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Abstract

Causal machine learning (CML) enables individualized estimation of treatment1

effects, offering critical advantages over traditional correlation-based methods.2

However, existing approaches for medical survival data with censoring such as3

causal survival forests estimate effects at fixed time points, limiting their ability4

to capture dynamic changes over time. We introduce Causal Analysis for Sur-5

vival Trajectories (CAST), a novel framework that models treatment effects as6

continuous functions of time following treatment. By combining parametric and7

non-parametric methods, CAST overcomes the limitations of discrete time-point8

analysis to estimate continuous effect trajectories. Using the RADCURE dataset9

[1] of 2,651 patients with head and neck squamous cell carcinoma (HNSCC) as a10

clinically relevant example, CAST models how chemotherapy and radiotherapy11

effects evolve over time at the population and individual levels. By capturing the12

temporal dynamics of treatment response, CAST reveals how treatment effects13

rise, peak, and decline over the follow-up period, helping clinicians determine14

when and for whom treatment benefits are maximized. This framework advances15

the application of CML to personalized care in HNSCC and other life-threatening16

medical conditions.17

1 Introduction18

Methodological gap: A critical limitation in most traditional statistical and machine learning (ML)19

methods applied to clinical outcomes data is their correlational nature. These methods are designed20

to identify associations between variables but are not equipped to answer causal questions, which21

are central to understanding treatment effects. In clinical research, the key questions—such as22

how a treatment impacts survival or which patients benefit most—are inherently causal. However,23

correlational approaches cannot disentangle confounding factors or provide interpretable estimates of24

causal relationships, leaving a significant methodological gap [2, 3].25

Causal machine learning (CML) offers a promising solution by explicitly modeling causal effects26

rather than associations. CML is rapidly advancing, providing tools to estimate individualized and27

subgroup-specific treatment effects [4]. However, current causal forest methods adapted for survival28

data fall short in one crucial aspect: they estimate treatment effects only at discrete time horizons29

after treatment [5, 6, 7]. This approach fails to capture the continuous evolution of treatment effects30

over time, limiting their ability to address dynamic clinical questions.31

Proposed approach: Our novel method, CAST (Causal Analysis for Survival Trajectories), fills32

this gap by extending causal survival forests to provide continuous treatment effect estimates as33

a function of time after treatment. CAST combines parametric and non-parametric techniques to34
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model the temporal dynamics of treatment effects, offering a more nuanced and clinically relevant35

understanding of how treatments impact outcomes over time [8, 9]. We build upon previous work36

by Shuryak et al. [10] to extend it to chemotherapy and continuous-time causal modeling. By37

addressing this methodological gap, CAST enables clinicians to answer the causal questions that38

matter most for personalized care and evidence-based decision-making. While traditional approaches39

estimate treatment effects at discrete time points [11, 12], CAST provides a continuous mathematical40

framework, analyzing how treatment benefits evolve over the entire follow-up period. In the context41

of cancer therapy, this is key: biological responses unfold through complex temporal dynamics that42

include initial tumor control followed by potential diminishing returns due to repopulation, late43

toxicities, and other factors [13, 14, 15].44

Clinical motivation: We evaluate CAST in the context of head and neck squamous cell carcinoma45

(HNSCC), where treatment responses evolve over time and vary across patient subgroups. HNSCC,46

ranked as the seventh most prevalent cancer worldwide, includes malignancies of the oral cavity,47

pharynx, larynx, and other surrounding regions of the head and neck. With incidence rates rising48

rapidly, HNSCC is projected to increase nearly 30 % annually by 2030 [16]. Historically, most49

HNSCC cases were attributed to excessive alcohol and tobacco use, with heavy exposure increas-50

ing risk by up to 40-fold [17]. However, the past two decades have seen an increase in human51

papillomavirus-related (HPV) cases, and HPV-associated HNSCC is expected to surpass tobacco and52

alcohol induced tumors in the next five years. This has caused a shift in the demographic profile of53

HNSCC patients: HPV-related cases tend to occur among younger populations (<65), particularly in54

men [18, 19, 20].55

To treat HNSCC, clinicians use combinations of surgery, chemotherapy, and radiation. Intensity-56

modulated radiation therapy (IMRT) has become the standard of care for its precision in targeting57

tumors while sparing healthy tissue [21, 22]. Studies show that IMRT’s impact on patient quality of58

life follows a time-varying trajectory, with distinct peaks of symptom burden and phases of recovery59

[23, 24]. In a similar vein, chemotherapy—involving agents that disrupt the DNA of rapidly dividing60

cells—follows a variable treatment timeline [25]. Patients are often advised that responses can differ61

widely based on individual factors, with effects emerging gradually and no fixed timeline for when62

benefits or side effects will manifest [26, 27].63

The challenge of analyzing radiation therapy and chemotherapy outcomes lies not just in the com-64

plexity of the treatment itself, but in the multitude of factors that influence both treatment assignment65

and patient response. Traditional correlation-based analyses can mask important causal relationships,66

leading to suboptimal treatment decisions. To the best of our knowledge, CAST represents the67

first causal machine learning framework to explicitly model how chemotherapy benefits for patient68

survival rise and fall over the entire follow-up period.69

Figure 1: Overview of the CAST framework
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Modeling philosophy: Our novel machine learning approach leverages causal survival forests to70

handle high-dimensional data while automatically discovering treatment effect heterogeneity, and71

differs from conventional survival analysis methods by focusing explicitly on estimating causal72

treatment effects while accounting for confounding factors through careful propensity score modeling.73

As demonstrated in Figure 1, the framework incorporates both parametric modeling to capture74

characteristic rise and fall patterns of chemotherapy effects and non-parametric approaches to reveal75

subtle inflection points corresponding to biological phase transitions in treatment response.76

We implemented a variety of methods to ensure a robust assessment of the data and to verify key causal77

inference assumptions, such as overlap (positivity) and no unmeasured confounding (ignorability).78

We used elastic net logistic regression with repeated k-fold cross-validation to estimate propensity79

scores for chemotherapy. Patients with scores outside the range [0.1, 0.9] were trimmed to ensure80

overlap between treatment groups. We then conducted refutation tests, including dummy outcome81

and negative control analyses, to assess the robustness of our causal effect estimates. Using SHapley82

Additive exPlanations (SHAP) values, we generated interpretable insights into how patient and disease83

characteristics impact treatment outcomes, allowing for practical application in clinical settings.84

Significance: This research applies causal survival forests to identify how patient and disease85

characteristics—like age and HPV status—influence treatment effectiveness. By combining advanced86

causal inference with CAST’s temporal modeling, we can determine not just who benefits most from87

chemotherapy, but also when these benefits peak and fade. This temporal insight is key for designing88

targeted interventions and optimizing outcomes in HNSCC. CAST also demonstrates the broader89

potential of integrating machine learning into personalized cancer care.90

Our contributions are as follows:91

• CAST is, to our knowledge, the first framework to unify causal survival forests with92

parametric and non-parametric models for estimating continuous-time treatment effects,93

offering a new paradigm for temporal causal inference in survival analysis.94

• CAST produces clinically interpretable metrics such as peak effect time, maximum benefit,95

and effect half-life, enabling richer understanding of treatment response dynamics.96

• We introduce a rigorous validation framework incorporating propensity score modeling,97

dummy outcome tests, synthetic tests, and SHAP-based heterogeneity analysis.98

• We apply CAST to a large real-world chemotherapy and radiotherapy dataset (RADCURE),99

uncovering actionable insights into when and for whom treatment benefits peak and decline.100

2 Related Work101

Clinical predictors of treatment response: Numerous studies have shown that treatment response102

in HNSCC patients is highly heterogeneous, influenced by clinical and demographic factors such as103

HPV status, gender, and disease stage. For instance, HPV-positive HNSCC—more common among104

younger patients—tends to be more sensitive to treatment and is associated with more favorable105

survival outcomes compared to HPV-negative disease [28]. Historically, studies that group patients by106

their clinical characteristics reveal significant variation in survival [29, 30]. These findings motivate107

the need for methods that can model treatment effect heterogeneity as well as average treatment108

effects (ATE)—an aim CAST directly addresses.109

Predictive survival models: Traditional models such as the Cox proportional hazards model as-110

sume proportional hazards and constant treatment effects over time, limiting their flexibility in111

capturing nonlinear and time-varying dynamics [31, 32]. More flexible models—including random112

survival forests (RSF), deep survival models (e.g., DeepSurv), and Bayesian additive regression trees113

(BART)—have demonstrated improved risk prediction performance [33], notably in applications114

such as cervical cancer survival [34, 35]. However, these models are fundamentally predictive, not115

causal—they estimate outcome risk without isolating treatment effects or correcting for confounding116

unless explicitly adapted with causal modeling components.117

Causal inference for survival analysis: Recent advances in causal machine learning have introduced118

methods designed to estimate individualized treatment effects (ITEs) from observational time-to-event119

data [36, 37]. These include meta-learners (e.g., T-learner, S-learner) [38], G-formula-based two-120

learners [39], double robust estimators (e.g., AIPCW and AIPTW) [40], and causal survival forests121
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[41]. While these causal approaches are advantageous for treatment effect estimation compared with122

traditional survival analysis, they typically estimate effects at discrete time points, limiting their123

ability to model how treatment responses evolve continuously throughout follow-up [42, 43].124

