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Abstract

Causal machine learning (CML) enables individualized estimation of treatment
effects, offering critical advantages over traditional correlation-based methods.
However, existing approaches for medical survival data with censoring such as
causal survival forests estimate effects at fixed time points, limiting their ability
to capture dynamic changes over time. We introduce Causal Analysis for Sur-
vival Trajectories (CAST), a novel framework that models treatment effects as
continuous functions of time following treatment. By combining parametric and
non-parametric methods, CAST overcomes the limitations of discrete time-point
analysis to estimate continuous effect trajectories. Using the RADCURE dataset
[L] of 2,651 patients with head and neck squamous cell carcinoma (HNSCC) as a
clinically relevant example, CAST models how chemotherapy and radiotherapy
effects evolve over time at the population and individual levels. By capturing the
temporal dynamics of treatment response, CAST reveals how treatment effects
rise, peak, and decline over the follow-up period, helping clinicians determine
when and for whom treatment benefits are maximized. This framework advances
the application of CML to personalized care in HNSCC and other life-threatening
medical conditions.

1 Introduction

Methodological gap: A critical limitation in most traditional statistical and machine learning (ML)
methods applied to clinical outcomes data is their correlational nature. These methods are designed
to identify associations between variables but are not equipped to answer causal questions, which
are central to understanding treatment effects. In clinical research, the key questions—such as
how a treatment impacts survival or which patients benefit most—are inherently causal. However,
correlational approaches cannot disentangle confounding factors or provide interpretable estimates of
causal relationships, leaving a significant methodological gap [12} 3]].

Causal machine learning (CML) offers a promising solution by explicitly modeling causal effects
rather than associations. CML is rapidly advancing, providing tools to estimate individualized and
subgroup-specific treatment effects [4]. However, current causal forest methods adapted for survival
data fall short in one crucial aspect: they estimate treatment effects only at discrete time horizons
after treatment [} 16, [7]]. This approach fails to capture the continuous evolution of treatment effects
over time, limiting their ability to address dynamic clinical questions.

Proposed approach: Our novel method, CAST (Causal Analysis for Survival Trajectories), fills
this gap by extending causal survival forests to provide continuous treatment effect estimates as
a function of time after treatment. CAST combines parametric and non-parametric techniques to
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model the temporal dynamics of treatment effects, offering a more nuanced and clinically relevant
understanding of how treatments impact outcomes over time [8, 9]. We build upon previous work
by Shuryak et al. [10] to extend it to chemotherapy and continuous-time causal modeling. By
addressing this methodological gap, CAST enables clinicians to answer the causal questions that
matter most for personalized care and evidence-based decision-making. While traditional approaches
estimate treatment effects at discrete time points [[11}[12], CAST provides a continuous mathematical
framework, analyzing how treatment benefits evolve over the entire follow-up period. In the context
of cancer therapy, this is key: biological responses unfold through complex temporal dynamics that
include initial tumor control followed by potential diminishing returns due to repopulation, late
toxicities, and other factors [[13} (14, [15]].

Clinical motivation: We evaluate CAST in the context of head and neck squamous cell carcinoma
(HNSCC), where treatment responses evolve over time and vary across patient subgroups. HNSCC,
ranked as the seventh most prevalent cancer worldwide, includes malignancies of the oral cavity,
pharynx, larynx, and other surrounding regions of the head and neck. With incidence rates rising
rapidly, HNSCC is projected to increase nearly 30 % annually by 2030 [16]. Historically, most
HNSCC cases were attributed to excessive alcohol and tobacco use, with heavy exposure increas-
ing risk by up to 40-fold [17]. However, the past two decades have seen an increase in human
papillomavirus-related (HPV) cases, and HPV-associated HNSCC is expected to surpass tobacco and
alcohol induced tumors in the next five years. This has caused a shift in the demographic profile of
HNSCC patients: HPV-related cases tend to occur among younger populations (<65), particularly in
men [[18} 19} 20].

To treat HNSCC, clinicians use combinations of surgery, chemotherapy, and radiation. Intensity-
modulated radiation therapy (IMRT) has become the standard of care for its precision in targeting
tumors while sparing healthy tissue [21} 22]]. Studies show that IMRT’s impact on patient quality of
life follows a time-varying trajectory, with distinct peaks of symptom burden and phases of recovery
[23}124]. In a similar vein, chemotherapy—involving agents that disrupt the DNA of rapidly dividing
cells—follows a variable treatment timeline [25]]. Patients are often advised that responses can differ
widely based on individual factors, with effects emerging gradually and no fixed timeline for when
benefits or side effects will manifest [26, 27]].

The challenge of analyzing radiation therapy and chemotherapy outcomes lies not just in the com-
plexity of the treatment itself, but in the multitude of factors that influence both treatment assignment
and patient response. Traditional correlation-based analyses can mask important causal relationships,
leading to suboptimal treatment decisions. To the best of our knowledge, CAST represents the
first causal machine learning framework to explicitly model how chemotherapy benefits for patient
survival rise and fall over the entire follow-up period.
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Figure 1: Overview of the CAST framework
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Modeling philosophy: Our novel machine learning approach leverages causal survival forests to
handle high-dimensional data while automatically discovering treatment effect heterogeneity, and
differs from conventional survival analysis methods by focusing explicitly on estimating causal
treatment effects while accounting for confounding factors through careful propensity score modeling.
As demonstrated in Figure 1, the framework incorporates both parametric modeling to capture
characteristic rise and fall patterns of chemotherapy effects and non-parametric approaches to reveal
subtle inflection points corresponding to biological phase transitions in treatment response.

