Unlike prior methods that estimate effects at fixed time points, CAST models treatment effects as smooth functions of time. We use a smoothing spline to estimate the continuous effect trajectory, and a quadratic fit to derive interpretable metrics.

175 3.2.1 Parametric Modeling Component

Our parametric modeling component employs a quadratic function: $\tau(t) = \beta_0 + \beta_1 t + \beta_2 t^2$ to capture the rise and fall of treatment effects. The parameters are estimated using weighted least squares:

$$\min_{\beta_0, \beta_1, \beta_2} \sum_{t} w(t) (\hat{\tau}(t) - (\beta_0 + \beta_1 t + \beta_2 t^2))^2$$
 (2)

where $w(t) = 1/\sigma^2(t)$ are weights based on the variance of the effect estimates at each timepoint. This approach yields clinically interpretable parameters, including the peak effect time ($t_{\rm peak} = -\beta_1/2\beta_2$), the maximum effect magnitude ($\tau(t_{\rm peak})$), and the treatment effect half-life, defined as the time it takes for the effect to diminish by 50% from its peak.

These parameters directly quantify key clinical aspects of the treatment response: when the maximum benefit occurs, how large that benefit is, and how quickly it diminishes—information critical for clinical decision-making that traditional methods cannot provide. See Appendix C.3 for fitted coefficients and summary statistics from the parametric model.

Algorithm 1 CAST-PARAMETRIC

183

184

185

186 187

188

203

204

209

```
189
         1: Input: Horizons \mathcal{H}, ATEs \{\hat{\tau}_h\}, SEs \{\hat{\sigma}_h\}
190
        2: Output: Temporal function \hat{\tau}(t), peak time t^*, half-
191
192
        3: W \leftarrow \{w_h = 1/\hat{\sigma}_h^2\}
                                                   193
        4: \hat{\tau}(t) \leftarrow \text{FITQUADRATICMODEL}(\mathcal{H}, \hat{\tau}, \mathcal{W})
194
        5: \beta_1, \beta_2 \leftarrow coefficients from fit
195
        6: if \beta_2 \neq 0 then
196
                  t^* \leftarrow -\beta_1/(2\beta_2)
                                                           197
                  \lambda \leftarrow \text{Solve}(\hat{\tau}(t^* + \lambda) = \hat{\tau}(t^*)/2)
198
        9: else
199
                  t^*, \lambda \leftarrow \text{NA}

    Degenerate case

       10:
200
       11: end if
201
       12: return \hat{\tau}(t), t^*, \lambda
```

CAST-Parametric: This algorithm models treatment effects over time using a weighted quadratic fit to the estimated ATEs across discrete horizons. Inverse-variance weighting emphasizes more confident estimates. The peak effect time is derived analytically, while the half-life is computed by numerically solving for the point where the curve falls to half its maximum. This approach yields interpretable summaries of treatment dynamics, aligning with radiobiological phenomena such as delayed benefit and diminishing returns.

3.2.2 Non-parametric Modeling Component

205 Our non-parametric component employs cross-validated smoothing splines:

$$\tau(t) = g(t), \quad \text{where} \quad g = \arg\min_{f} \left\{ \sum_{t} w(t) \left(\hat{\tau}(t) - f(t) \right)^{2} + \lambda \int f''(t)^{2} dt \right\}$$
 (3)

where λ is selected via cross-validation. This approach adapts to the data without imposing a predetermined functional form, revealing subtle inflection points in the effect trajectory that correspond to biological phase transitions in the treatment response.

We calculate the first and second derivatives of the fitted spline to identify key features of the treatment effect trajectory: local maxima and minima where g'(t) = 0, acceleration and deceleration phases based on sign changes in g''(t), and inflection points where g''(t) = 0.

The non-parametric model complements the parametric fit by capturing complex, less predictable patterns—especially during later follow-up periods, when biological processes like accelerated repopulation and late toxicities may cause deviations from the smooth quadratic trend.

```
215
       Algorithm 2 CAST-NONPARAMETRIC
216
         1: Input: Horizons \mathcal{H}, ATEs \{\hat{\tau}_h\}, SEs \{\hat{\sigma}_h\}
217
         2: Output: Spline \hat{\tau}(t), peak t^*, inflections \{t_i\}
218
         3: W \leftarrow \{w_h = 1/\hat{\sigma}_h^2\}
219
         4: \hat{\tau}(t) \leftarrow \text{FITSPLINE}(\mathcal{H}, \hat{\tau}, \mathcal{W})
220
         5: D_1(t), D_2(t) \leftarrow first and second derivatives of
221
             \hat{\tau}(t)
222
         6: t^* \leftarrow \text{Argmax}(\hat{\tau}(t))
                                                                    ▶ Peak effect
223
         7: \{t_i\} \leftarrow \text{ZEROCROSSINGS}(D_2(t))
                                                                      ▶ Inflection
             points
         8: if t^* not in [\min(\mathcal{H}), \max(\mathcal{H})] then
226
                   t^* \leftarrow NA
227
        10: end if
228
       11: return \hat{\tau}(t), t^*, \{t_i\}
229
```

CAST-Nonparametric: This algorithm fits a smoothing spline to the estimated treatment effects across time using inverse-variance weights. It computes the first and second derivatives of the spline to identify key dynamics: the peak effect time via the curve's global maximum and biological phase transitions via inflection points. This method captures delayed and non-monotonic effect trajectories often missed by parametric models, reflecting immune response, tissue adaptation, or timing heterogeneity.

CAST-Parametric and CAST-Nonparametric offer complementary modeling capabilities. The parametric method provides interpretable summary statistics such as peak effect timing and half-life, which are clinically intuitive and useful for hypothesis testing under smooth treatment dynamics. In contrast, the spline-based approach relaxes these assumptions and flexibly captures nonlinear, delayed, or multi-phase effects. Together, these models allow us to evaluate the robustness of temporal patterns and support a wide range of clinical interpretations.

Theoretical Guarantees: See Appendix A for theorem statements establishing consistency of CAST estimators and identifiability of time-varying treatment effects under standard causal assumptions.

4 Experiments

Dataset: We use the RADCURE observational dataset from The Cancer Imaging Archive (TCIA), a publicly accessible resource on multiple types of cancer. The dataset spans from 2005 to 2017 and contains clinical, demographic, and treatment metadata for 3,346 patients. We select 2,651 patients with pathologically confirmed HNSCC and a defined tumor site. While the dataset primarily focuses on oropharyngeal cancer, it also includes laryngeal, nasopharyngeal, and hypopharyngeal cases. The binary treatment variable used in CAST is chemotherapy (yes/no) with radiotherapy covariates.

Preprocessing: We filtered incomplete profiles and standardized continuous variables for comparability. We used radiotherapy data—dose/fraction, number of fractions, and total radiation treatment time duration in days—to calculate Biologically Effective Dose (BED) values, applying both dose-independent (DI) and dose-dependent (DD) models with established radiobiological parameters [10]. We then partitioned the dataset into training (75%) and testing (25%) sets, maintaining consistent event rates across both subsets for unbiased evaluation of treatment effects. See Appendix B for more on data preprocessing and computing resources.

Propensity Score Modeling: To address selection bias, we used elastic net logistic regression to estimate the likelihood of a person receiving treatment, based on their characteristics. Hyperparameters were optimized through 10-fold cross-validation: elastic net mixing parameter $\alpha \in [0.01, 0.99]$ and regularization parameter λ chosen from a grid of 100 values. Propensity score distributions were assessed through both Pearson and Spearman correlation matrices ($\alpha = 0.05$, Bonferroni-corrected) and visualized using kernel density estimation. Patients with scores outside [0.10, 0.90] were trimmed to ensure overlap, with sensitivity analyses conducted at thresholds $\{0.01, 0.03, 0.05, 0.07, 0.10\}$.