Modeling time-varying treatment effects: In oncology, treatment effects often unfold through125

distinct biological phases—initial tumor control, plateauing benefit, and eventual decline due to126

late toxicities or tumor repopulation [44, 45]. Studies have revealed that the prognostic influence127

of covariates such as age, race, and sex changes over the follow-up period [46, 47]. However, most128

existing methods either assume constant effects or treat follow-up intervals independently. CAST129

addresses this gap by modeling treatment effects as continuous functions of time. By integrating130

both parametric (e.g., quadratic fits) and non-parametric (e.g., smoothing splines) components, CAST131

captures biologically grounded patterns in treatment efficacy over time. Unlike previous approaches,132

CAST provides a unified, continuous-time framework that reveals the full temporal trajectory of133

treatment response, enabling more precise and interpretable causal insights.134

3 Methodology135

Problem Formulation: We address the challenge of estimating time-varying treatment effects in136

survival analysis, specifically focusing on how the impact of medical interventions evolves over time.137

Let D = {(Xi,Wi, Ti, δi)}ni=1 represent our dataset where:138

• Xi ∈ Rp is a vector of covariates for subject i139

• Wi ∈ {0, 1} is the treatment indicator140

• Ti is the observed survival time (either event time or censored time)141

• δi is the event indicator (1 if event observed, 0 if censored)142

The causal survival forest method is a powerful tool for estimating average and subgroup-specific143

treatment effects for survival outcomes, but it estimates the effects only at specific discrete times after144

treatment. This fails to capture the continuous temporal evolution of treatment responses, particularly145

in contexts like radiation therapy and chemotherapy where biological effects can substantially rise146

and fall over time.147

3.1 Causal Machine Learning Framework148

Our approach uses a CML framework to isolate treatment effects beyond traditional correlational149

methods. While conventional machine learning identifies correlations between variables, CML allows150

us to understand the causal impact of interventions [48]. This distinction is fundamental to our study:151

our goal is not just to predict outcomes but to dissect how treatments shape survival outcomes across152

patient subgroups.153

Given the observational non-randomized nature of our clinical data, we rely on the following154

assumptions:155

• Unconfoundedness: Treatment assignment is independent of potential outcomes conditional156

on observed covariates (also called ignorability or no unmeasured confounding)157

• Positivity (Overlap): Every subject has a non-zero probability of receiving each treatment158

• Consistency: A subject’s observed outcome under their received treatment equals their159

potential outcome for that treatment160

• Non-interference: One subject’s treatment does not affect another subject’s outcome161

To address selection bias in observational data, we performed propensity score modeling using elastic162

net logistic regression: ê(X) = P (W = 1|X) with hyperparameters optimized through 10-fold163

cross-validation. Patients with extreme propensity scores (outside [0.10, 0.90]) are trimmed to ensure164

overlap between treatment groups. See Appendix C.1 for balance diagnostics.165

3.2 CAST: Causal Analysis for Survival Trajectories166

The theoretical foundation of CAST rests on modeling the effect trajectory as a function of time. Our167

target estimand is the conditional average treatment effect (CATE) at time t, given covariates X:168
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τ(x, t) = E[Y (1, t)− Y (0, t) | X = x] (1)

where Y (w, t) represents the potential outcome at time t under treatment w, and x denotes an169

individual’s covariates. We consider two types of time-varying estimands: the difference in restricted170

mean survival time (RMST) and the difference in survival probability (SP) between treatment groups.171

Unlike prior methods that estimate effects at fixed time points, CAST models treatment effects as172

smooth functions of time. We use a smoothing spline to estimate the continuous effect trajectory, and173

a quadratic fit to derive interpretable metrics.174

3.2.1 Parametric Modeling Component175

Our parametric modeling component employs a quadratic function: τ(t) = β0 + β1t + β2t
2 to176

capture the rise and fall of treatment effects. The parameters are estimated using weighted least177

squares:178

min
β0,β1,β2

∑
t

w(t)(τ̂(t)− (β0 + β1t+ β2t
2))2 (2)

where w(t) = 1/σ2(t) are weights based on the variance of the effect estimates at each timepoint.179

This approach yields clinically interpretable parameters, including the peak effect time (tpeak =180

−β1/2β2), the maximum effect magnitude (τ(tpeak)), and the treatment effect half-life, defined as181

the time it takes for the effect to diminish by 50% from its peak.182

These parameters directly quantify key clinical aspects of the treatment response: when the maximum183

benefit occurs, how large that benefit is, and how quickly it diminishes—information critical for184

clinical decision-making that traditional methods cannot provide. See Appendix C.3 for fitted185

coefficients and summary statistics from the parametric model.186

187

Algorithm 1 CAST-PARAMETRIC

1: Input: HorizonsH, ATEs {τ̂h}, SEs {σ̂h}
2: Output: Temporal function τ̂(t), peak time t∗, half-

life λ
3: W ← {wh = 1/σ̂2

h} ▷ Inverse-variance weights
4: τ̂(t)← FITQUADRATICMODEL(H, τ̂ ,W)
5: β1, β2 ← coefficients from fit
6: if β2 ̸= 0 then
7: t∗ ← −β1/(2β2) ▷ Time of peak effect
8: λ← SOLVE(τ̂(t∗ + λ) = τ̂(t∗)/2)
9: else

10: t∗, λ← NA ▷ Degenerate case
11: end if
12: return τ̂(t), t∗, λ

CAST-Parametric: This algorithm188

models treatment effects over time189

using a weighted quadratic fit to190

the estimated ATEs across discrete191

horizons. Inverse-variance weighting192

emphasizes more confident estimates.193

The peak effect time is derived194

analytically, while the half-life is195

computed by numerically solving for196

the point where the curve falls to half197

its maximum. This approach yields198

interpretable summaries of treatment199

dynamics, aligning with radiobiologi-200

cal phenomena such as delayed benefit201

and diminishing returns.202

203

3.2.2 Non-parametric Modeling Component204

Our non-parametric component employs cross-validated smoothing splines:205

τ(t) = g(t), where g = argmin
f

{∑
t

w(t) (τ̂(t)− f(t))
2
+ λ

∫
f ′′(t)2 dt

}
(3)

where λ is selected via cross-validation. This approach adapts to the data without imposing a prede-206

termined functional form, revealing subtle inflection points in the effect trajectory that correspond to207

biological phase transitions in the treatment response.208

We calculate the first and second derivatives of the fitted spline to identify key features of the treatment209

effect trajectory: local maxima and minima where g′(t) = 0, acceleration and deceleration phases210

based on sign changes in g′′(t), and inflection points where g′′(t) = 0.211
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The non-parametric model complements the parametric fit by capturing complex, less predictable212

patterns—especially during later follow-up periods, when biological processes like accelerated213

repopulation and late toxicities may cause deviations from the smooth quadratic trend.214

Algorithm 2 CAST-NONPARAMETRIC

1: Input: HorizonsH, ATEs {τ̂h}, SEs {σ̂h}
2: Output: Spline τ̂(t), peak t∗, inflections {ti}
3: W ← {wh = 1/σ̂2

h}
4: τ̂(t)← FITSPLINE(H, τ̂ ,W)
5: D1(t), D2(t) ← first and second derivatives of

τ̂(t)
6: t∗ ← ARGMAX(τ̂(t)) ▷ Peak effect
7: {ti} ← ZEROCROSSINGS(D2(t)) ▷ Inflection

points
8: if t∗ not in [min(H),max(H)] then
9: t∗ ← NA

10: end if
11: return τ̂(t), t∗, {ti}

CAST-Nonparametric: This algorithm215

fits a smoothing spline to the estimated216

treatment effects across time using217

inverse-variance weights. It computes218

the first and second derivatives of219

the spline to identify key dynamics:220

the peak effect time via the curve’s221

global maximum and biological222

phase transitions via inflection points.223

This method captures delayed and224

non-monotonic effect trajectories225

often missed by parametric models,226

reflecting immune response, tissue227

adaptation, or timing heterogene-228

ity.229

230

CAST-Parametric and CAST-Nonparametric offer complementary modeling capabilities. The para-231

metric method provides interpretable summary statistics such as peak effect timing and half-life,232

which are clinically intuitive and useful for hypothesis testing under smooth treatment dynamics. In233

contrast, the spline-based approach relaxes these assumptions and flexibly captures nonlinear, delayed,234

or multi-phase effects. Together, these models allow us to evaluate the robustness of temporal patterns235

and support a wide range of clinical interpretations.236

Theoretical Guarantees: See Appendix A for theorem statements establishing consistency of CAST237

estimators and identifiability of time-varying treatment effects under standard causal assumptions.238

4 Experiments239

Dataset: We use the RADCURE observational dataset from The Cancer Imaging Archive (TCIA), a240

publicly accessible resource on multiple types of cancer. The dataset spans from 2005 to 2017 and241

contains clinical, demographic, and treatment metadata for 3,346 patients. We select 2,651 patients242

with pathologically confirmed HNSCC and a defined tumor site. While the dataset primarily focuses243

on oropharyngeal cancer, it also includes laryngeal, nasopharyngeal, and hypopharyngeal cases. The244

binary treatment variable used in CAST is chemotherapy (yes/no) with radiotherapy covariates.245

Preprocessing: We filtered incomplete profiles and standardized continuous variables for compara-246

bility. We used radiotherapy data—dose/fraction, number of fractions, and total radiation treatment247

time duration in days—to calculate Biologically Effective Dose (BED) values, applying both dose-248

independent (DI) and dose-dependent (DD) models with established radiobiological parameters [10].249