We implemented a variety of methods to ensure a robust assessment of the data and to verify key causal
inference assumptions, such as overlap (positivity) and no unmeasured confounding (ignorability).
We used elastic net logistic regression with repeated k-fold cross-validation to estimate propensity
scores for chemotherapy. Patients with scores outside the range [0.1, 0.9] were trimmed to ensure
overlap between treatment groups. We then conducted refutation tests, including dummy outcome
and negative control analyses, to assess the robustness of our causal effect estimates. Using SHapley
Additive exPlanations (SHAP) values, we generated interpretable insights into how patient and disease
characteristics impact treatment outcomes, allowing for practical application in clinical settings.

Significance: This research applies causal survival forests to identify how patient and disease
characteristics—like age and HPV status—influence treatment effectiveness. By combining advanced
causal inference with CAST’s temporal modeling, we can determine not just who benefits most from
chemotherapy, but also when these benefits peak and fade. This temporal insight is key for designing
targeted interventions and optimizing outcomes in HNSCC. CAST also demonstrates the broader
potential of integrating machine learning into personalized cancer care.

Our contributions are as follows:

* CAST is, to our knowledge, the first framework to unify causal survival forests with
parametric and non-parametric models for estimating continuous-time treatment effects,
offering a new paradigm for temporal causal inference in survival analysis.

» CAST produces clinically interpretable metrics such as peak effect time, maximum benefit,
and effect half-life, enabling richer understanding of treatment response dynamics.

* We introduce a rigorous validation framework incorporating propensity score modeling,
dummy outcome tests, synthetic tests, and SHAP-based heterogeneity analysis.

* We apply CAST to a large real-world chemotherapy and radiotherapy dataset (RADCURE),
uncovering actionable insights into when and for whom treatment benefits peak and decline.

2 Related Work

Clinical predictors of treatment response: Numerous studies have shown that treatment response
in HNSCC patients is highly heterogeneous, influenced by clinical and demographic factors such as
HPV status, gender, and disease stage. For instance, HPV-positive HNSCC—more common among
younger patients—tends to be more sensitive to treatment and is associated with more favorable
survival outcomes compared to HPV-negative disease [28]]. Historically, studies that group patients by
their clinical characteristics reveal significant variation in survival [29}30]. These findings motivate
the need for methods that can model treatment effect heterogeneity as well as average treatment
effects (ATE)—an aim CAST directly addresses.

Predictive survival models: Traditional models such as the Cox proportional hazards model as-
sume proportional hazards and constant treatment effects over time, limiting their flexibility in
capturing nonlinear and time-varying dynamics [31}[32]]. More flexible models—including random
survival forests (RSF), deep survival models (e.g., DeepSurv), and Bayesian additive regression trees
(BART)—have demonstrated improved risk prediction performance [33]], notably in applications
such as cervical cancer survival [34,[35]]. However, these models are fundamentally predictive, not
causal—they estimate outcome risk without isolating treatment effects or correcting for confounding
unless explicitly adapted with causal modeling components.

Causal inference for survival analysis: Recent advances in causal machine learning have introduced
methods designed to estimate individualized treatment effects (ITEs) from observational time-to-event
data [36, 37]. These include meta-learners (e.g., T-learner, S-learner) [38]], G-formula-based two-
learners [39], double robust estimators (e.g., AIPCW and AIPTW) [40], and causal survival forests
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[41]. While these causal approaches are advantageous for treatment effect estimation compared with
traditional survival analysis, they typically estimate effects at discrete time points, limiting their
ability to model how treatment responses evolve continuously throughout follow-up [42] 43]].

Modeling time-varying treatment effects: In oncology, treatment effects often unfold through
distinct biological phases—initial tumor control, plateauing benefit, and eventual decline due to
late toxicities or tumor repopulation [44, 45]]. Studies have revealed that the prognostic influence
of covariates such as age, race, and sex changes over the follow-up period [46, 47]]. However, most
existing methods either assume constant effects or treat follow-up intervals independently. CAST
addresses this gap by modeling treatment effects as continuous functions of time. By integrating
both parametric (e.g., quadratic fits) and non-parametric (e.g., smoothing splines) components, CAST
captures biologically grounded patterns in treatment efficacy over time. Unlike previous approaches,
CAST provides a unified, continuous-time framework that reveals the full temporal trajectory of
treatment response, enabling more precise and interpretable causal insights.

3 Methodology

Problem Formulation: We address the challenge of estimating time-varying treatment effects in
survival analysis, specifically focusing on how the impact of medical interventions evolves over time.
Let D = {(X;, W;,T;,d;)}_, represent our dataset where:

* X, € R? is a vector of covariates for subject ¢
» W, € {0, 1} is the treatment indicator

¢ T; is the observed survival time (either event time or censored time)
* §; is the event indicator (1 if event observed, 0 if censored)

The causal survival forest method is a powerful tool for estimating average and subgroup-specific
treatment effects for survival outcomes, but it estimates the effects only at specific discrete times after
treatment. This fails to capture the continuous temporal evolution of treatment responses, particularly
in contexts like radiation therapy and chemotherapy where biological effects can substantially rise
and fall over time.

3.1 Causal Machine Learning Framework

Our approach uses a CML framework to isolate treatment effects beyond traditional correlational
methods. While conventional machine learning identifies correlations between variables, CML allows
us to understand the causal impact of interventions [48]]. This distinction is fundamental to our study:
our goal is not just to predict outcomes but to dissect how treatments shape survival outcomes across
patient subgroups.