Implementation & Heterogeneity Analysis

We used causal survival forests with Nelson-Aalen estimation to handle right-censoring, estimating treatment effects over 12, 24, ..., 120 months post-treatment. Our forest was constructed with 5,000

trees to ensure robust estimation of heterogeneous effects across the patient population. Sensitivity analyses using different numbers of trees showed similar results.

For each time horizon, we independently trained a causal forest model using the training dataset, 265 with covariates properly standardized and propensity scores incorporated through doubly-robust 266 estimation. The forests were configured with tuning parameters selected through cross-validation, 267 including minimum node size, split regularization, and sampling fraction. Prediction uncertainty 268 was quantified through the infinitesimal jackknife method, providing variance estimates for each 269 individual treatment effect. This approach allowed us to capture both average treatment effects and 270 their heterogeneity across different patient subgroups at each follow-up time point, while properly 271 accounting for the right-censoring inherent in survival data [49, 50]. 272

Treatment effect heterogeneity was analyzed using approximate SHAP values calculated via Monte Carlo sampling with 1,000 iterations and a convergence threshold of $\epsilon=0.01$. The SHAP values were normalized such that \sum_i SHAP $_i$ corresponds to the difference between the individual and mean model predictions. This approach revealed which patient characteristics most strongly influenced treatment response, with HPV status and smoking history emerging as particularly important predictors. We visualized the relationship between feature values and their SHAP contributions to identify subgroups with differential treatment benefits.

280 Validation Methods

We implemented several validation strategies as refutation tests for the causal effect estimates in our experiments. For each test, we computed summary statistics (mean, standard deviation, max deviation) to assess model robustness, using a consistent 5,000-tree specification and random seeds for reproducibility.

Dummy Outcome Tests: We shuffled treatment assignments and outcome times across 20 repetitions for each time horizon (12-120 months), generating a null distribution to assess false positive rates. Boxplots confirmed the null hypothesis centered around zero, showing that the causal effect estimates for each horizon were centered around zero as expected. The variance of these estimates increased with increasing horizon time due to the decreasing number of patients remaining at risk at longer times. The results suggested good reliability of the estimates for times \leq 60 months.

Sensitivity to Additional Covariates: We introduced synthetic covariates with varying signal strengths of correlation with treatment assignment (0.1, 0.3, 0.5) that were unrelated to both treatment assignment and outcome, in order to assess the sensitivity of treatment effect estimates to irrelevant/spurious variables.

Negative Control Tests: Irrelevant binary treatments were randomly assigned to ensure the model did not detect spurious effects. Treatment effects for these were zero across all time horizons.

Robustness to Irrelevant Features: Five random noise variables were added, and changes in treatment effect estimates and feature importance were monitored to ensure no significant impact.

299 5 Results

310

We present empirical results of CAST on the RADCURE dataset, focusing on time-varying treatment 300 effects, patient-level heterogeneity, and robustness validation. As shown in Figure 2 below, CAST 301 reveals a non-monotonic trajectory in chemotherapy benefit: survival gains increase early post-302 treatment, plateau in the mid-term, and gradually decline thereafter. Both the parametric and 303 non-parametric models suggest a peak in benefit between 50 and 65 months, though the effect 304 305 trajectory remains relatively stable during this period. These trends indicate that chemotherapy is most impactful in the first few years post-treatment, with gradual tapering over time. This is 306 potentially due to recurrence, long-term toxicity, or competing risks. On the testing set, chemotherapy 307 increased survival probability by $15.2 \pm 6.0\%$ at 3 years and $15.0 \pm 6.7\%$ at 5 years, with RMST 308 gains of 3.6 ± 1.4 and 7.1 ± 2.6 months, respectively. 309

Individualized effect distributions: Treatment effect estimates showed notable variation across patients. While most individuals experienced positive effects, CAST identified a long right tail of high responders and a small subset with near-zero or negative effects. However, some of this variation may

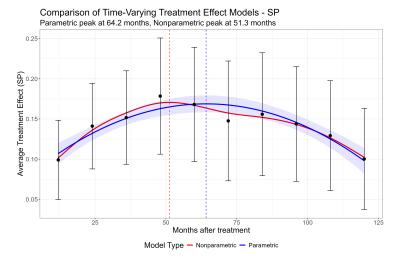


Figure 2: Comparison of time-varying treatment effect models using CAST. The red curve shows the parametric estimate with 95% CIs; the blue curve shows the non-parametric spline. Black dots denote average treatment effects \pm standard errors on the survival probability scale.

reflect unmeasured confounding or estimation noise rather than true heterogeneity. These patterns highlight the potential for personalized models in survival-based decision-making.

Subgroup variation: To identify drivers of treatment heterogeneity, we computed Pearson and Spearman correlation matrices between clinical covariates, SHAP values, and estimated treatment effects (Figure 3a,b). Pearson captures linear relationships, while Spearman reflects monotonic trends, offering complementary views of variable influence. Smoking pack-years showed the strongest and most consistent negative correlation across both matrices, reinforcing its role in reducing chemotherapy benefit. HPV positivity and younger age also exhibited modest positive correlations with SHAP values and effect estimates, aligning with known clinical patterns. Additional SHAP visualizations and discussion are provided in Appendix C.2.

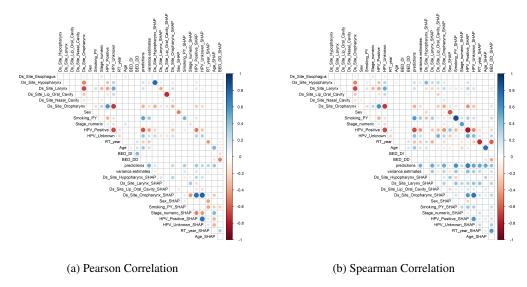


Figure 3: Correlation matrices between covariates, SHAP values, and treatment effects

Robustness & Effect Heterogeneity: CAST passed multiple validation checks, including dummy outcome tests, synthetic confounder experiments, and trimming sensitivity analyses. For the synthetic confounder tests, only the highest strengths of correlation with treatment assignment distorted the causal effect estimates dramatically, whereas smaller strengths had minimal impact. In the robustness checks with irrelevant features, as expected, the noise variables were largely ignored by the CSF

and did not substantially affect the causal effect estimates. Individualized treatment effect estimates exhibited a long right tail of high responders and a subset with near-zero or negative benefit. While some of this variation may reflect noise, the observed patterns indicate potential for personalized treatment modeling. Additional visualizations are provided in Appendix C.4.

The patterns uncovered by CAST have important clinical implications. The observed peak in survival

332 6 Discussion

333

357

358

359

360

361

362

363

364 365

366

367

368

benefit around four to five years post-treatment suggests that chemotherapy is most effective for short 334 to mid-term local control but may not sustain long-term survival. This decline could reflect tumor 335 repopulation, distant progression, or delayed toxicity [51]. However, since fewer patients remained at 336 risk (did not experience a death or censoring event) at longer follow-up times, reliability of the causal 337 effect estimates at long times is reduced compared with shorter times, as shown by our dummy tests. 338 These findings support the value of adaptive monitoring and adjunct strategies to extend therapeutic 339 340 benefit. The heterogeneity revealed by CAST emphasizes the need for treatment personalization. Correlation and SHAP-based analysis together identified HPV positivity and smoking as the most 341 influential factors. Favorable outcomes in HPV-positive patients align with known radiosensitivity 342 and impaired DNA repair, while smoking was linked to reduced benefit—consistent with mechanisms 343 like tumor hypoxia and immunosuppression. Age also showed a modest effect, with younger patients 344 generally benefiting more; an inflection point around 50-60 years may be clinically meaningful (Figure 3 and Figure 4 in Appendix C.2). In contrast, tumor site and TNM stage had limited influence on treatment effect heterogeneity, despite their prognostic relevance.