We then partitioned the dataset into training (75%) and testing (25%) sets, maintaining consistent250

event rates across both subsets for unbiased evaluation of treatment effects. See Appendix B for more251

on data preprocessing and computing resources.252

Propensity Score Modeling: To address selection bias, we used elastic net logistic regression to253

estimate the likelihood of a person receiving treatment, based on their characteristics. Hyperparame-254

ters were optimized through 10-fold cross-validation: elastic net mixing parameter α ∈ [0.01, 0.99]255

and regularization parameter λ chosen from a grid of 100 values. Propensity score distributions were256

assessed through both Pearson and Spearman correlation matrices (α = 0.05, Bonferroni-corrected)257

and visualized using kernel density estimation. Patients with scores outside [0.10, 0.90] were trimmed258

to ensure overlap, with sensitivity analyses conducted at thresholds {0.01, 0.03, 0.05, 0.07, 0.10}.259

Implementation & Heterogeneity Analysis260

We used causal survival forests with Nelson-Aalen estimation to handle right-censoring, estimating261

treatment effects over 12, 24, . . . , 120 months post-treatment. Our forest was constructed with 5,000262
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trees to ensure robust estimation of heterogeneous effects across the patient population. Sensitivity263

analyses using different numbers of trees showed similar results.264

For each time horizon, we independently trained a causal forest model using the training dataset,265

with covariates properly standardized and propensity scores incorporated through doubly-robust266

estimation. The forests were configured with tuning parameters selected through cross-validation,267

including minimum node size, split regularization, and sampling fraction. Prediction uncertainty268

was quantified through the infinitesimal jackknife method, providing variance estimates for each269

individual treatment effect. This approach allowed us to capture both average treatment effects and270

their heterogeneity across different patient subgroups at each follow-up time point, while properly271

accounting for the right-censoring inherent in survival data [49, 50].272

Treatment effect heterogeneity was analyzed using approximate SHAP values calculated via Monte273

Carlo sampling with 1,000 iterations and a convergence threshold of ϵ = 0.01. The SHAP values were274

normalized such that
∑

i SHAPi corresponds to the difference between the individual and mean model275

predictions. This approach revealed which patient characteristics most strongly influenced treatment276

response, with HPV status and smoking history emerging as particularly important predictors. We277

visualized the relationship between feature values and their SHAP contributions to identify subgroups278

with differential treatment benefits.279

Validation Methods280

We implemented several validation strategies as refutation tests for the causal effect estimates in281

our experiments. For each test, we computed summary statistics (mean, standard deviation, max282

deviation) to assess model robustness, using a consistent 5,000-tree specification and random seeds283

for reproducibility.284

Dummy Outcome Tests: We shuffled treatment assignments and outcome times across 20 repetitions285

for each time horizon (12-120 months), generating a null distribution to assess false positive rates.286

Boxplots confirmed the null hypothesis centered around zero, showing that the causal effect estimates287

for each horizon were centered around zero as expected. The variance of these estimates increased288

with increasing horizon time due to the decreasing number of patients remaining at risk at longer289

times. The results suggested good reliability of the estimates for times ≤ 60 months.290

Sensitivity to Additional Covariates: We introduced synthetic covariates with varying signal291

strengths of correlation with treatment assignment (0.1, 0.3, 0.5) that were unrelated to both treat-292

ment assignment and outcome, in order to assess the sensitivity of treatment effect estimates to293

irrelevant/spurious variables.294

Negative Control Tests: Irrelevant binary treatments were randomly assigned to ensure the model295

did not detect spurious effects. Treatment effects for these were zero across all time horizons.296

Robustness to Irrelevant Features: Five random noise variables were added, and changes in297

treatment effect estimates and feature importance were monitored to ensure no significant impact.298

5 Results299

We present empirical results of CAST on the RADCURE dataset, focusing on time-varying treatment300

effects, patient-level heterogeneity, and robustness validation. As shown in Figure 2 below, CAST301

reveals a non-monotonic trajectory in chemotherapy benefit: survival gains increase early post-302

treatment, plateau in the mid-term, and gradually decline thereafter. Both the parametric and303

non-parametric models suggest a peak in benefit between 50 and 65 months, though the effect304

trajectory remains relatively stable during this period. These trends indicate that chemotherapy305

is most impactful in the first few years post-treatment, with gradual tapering over time. This is306

potentially due to recurrence, long-term toxicity, or competing risks. On the testing set, chemotherapy307

increased survival probability by 15.2 ± 6.0% at 3 years and 15.0 ± 6.7% at 5 years, with RMST308

gains of 3.6± 1.4 and 7.1± 2.6 months, respectively.309

Individualized effect distributions: Treatment effect estimates showed notable variation across310

patients. While most individuals experienced positive effects, CAST identified a long right tail of high311

responders and a small subset with near-zero or negative effects. However, some of this variation may312
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Figure 2: Comparison of time-varying treatment effect models using CAST. The red curve shows
the parametric estimate with 95% CIs; the blue curve shows the non-parametric spline. Black dots
denote average treatment effects ± standard errors on the survival probability scale.

reflect unmeasured confounding or estimation noise rather than true heterogeneity. These patterns313

highlight the potential for personalized models in survival-based decision-making.314

Subgroup variation: To identify drivers of treatment heterogeneity, we computed Pearson and315

Spearman correlation matrices between clinical covariates, SHAP values, and estimated treatment316

effects (Figure 3a,b). Pearson captures linear relationships, while Spearman reflects monotonic trends,317

offering complementary views of variable influence. Smoking pack-years showed the strongest and318

most consistent negative correlation across both matrices, reinforcing its role in reducing chemother-319

apy benefit. HPV positivity and younger age also exhibited modest positive correlations with SHAP320

values and effect estimates, aligning with known clinical patterns. Additional SHAP visualizations321

and discussion are provided in Appendix C.2.322

(a) Pearson Correlation (b) Spearman Correlation

Figure 3: Correlation matrices between covariates, SHAP values, and treatment effects

Robustness & Effect Heterogeneity: CAST passed multiple validation checks, including dummy323

outcome tests, synthetic confounder experiments, and trimming sensitivity analyses. For the synthetic324

confounder tests, only the highest strengths of correlation with treatment assignment distorted the325

causal effect estimates dramatically, whereas smaller strengths had minimal impact. In the robustness326

checks with irrelevant features, as expected, the noise variables were largely ignored by the CSF327
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and did not substantially affect the causal effect estimates. Individualized treatment effect estimates328

exhibited a long right tail of high responders and a subset with near-zero or negative benefit. While329

some of this variation may reflect noise, the observed patterns indicate potential for personalized330

treatment modeling. Additional visualizations are provided in Appendix C.4.331

6 Discussion332

The patterns uncovered by CAST have important clinical implications. The observed peak in survival333

benefit around four to five years post-treatment suggests that chemotherapy is most effective for short334

to mid-term local control but may not sustain long-term survival. This decline could reflect tumor335

repopulation, distant progression, or delayed toxicity [51]. However, since fewer patients remained at336

risk (did not experience a death or censoring event) at longer follow-up times, reliability of the causal337

effect estimates at long times is reduced compared with shorter times, as shown by our dummy tests.338

These findings support the value of adaptive monitoring and adjunct strategies to extend therapeutic339

benefit. The heterogeneity revealed by CAST emphasizes the need for treatment personalization.340

Correlation and SHAP-based analysis together identified HPV positivity and smoking as the most341

influential factors. Favorable outcomes in HPV-positive patients align with known radiosensitivity342

and impaired DNA repair, while smoking was linked to reduced benefit—consistent with mechanisms343

like tumor hypoxia and immunosuppression. Age also showed a modest effect, with younger patients344

generally benefiting more; an inflection point around 50–60 years may be clinically meaningful345

(Figure 3 and Figure 4 in Appendix C.2). In contrast, tumor site and TNM stage had limited influence346

on treatment effect heterogeneity, despite their prognostic relevance.347

These findings align with efforts to tailor treatment by biologic subgroup. CAST offers a data-348

driven framework to support such stratifications and generate hypotheses for future trials. Rather349

than replacing existing tools, it complements them by modeling continuous-time dynamics and350

revealing patient-level variation. More broadly, this study shows how combining mechanistic351

modeling with causal machine learning can enhance the analysis of observational data. By embedding352

radiobiological insight into CAST using BED variants from different tumor repopulation models, we353

uncover treatment effects that align with known biology while also revealing discrepancies, such as354

stronger chemotherapy benefits than reported in prior meta-analyses. This offers a powerful way to355

complement clinical trials and generate new hypotheses.356

Limitations and Broader Impacts357

Data limitations: The dataset exhibits substantial right-censoring: while 88.9% of patients remain358

in follow-up at one year, only 22.2% do so by year six. This may bias long-term survival estimates359

and obscure treatment effects that manifest later in time. External validity: The data come from a360

single institution (University Health Network, Toronto) and are predominantly male (80%), limiting361

generalizability to broader populations, especially women. Causal assumptions: Like all causal362

inference methods, CAST relies on the assumption of no unmeasured confounding. Important factors363

such as diet, lifestyle, or genetic risk—potentially related to both treatment and outcome—are not364

included. Methodological scope: From a machine learning perspective, CAST supports only binary365

treatment variables. Extending it to model continuous dosing, multi-arm comparisons, or longitudinal366

interventions remains an important direction for future work.367

7 Conclusion368

In this paper, we present CAST, which is to our knowledge the first framework for modeling how369

treatment effects change over time using parametric and non-parametric techniques in the context370

of causal survival analysis with multiple features. CAST extends the utility of causal survival371

forests from estimating effects at discrete horizon times to continuous-time modeling. Applied to372

chemotherapy for HNSCC, CAST estimates individualized treatment trajectories and highlights when373

treatment effects peak and decline. Our results show that CAST is robust and interpretable, offering a374

general framework for modeling time-varying treatment effects across medical contexts. By isolating375

the causal influence of patient characteristics and capturing the dynamics of treatment response,376