Given the observational non-randomized nature of our clinical data, we rely on the following
assumptions:

* Unconfoundedness: Treatment assignment is independent of potential outcomes conditional
on observed covariates (also called ignorability or no unmeasured confounding)
* Positivity (Overlap): Every subject has a non-zero probability of receiving each treatment

* Consistency: A subject’s observed outcome under their received treatment equals their
potential outcome for that treatment

* Non-interference: One subject’s treatment does not affect another subject’s outcome
To address selection bias in observational data, we performed propensity score modeling using elastic
net logistic regression: é(X) = P(W = 1|X) with hyperparameters optimized through 10-fold

cross-validation. Patients with extreme propensity scores (outside [0.10, 0.90]) are trimmed to ensure
overlap between treatment groups. See Appendix C.1 for balance diagnostics.

3.2 CAST: Causal Analysis for Survival Trajectories

The theoretical foundation of CAST rests on modeling the effect trajectory as a function of time. Our
target estimand is the conditional average treatment effect (CATE) at time ¢, given covariates X:
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7(x,t) =E[Y(1,t) = Y(0,t) | X = a] (1)

where Y (w,t) represents the potential outcome at time ¢ under treatment w, and = denotes an
individual’s covariates. We consider two types of time-varying estimands: the difference in restricted
mean survival time (RMST) and the difference in survival probability (SP) between treatment groups.
Unlike prior methods that estimate effects at fixed time points, CAST models treatment effects as
smooth functions of time. We use a smoothing spline to estimate the continuous effect trajectory, and
a quadratic fit to derive interpretable metrics.

3.2.1 Parametric Modeling Component

Our parametric modeling component employs a quadratic function: 7(t) = By + Bit + [at? to
capture the rise and fall of treatment effects. The parameters are estimated using weighted least
squares:

st 2 w(t)(F(t) — (Bo + But + Pat?))? @

where w(t) = 1/0%(t) are weights based on the variance of the effect estimates at each timepoint.
This approach yields clinically interpretable parameters, including the peak effect time (fpeax =
—B1/202), the maximum effect magnitude (T(tpeak)), and the treatment effect half-life, defined as
the time it takes for the effect to diminish by 50% from its peak.

These parameters directly quantify key clinical aspects of the treatment response: when the maximum
benefit occurs, how large that benefit is, and how quickly it diminishes—information critical for
clinical decision-making that traditional methods cannot provide. See Appendix C.3 for fitted
coefficients and summary statistics from the parametric model.

Algorithm 1 CAST-PARAMETRIC CAST-Parametric: This algorithm

) R N models treatment effects over time
1: Input: Horizons H, ATEs {74}, SEs {61} using a weighted quadratic fit to

Out;\)ut: Temporal function 7 (t), peak time ¢*, half- the estimated ATEs across discrete
life

»

5 . . horizons. Inverse-variance weighting
3 W {wp =1/63} > Inverse-variance weights  emphasizes more confident estimates.
4: 7(t) «= FITQUADRATICMODEL(H, 7, W) The peak effect time is derived
5 f1, B2 < coefficients from fit analytically, while the half-life is
6: if 52*7& 0 then i computed by numerically solving for
7o e =P/ <2A62)* e ;1"1me of peak effect  (he point where the curve falls to half
g- elseA < SOLVE(7(t" + A) = 7(t")/2) its maximum. This approach yields

. interpretable summaries of treatment
}(1)3 dt'f’ A« NA > Degenerate case  qynamics, aligning with radiobiologi-
cendi

cal phenomena such as delayed benefit

12: return 7(1), ", A and diminishing returns.

3.2.2 Non-parametric Modeling Component

Our non-parametric component employs cross-validated smoothing splines:

t

7(t) = g(t), where g = arg mji_n {Z w(t) (7(t) — f()* + /\/f”(t)2 dt} 3)

where ) is selected via cross-validation. This approach adapts to the data without imposing a prede-
termined functional form, revealing subtle inflection points in the effect trajectory that correspond to
biological phase transitions in the treatment response.

We calculate the first and second derivatives of the fitted spline to identify key features of the treatment
effect trajectory: local maxima and minima where ¢’(t) = 0, acceleration and deceleration phases
based on sign changes in ¢” (¢), and inflection points where g”(t) = 0.
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The non-parametric model complements the parametric fit by capturing complex, less predictable
patterns—especially during later follow-up periods, when biological processes like accelerated
repopulation and late toxicities may cause deviations from the smooth quadratic trend.

Algorithm 2 CAST-NONPARAMETRIC

CAST-Nonparametric: This algorithm
fits a smoothing spline to the estimated

1: Input: Horizons #, ATEs {%h.}’ SES.{&h} treatment effects across time using
2: Output: Spline 7:(;) peak ¢*, inflections {¢; } inverse-variance weights. It computes
3 W {w, =1/6;} the first and second derivatives of
4: 7(t) < FITSPLINE(H, 7, W) o the spline to identify key dynamics:
5: Dy (t), Da(t) < first and second derivatives of the peak effect time via the curve’s

T*(t R global maximum and biological
6: 1" < ARGMAX(7(t)) > Peak effect phase transitions via inflection points.
7: {ti} <~ ZEROCROSSINGS(D>(t)) > Inflection This method captures delayed and

POIBtS Lo non-monotonic  effect  trajectories
8. if ¢ BOt in [min(#), max(#)] then often missed by parametric models,
9: t. < NA reflecting immune response, tissue
10: end if . adaptation, or timing heterogene-
11: return 7(¢),t*,{t;} ity.

CAST-Parametric and CAST-Nonparametric offer complementary modeling capabilities. The para-
metric method provides interpretable summary statistics such as peak effect timing and half-life,
which are clinically intuitive and useful for hypothesis testing under smooth treatment dynamics. In
contrast, the spline-based approach relaxes these assumptions and flexibly captures nonlinear, delayed,
or multi-phase effects. Together, these models allow us to evaluate the robustness of temporal patterns
and support a wide range of clinical interpretations.