These findings align with efforts to tailor treatment by biologic subgroup. CAST offers a data-348 driven framework to support such stratifications and generate hypotheses for future trials. Rather 349 than replacing existing tools, it complements them by modeling continuous-time dynamics and 350 revealing patient-level variation. More broadly, this study shows how combining mechanistic 351 modeling with causal machine learning can enhance the analysis of observational data. By embedding 352 radiobiological insight into CAST using BED variants from different tumor repopulation models, we 353 354 uncover treatment effects that align with known biology while also revealing discrepancies, such as stronger chemotherapy benefits than reported in prior meta-analyses. This offers a powerful way to 355 complement clinical trials and generate new hypotheses. 356

Limitations and Broader Impacts

Data limitations: The dataset exhibits substantial right-censoring: while 88.9% of patients remain in follow-up at one year, only 22.2% do so by year six. This may bias long-term survival estimates and obscure treatment effects that manifest later in time. **External validity:** The data come from a single institution (University Health Network, Toronto) and are predominantly male (80%), limiting generalizability to broader populations, especially women. **Causal assumptions:** Like all causal inference methods, CAST relies on the assumption of no unmeasured confounding. Important factors such as diet, lifestyle, or genetic risk—potentially related to both treatment and outcome—are not included. **Methodological scope:** From a machine learning perspective, CAST supports only binary treatment variables. Extending it to model continuous dosing, multi-arm comparisons, or longitudinal interventions remains an important direction for future work.

7 Conclusion

In this paper, we present CAST, which is to our knowledge the first framework for modeling how 369 treatment effects change over time using parametric and non-parametric techniques in the context 370 of causal survival analysis with multiple features. CAST extends the utility of causal survival 371 forests from estimating effects at discrete horizon times to continuous-time modeling. Applied to 372 chemotherapy for HNSCC, CAST estimates individualized treatment trajectories and highlights when 373 treatment effects peak and decline. Our results show that CAST is robust and interpretable, offering a 374 general framework for modeling time-varying treatment effects across medical contexts. By isolating 375 the causal influence of patient characteristics and capturing the dynamics of treatment response, CAST supports more personalized and adaptive care. This helps clinicians identify critical windows, tailor interventions to individual risk profiles, and refine strategies as new evidence emerges.

References

- [1] M. L. Welch, S. Kim, A. Hope, S. H. Huang, Z. Lu, J. Marsilla, M. Kazmierski, K. Rey-McIntyre, T. Patel, B. O'Sullivan, J. Waldron, J. Kwan, J. Su, L. Soltan Ghoraie, H. B. Chan, K. Yip, M. Giuliani, Neck Site Group Princess Margaret Head, S. Bratman, and T. Tadic.
 Computed tomography images from large head and neck cohort (radcure) (version 4). *The Cancer Imaging Archive*, 2023. doi: 10.7937/J47W-NM11.
- M. Hung, J. Bounsanga, and M. W. Voss. Interpretation of correlations in clinical research.
 Postgraduate Medicine, 129(8):902–906, November 2017. doi: 10.1080/00325481.2017.
 1383820.
- [3] H. A. Miot. Correlation analysis in clinical and experimental studies. *Jornal Vascular Brasileiro*,
 17(4):275–279, December 2018. doi: 10.1590/1677-5449.174118.
- [4] K. Shiba and K. Inoue. Harnessing causal forests for epidemiologic research: key considerations. American Journal of Epidemiology, 193(6):813–818, June 2024. doi: 10.1093/aje/kwae003.
- [5] A. Venkatasubramaniam, B. A. Mateen, B. M. Shields, A. T. Hattersley, A. G. Jones, S. J. Vollmer, and J. M. Dennis. Comparison of causal forest and regression-based approaches to evaluate treatment effect heterogeneity: an application for type 2 diabetes precision medicine. *BMC Medical Informatics and Decision Making*, 23(1):110, June 2023. doi: 10.1186/s12911-023-02207-2.
- [6] G. Solana-Lavalle, M. D. Cusimano, T. Steeves, R. Rosas-Romero, and P. N. Tyrrell. Causal
 forest machine learning analysis of parkinson's disease in resting-state functional magnetic resonance imaging. *Tomography*, 10(6):894–911, June 2024. doi: 10.3390/tomography10060068.
- Yifan Cui, Michael R. Kosorok, Erik Sverdrup, Stefan Wager, and Ruoqing Zhu. Estimating
 heterogeneous treatment effects with right-censored data via causal survival forests. *Journal of the Royal Statistical Society: Series B*, 85(2):380–403, 2023. doi: 10.1093/jrsssb/qkac020.
- [8] C. Voinot, C. Berenfeld, I. Mayer, B. Sebastien, and J. Josse. Causal survival analysis, estimation of the average treatment effect (ate): Practical recommendations. *arXiv preprint*, January 2025. doi: 10.48550/arXiv.2501.05836.
- [9] X. Meng and I. Bojinov. Time-varying causal survival learning. *arXiv preprint*, March 2025. doi: 10.48550/arXiv.2503.00730.
- I. Shuryak, E. Wang, and D. J. Brenner. Understanding the impact of radiotherapy fractionation on overall survival in a large head and neck squamous cell carcinoma dataset: A comprehensive approach combining mechanistic and machine learning models. *Frontiers in Oncology*, 14: 1422211, August 2024. doi: 10.3389/fonc.2024.1422211.
- [11] L. Hu, J. Ji, H. Joshi, E. R. Scott, and F. Li. Estimating the causal effects of multiple intermittent treatments with application to covid-19. *Statistics in Medicine*, 42(3):345–362, January 2023. doi: 10.1002/sim.9425.
- [12] S. Miller. Causal forest estimation of heterogeneous and time-varying environmental policy
 effects. *Journal of Environmental Economics and Management*, 103:102337, 2020. doi:
 10.1016/j.jeem.2020.102337.
- 418 [13] Z. Huang, N. A. Mayr, M. Gao, S. S. Lo, J. Z. Wang, G. Jia, and W. T. C. Yuh. The onset time of tumor repopulation for cervical cancer: first evidence from clinical data. *International Journal of Radiation Oncology*Biology*Physics*, 84(2):478–484, October 2012. doi: 10.1016/j.ijrobp. 2011.12.037.
- 422 [14] C. Petersen and F. Würschmidt. Late toxicity of radiotherapy: a problem or a challenge for the radiation oncologist? *Breast Care (Basel)*, 6(5):369–374, October 2011. doi: 10.1159/ 000334220.
- [15] I. Shuryak, E. J. Hall, and D. J. Brenner. Dose dependence of accelerated repopulation in head
 and neck cancer: Supporting evidence and clinical implications. *Radiotherapy and Oncology*,
 127(1):20–26, April 2018. doi: 10.1016/j.radonc.2018.02.015.