CAST supports more personalized and adaptive care. This helps clinicians identify critical windows,377

tailor interventions to individual risk profiles, and refine strategies as new evidence emerges.378

9



References379

[1] M. L. Welch, S. Kim, A. Hope, S. H. Huang, Z. Lu, J. Marsilla, M. Kazmierski, K. Rey-380

McIntyre, T. Patel, B. O’Sullivan, J. Waldron, J. Kwan, J. Su, L. Soltan Ghoraie, H. B. Chan,381

K. Yip, M. Giuliani, Neck Site Group Princess Margaret Head, S. Bratman, and T. Tadic.382

Computed tomography images from large head and neck cohort (radcure) (version 4). The383

Cancer Imaging Archive, 2023. doi: 10.7937/J47W-NM11.384

[2] M. Hung, J. Bounsanga, and M. W. Voss. Interpretation of correlations in clinical research.385

Postgraduate Medicine, 129(8):902–906, November 2017. doi: 10.1080/00325481.2017.386

1383820.387

[3] H. A. Miot. Correlation analysis in clinical and experimental studies. Jornal Vascular Brasileiro,388

17(4):275–279, December 2018. doi: 10.1590/1677-5449.174118.389

[4] K. Shiba and K. Inoue. Harnessing causal forests for epidemiologic research: key considerations.390

American Journal of Epidemiology, 193(6):813–818, June 2024. doi: 10.1093/aje/kwae003.391

[5] A. Venkatasubramaniam, B. A. Mateen, B. M. Shields, A. T. Hattersley, A. G. Jones, S. J.392

Vollmer, and J. M. Dennis. Comparison of causal forest and regression-based approaches393

to evaluate treatment effect heterogeneity: an application for type 2 diabetes precision394

medicine. BMC Medical Informatics and Decision Making, 23(1):110, June 2023. doi:395

10.1186/s12911-023-02207-2.396

[6] G. Solana-Lavalle, M. D. Cusimano, T. Steeves, R. Rosas-Romero, and P. N. Tyrrell. Causal397

forest machine learning analysis of parkinson’s disease in resting-state functional magnetic res-398

onance imaging. Tomography, 10(6):894–911, June 2024. doi: 10.3390/tomography10060068.399

[7] Yifan Cui, Michael R. Kosorok, Erik Sverdrup, Stefan Wager, and Ruoqing Zhu. Estimating400

heterogeneous treatment effects with right-censored data via causal survival forests. Journal of401

the Royal Statistical Society: Series B, 85(2):380–403, 2023. doi: 10.1093/jrsssb/qkac020.402

[8] C. Voinot, C. Berenfeld, I. Mayer, B. Sebastien, and J. Josse. Causal survival analysis, estimation403

of the average treatment effect (ate): Practical recommendations. arXiv preprint, January 2025.404

doi: 10.48550/arXiv.2501.05836.405

[9] X. Meng and I. Bojinov. Time-varying causal survival learning. arXiv preprint, March 2025.406

doi: 10.48550/arXiv.2503.00730.407

[10] I. Shuryak, E. Wang, and D. J. Brenner. Understanding the impact of radiotherapy fractionation408

on overall survival in a large head and neck squamous cell carcinoma dataset: A comprehensive409

approach combining mechanistic and machine learning models. Frontiers in Oncology, 14:410

1422211, August 2024. doi: 10.3389/fonc.2024.1422211.411

[11] L. Hu, J. Ji, H. Joshi, E. R. Scott, and F. Li. Estimating the causal effects of multiple intermittent412

treatments with application to covid-19. Statistics in Medicine, 42(3):345–362, January 2023.413

doi: 10.1002/sim.9425.414

[12] S. Miller. Causal forest estimation of heterogeneous and time-varying environmental policy415

effects. Journal of Environmental Economics and Management, 103:102337, 2020. doi:416

10.1016/j.jeem.2020.102337.417

[13] Z. Huang, N. A. Mayr, M. Gao, S. S. Lo, J. Z. Wang, G. Jia, and W. T. C. Yuh. The onset time of418

tumor repopulation for cervical cancer: first evidence from clinical data. International Journal419

of Radiation Oncology*Biology*Physics, 84(2):478–484, October 2012. doi: 10.1016/j.ijrobp.420

2011.12.037.421

[14] C. Petersen and F. Würschmidt. Late toxicity of radiotherapy: a problem or a challenge for422

the radiation oncologist? Breast Care (Basel), 6(5):369–374, October 2011. doi: 10.1159/423

000334220.424

[15] I. Shuryak, E. J. Hall, and D. J. Brenner. Dose dependence of accelerated repopulation in head425

and neck cancer: Supporting evidence and clinical implications. Radiotherapy and Oncology,426

127(1):20–26, April 2018. doi: 10.1016/j.radonc.2018.02.015.427

10



[16] D. E. Johnson, B. Burtness, C. R. Leemans, V. W. Y. Lui, J. E. Bauman, and J. R. Grandis. Head428

and neck squamous cell carcinoma. Nature Reviews Disease Primers, 6(92):1–22, November429

2020. doi: 10.1038/s41572-020-00224-3.430

[17] A. Barsouk, J. S. Aluru, P. Rawla, K. Saginala, and A. Barsouk. Epidemiology, risk factors, and431

prevention of head and neck squamous cell carcinoma. Medical Sciences, 11(2):42, June 2023.432

doi: 10.3390/medsci11020042.433

[18] M. E. Sabatini and S. Chiocca. Human papillomavirus as a driver of head and neck cancers.434

British Journal of Cancer, 122(3):306–314, February 2020. doi: 10.1038/s41416-019-0602-7.435

[19] D. C. Beachler and G. D’Souza. Nuances in the changing epidemiology of head and neck436

cancer. Oncology (Williston Park), 24(10):924–926, September 2010. PMID: 21138173.437

[20] G. M. P. van Kempen, R. J. Baatenburg de Jong, and R. J. H. Borra. Hpv and head and neck438

cancers: Towards early diagnosis and prevention. Oral Oncology, 128:105214, September 2022.439

doi: 10.1016/j.oraloncology.2022.105214.440

[21] P.-H. Mackeprang, K. Bryjova, A. E. Heusel, D. Henzen, M. Scricciolo, and O. Elicin. Consid-441

eration of image guidance in patterns of failure analyses of intensity-modulated radiotherapy442

for head and neck cancer: a systematic review. Radiation Oncology, 19(1):30, March 2024. doi:443

10.1186/s13014-024-02421-w.444

[22] C. Kut, H. Quon, and X. S. Chen. Emerging radiotherapy technologies for head and neck445

squamous cell carcinoma: challenges and opportunities in the era of immunotherapy. Cancers446

(Basel), 16(24):4150, December 2024. doi: 10.3390/cancers16244150.447

[23] S. R. Rathod, S. Gupta, S. Ghosh-Laskar, V. Murthy, A. Budrukkar, J. Agarwal, and K. Kannan.448

Quality-of-life (qol) outcomes in patients with head and neck squamous cell carcinoma treated449

with intensity-modulated radiation therapy (imrt) compared to three-dimensional conformal450

radiotherapy (3d-crt): Evidence from a prospective randomized study. Oral Oncology, 49(6):451

634–640, June 2013. doi: 10.1016/j.oraloncology.2013.02.013.452

[24] A. Viganò, F. De Felice, N. A. Iacovelli, D. Alterio, R. Ingargiola, A. Casbarra, N. Facchinetti,453

O. Oneta, A. Bacigalupo, E. Tornari, S. Ursino, F. Paiar, O. Caspiani, A. Di Rito, D. Musio,454

P. Bossi, P. Steca, B. A. Jereczek-Fossa, L. Caso, N. Palena, A. Greco, and E. Orlandi. Quality455

of life changes over time and predictors in a large head and neck patients’ cohort: secondary456

analysis from an italian multi-center longitudinal, prospective, observational study—a study457

of the italian association of radiotherapy and clinical oncology (airo) head and neck working458

group. Supportive Care in Cancer, 31(4):220, March 2023. doi: 10.1007/s00520-023-07661-2.459

[25] R. Yang, A. C. Freeman-Cook, H. C. Kurnik, and D. C. Kirouac. Dissecting variability in460

responses to cancer chemotherapy through systems pharmacology. Clinical Pharmacology &461

Therapeutics, 88(1):34–38, July 2010. doi: 10.1038/clpt.2010.96.462

[26] Janet Tu. How long does it take chemotherapy to shrink tumors? Cancerwise, MD Ander-463

son Cancer Center, 2024. https://www.mdanderson.org/cancerwise/how-long-does-it-take-464

chemotherapy-to-shrink-tumors.h00-159696756.html.465

[27] UCSF Health. Coping with chemotherapy. Patient Education, UCSF Health, 2025.466

https://www.ucsfhealth.org/education/coping-with-chemotherapy.467

[28] Y. Sun, Z. Wang, S. Qiu, and R. Wang. Therapeutic strategies of different hpv status in head and468

neck squamous cell carcinoma. International Journal of Biological Sciences, 17(4):1104–1118,469