Theoretical Guarantees: See Appendix A for theorem statements establishing consistency of CAST
estimators and identifiability of time-varying treatment effects under standard causal assumptions.

4 Experiments

Dataset: We use the RADCURE observational dataset from The Cancer Imaging Archive (TCIA), a
publicly accessible resource on multiple types of cancer. The dataset spans from 2005 to 2017 and
contains clinical, demographic, and treatment metadata for 3,346 patients. We select 2,651 patients
with pathologically confirmed HNSCC and a defined tumor site. While the dataset primarily focuses
on oropharyngeal cancer, it also includes laryngeal, nasopharyngeal, and hypopharyngeal cases. The
binary treatment variable used in CAST is chemotherapy (yes/no) with radiotherapy covariates.

Preprocessing: We filtered incomplete profiles and standardized continuous variables for compara-
bility. We used radiotherapy data—dose/fraction, number of fractions, and total radiation treatment
time duration in days—to calculate Biologically Effective Dose (BED) values, applying both dose-
independent (DI) and dose-dependent (DD) models with established radiobiological parameters [10].
We then partitioned the dataset into training (75%) and testing (25%) sets, maintaining consistent
event rates across both subsets for unbiased evaluation of treatment effects. See Appendix B for more
on data preprocessing and computing resources.

Propensity Score Modeling: To address selection bias, we used elastic net logistic regression to
estimate the likelihood of a person receiving treatment, based on their characteristics. Hyperparame-
ters were optimized through 10-fold cross-validation: elastic net mixing parameter o € [0.01, 0.99)
and regularization parameter A\ chosen from a grid of 100 values. Propensity score distributions were
assessed through both Pearson and Spearman correlation matrices (o = 0.05, Bonferroni-corrected)
and visualized using kernel density estimation. Patients with scores outside [0.10,0.90] were trimmed
to ensure overlap, with sensitivity analyses conducted at thresholds {0.01, 0.03,0.05,0.07,0.10}.

Implementation & Heterogeneity Analysis

We used causal survival forests with Nelson-Aalen estimation to handle right-censoring, estimating
treatment effects over 12, 24, ..., 120 months post-treatment. Our forest was constructed with 5,000
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trees to ensure robust estimation of heterogeneous effects across the patient population. Sensitivity
analyses using different numbers of trees showed similar results.

For each time horizon, we independently trained a causal forest model using the training dataset,
with covariates properly standardized and propensity scores incorporated through doubly-robust
estimation. The forests were configured with tuning parameters selected through cross-validation,
including minimum node size, split regularization, and sampling fraction. Prediction uncertainty
was quantified through the infinitesimal jackknife method, providing variance estimates for each
individual treatment effect. This approach allowed us to capture both average treatment effects and
their heterogeneity across different patient subgroups at each follow-up time point, while properly
accounting for the right-censoring inherent in survival data [49, 50].

Treatment effect heterogeneity was analyzed using approximate SHAP values calculated via Monte
Carlo sampling with 1,000 iterations and a convergence threshold of e = 0.01. The SHAP values were
normalized such that ), SHAP; corresponds to the difference between the individual and mean model
predictions. This approach revealed which patient characteristics most strongly influenced treatment
response, with HPV status and smoking history emerging as particularly important predictors. We
visualized the relationship between feature values and their SHAP contributions to identify subgroups
with differential treatment benefits.

Validation Methods

We implemented several validation strategies as refutation tests for the causal effect estimates in
our experiments. For each test, we computed summary statistics (mean, standard deviation, max
deviation) to assess model robustness, using a consistent 5,000-tree specification and random seeds
for reproducibility.

Dummy Outcome Tests: We shuffled treatment assignments and outcome times across 20 repetitions
for each time horizon (12-120 months), generating a null distribution to assess false positive rates.
Boxplots confirmed the null hypothesis centered around zero, showing that the causal effect estimates
for each horizon were centered around zero as expected. The variance of these estimates increased
with increasing horizon time due to the decreasing number of patients remaining at risk at longer
times. The results suggested good reliability of the estimates for times < 60 months.

Sensitivity to Additional Covariates: We introduced synthetic covariates with varying signal
strengths of correlation with treatment assignment (0.1, 0.3, 0.5) that were unrelated to both treat-
ment assignment and outcome, in order to assess the sensitivity of treatment effect estimates to
irrelevant/spurious variables.

Negative Control Tests: Irrelevant binary treatments were randomly assigned to ensure the model
did not detect spurious effects. Treatment effects for these were zero across all time horizons.

Robustness to Irrelevant Features: Five random noise variables were added, and changes in
treatment effect estimates and feature importance were monitored to ensure no significant impact.

5 Results

We present empirical results of CAST on the RADCURE dataset, focusing on time-varying treatment
effects, patient-level heterogeneity, and robustness validation. As shown in Figure 2 below, CAST
reveals a non-monotonic trajectory in chemotherapy benefit: survival gains increase early post-
treatment, plateau in the mid-term, and gradually decline thereafter. Both the parametric and
non-parametric models suggest a peak in benefit between 50 and 65 months, though the effect
trajectory remains relatively stable during this period. These trends indicate that chemotherapy
is most impactful in the first few years post-treatment, with gradual tapering over time. This is
potentially due to recurrence, long-term toxicity, or competing risks. On the testing set, chemotherapy
increased survival probability by 15.2 + 6.0% at 3 years and 15.0 & 6.7% at 5 years, with RMST
gains of 3.6 £ 1.4 and 7.1 & 2.6 months, respectively.