- 428 [16] D. E. Johnson, B. Burtness, C. R. Leemans, V. W. Y. Lui, J. E. Bauman, and J. R. Grandis. Head 429 and neck squamous cell carcinoma. *Nature Reviews Disease Primers*, 6(92):1–22, November 430 2020. doi: 10.1038/s41572-020-00224-3.
- 431 [17] A. Barsouk, J. S. Aluru, P. Rawla, K. Saginala, and A. Barsouk. Epidemiology, risk factors, and 432 prevention of head and neck squamous cell carcinoma. *Medical Sciences*, 11(2):42, June 2023. doi: 10.3390/medsci11020042.
- [18] M. E. Sabatini and S. Chiocca. Human papillomavirus as a driver of head and neck cancers. *British Journal of Cancer*, 122(3):306–314, February 2020. doi: 10.1038/s41416-019-0602-7.
- [19] D. C. Beachler and G. D'Souza. Nuances in the changing epidemiology of head and neck cancer. *Oncology (Williston Park)*, 24(10):924–926, September 2010. PMID: 21138173.
- 438 [20] G. M. P. van Kempen, R. J. Baatenburg de Jong, and R. J. H. Borra. Hpv and head and neck 439 cancers: Towards early diagnosis and prevention. *Oral Oncology*, 128:105214, September 2022. 440 doi: 10.1016/j.oraloncology.2022.105214.
- [21] P.-H. Mackeprang, K. Bryjova, A. E. Heusel, D. Henzen, M. Scricciolo, and O. Elicin. Consideration of image guidance in patterns of failure analyses of intensity-modulated radiotherapy for head and neck cancer: a systematic review. *Radiation Oncology*, 19(1):30, March 2024. doi: 10.1186/s13014-024-02421-w.
- 445 [22] C. Kut, H. Quon, and X. S. Chen. Emerging radiotherapy technologies for head and neck 446 squamous cell carcinoma: challenges and opportunities in the era of immunotherapy. *Cancers* 447 (*Basel*), 16(24):4150, December 2024. doi: 10.3390/cancers16244150.
- 448 [23] S. R. Rathod, S. Gupta, S. Ghosh-Laskar, V. Murthy, A. Budrukkar, J. Agarwal, and K. Kannan.

 Quality-of-life (qol) outcomes in patients with head and neck squamous cell carcinoma treated

 with intensity-modulated radiation therapy (imrt) compared to three-dimensional conformal
 radiotherapy (3d-crt): Evidence from a prospective randomized study. *Oral Oncology*, 49(6):
 634–640, June 2013. doi: 10.1016/j.oraloncology.2013.02.013.
- 453 [24] A. Viganò, F. De Felice, N. A. Iacovelli, D. Alterio, R. Ingargiola, A. Casbarra, N. Facchinetti,
 454 O. Oneta, A. Bacigalupo, E. Tornari, S. Ursino, F. Paiar, O. Caspiani, A. Di Rito, D. Musio,
 455 P. Bossi, P. Steca, B. A. Jereczek-Fossa, L. Caso, N. Palena, A. Greco, and E. Orlandi. Quality
 456 of life changes over time and predictors in a large head and neck patients' cohort: secondary
 457 analysis from an italian multi-center longitudinal, prospective, observational study—a study
 458 of the italian association of radiotherapy and clinical oncology (airo) head and neck working
 459 group. Supportive Care in Cancer, 31(4):220, March 2023. doi: 10.1007/s00520-023-07661-2.
- [25] R. Yang, A. C. Freeman-Cook, H. C. Kurnik, and D. C. Kirouac. Dissecting variability in responses to cancer chemotherapy through systems pharmacology. *Clinical Pharmacology & Therapeutics*, 88(1):34–38, July 2010. doi: 10.1038/clpt.2010.96.
- 463 [26] Janet Tu. How long does it take chemotherapy to shrink tumors? *Cancerwise, MD Ander-*464 son Cancer Center, 2024. https://www.mdanderson.org/cancerwise/how-long-does-it-take465 chemotherapy-to-shrink-tumors.h00-159696756.html.
- 466 [27] UCSF Health. Coping with chemotherapy. Patient Education, UCSF Health, 2025.
 https://www.ucsfhealth.org/education/coping-with-chemotherapy.
- 468 [28] Y. Sun, Z. Wang, S. Qiu, and R. Wang. Therapeutic strategies of different hpv status in head and neck squamous cell carcinoma. *International Journal of Biological Sciences*, 17(4):1104–1118, March 2021. doi: 10.7150/ijbs.58077.
- 471 [29] K. K. Ang, J. Harris, R. Wheeler, R. Weber, D. I. Rosenthal, P. M. Nguyen-Tan, et al. Human papillomavirus and survival of patients with oropharyngeal cancer. *New England Journal of Medicine*, 363(1):24–35, July 2010. doi: 10.1056/NEJMoa0912217.
- 474 [30] Y. Wu, Y. Wang, J. Liu, Y. Wang, Y. Li, Y. Hu, H. Qiu, Z. Liang, Y. Wei, and H. Zhong. Hpv-475 positive status is a favorable prognostic factor in non-nasopharyngeal head and neck squamous 476 cell carcinoma patients: a population-based study. *Frontiers in Oncology*, 11:765, October 2021. 477 doi: 10.3389/fonc.2021.765.

- 478 [31] N. Jiang, Y. Wu, and C. Li. Limitations of using cox proportional hazards model in cardiovascular research. *Cardiovascular Diabetology*, 23(219), June 2024. doi: 10.1186/ 480 s12933-024-02302-2.
- [32] L. Xu, S. Jiang, T. Li, and Y. Xu. Limitations of the cox proportional hazards model and alternative approaches in metachronous recurrence research. *Gastric Cancer*, 27(6):1348–1349,
 November 2024. doi: 10.1007/s10120-024-01554-x.
- 484 [33] S. Saha. Survival analysis with bayesian additive regression trees and its application.
 485 https://huskiecommons.lib.niu.edu/allgraduate-thesesdissertations/5158/, 2017. Northern Illi486 nois University Thesis.
- F. Zhai, S. Mu, Y. Song, M. Zhang, C. Zhang, and Z. Lv. A random survival forest model for predicting residual and recurrent high-grade cervical intraepithelial neoplasia in premenopausal women. *International Journal of Women's Health*, 16:1775–1787, October 2024. doi: 10.2147/ IJWH.S485515.
- [35] K. Matsuo, S. Purushotham, B. Jiang, R. S. Mandelbaum, T. Takiuchi, Y. Liu, and L. D.
 Roman. Survival outcome prediction in cervical cancer: Cox models vs deep-learning model.
 American Journal of Obstetrics and Gynecology, 220(4):381.e1–381.e14, April 2019. doi: 10.1016/j.ajog.2018.12.030.
- Y. Zhang, N. Kreif, V. S. Gc, and A. Manca. Machine learning methods to estimate individual ized treatment effects for use in health technology assessment. *Medical Decision Making*, 44
 (7):756–769, October 2024. doi: 10.1177/0272989X241263356.
- 498 [37] V. Chernozhukov, C. Hansen, N. Kallus, M. Spindler, and V. Syrgkanis. Applied causal inference 499 powered by ml and ai. *arXiv preprint*, arXiv:2403.02467, March 2024. doi: 10.48550/arXiv. 500 2403.02467.
- 501 [38] S. R. Künzel, J. S. Sekhon, P. J. Bickel, and B. Yu. Metalearners for estimating heterogeneous treatment effects using machine learning. *Proceedings of the National Academy of Sciences of the United States of America*, 116(10):4156–4165, 2019. doi: 10.1073/pnas.1804597116.
- [39] L. Wen, J. G. Young, J. M. Robins, and M. A. Hernán. Parametric g-formula implementations for causal survival analyses. *Biometrics*, 77(2):740–753, June 2021. doi: 10.1111/biom.13321.
- 506 [40] D. Lee, S. Yang, and X. Wang. Doubly robust estimators for generalizing treatment effects on survival outcomes from randomized controlled trials to a target population. *Journal of Causal Inference*, 10(1):415–440, December 2022. doi: 10.1515/jci-2022-0004.
- [41] Erik Sverdrup and Stefan Wager. Treatment heterogeneity with right-censored outcomes using grf. *ASA Lifetime Data Science Newsletter*, 2024. arXiv:2312.02482.
- 511 [42] J. Sun and F. W. Crawford. The role of discretization scales in causal inference with continuous-512 time treatment. *arXiv preprint*, June 2023. doi: 10.48550/arXiv.2306.08840.
- 513 [43] A. Curth, C. Lee, and M. W. van der Laan. Survite: Learning heterogeneous treatment effects from time-to-event data. *arXiv preprint*, October 2021. doi: 10.48550/arXiv.2110.14001.
- [44] W. J. Allard and L. W. M. M. Terstappen. Ccr 20th anniversary commentary: Paving the way
 for circulating tumor cells. *Clinical Cancer Research*, 21(13):2883–2885, July 2015. doi: 10.1158/1078-0432.CCR-14-2559.
- J. A. Langendijk, P. Doornaert, I. M. Verdonck de Leeuw, C. R. Leemans, N. K. Aaronson,
 and B. J. Slotman. Impact of late treatment-related toxicity on quality of life among patients
 with head and neck cancer treated with radiotherapy. *Journal of Clinical Oncology*, 26(22):
 3770–3776, August 2008. doi: 10.1200/JCO.2007.14.6647.
- [46] A. F. Brouwer, R. Meza, M. C. Eisenberg, C. H. Chapman, M. C. He, S. B. Chinn, A. M. Mondul, M. Banerjee, M. Ryser, and J. M. Taylor. Time-varying survival effects for squamous cell carcinomas at oropharyngeal and nonoropharyngeal head and neck sites in the united states, 1973–2015. *Cancer*, 126(23):5137–5146, December 2020. doi: 10.1002/cncr.33110.