March 2021. doi: 10.7150/ijbs.58077.470

[29] K. K. Ang, J. Harris, R. Wheeler, R. Weber, D. I. Rosenthal, P. M. Nguyen-Tan, et al. Human471

papillomavirus and survival of patients with oropharyngeal cancer. New England Journal of472

Medicine, 363(1):24–35, July 2010. doi: 10.1056/NEJMoa0912217.473

[30] Y. Wu, Y. Wang, J. Liu, Y. Wang, Y. Li, Y. Hu, H. Qiu, Z. Liang, Y. Wei, and H. Zhong. Hpv-474

positive status is a favorable prognostic factor in non-nasopharyngeal head and neck squamous475

cell carcinoma patients: a population-based study. Frontiers in Oncology, 11:765, October 2021.476

doi: 10.3389/fonc.2021.765.477

11



[31] N. Jiang, Y. Wu, and C. Li. Limitations of using cox proportional hazards model in car-478

diovascular research. Cardiovascular Diabetology, 23(219), June 2024. doi: 10.1186/479

s12933-024-02302-2.480

[32] L. Xu, S. Jiang, T. Li, and Y. Xu. Limitations of the cox proportional hazards model and481

alternative approaches in metachronous recurrence research. Gastric Cancer, 27(6):1348–1349,482

November 2024. doi: 10.1007/s10120-024-01554-x.483

[33] S. Saha. Survival analysis with bayesian additive regression trees and its application.484

https://huskiecommons.lib.niu.edu/allgraduate-thesesdissertations/5158/, 2017. Northern Illi-485

nois University Thesis.486

[34] F. Zhai, S. Mu, Y. Song, M. Zhang, C. Zhang, and Z. Lv. A random survival forest model for487

predicting residual and recurrent high-grade cervical intraepithelial neoplasia in premenopausal488

women. International Journal of Women’s Health, 16:1775–1787, October 2024. doi: 10.2147/489

IJWH.S485515.490

[35] K. Matsuo, S. Purushotham, B. Jiang, R. S. Mandelbaum, T. Takiuchi, Y. Liu, and L. D.491

Roman. Survival outcome prediction in cervical cancer: Cox models vs deep-learning model.492

American Journal of Obstetrics and Gynecology, 220(4):381.e1–381.e14, April 2019. doi:493

10.1016/j.ajog.2018.12.030.494

[36] Y. Zhang, N. Kreif, V. S. Gc, and A. Manca. Machine learning methods to estimate individual-495

ized treatment effects for use in health technology assessment. Medical Decision Making, 44496

(7):756–769, October 2024. doi: 10.1177/0272989X241263356.497

[37] V. Chernozhukov, C. Hansen, N. Kallus, M. Spindler, and V. Syrgkanis. Applied causal inference498

powered by ml and ai. arXiv preprint, arXiv:2403.02467, March 2024. doi: 10.48550/arXiv.499

2403.02467.500

[38] S. R. Künzel, J. S. Sekhon, P. J. Bickel, and B. Yu. Metalearners for estimating heterogeneous501

treatment effects using machine learning. Proceedings of the National Academy of Sciences of502

the United States of America, 116(10):4156–4165, 2019. doi: 10.1073/pnas.1804597116.503

[39] L. Wen, J. G. Young, J. M. Robins, and M. A. Hernán. Parametric g-formula implementations504

for causal survival analyses. Biometrics, 77(2):740–753, June 2021. doi: 10.1111/biom.13321.505

[40] D. Lee, S. Yang, and X. Wang. Doubly robust estimators for generalizing treatment effects on506

survival outcomes from randomized controlled trials to a target population. Journal of Causal507

Inference, 10(1):415–440, December 2022. doi: 10.1515/jci-2022-0004.508

[41] Erik Sverdrup and Stefan Wager. Treatment heterogeneity with right-censored outcomes using509

grf. ASA Lifetime Data Science Newsletter, 2024. arXiv:2312.02482.510

[42] J. Sun and F. W. Crawford. The role of discretization scales in causal inference with continuous-511

time treatment. arXiv preprint, June 2023. doi: 10.48550/arXiv.2306.08840.512

[43] A. Curth, C. Lee, and M. W. van der Laan. Survite: Learning heterogeneous treatment effects513

from time-to-event data. arXiv preprint, October 2021. doi: 10.48550/arXiv.2110.14001.514

[44] W. J. Allard and L. W. M. M. Terstappen. Ccr 20th anniversary commentary: Paving the way515

for circulating tumor cells. Clinical Cancer Research, 21(13):2883–2885, July 2015. doi:516

10.1158/1078-0432.CCR-14-2559.517

[45] J. A. Langendijk, P. Doornaert, I. M. Verdonck de Leeuw, C. R. Leemans, N. K. Aaronson,518

and B. J. Slotman. Impact of late treatment-related toxicity on quality of life among patients519

with head and neck cancer treated with radiotherapy. Journal of Clinical Oncology, 26(22):520

3770–3776, August 2008. doi: 10.1200/JCO.2007.14.6647.521

[46] A. F. Brouwer, R. Meza, M. C. Eisenberg, C. H. Chapman, M. C. He, S. B. Chinn, A. M.522

Mondul, M. Banerjee, M. Ryser, and J. M. Taylor. Time-varying survival effects for squamous523

cell carcinomas at oropharyngeal and nonoropharyngeal head and neck sites in the united states,524

1973–2015. Cancer, 126(23):5137–5146, December 2020. doi: 10.1002/cncr.33110.525

12



[47] E. K. Roberts, L. Luo, A. M. Mondul, M. Banerjee, C. M. Veenstra, A. B. Mariotto, M. J.526

Schipper, K. He, J. M. G. Taylor, and A. F. Brouwer. Time-varying associations of patient527

and tumor characteristics with cancer survival: an analysis of seer data across 14 cancer528

sites, 2004–2017. Cancer Causes & Control, 35(10):1393–1405, May 2024. doi: 10.1007/529

s10552-024-01888-y.530

[48] V. Chernozhukov, D. Chetverikov, M. Demirer, E. Duflo, C. Hansen, W. Newey, and J. Robins.531

Double/debiased machine learning for treatment and structural parameters. Econometrics532

Journal, 21(1):C1–C68, January 2018. doi: 10.1093/ectj/uty017.533

[49] S. Wager and S. Athey. Estimation and inference of heterogeneous treatment effects using534

random forests. Journal of the American Statistical Association, 113(523):1228–1242, July535

2018. doi: 10.1080/01621459.2017.1319839.536

[50] S. Athey, J. Tibshirani, and S. Wager. Generalized random forests. Annals of Statistics, 47(2):537

1148–1178, April 2019. doi: 10.1214/18-AOS1709.538

[51] I. Shuryak, E. J. Hall, and D. J. Brenner. Optimized hypofractionation can markedly improve539

tumor control and decrease late effects for head and neck cancer. International Journal of540

Radiation Oncology, Biology, Physics, 104(2):272–278, June 2019. doi: 10.1016/j.ijrobp.2019.541

02.025.542

Ethics Statement543

Existing at the intersection of machine learning (ML), healthcare, and causal inference, our work544

inevitably raises ethical considerations. By bringing ML methods to oncology research, we strive545

to advance personalized medicine and treatment strategies. However, our estimates are based on546

observational data and may be biased by unmeasured confounding. While the dataset includes a547

comprehensive description of variables including age, sex, smoking history, and HPV status, it omits548

race, ethnicity, and socioeconomic status data. These factors are key to understanding structural549

barriers to healthcare that could possibly affect outcomes. This risks amplifying existing biases in550
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A Theoretical Justification of CAST554

We provide formal justification for the consistency and identifiability of the time-varying treatment555

effect estimator τ̂(t) used in the CAST framework.556

A.1 Problem Setting557

Let D = {(Xi,Wi, Ti, δi)}ni=1 be a dataset of n i.i.d. samples where: - Xi ∈ Rp is a vector of558

observed covariates, - Wi ∈ {0, 1} is a binary treatment indicator, - Ti is the observed event or559

censoring time, - δi ∈ {0, 1} is the event indicator (1 if the event occurred, 0 if censored).560

Let Y (w, t) denote the potential outcome (e.g., survival status at time t) under treatment w ∈ {0, 1}.561

We define the time-varying Conditional Average Treatment Effect (CATE) as:562

τ(x, t) := E[Y (1, t)− Y (0, t) | X = x].