Individualized effect distributions: Treatment effect estimates showed notable variation across
patients. While most individuals experienced positive effects, CAST identified a long right tail of high
responders and a small subset with near-zero or negative effects. However, some of this variation may
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Figure 2: Comparison of time-varying treatment effect models using CAST. The red curve shows
the parametric estimate with 95% Cls; the blue curve shows the non-parametric spline. Black dots
denote average treatment effects £ standard errors on the survival probability scale.

reflect unmeasured confounding or estimation noise rather than true heterogeneity. These patterns
highlight the potential for personalized models in survival-based decision-making.

Subgroup variation: To identify drivers of treatment heterogeneity, we computed Pearson and
Spearman correlation matrices between clinical covariates, SHAP values, and estimated treatment
effects (Figure 3a,b). Pearson captures linear relationships, while Spearman reflects monotonic trends,
offering complementary views of variable influence. Smoking pack-years showed the strongest and
most consistent negative correlation across both matrices, reinforcing its role in reducing chemother-
apy benefit. HPV positivity and younger age also exhibited modest positive correlations with SHAP
values and effect estimates, aligning with known clinical patterns. Additional SHAP visualizations
and discussion are provided in Appendix C.2.
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Figure 3: Correlation matrices between covariates, SHAP values, and treatment effects

Robustness & Effect Heterogeneity: CAST passed multiple validation checks, including dummy
outcome tests, synthetic confounder experiments, and trimming sensitivity analyses. For the synthetic
confounder tests, only the highest strengths of correlation with treatment assignment distorted the
causal effect estimates dramatically, whereas smaller strengths had minimal impact. In the robustness
checks with irrelevant features, as expected, the noise variables were largely ignored by the CSF
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and did not substantially affect the causal effect estimates. Individualized treatment effect estimates
exhibited a long right tail of high responders and a subset with near-zero or negative benefit. While
some of this variation may reflect noise, the observed patterns indicate potential for personalized
treatment modeling. Additional visualizations are provided in Appendix C.4.

6 Discussion

The patterns uncovered by CAST have important clinical implications. The observed peak in survival
benefit around four to five years post-treatment suggests that chemotherapy is most effective for short
to mid-term local control but may not sustain long-term survival. This decline could reflect tumor
repopulation, distant progression, or delayed toxicity [S1]. However, since fewer patients remained at
risk (did not experience a death or censoring event) at longer follow-up times, reliability of the causal
effect estimates at long times is reduced compared with shorter times, as shown by our dummy tests.

These findings support the value of adaptive monitoring and adjunct strategies to extend therapeutic
benefit. The heterogeneity revealed by CAST emphasizes the need for treatment personalization.
Correlation and SHAP-based analysis together identified HPV positivity and smoking as the most
influential factors. Favorable outcomes in HPV-positive patients align with known radiosensitivity
and impaired DNA repair, while smoking was linked to reduced benefit—consistent with mechanisms
like tumor hypoxia and immunosuppression. Age also showed a modest effect, with younger patients
generally benefiting more; an inflection point around 50-60 years may be clinically meaningful
(Figure 3 and Figure 4 in Appendix C.2). In contrast, tumor site and TNM stage had limited influence
on treatment effect heterogeneity, despite their prognostic relevance.

These findings align with efforts to tailor treatment by biologic subgroup. CAST offers a data-
driven framework to support such stratifications and generate hypotheses for future trials. Rather
than replacing existing tools, it complements them by modeling continuous-time dynamics and
revealing patient-level variation. More broadly, this study shows how combining mechanistic
modeling with causal machine learning can enhance the analysis of observational data. By embedding
radiobiological insight into CAST using BED variants from different tumor repopulation models, we
uncover treatment effects that align with known biology while also revealing discrepancies, such as
stronger chemotherapy benefits than reported in prior meta-analyses. This offers a powerful way to
complement clinical trials and generate new hypotheses.

Limitations and Broader Impacts

Data limitations: The dataset exhibits substantial right-censoring: while 88.9% of patients remain
in follow-up at one year, only 22.2% do so by year six. This may bias long-term survival estimates
and obscure treatment effects that manifest later in time. External validity: The data come from a
single institution (University Health Network, Toronto) and are predominantly male (80%), limiting
generalizability to broader populations, especially women. Causal assumptions: Like all causal
inference methods, CAST relies on the assumption of no unmeasured confounding. Important factors
such as diet, lifestyle, or genetic risk—potentially related to both treatment and outcome—are not
included. Methodological scope: From a machine learning perspective, CAST supports only binary
treatment variables. Extending it to model continuous dosing, multi-arm comparisons, or longitudinal
interventions remains an important direction for future work.

7 Conclusion

In this paper, we present CAST, which is to our knowledge the first framework for modeling how
treatment effects change over time using parametric and non-parametric techniques in the context
of causal survival analysis with multiple features. CAST extends the utility of causal survival
forests from estimating effects at discrete horizon times to continuous-time modeling. Applied to
chemotherapy for HNSCC, CAST estimates individualized treatment trajectories and highlights when
treatment effects peak and decline. Our results show that CAST is robust and interpretable, offering a
general framework for modeling time-varying treatment effects across medical contexts. By isolating
the causal influence of patient characteristics and capturing the dynamics of treatment response,
CAST supports more personalized and adaptive care. This helps clinicians identify critical windows,
tailor interventions to individual risk profiles, and refine strategies as new evidence emerges.
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A Theoretical Justification of CAST

We provide formal justification for the consistency and identifiability of the time-varying treatment
effect estimator 7(¢) used in the CAST framework.