- 528 [47] E. K. Roberts, L. Luo, A. M. Mondul, M. Banerjee, C. M. Veenstra, A. B. Mariotto, M. J. Schipper, K. He, J. M. G. Taylor, and A. F. Brouwer. Time-varying associations of patient and tumor characteristics with cancer survival: an analysis of seer data across 14 cancer sites, 2004–2017. *Cancer Causes & Control*, 35(10):1393–1405, May 2024. doi: 10.1007/s10552-024-01888-y.
- [48] V. Chernozhukov, D. Chetverikov, M. Demirer, E. Duflo, C. Hansen, W. Newey, and J. Robins.
 Double/debiased machine learning for treatment and structural parameters. *Econometrics Journal*, 21(1):C1–C68, January 2018. doi: 10.1093/ectj/uty017.
- [49] S. Wager and S. Athey. Estimation and inference of heterogeneous treatment effects using random forests. *Journal of the American Statistical Association*, 113(523):1228–1242, July 2018. doi: 10.1080/01621459.2017.1319839.
- [50] S. Athey, J. Tibshirani, and S. Wager. Generalized random forests. *Annals of Statistics*, 47(2):
 1148–1178, April 2019. doi: 10.1214/18-AOS1709.
- [51] I. Shuryak, E. J. Hall, and D. J. Brenner. Optimized hypofractionation can markedly improve tumor control and decrease late effects for head and neck cancer. *International Journal of Radiation Oncology, Biology, Physics*, 104(2):272–278, June 2019. doi: 10.1016/j.ijrobp.2019. 02.025.

43 Ethics Statement

Existing at the intersection of machine learning (ML), healthcare, and causal inference, our work 544 inevitably raises ethical considerations. By bringing ML methods to oncology research, we strive 545 to advance personalized medicine and treatment strategies. However, our estimates are based on 546 observational data and may be biased by unmeasured confounding. While the dataset includes a 547 comprehensive description of variables including age, sex, smoking history, and HPV status, it omits 548 race, ethnicity, and socioeconomic status data. These factors are key to understanding structural 549 barriers to healthcare that could possibly affect outcomes. This risks amplifying existing biases in 550 the data. ML models in oncology must be used cautiously and should not replace clinical judgment, 551 but rather act as a supplement. Our findings require further clinical validation before integration into 552 decision-making workflows. 553

554 A Theoretical Justification of CAST

- We provide formal justification for the consistency and identifiability of the time-varying treatment effect estimator $\hat{\tau}(t)$ used in the CAST framework.
- 557 A.1 Problem Setting
- Let $\mathcal{D} = \{(X_i, W_i, T_i, \delta_i)\}_{i=1}^n$ be a dataset of n i.i.d. samples where: $X_i \in \mathbb{R}^p$ is a vector of
- observed covariates, $W_i \in \{0,1\}$ is a binary treatment indicator, T_i is the observed event or
- censoring time, $\delta_i \in \{0, 1\}$ is the event indicator (1 if the event occurred, 0 if censored).
- Let Y(w,t) denote the potential outcome (e.g., survival status at time t) under treatment $w \in \{0,1\}$.
- We define the time-varying Conditional Average Treatment Effect (CATE) as:

$$\tau(x,t) := \mathbb{E}[Y(1,t) - Y(0,t) \mid X = x].$$

- CAST estimates $\tau(x,t)$ using a doubly-robust causal survival forest followed by a spline or quadratic
- 564 fit across time.

565 A.2 Assumptions

- We adopt standard causal inference and survival analysis assumptions:
- (A1) **Unconfoundedness:** $(Y(0,t),Y(1,t)) \perp W \mid X$ for all t.
- (A2) **Positivity:** $0 < P(W = 1 \mid X) < 1$ almost surely.
- (A3) Consistency: Y = Y(W, t) if W is received.
- (A4) Non-informative Censoring: $C \perp (Y(0,t),Y(1,t)) \mid X,W$ for censoring time C.
- Consistency of Forest Estimators: The causal survival forests used yield consistent estimates of conditional survival functions $S_w(t \mid X)$.

573 **A.3 Theorem: Pointwise Consistency of** $\hat{\tau}(t)$

[Pointwise Consistency] Under assumptions (A1)–(A5), for each fixed t:

$$\hat{\tau}(t) := \mathbb{E}_X[\hat{S}_1(t \mid X) - \hat{S}_0(t \mid X)] \xrightarrow{p} \tau(t) := \mathbb{E}_X[S_1(t \mid X) - S_0(t \mid X)]$$

- as $n \to \infty$, where $\hat{S}_w(t \mid X)$ is the estimated conditional survival function under treatment w from
- 576 causal survival forests.
- This follows from: 1. Consistency of $\hat{S}_w(t \mid X)$ (A5), 2. The continuous mapping theorem, since
- subtraction and expectation are continuous, 3. Trimming enforces overlap (A2), ensuring bounded
- inverse propensity weights.

580 A.4 Identifiability of au(t) from Observational Data

[Identifiability] Under assumptions (A1)–(A4), the marginal time-varying treatment effect

$$\tau(t) := \mathbb{E}_X[\mathbb{E}[Y \mid W = 1, X, T \ge t] - \mathbb{E}[Y \mid W = 0, X, T \ge t]]$$

- is identified from observational data using inverse probability weighting or doubly-robust estimation.
- Under unconfoundedness and non-informative censoring, we can consistently estimate the conditional
- means $\mathbb{E}[Y(w,t) \mid X]$ from observed data. The difference in conditional expectations across
- treatment groups yields an identifiable estimator of $\tau(t)$.