CAST estimates τ(x, t) using a doubly-robust causal survival forest followed by a spline or quadratic563

fit across time.564

A.2 Assumptions565

We adopt standard causal inference and survival analysis assumptions:566

(A1) Unconfoundedness: (Y (0, t), Y (1, t)) ⊥W | X for all t.567

(A2) Positivity: 0 < P (W = 1 | X) < 1 almost surely.568

(A3) Consistency: Y = Y (W, t) if W is received.569

(A4) Non-informative Censoring: C ⊥ (Y (0, t), Y (1, t)) | X,W for censoring time C.570

(A5) Consistency of Forest Estimators: The causal survival forests used yield consistent571

estimates of conditional survival functions Sw(t | X).572

A.3 Theorem: Pointwise Consistency of τ̂(t)573

[Pointwise Consistency] Under assumptions (A1)–(A5), for each fixed t:574

τ̂(t) := EX [Ŝ1(t | X)− Ŝ0(t | X)]
p−→ τ(t) := EX [S1(t | X)− S0(t | X)]

as n→∞, where Ŝw(t | X) is the estimated conditional survival function under treatment w from575

causal survival forests.576

This follows from: 1. Consistency of Ŝw(t | X) (A5), 2. The continuous mapping theorem, since577

subtraction and expectation are continuous, 3. Trimming enforces overlap (A2), ensuring bounded578

inverse propensity weights.579

A.4 Identifiability of τ(t) from Observational Data580

[Identifiability] Under assumptions (A1)–(A4), the marginal time-varying treatment effect581

τ(t) := EX [E[Y |W = 1, X, T ≥ t]− E[Y |W = 0, X, T ≥ t]]

is identified from observational data using inverse probability weighting or doubly-robust estimation.582

Under unconfoundedness and non-informative censoring, we can consistently estimate the conditional583

means E[Y (w, t) | X] from observed data. The difference in conditional expectations across584

treatment groups yields an identifiable estimator of τ(t).585
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A.5 Estimability of Peak Effect Time in CAST-Parametric586

Let the parametric effect trajectory be:587

τ(t) = β0 + β1t+ β2t
2,

and suppose β̂1, β̂2 are estimated using weighted least squares.588

[Consistency of Estimated Peak Time] If β̂1
p−→ β1, β̂2

p−→ β2 with β2 < 0, then the estimated peak589

time590

t̂∗ = − β̂1

2β̂2

is a consistent estimator of the true peak t∗ = − β1

2β2
.591

This follows from Slutsky’s theorem. Since both β̂1 and β̂2 converge in probability to non-zero limits,592

and the mapping f(a, b) = −a/(2b) is continuous for b ̸= 0, it follows that:593

t̂∗ = − β̂1

2β̂2

p−→ − β1

2β2
= t∗.
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B Expanded Dataset Subsection594

Overview595

Our analysis uses the RADCURE dataset from The Cancer Imaging Archive (TCIA), the largest to596

our knowledge publicly accessible head and neck cancer imaging dataset. The data spans from 2005597

to 2017 and includes computed tomography (CT) images for 3,346 patients, from which we selected598

a subset of 2,651 patients after filtering for only HNSCC cases. These images are linked to clinical,599

demographic, and treatment metadata. Following standardized clinical imaging protocols, the RAD-600

CURE project includes CT images, pictured alongside manually-reviewed contours differentiating601

between the planning tumor volume (PTV) and the organs at risk (OARs). All patients in this dataset602

received radiotherapy, and some received chemotherapy.603

The clinical data accounts for patient demographics, including age, gender, and HPV status. It604

also details tumor staging using the 7th edition TNM system to describe the cancer, in addition to605

treatment information. While the dataset primarily focuses on oropharyngeal cancer, it also covers606

laryngeal, nasopharyngeal, and hypopharyngeal cancers.607

608

Data Preprocessing609

In the preprocessing stage, we filtered out incomplete patient profiles to ensure the dataset included610

relevant variables and appropriately represented potential confounders. We standardized all con-611

tinuous variables to have zero mean and unit variance to ensure comparability and optimize model612

performance. The dataset comprehensively describes treatment details—dose/fraction, number of613

fractions, and total days of radiotherapy—which we used to calculate Biologically Effective Dose614

(BED) values. We implemented both dose-independent (DI) and dose-dependent (DD) BED models615

to capture the biological effects of radiation therapy, using established radiobiological parameters616

(α = 0.2 Gy−1, α/β = 10 Gy, accelerated repopulation rates and onset times). This allowed us to617

quantify the effective radiation dose accounting for different fractionation schedules. We employed a618

stratified data partitioning strategy, creating training (75%) and testing (25%) sets while maintaining619

consistent event rates across partitions. Both subsets contained similar proportions of survival events,620

allowing for unbiased evaluation of treatment effects.621

Table 1 summarizes the estimated average treatment effects across time for both restricted mean622

survival time (RMST) and survival probability (SP) metrics. These values were computed using623

causal survival forests on held-out test data. We observe that the estimated effects generally increase624

with longer follow-up, particularly under the RMST metric, reflecting the accumulating benefit of625

treatment over time. Standard errors are included to reflect model uncertainty at each horizon.626

Table 1: Summary statistics of the simulated dataset

Statistic Control Group Treated Group
Event Rate (%) 79.8
Treatment Rate (%) 44.9
Median Survival (months) 17.0 24.0

12-month Survival (%) 70.3 90.1
24-month Survival (%) 20.2 45.5
36-month Survival (%) 1.9 7.3
48-month Survival (%) 0.0 0.1

Age (mean) 60.42 59.23
TNM Stage (mean) 1.73 3.46
HPV Positivity Rate 0.68 0.51
Sex (Male = 1) 0.48 0.49

Computing Resources: All experiments were conducted with a 13th Gen Intel Core i7-1355U CPU,627

16GB RAM, and integrated Intel Iris Xe Graphics. No discrete GPU or cloud resources were used,628

though such resources would significantly reduce runtime for large-scale extensions of this work.629
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C Additional Results630

In this section, we present additional results that extend and validate the findings reported in the631

main paper. These include visualizations of treatment effect heterogeneity across time, a summary of632

average treatment effects, and robustness checks to support the reliability of our causal estimates.633

C.1 Summary Table of Average Treatment Effects634

Table 2 summarizes the estimated average treatment effects across time horizons using both RMST635

and survival probability metrics. These values were computed using causal survival forests on the636

held-out test set. The treatment effects tend to increase over time under both metrics, with RMST637

showing a steeper upward trend reflecting cumulative benefit. Standard errors are included for each638

estimate. The early rise in both SP and RMST suggests initial treatment efficacy, while the plateauing639

in later months reflects diminishing returns, possibly due to recurrence or late toxicity. The RMST640

gains—peaking at over 16 months—highlight how cumulative survival benefit continues to accrue641

even as survival probability differences taper off. These patterns support the biological intuition that642

treatment effects rise quickly post-intervention and then gradually attenuate.643

Table 2: Estimated average treatment effects (ATE) across time using RMST and survival probability
(SP). SE represent standard errors

Months ATE (SP) SE (SP) ATE (RMST) SE (RMST)
12 0.099 0.049 0.44 0.26
24 0.141 0.053 1.88 0.80
36 0.152 0.058 3.58 1.46
48 0.178 0.072 5.80 2.31
60 0.168 0.071 7.39 2.73
72 0.148 0.075 8.38 3.52
84 0.156 0.077 11.08 4.76
96 0.143 0.071 13.89 5.90

108 0.129 0.068 14.76 6.16
120 0.100 0.063 16.11 6.92

These summary statistics also inform the CAST modeling strategies described in Section 3.3. The644

steady increase followed by tapering motivates the use of both quadratic and spline-based approaches645

to flexibly capture the full temporal arc of treatment efficacy.646
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C.2 SHAP-Based Interpretability Analysis647

While SHAP provides valuable insights into feature influence, the estimates generated here using648

the fastshap R package are approximate and may be noisy, particularly in the context of survival649

analysis. We calculated approximate SHAP values because an exact SHAP explainer does not650

yet exist for the causal survival forest model. Figures 4(a–c) show SHAP plots for the three most651

influential variables—age, HPV status, and smoking pack-years—highlighting clear heterogeneity652

in treatment benefit across subgroups. Additional SHAP plots for other covariates—such as tumor653

site, treatment timing, dose metrics, and TNM stage—are also provided below. These variables had654

smaller contributions to the model, but are shown for completeness and transparency.655

(a) Age (b) HPV Status

(c) Smoking Pack-Years

Figure 4: SHAP analysis of covariates driving treatment effect heterogeneity. (a) Older age is linked
to greater chemotherapy benefit. (b) HPV-negative patients consistently show higher contributions.
(c) Smoking history is positively associated with the chemotherapy benefit treatment.
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(a) Esophagus (b) Hypopharynx

(c) Larynx (d) Lip/Oral Cavity

(e) Nasal Cavity (f) Oropharynx

Figure 5: SHAP values for primary tumor site. These anatomical subgroups exhibited low or diffuse
contributions to treatment effect heterogeneity, though subtle site-specific trends may still hold
clinical value.
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(a) TNM Stage (b) BED (Dose-Dependent)

(c) BED (Dose-Independent) (d) Year of RT

(e) HPV Unknown

Figure 6: SHAP values for additional covariates, including TNM stage, treatment year, and dose-
related metrics. These features showed limited or context-specific contributions to treatment effect
heterogeneity.
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C.3 Distributions of Individualized Treatment Effects656

We visualize the estimated treatment effect distributions for both RMST and survival probability (SP)657

at intervals ranging from 12 to 120 months. Figures 4 and 5 show individual-level causal effects658

derived from the causal survival forest at each time horizon.659

660

RMST Treatment Effect Distributions

(a) 12 months (b) 24 months (c) 36 months

(d) 48 months (e) 60 months (f) 72 months

(g) 84 months (h) 96 months (i) 108 months

(j) 120 months

Figure 7: Distributions of estimated RMST-based treatment effects over time. Each panel shows the
individual-level causal effect at a specific horizon as learned by the causal survival forest.
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Survival Probability Treatment Effect Distributions

(a) 12 months (b) 24 months (c) 36 months

(d) 48 months (e) 60 months (f) 72 months

(g) 84 months (h) 96 months (i) 108 months

(j) 120 months

Figure 8: Distributions of estimated survival-probability-based treatment effects over time. Each
panel shows the individual-level causal effect at a specific horizon as estimated by the causal survival
forest.
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C.4 Dummy Outcome Refutation Tests661

To assess whether CAST detects spurious treatment effects in the absence of a true signal, we662

performed dummy outcome tests. For each time horizon, we randomly shuffled treatment assignments663

and outcome times across 20 repetitions to simulate a null setting. If the model was overfitting or664

improperly attributing causal structure, it would produce non-zero treatment effect estimates even665

under randomization. As shown in the boxplots below, the estimated treatment effects for both RMST666

and survival probability are centered around zero, especially at relatively short times (≤ 60 months),667

when the number of patients still at risk was large. This confirms that CAST does not learn artifacts668

from the data and is robust to randomization of causal structure.669

Figure 9: Dummy outcome test for RMST-based ATE estimates. Across 20 shuffles per horizon,
treatment effects are centered near zero, consistent with the null.