A.1 Problem Setting

Let D = {(X;,W;,T;, ;) }_, be a dataset of n i.i.d. samples where: - X; € RP is a vector of
observed covariates, - W; € {0,1} is a binary treatment indicator, - T; is the observed event or
censoring time, - §; € {0, 1} is the event indicator (1 if the event occurred, 0 if censored).

Let Y (w, t) denote the potential outcome (e.g., survival status at time ¢) under treatment w € {0, 1}.
We define the time-varying Conditional Average Treatment Effect (CATE) as:
T(z,t) :=E[Y(1,¢t) = Y(0,%) | X = z].

CAST estimates 7(x, t) using a doubly-robust causal survival forest followed by a spline or quadratic
fit across time.

A.2 Assumptions
We adopt standard causal inference and survival analysis assumptions:

(A1) Unconfoundedness: (Y (0,t),Y(1,t)) L W | X forall ¢.

(A2) Positivity: 0 < P(W =1 | X) < 1 almost surely.

(A3) Consistency: Y = Y (W, ¢) if W is received.

(A4) Non-informative Censoring: C' L (Y (0,¢),Y(1,t)) | X, W for censoring time C.

(AS) Consistency of Forest Estimators: The causal survival forests used yield consistent
estimates of conditional survival functions S,, (¢ | X).

A.3 Theorem: Pointwise Consistency of 7(t)

[Pointwise Consistency] Under assumptions (A1)—(AS), for each fixed ¢:
#(t) == Bx[S1(t | X) = So(t | X)] 2 7(t) := Ex[Si(t | X) = So(t | X)]

as n — oo, where S, (¢ | X) is the estimated conditional survival function under treatment w from
causal survival forests.

This follows from: 1. Consistency of S (t | X) (AS5), 2. The continuous mapping theorem, since
subtraction and expectation are continuous, 3. Trimming enforces overlap (A2), ensuring bounded
inverse propensity weights.

A .4 Identifiability of 7(¢) from Observational Data

[Identifiability] Under assumptions (A1)-(A4), the marginal time-varying treatment effect
7(t) =Ex[E[Y | W=1,XT>¢t-E[Y |W=0,X,T >t
is identified from observational data using inverse probability weighting or doubly-robust estimation.

Under unconfoundedness and non-informative censoring, we can consistently estimate the conditional
means E[Y (w,t) | X] from observed data. The difference in conditional expectations across
treatment groups yields an identifiable estimator of 7(t).
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A.5 Estimability of Peak Effect Time in CAST-Parametric
Let the parametric effect trajectory be:
7(t) = Bo + But + fat?,
and suppose /3’17 /35 are estimated using weighted least squares.
[Consistency of Estimated Peak Time] If Bl LN 51, Bg LN B2 with B2 < 0, then the estimated peak
time 4
26,

is a consistent estimator of the true peak t* = — %

=

This follows from Slutsky’s theorem. Since both /3’1 and Bg converge in probability to non-zero limits,
and the mapping f(a,b) = —a/(2b) is continuous for b # 0, it follows that:

b B B

= — =t".
252 252
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B Expanded Dataset Subsection

Overview

Our analysis uses the RADCURE dataset from The Cancer Imaging Archive (TCIA), the largest to
our knowledge publicly accessible head and neck cancer imaging dataset. The data spans from 2005
to 2017 and includes computed tomography (CT) images for 3,346 patients, from which we selected
a subset of 2,651 patients after filtering for only HNSCC cases. These images are linked to clinical,
demographic, and treatment metadata. Following standardized clinical imaging protocols, the RAD-
CURE project includes CT images, pictured alongside manually-reviewed contours differentiating
between the planning tumor volume (PTV) and the organs at risk (OARs). All patients in this dataset
received radiotherapy, and some received chemotherapy.

The clinical data accounts for patient demographics, including age, gender, and HPV status. It
also details tumor staging using the 7th edition TNM system to describe the cancer, in addition to
treatment information. While the dataset primarily focuses on oropharyngeal cancer, it also covers
laryngeal, nasopharyngeal, and hypopharyngeal cancers.

Data Preprocessing

In the preprocessing stage, we filtered out incomplete patient profiles to ensure the dataset included
relevant variables and appropriately represented potential confounders. We standardized all con-
tinuous variables to have zero mean and unit variance to ensure comparability and optimize model
performance. The dataset comprehensively describes treatment details—dose/fraction, number of
fractions, and total days of radiotherapy—which we used to calculate Biologically Effective Dose
(BED) values. We implemented both dose-independent (DI) and dose-dependent (DD) BED models
to capture the biological effects of radiation therapy, using established radiobiological parameters
(a = 0.2 Gy~ !, a/B = 10 Gy, accelerated repopulation rates and onset times). This allowed us to
quantify the effective radiation dose accounting for different fractionation schedules. We employed a
stratified data partitioning strategy, creating training (75%) and testing (25%) sets while maintaining
consistent event rates across partitions. Both subsets contained similar proportions of survival events,
allowing for unbiased evaluation of treatment effects.

Table 1 summarizes the estimated average treatment effects across time for both restricted mean
survival time (RMST) and survival probability (SP) metrics. These values were computed using
causal survival forests on held-out test data. We observe that the estimated effects generally increase
with longer follow-up, particularly under the RMST metric, reflecting the accumulating benefit of
treatment over time. Standard errors are included to reflect model uncertainty at each horizon.