A.5 Estimability of Peak Effect Time in CAST-Parametric

Let the parametric effect trajectory be: 587

$$\tau(t) = \beta_0 + \beta_1 t + \beta_2 t^2,$$

and suppose \hat{eta}_1,\hat{eta}_2 are estimated using weighted least squares. 588

[Consistency of Estimated Peak Time] If $\hat{\beta}_1 \xrightarrow{p} \beta_1$, $\hat{\beta}_2 \xrightarrow{p} \beta_2$ with $\beta_2 < 0$, then the estimated peak 589

590

$$\hat{t}^* = -\frac{\hat{\beta}_1}{2\hat{\beta}_2}$$

is a consistent estimator of the true peak $t^* = -\frac{\beta_1}{2\beta_2}.$ 591

This follows from Slutsky's theorem. Since both $\hat{\beta}_1$ and $\hat{\beta}_2$ converge in probability to non-zero limits, and the mapping f(a,b)=-a/(2b) is continuous for $b\neq 0$, it follows that: 592

$$\hat{t}^* = -\frac{\hat{\beta}_1}{2\hat{\beta}_2} \xrightarrow{p} -\frac{\beta_1}{2\beta_2} = t^*.$$

594 B Expanded Dataset Subsection

Overview

Our analysis uses the RADCURE dataset from The Cancer Imaging Archive (TCIA), the largest to our knowledge publicly accessible head and neck cancer imaging dataset. The data spans from 2005 to 2017 and includes computed tomography (CT) images for 3,346 patients, from which we selected a subset of 2,651 patients after filtering for only HNSCC cases. These images are linked to clinical, demographic, and treatment metadata. Following standardized clinical imaging protocols, the RADCURE project includes CT images, pictured alongside manually-reviewed contours differentiating between the planning tumor volume (PTV) and the organs at risk (OARs). All patients in this dataset received radiotherapy, and some received chemotherapy.

The clinical data accounts for patient demographics, including age, gender, and HPV status. It also details tumor staging using the 7th edition TNM system to describe the cancer, in addition to treatment information. While the dataset primarily focuses on oropharyngeal cancer, it also covers laryngeal, nasopharyngeal, and hypopharyngeal cancers.

Data Preprocessing

In the preprocessing stage, we filtered out incomplete patient profiles to ensure the dataset included relevant variables and appropriately represented potential confounders. We standardized all continuous variables to have zero mean and unit variance to ensure comparability and optimize model performance. The dataset comprehensively describes treatment details—dose/fraction, number of fractions, and total days of radiotherapy—which we used to calculate Biologically Effective Dose (BED) values. We implemented both dose-independent (DI) and dose-dependent (DD) BED models to capture the biological effects of radiation therapy, using established radiobiological parameters ($\alpha=0.2~{\rm Gy}^{-1}$, $\alpha/\beta=10~{\rm Gy}$, accelerated repopulation rates and onset times). This allowed us to quantify the effective radiation dose accounting for different fractionation schedules. We employed a stratified data partitioning strategy, creating training (75%) and testing (25%) sets while maintaining consistent event rates across partitions. Both subsets contained similar proportions of survival events, allowing for unbiased evaluation of treatment effects.

Table 1 summarizes the estimated average treatment effects across time for both restricted mean survival time (RMST) and survival probability (SP) metrics. These values were computed using causal survival forests on held-out test data. We observe that the estimated effects generally increase with longer follow-up, particularly under the RMST metric, reflecting the accumulating benefit of treatment over time. Standard errors are included to reflect model uncertainty at each horizon.

Table 1: Summary statistics of the simulated dataset

Statistic	Control Group	Treated Group	
Event Rate (%)	79.8		
Treatment Rate (%)	44.9		
Median Survival (months)	17.0	24.0	
12-month Survival (%)	70.3	90.1	
24-month Survival (%)	20.2	45.5	
36-month Survival (%)	1.9	7.3	
48-month Survival (%)	0.0	0.1	
Age (mean)	60.42	59.23	
TNM Stage (mean)	1.73	3.46	
HPV Positivity Rate	0.68	0.51	
Sex (Male = 1)	0.48	0.49	

Computing Resources: All experiments were conducted with a 13th Gen Intel Core i7-1355U CPU, 16GB RAM, and integrated Intel Iris Xe Graphics. No discrete GPU or cloud resources were used, though such resources would significantly reduce runtime for large-scale extensions of this work.

60 C Additional Results

In this section, we present additional results that extend and validate the findings reported in the main paper. These include visualizations of treatment effect heterogeneity across time, a summary of average treatment effects, and robustness checks to support the reliability of our causal estimates.

634 C.1 Summary Table of Average Treatment Effects

Table 2 summarizes the estimated average treatment effects across time horizons using both RMST and survival probability metrics. These values were computed using causal survival forests on the held-out test set. The treatment effects tend to increase over time under both metrics, with RMST showing a steeper upward trend reflecting cumulative benefit. Standard errors are included for each estimate. The early rise in both SP and RMST suggests initial treatment efficacy, while the plateauing in later months reflects diminishing returns, possibly due to recurrence or late toxicity. The RMST gains—peaking at over 16 months—highlight how cumulative survival benefit continues to accrue even as survival probability differences taper off. These patterns support the biological intuition that treatment effects rise quickly post-intervention and then gradually attenuate.

Table 2: Estimated average treatment effects (ATE) across time using RMST and survival probability (SP). SE represent standard errors

Months	ATE (SP)	SE (SP)	ATE (RMST)	SE (RMST)
12	0.099	0.049	0.44	0.26
24	0.141	0.053	1.88	0.80
36	0.152	0.058	3.58	1.46
48	0.178	0.072	5.80	2.31
60	0.168	0.071	7.39	2.73
72	0.148	0.075	8.38	3.52
84	0.156	0.077	11.08	4.76
96	0.143	0.071	13.89	5.90
108	0.129	0.068	14.76	6.16
120	0.100	0.063	16.11	6.92

These summary statistics also inform the CAST modeling strategies described in Section 3.3. The steady increase followed by tapering motivates the use of both quadratic and spline-based approaches to flexibly capture the full temporal arc of treatment efficacy.

C.2 SHAP-Based Interpretability Analysis

While SHAP provides valuable insights into feature influence, the estimates generated here using the fastshap R package are approximate and may be noisy, particularly in the context of survival analysis. We calculated approximate SHAP values because an exact SHAP explainer does not yet exist for the causal survival forest model. Figures 4(a–c) show SHAP plots for the three most influential variables—age, HPV status, and smoking pack-years—highlighting clear heterogeneity in treatment benefit across subgroups. Additional SHAP plots for other covariates—such as tumor site, treatment timing, dose metrics, and TNM stage—are also provided below. These variables had smaller contributions to the model, but are shown for completeness and transparency.