Figure 10: Dummy outcome test for survival probability-based ATE estimates. The model correctly
reports no significant treatment effects under randomized labels.
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To assess the robustness of CAST estimates to unobserved confounding, we performed a sensitivity670

analysis by injecting synthetic covariates with varying correlation to treatment assignment (r = 0.1,671

0.3, 0.5). We then measured the resulting shifts in ATE estimates across time horizons for both672

RMST and survival probability outcomes.673

Figure 11: Absolute ATE differences in RMST under varying confounder strengths (r = 0.1, 0.3,
0.5). Estimates are stable under weak strengths but diverge at longer horizons and higher strengths.

Figure 12: Absolute ATE differences in SP under varying confounder strengths (r = 0.1, 0.3, 0.5).
CAST estimates remain stable under weak strengths, with modest shifts at stronger levels and longer
horizons.
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NeurIPS Paper Checklist674

The checklist is designed to encourage best practices for responsible machine learning research,675

addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove676

the checklist: The papers not including the checklist will be desk rejected. The checklist should677

follow the references and follow the (optional) supplemental material. The checklist does NOT count678

towards the page limit.679

Please read the checklist guidelines carefully for information on how to answer these questions. For680

each question in the checklist:681

• You should answer [Yes] , [No] , or [NA] .682

• [NA] means either that the question is Not Applicable for that particular paper or the683

relevant information is Not Available.684

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).685

The checklist answers are an integral part of your paper submission. They are visible to the686

reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it687

(after eventual revisions) with the final version of your paper, and its final version will be published688

with the paper.689

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.690

While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a691

proper justification is given (e.g., "error bars are not reported because it would be too computationally692

expensive" or "we were unable to find the license for the dataset we used"). In general, answering693

"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we694

acknowledge that the true answer is often more nuanced, so please just use your best judgment and695

write a justification to elaborate. All supporting evidence can appear either in the main paper or the696

supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification697

please point to the section(s) where related material for the question can be found.698

IMPORTANT, please:699

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",700

• Keep the checklist subsection headings, questions/answers and guidelines below.701

• Do not modify the questions and only use the provided macros for your answers.702

1. Claims703

Question: Do the main claims made in the abstract and introduction accurately reflect the704

paper’s contributions and scope?705

Answer: [Yes]706

Justification: The abstract and introduction clearly describe CAST and its technical/clinical707

contributions, which are accurately reflected throughout the paper.708

Guidelines:709

• The answer NA means that the abstract and introduction do not include the claims710

made in the paper.711

• The abstract and/or introduction should clearly state the claims made, including the712

contributions made in the paper and important assumptions and limitations. A No or713

NA answer to this question will not be perceived well by the reviewers.714

• The claims made should match theoretical and experimental results, and reflect how715

much the results can be expected to generalize to other settings.716

• It is fine to include aspirational goals as motivation as long as it is clear that these goals717

are not attained by the paper.718

2. Limitations719

Question: Does the paper discuss the limitations of the work performed by the authors?720

Answer: [Yes]721
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Justification: Our discussion, specifically the Limitations and Broader Impacts section,722

directly addresses dataset, methodological, and generalizability limitations.723

Guidelines:724

• The answer NA means that the paper has no limitation while the answer No means that725

the paper has limitations, but those are not discussed in the paper.726

• The authors are encouraged to create a separate "Limitations" section in their paper.727

• The paper should point out any strong assumptions and how robust the results are to728

violations of these assumptions (e.g., independence assumptions, noiseless settings,729

model well-specification, asymptotic approximations only holding locally). The authors730

should reflect on how these assumptions might be violated in practice and what the731

implications would be.732

• The authors should reflect on the scope of the claims made, e.g., if the approach was733

only tested on a few datasets or with a few runs. In general, empirical results often734

depend on implicit assumptions, which should be articulated.735

• The authors should reflect on the factors that influence the performance of the approach.736

For example, a facial recognition algorithm may perform poorly when image resolution737

is low or images are taken in low lighting. Or a speech-to-text system might not be738

used reliably to provide closed captions for online lectures because it fails to handle739

technical jargon.740

• The authors should discuss the computational efficiency of the proposed algorithms741

and how they scale with dataset size.742

• If applicable, the authors should discuss possible limitations of their approach to743

address problems of privacy and fairness.744

• While the authors might fear that complete honesty about limitations might be used by745

reviewers as grounds for rejection, a worse outcome might be that reviewers discover746

limitations that aren’t acknowledged in the paper. The authors should use their best747

judgment and recognize that individual actions in favor of transparency play an impor-748

tant role in developing norms that preserve the integrity of the community. Reviewers749

will be specifically instructed to not penalize honesty concerning limitations.750

3. Theory assumptions and proofs751

Question: For each theoretical result, does the paper provide the full set of assumptions and752

a complete (and correct) proof?753

Answer: [Yes]754

Justification: Appendix A formally states assumptions (A1–A5) and provides full consis-755

tency and identifiability proofs with supporting theorems.756

Guidelines:757

• The answer NA means that the paper does not include theoretical results.758

• All the theorems, formulas, and proofs in the paper should be numbered and cross-759

referenced.760

• All assumptions should be clearly stated or referenced in the statement of any theorems.761

• The proofs can either appear in the main paper or the supplemental material, but if762

they appear in the supplemental material, the authors are encouraged to provide a short763

proof sketch to provide intuition.764

• Inversely, any informal proof provided in the core of the paper should be complemented765

by formal proofs provided in appendix or supplemental material.766

• Theorems and Lemmas that the proof relies upon should be properly referenced.767

4. Experimental result reproducibility768

Question: Does the paper fully disclose all the information needed to reproduce the main ex-769

perimental results of the paper to the extent that it affects the main claims and/or conclusions770

of the paper (regardless of whether the code and data are provided or not)?771

Answer: [Yes]772

Justification: The methodology describes modeling, hyperparameter tuning, and general773

implementation which is sufficient to replicate the main results.774
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Guidelines:775

• The answer NA means that the paper does not include experiments.776

• If the paper includes experiments, a No answer to this question will not be perceived777

well by the reviewers: Making the paper reproducible is important, regardless of778

whether the code and data are provided or not.779

• If the contribution is a dataset and/or model, the authors should describe the steps taken780

to make their results reproducible or verifiable.781

• Depending on the contribution, reproducibility can be accomplished in various ways.782

For example, if the contribution is a novel architecture, describing the architecture fully783

might suffice, or if the contribution is a specific model and empirical evaluation, it may784

be necessary to either make it possible for others to replicate the model with the same785

dataset, or provide access to the model. In general. releasing code and data is often786

one good way to accomplish this, but reproducibility can also be provided via detailed787

instructions for how to replicate the results, access to a hosted model (e.g., in the case788

of a large language model), releasing of a model checkpoint, or other means that are789

appropriate to the research performed.790

• While NeurIPS does not require releasing code, the conference does require all submis-791

sions to provide some reasonable avenue for reproducibility, which may depend on the792

nature of the contribution. For example793

(a) If the contribution is primarily a new algorithm, the paper should make it clear how794

to reproduce that algorithm.795

(b) If the contribution is primarily a new model architecture, the paper should describe796

the architecture clearly and fully.797

(c) If the contribution is a new model (e.g., a large language model), then there should798

either be a way to access this model for reproducing the results or a way to reproduce799

the model (e.g., with an open-source dataset or instructions for how to construct800

the dataset).801

(d) We recognize that reproducibility may be tricky in some cases, in which case802

authors are welcome to describe the particular way they provide for reproducibility.803

In the case of closed-source models, it may be that access to the model is limited in804

some way (e.g., to registered users), but it should be possible for other researchers805

to have some path to reproducing or verifying the results.806

5. Open access to data and code807

Question: Does the paper provide open access to the data and code, with sufficient instruc-808

tions to faithfully reproduce the main experimental results, as described in supplemental809

material?810

Answer: [Yes]811

Justification: We provide a public GitHub repository in the abstract with a README812

containing instructions.813

Guidelines:814

• The answer NA means that paper does not include experiments requiring code.815

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/816

public/guides/CodeSubmissionPolicy) for more details.817

• While we encourage the release of code and data, we understand that this might not be818

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not819

including code, unless this is central to the contribution (e.g., for a new open-source820

benchmark).821

• The instructions should contain the exact command and environment needed to run to822

reproduce the results. See the NeurIPS code and data submission guidelines (https:823

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.824

• The authors should provide instructions on data access and preparation, including how825

to access the raw data, preprocessed data, intermediate data, and generated data, etc.826