Table 1: Summary statistics of the simulated dataset

Statistic Control Group Treated Group
Event Rate (%) 79.8
Treatment Rate (%) 44.9

Median Survival (months) 17.0 24.0
12-month Survival (%) 70.3 90.1
24-month Survival (%) 20.2 45.5
36-month Survival (%) 1.9 7.3
48-month Survival (%) 0.0 0.1
Age (mean) 60.42 59.23
TNM Stage (mean) 1.73 3.46
HPV Positivity Rate 0.68 0.51
Sex (Male = 1) 0.48 0.49

Computing Resources: All experiments were conducted with a 13th Gen Intel Core i7-1355U CPU,
16GB RAM, and integrated Intel Iris Xe Graphics. No discrete GPU or cloud resources were used,
though such resources would significantly reduce runtime for large-scale extensions of this work.
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C Additional Results

In this section, we present additional results that extend and validate the findings reported in the
main paper. These include visualizations of treatment effect heterogeneity across time, a summary of
average treatment effects, and robustness checks to support the reliability of our causal estimates.

C.1 Summary Table of Average Treatment Effects

Table 2 summarizes the estimated average treatment effects across time horizons using both RMST
and survival probability metrics. These values were computed using causal survival forests on the
held-out test set. The treatment effects tend to increase over time under both metrics, with RMST
showing a steeper upward trend reflecting cumulative benefit. Standard errors are included for each
estimate. The early rise in both SP and RMST suggests initial treatment efficacy, while the plateauing
in later months reflects diminishing returns, possibly due to recurrence or late toxicity. The RMST
gains—peaking at over 16 months—highlight how cumulative survival benefit continues to accrue
even as survival probability differences taper off. These patterns support the biological intuition that
treatment effects rise quickly post-intervention and then gradually attenuate.

Table 2: Estimated average treatment effects (ATE) across time using RMST and survival probability
(SP). SE represent standard errors

Months | ATE (SP) SE (SP) | ATE (RMST) SE (RMST)

12 0.099 0.049 0.44 0.26
24 0.141 0.053 1.88 0.80
36 0.152 0.058 3.58 1.46
48 0.178 0.072 5.80 2.31
60 0.168 0.071 7.39 2.73
72 0.148 0.075 8.38 3.52
84 0.156 0.077 11.08 4.76
96 0.143 0.071 13.89 5.90
108 0.129 0.068 14.76 6.16
120 0.100 0.063 16.11 6.92

These summary statistics also inform the CAST modeling strategies described in Section 3.3. The
steady increase followed by tapering motivates the use of both quadratic and spline-based approaches
to flexibly capture the full temporal arc of treatment efficacy.
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s47 C.2 SHAP-Based Interpretability Analysis

e4¢ While SHAP provides valuable insights into feature influence, the estimates generated here using
e49 the fastshap R package are approximate and may be noisy, particularly in the context of survival
650 analysis. We calculated approximate SHAP values because an exact SHAP explainer does not
651 yet exist for the causal survival forest model. Figures 4(a—c) show SHAP plots for the three most
652 influential variables—age, HPV status, and smoking pack-years—highlighting clear heterogeneity
653 1in treatment benefit across subgroups. Additional SHAP plots for other covariates—such as tumor
654  site, treatment timing, dose metrics, and TNM stage—are also provided below. These variables had
655 smaller contributions to the model, but are shown for completeness and transparency.

SHAP values for Age SHAP values for HPV_Positive

Causal Effects
C:nal Effects. s
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Figure 4: SHAP analysis of covariates driving treatment effect heterogeneity. (a) Older age is linked
to greater chemotherapy benefit. (b) HPV-negative patients consistently show higher contributions.
(c) Smoking history is positively associated with the chemotherapy benefit treatment.
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Figure 5: SHAP values for primary tumor site. These anatomical subgroups exhibited low or diffuse
contributions to treatment effect heterogeneity, though subtle site-specific trends may still hold

clinical value.

19



SHAP values for Stage_numeric

0,001

SHAP values for BED_DD

|
.
2005
0.000
. Causal Effects
H m
% 2
- o
%I 3
‘§ 01 g' 1e-05
-0.001
: v : [ 8
| w
% ! sex @
a o0
LB
0.002 0e+00
] -
H
B
0003
~ 2 N . & & & &®
Stage_numeric BED_DD
(a) TNM Stage (b) BED (Dose-Dependent)
SHAP values for BED_DI SHAP values for RT_year
0050
]
002
0025
Causal Effects I
A" =
02
% 4 e s s £
T 5 | L]
% 01 ® 000 " 2 ] -
oo m - . . H ] LA I
a ) 4
w = ]
o Sex 4 -
® 0
-
0025 o0 ]
B e
"
I
[
" L]
T
oo & ® & @ N e s o
BED_DI RT_year
(c) BED (Dose-Independent) (d) Year of RT
SHAP values for HPV_Unknown
0004
i
1] Causal Effects
] | ]
& | |
= 02
%I 0.002
€
H 01
H [ |
£
=]
>I Sex
o
I 0000 ® 0
. LB
o |
.
& & & <& &
HPV_Unknown
(e) HPV Unknown

Causal Effects

Causal Effects
-
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C.3 Distributions of Individualized Treatment Effects

We visualize the estimated treatment effect distributions for both RMST and survival probability (SP)

at intervals ranging from 12 to 120 months. Figures 4 and 5 show individual-level causal effects
derived from the causal survival forest at each time horizon.

RMST Treatment Effect Distributions
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Figure 7: Distributions of estimated RMST-based treatment effects over time. Each panel shows the
individual-level causal effect at a specific horizon as learned by the causal survival forest.
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Figure 8: Distributions of estimated survival-probability-based treatment effects over time. Each

panel shows the individual-level causal effect at a specific horizon as estimated by the causal survival
forest.
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C.4 Dummy Outcome Refutation Tests

To assess whether CAST detects spurious treatment effects in the absence of a true signal, we
performed dummy outcome tests. For each time horizon, we randomly shuffled treatment assignments
and outcome times across 20 repetitions to simulate a null setting. If the model was overfitting or
improperly attributing causal structure, it would produce non-zero treatment effect estimates even
under randomization. As shown in the boxplots below, the estimated treatment effects for both RMST
and survival probability are centered around zero, especially at relatively short times (< 60 months),
when the number of patients still at risk was large. This confirms that CAST does not learn artifacts
from the data and is robust to randomization of causal structure.