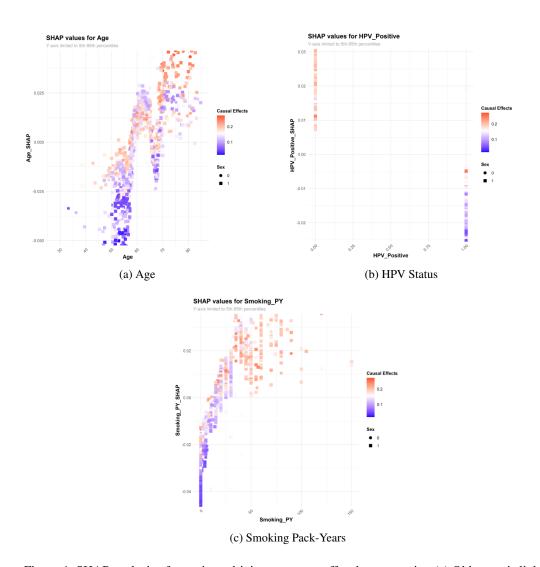


Figure 4: SHAP analysis of covariates driving treatment effect heterogeneity. (a) Older age is linked to greater chemotherapy benefit. (b) HPV-negative patients consistently show higher contributions. (c) Smoking history is positively associated with the chemotherapy benefit treatment.

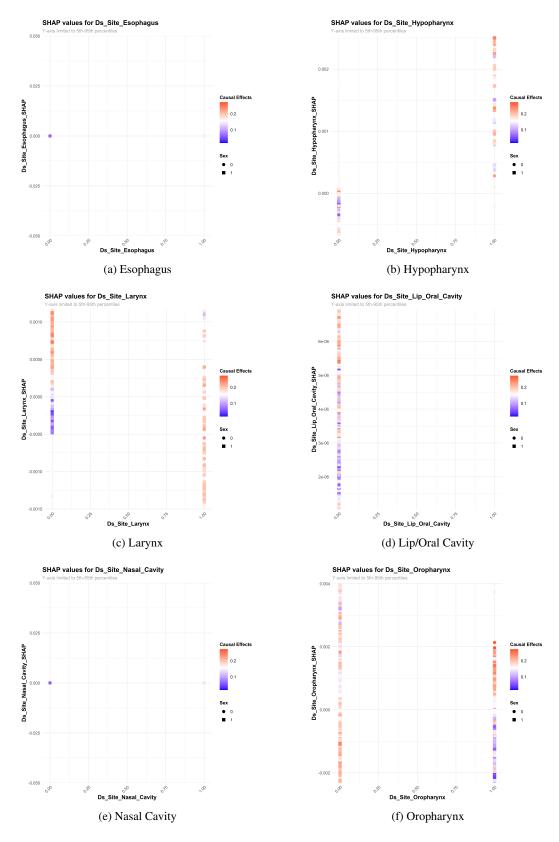


Figure 5: SHAP values for primary tumor site. These anatomical subgroups exhibited low or diffuse contributions to treatment effect heterogeneity, though subtle site-specific trends may still hold clinical value.

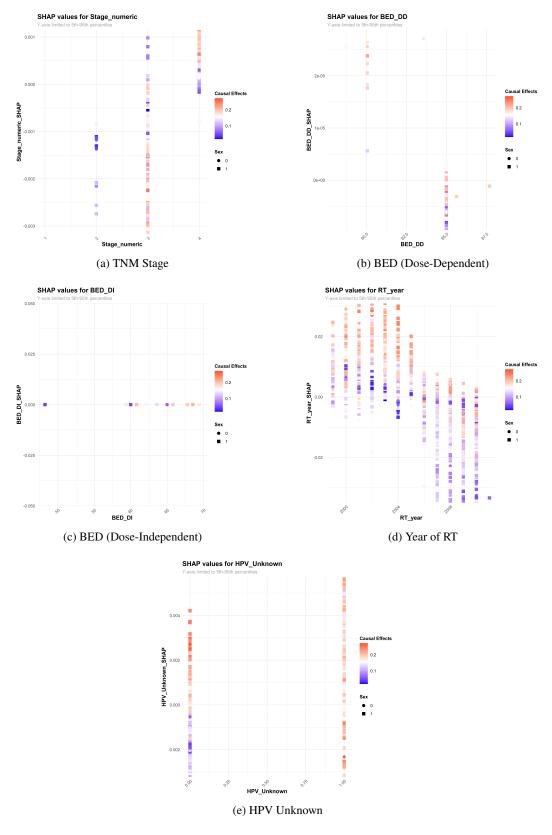


Figure 6: SHAP values for additional covariates, including TNM stage, treatment year, and dose-related metrics. These features showed limited or context-specific contributions to treatment effect heterogeneity.

C.3 Distributions of Individualized Treatment Effects

656

657

659 660 We visualize the estimated treatment effect distributions for both RMST and survival probability (SP) at intervals ranging from 12 to 120 months. Figures 4 and 5 show individual-level causal effects derived from the causal survival forest at each time horizon.

RMST Treatment Effect Distributions

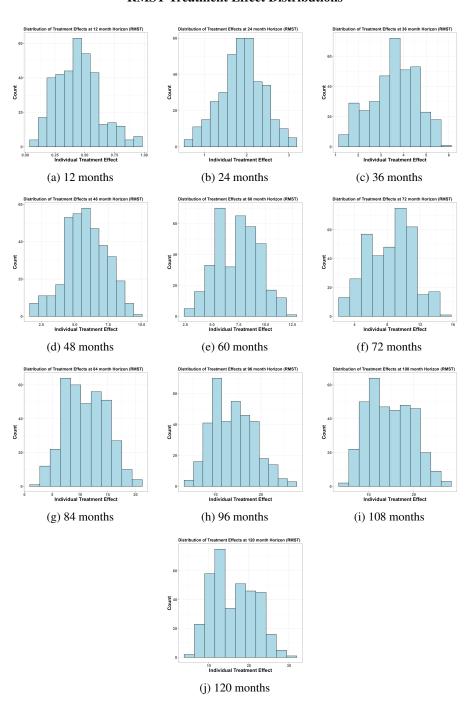


Figure 7: Distributions of estimated RMST-based treatment effects over time. Each panel shows the individual-level causal effect at a specific horizon as learned by the causal survival forest.

Survival Probability Treatment Effect Distributions

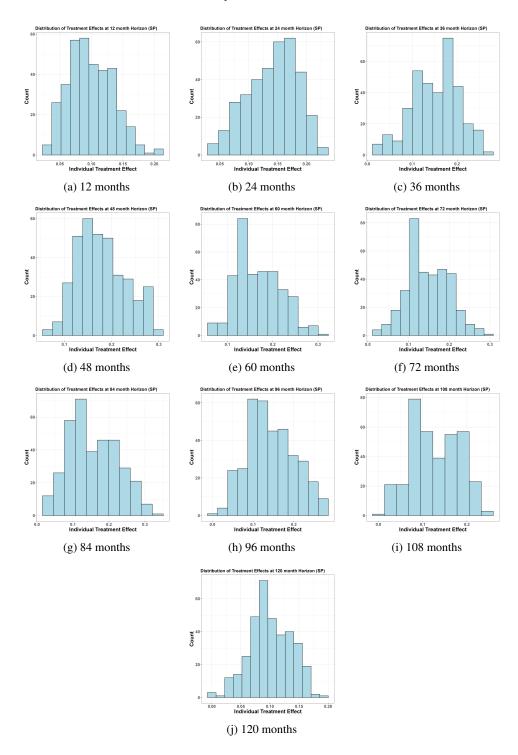


Figure 8: Distributions of estimated survival-probability-based treatment effects over time. Each panel shows the individual-level causal effect at a specific horizon as estimated by the causal survival forest.