• The authors should provide scripts to reproduce all experimental results for the new827

proposed method and baselines. If only a subset of experiments are reproducible, they828

should state which ones are omitted from the script and why.829
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• At submission time, to preserve anonymity, the authors should release anonymized830

versions (if applicable).831

• Providing as much information as possible in supplemental material (appended to the832

paper) is recommended, but including URLs to data and code is permitted.833

6. Experimental setting/details834

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-835

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the836

results?837

Answer: [Yes]838

Justification: Our experiments section includes implementation details on model training,839

parameter tuning, SHAP computation, and validation steps.840

Guidelines:841

• The answer NA means that the paper does not include experiments.842

• The experimental setting should be presented in the core of the paper to a level of detail843

that is necessary to appreciate the results and make sense of them.844

• The full details can be provided either with the code, in appendix, or as supplemental845

material.846

7. Experiment statistical significance847

Question: Does the paper report error bars suitably and correctly defined or other appropriate848

information about the statistical significance of the experiments?849

Answer: [Yes]850

Justification: We report average treatment effects (ATEs) with standard errors and visualize851

95% confidence intervals. Robustness checks include dummy outcome tests and sensitivity852

to synthetic confounding.853

Guidelines:854

• The answer NA means that the paper does not include experiments.855

• The authors should answer "Yes" if the results are accompanied by error bars, confi-856

dence intervals, or statistical significance tests, at least for the experiments that support857

the main claims of the paper.858

• The factors of variability that the error bars are capturing should be clearly stated (for859

example, train/test split, initialization, random drawing of some parameter, or overall860

run with given experimental conditions).861

• The method for calculating the error bars should be explained (closed form formula,862

call to a library function, bootstrap, etc.)863

• The assumptions made should be given (e.g., Normally distributed errors).864

• It should be clear whether the error bar is the standard deviation or the standard error865

of the mean.866

• It is OK to report 1-sigma error bars, but one should state it. The authors should867

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis868

of Normality of errors is not verified.869

• For asymmetric distributions, the authors should be careful not to show in tables or870

figures symmetric error bars that would yield results that are out of range (e.g. negative871

error rates).872

• If error bars are reported in tables or plots, The authors should explain in the text how873

they were calculated and reference the corresponding figures or tables in the text.874

8. Experiments compute resources875

Question: For each experiment, does the paper provide sufficient information on the com-876

puter resources (type of compute workers, memory, time of execution) needed to reproduce877

the experiments?878

Answer: [Yes]879
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Justification: We report the computing setup in Appendix B, including CPU model, RAM880

and note that no GPU/cloud or distributed computing resources were used. The described881

hardware is sufficient to reproduce all experiments within a reasonable runtime.882

Guidelines:883

• The answer NA means that the paper does not include experiments.884

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,885

or cloud provider, including relevant memory and storage.886

• The paper should provide the amount of compute required for each of the individual887

experimental runs as well as estimate the total compute.888

• The paper should disclose whether the full research project required more compute889

than the experiments reported in the paper (e.g., preliminary or failed experiments that890

didn’t make it into the paper).891

9. Code of ethics892

Question: Does the research conducted in the paper conform, in every respect, with the893

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?894

Answer: [Yes]895

Justification: Yes, we follow all the guidelines896

Guidelines:897

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.898

• If the authors answer No, they should explain the special circumstances that require a899

deviation from the Code of Ethics.900

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-901

eration due to laws or regulations in their jurisdiction).902

10. Broader impacts903

Question: Does the paper discuss both potential positive societal impacts and negative904

societal impacts of the work performed?905

Answer: [Yes]906

Justification: We include broader societal impacts in our limitations subsection of the907

discussion and in our ethics statement after the references.908

Guidelines:909

• The answer NA means that there is no societal impact of the work performed.910

• If the authors answer NA or No, they should explain why their work has no societal911

impact or why the paper does not address societal impact.912

• Examples of negative societal impacts include potential malicious or unintended uses913

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations914

(e.g., deployment of technologies that could make decisions that unfairly impact specific915

groups), privacy considerations, and security considerations.916

• The conference expects that many papers will be foundational research and not tied917

to particular applications, let alone deployments. However, if there is a direct path to918

any negative applications, the authors should point it out. For example, it is legitimate919

to point out that an improvement in the quality of generative models could be used to920

generate deepfakes for disinformation. On the other hand, it is not needed to point out921

that a generic algorithm for optimizing neural networks could enable people to train922

models that generate Deepfakes faster.923

• The authors should consider possible harms that could arise when the technology is924

being used as intended and functioning correctly, harms that could arise when the925

technology is being used as intended but gives incorrect results, and harms following926

from (intentional or unintentional) misuse of the technology.927

• If there are negative societal impacts, the authors could also discuss possible mitigation928

strategies (e.g., gated release of models, providing defenses in addition to attacks,929

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from930

feedback over time, improving the efficiency and accessibility of ML).931
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11. Safeguards932

Question: Does the paper describe safeguards that have been put in place for responsible933

release of data or models that have a high risk for misuse (e.g., pretrained language models,934

image generators, or scraped datasets)?935

Answer: [NA]936

Justification: The RADCURE dataset and all models used in this study are already publicly937

available.938

Guidelines:939

• The answer NA means that the paper poses no such risks.940

• Released models that have a high risk for misuse or dual-use should be released with941

necessary safeguards to allow for controlled use of the model, for example by requiring942

that users adhere to usage guidelines or restrictions to access the model or implementing943

safety filters.944

• Datasets that have been scraped from the Internet could pose safety risks. The authors945

should describe how they avoided releasing unsafe images.946

• We recognize that providing effective safeguards is challenging, and many papers do947

not require this, but we encourage authors to take this into account and make a best948

faith effort.949

12. Licenses for existing assets950

Question: Are the creators or original owners of assets (e.g., code, data, models), used in951

the paper, properly credited and are the license and terms of use explicitly mentioned and952

properly respected?953

Answer: [Yes]954

Justification: We have properly cited the RADCURE dataset and follow the license terms955

listed on The Cancer Imaging Archive.956

Guidelines:957

• The answer NA means that the paper does not use existing assets.958

• The authors should cite the original paper that produced the code package or dataset.959

• The authors should state which version of the asset is used and, if possible, include a960

URL.961

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.962

• For scraped data from a particular source (e.g., website), the copyright and terms of963

service of that source should be provided.964

• If assets are released, the license, copyright information, and terms of use in the965

package should be provided. For popular datasets, paperswithcode.com/datasets966

has curated licenses for some datasets. Their licensing guide can help determine the967

license of a dataset.968

• For existing datasets that are re-packaged, both the original license and the license of969

the derived asset (if it has changed) should be provided.970

• If this information is not available online, the authors are encouraged to reach out to971

the asset’s creators.972

13. New assets973

Question: Are new assets introduced in the paper well documented and is the documentation974

provided alongside the assets?975

Answer: [Yes]976

Justification: Detailed information about our code, dataset, and findings are available in our977

GitHub repository/README.978

Guidelines:979

• The answer NA means that the paper does not release new assets.980

• Researchers should communicate the details of the dataset/code/model as part of their981

submissions via structured templates. This includes details about training, license,982

limitations, etc.983
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• The paper should discuss whether and how consent was obtained from people whose984

asset is used.985

• At submission time, remember to anonymize your assets (if applicable). You can either986

create an anonymized URL or include an anonymized zip file.987

14. Crowdsourcing and research with human subjects988

Question: For crowdsourcing experiments and research with human subjects, does the paper989

include the full text of instructions given to participants and screenshots, if applicable, as990

well as details about compensation (if any)?991

Answer: [NA]992

Justification: We did not use crowdsourcing in our study.993

Guidelines:994

• The answer NA means that the paper does not involve crowdsourcing nor research with995

human subjects.996

• Including this information in the supplemental material is fine, but if the main contribu-997

tion of the paper involves human subjects, then as much detail as possible should be998

included in the main paper.999

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,1000

or other labor should be paid at least the minimum wage in the country of the data1001

collector.1002

15. Institutional review board (IRB) approvals or equivalent for research with human1003

subjects1004

Question: Does the paper describe potential risks incurred by study participants, whether1005

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)1006

approvals (or an equivalent approval/review based on the requirements of your country or1007

institution) were obtained?1008

Answer: [NA]1009

Justification: IRB approval was not needed for this study because we only used de-identified,1010

publicly-available data from The Cancer Imaging Archive. The original RADCURE dataset1011

underwent IRB review, but our work did not involve crowdsourcing or patient identifiable1012

information.1013

Guidelines:1014

• The answer NA means that the paper does not involve crowdsourcing nor research with1015

human subjects.1016

• Depending on the country in which research is conducted, IRB approval (or equivalent)1017

may be required for any human subjects research. If you obtained IRB approval, you1018

should clearly state this in the paper.1019

• We recognize that the procedures for this may vary significantly between institutions1020

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the1021

guidelines for their institution.1022

• For initial submissions, do not include any information that would break anonymity (if1023

applicable), such as the institution conducting the review.1024

16. Declaration of LLM usage1025

Question: Does the paper describe the usage of LLMs if it is an important, original, or1026

non-standard component of the core methods in this research? Note that if the LLM is used1027

only for writing, editing, or formatting purposes and does not impact the core methodology,1028

scientific rigorousness, or originality of the research, declaration is not required.1029

Answer: [NA]1030

Justification: We did not use LLMs in our research1031

Guidelines:1032

• The answer NA means that the core method development in this research does not1033

involve LLMs as any important, original, or non-standard components.1034

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)1035

for what should or should not be described.1036
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