Boxplot of CATE Estimates with Dummy Outcome
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Figure 9: Dummy outcome test for RMST-based ATE estimates. Across 20 shuffles per horizon,
treatment effects are centered near zero, consistent with the null.
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Figure 10: Dummy outcome test for survival probability-based ATE estimates. The model correctly
reports no significant treatment effects under randomized labels.

23



670
671
672
673

To assess the robustness of CAST estimates to unobserved confounding, we performed a sensitivity
analysis by injecting synthetic covariates with varying correlation to treatment assignment (r = 0.1,
0.3, 0.5). We then measured the resulting shifts in ATE estimates across time horizons for both
RMST and survival probability outcomes.
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Figure 11: Absolute ATE differences in RMST under varying confounder strengths (» = 0.1, 0.3,
0.5). Estimates are stable under weak strengths but diverge at longer horizons and higher strengths.
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Figure 12: Absolute ATE differences in SP under varying confounder strengths (r = 0.1, 0.3, 0.5).
CAST estimates remain stable under weak strengths, with modest shifts at stronger levels and longer
horizons.
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

* You should answer [Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.

* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly describe CAST and its technical/clinical
contributions, which are accurately reflected throughout the paper.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: Our discussion, specifically the Limitations and Broader Impacts section,
directly addresses dataset, methodological, and generalizability limitations.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

 The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Appendix A formally states assumptions (A1-AS5) and provides full consis-
tency and identifiability proofs with supporting theorems.

Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The methodology describes modeling, hyperparameter tuning, and general
implementation which is sufficient to replicate the main results.
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Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide a public GitHub repository in the abstract with a README
containing instructions.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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830 * At submission time, to preserve anonymity, the authors should release anonymized
831 versions (if applicable).

832 * Providing as much information as possible in supplemental material (appended to the
833 paper) is recommended, but including URLSs to data and code is permitted.

834 6. Experimental setting/details

835 Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
836 parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
837 results?

838 Answer: [Yes]

839 Justification: Our experiments section includes implementation details on model training,
840 parameter tuning, SHAP computation, and validation steps.

841 Guidelines:

842 » The answer NA means that the paper does not include experiments.

843 * The experimental setting should be presented in the core of the paper to a level of detail
844 that is necessary to appreciate the results and make sense of them.

845 * The full details can be provided either with the code, in appendix, or as supplemental
846 material.

847 7. Experiment statistical significance

848 Question: Does the paper report error bars suitably and correctly defined or other appropriate
849 information about the statistical significance of the experiments?

850 Answer: [Yes]

851 Justification: We report average treatment effects (ATEs) with standard errors and visualize
852 95% confidence intervals. Robustness checks include dummy outcome tests and sensitivity
853 to synthetic confounding.

854 Guidelines:

855 * The answer NA means that the paper does not include experiments.

856 * The authors should answer "Yes" if the results are accompanied by error bars, confi-
857 dence intervals, or statistical significance tests, at least for the experiments that support
858 the main claims of the paper.

859 * The factors of variability that the error bars are capturing should be clearly stated (for
860 example, train/test split, initialization, random drawing of some parameter, or overall
861 run with given experimental conditions).

862 * The method for calculating the error bars should be explained (closed form formula,
863 call to a library function, bootstrap, etc.)

864 * The assumptions made should be given (e.g., Normally distributed errors).

865 ¢ It should be clear whether the error bar is the standard deviation or the standard error
866 of the mean.

867 e It is OK to report 1-sigma error bars, but one should state it. The authors should
868 preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
869 of Normality of errors is not verified.

870 * For asymmetric distributions, the authors should be careful not to show in tables or
871 figures symmetric error bars that would yield results that are out of range (e.g. negative
872 error rates).

873 * If error bars are reported in tables or plots, The authors should explain in the text how
874 they were calculated and reference the corresponding figures or tables in the text.

875 8. Experiments compute resources

876 Question: For each experiment, does the paper provide sufficient information on the com-
877 puter resources (type of compute workers, memory, time of execution) needed to reproduce
878 the experiments?

879 Answer: [Yes]
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10.

Justification: We report the computing setup in Appendix B, including CPU model, RAM
and note that no GPU/cloud or distributed computing resources were used. The described
hardware is sufficient to reproduce all experiments within a reasonable runtime.

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Yes, we follow all the guidelines
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We include broader societal impacts in our limitations subsection of the
discussion and in our ethics statement after the references.

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).
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11.

12.

13.

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The RADCURE dataset and all models used in this study are already publicly
available.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have properly cited the RADCURE dataset and follow the license terms
listed on The Cancer Imaging Archive.

Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Detailed information about our code, dataset, and findings are available in our
GitHub repository/README.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

30


paperswithcode.com/datasets

984
985
986
987

988

989
990

992

993

994

995
996
997
998
999
1000
1001
1002

1003
1004

1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

1026
1027
1028
1029

1030

1031

1032

1033
1034
1035
1036

14.

15.

16.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: We did not use crowdsourcing in our study.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: IRB approval was not needed for this study because we only used de-identified,
publicly-available data from The Cancer Imaging Archive. The original RADCURE dataset
underwent IRB review, but our work did not involve crowdsourcing or patient identifiable
information.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: We did not use LLMs in our research

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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