C.4 Dummy Outcome Refutation Tests

To assess whether CAST detects spurious treatment effects in the absence of a true signal, we performed dummy outcome tests. For each time horizon, we randomly shuffled treatment assignments and outcome times across 20 repetitions to simulate a null setting. If the model was overfitting or improperly attributing causal structure, it would produce non-zero treatment effect estimates even under randomization. As shown in the boxplots below, the estimated treatment effects for both RMST and survival probability are centered around zero, especially at relatively short times (≤ 60 months), when the number of patients still at risk was large. This confirms that CAST does not learn artifacts from the data and is robust to randomization of causal structure.

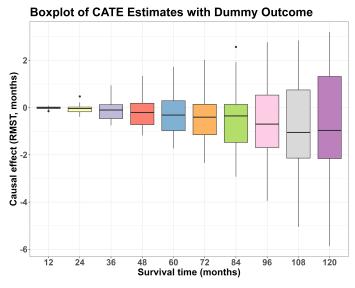


Figure 9: Dummy outcome test for RMST-based ATE estimates. Across 20 shuffles per horizon, treatment effects are centered near zero, consistent with the null.

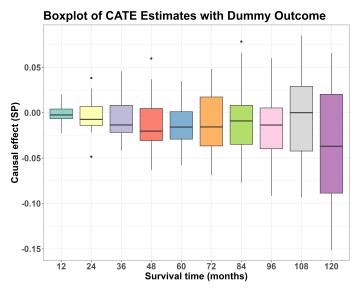


Figure 10: Dummy outcome test for survival probability-based ATE estimates. The model correctly reports no significant treatment effects under randomized labels.

To assess the robustness of CAST estimates to unobserved confounding, we performed a sensitivity analysis by injecting synthetic covariates with varying correlation to treatment assignment (r=0.1, 0.3, 0.5). We then measured the resulting shifts in ATE estimates across time horizons for both RMST and survival probability outcomes.

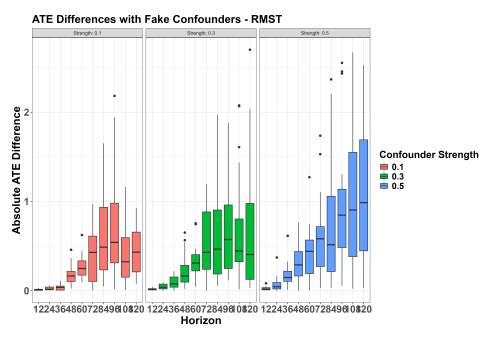


Figure 11: Absolute ATE differences in RMST under varying confounder strengths (r = 0.1, 0.3, 0.5). Estimates are stable under weak strengths but diverge at longer horizons and higher strengths.

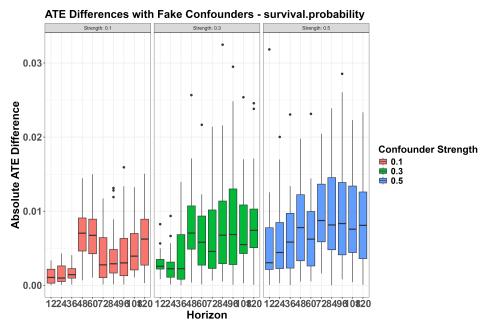


Figure 12: Absolute ATE differences in SP under varying confounder strengths ($r=0.1,\,0.3,\,0.5$). CAST estimates remain stable under weak strengths, with modest shifts at stronger levels and longer horizons.

74 NeurIPS Paper Checklist

682

683

684 685

686

687

688

689

690

695

696

697

698

699

700

701

702

703

704

705

706

707

708 709

710

711

712

713

714

715

716

717

718

719

720

- The checklist is designed to encourage best practices for responsible machine learning research, addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove the checklist: **The papers not including the checklist will be desk rejected.** The checklist should follow the references and follow the (optional) supplemental material. The checklist does NOT count towards the page limit.
- Please read the checklist guidelines carefully for information on how to answer these questions. For each question in the checklist:
 - You should answer [Yes], [No], or [NA].
 - [NA] means either that the question is Not Applicable for that particular paper or the relevant information is Not Available.
 - Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it (after eventual revisions) with the final version of your paper, and its final version will be published with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation. While "[Yes]" is generally preferable to "[No]", it is perfectly acceptable to answer "[No]" provided a proper justification is given (e.g., "error bars are not reported because it would be too computationally expensive" or "we were unable to find the license for the dataset we used"). In general, answering "[No]" or "[NA]" is not grounds for rejection. While the questions are phrased in a binary way, we acknowledge that the true answer is often more nuanced, so please just use your best judgment and write a justification to elaborate. All supporting evidence can appear either in the main paper or the supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

- Delete this instruction block, but keep the section heading "NeurIPS Paper Checklist",
- · Keep the checklist subsection headings, questions/answers and guidelines below.
- Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly describe CAST and its technical/clinical contributions, which are accurately reflected throughout the paper.

Guidelines

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the
 contributions made in the paper and important assumptions and limitations. A No or
 NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

721 Answer: [Yes]

Justification: Our discussion, specifically the Limitations and Broader Impacts section, directly addresses dataset, methodological, and generalizability limitations.

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by
 reviewers as grounds for rejection, a worse outcome might be that reviewers discover
 limitations that aren't acknowledged in the paper. The authors should use their best
 judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers
 will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [Yes]

Justification: Appendix A formally states assumptions (A1–A5) and provides full consistency and identifiability proofs with supporting theorems.

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and crossreferenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if
 they appear in the supplemental material, the authors are encouraged to provide a short
 proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The methodology describes modeling, hyperparameter tuning, and general implementation which is sufficient to replicate the main results.

Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
 - (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
 - (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
 - (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: We provide a public GitHub repository in the abstract with a README containing instructions.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- The authors should provide instructions on data access and preparation, including how
 to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new
 proposed method and baselines. If only a subset of experiments are reproducible, they
 should state which ones are omitted from the script and why.

- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-parameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

830

831

832

833 834

835

837

838

839

840

841

842

843

844

845

846

847

848

849

850 851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871 872

873

874

875

876

877

879

Justification: Our experiments section includes implementation details on model training, parameter tuning, SHAP computation, and validation steps.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail
 that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report average treatment effects (ATEs) with standard errors and visualize 95% confidence intervals. Robustness checks include dummy outcome tests and sensitivity to synthetic confounding.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error
 of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: We report the computing setup in Appendix B, including CPU model, RAM and note that no GPU/cloud or distributed computing resources were used. The described hardware is sufficient to reproduce all experiments within a reasonable runtime.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Yes, we follow all the guidelines

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a
 deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [Yes]

Justification: We include broader societal impacts in our limitations subsection of the discussion and in our ethics statement after the references.

Guidelines:

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal
 impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

932

933

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978 979

980

981

983

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: The RADCURE dataset and all models used in this study are already publicly available.

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with necessary safeguards to allow for controlled use of the model, for example by requiring that users adhere to usage guidelines or restrictions to access the model or implementing safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do not require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: We have properly cited the RADCURE dataset and follow the license terms listed on The Cancer Imaging Archive.

Guidelines:

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the package should be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for some datasets. Their licensing guide can help determine the license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [Yes]

Justification: Detailed information about our code, dataset, and findings are available in our GitHub repository/README.

Guidelines

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.

- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: We did not use crowdsourcing in our study.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: IRB approval was not needed for this study because we only used de-identified, publicly-available data from The Cancer Imaging Archive. The original RADCURE dataset underwent IRB review, but our work did not involve crowdsourcing or patient identifiable information.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: We did not use LLMs in our research

Guidelines:

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what should or should not be described.