Building a Multi-Platform, BERT Classifier for Detecting Connective Language

Anonymous ACL submission

Abstract

This study presents an approach for detecting connective language-defined as language that facilitates engagement, understanding, and conversation-from social media discussions. We developed and evaluated two types of classifiers: BERT and GPT-3.5 turbo. Our results demonstrate that the BERT classifier significantly outperforms GPT-3.5 turbo in detecting connective language. Furthermore, our analysis confirms that connective language is distinct from related concepts measuring discourse qualities, such as politeness and toxicity. We also explore the potential of BERT-based classifiers for platform-agnostic tools. This research advances our understanding of the linguistic dimensions of online communication and proposes practical tools for detecting connective language across diverse digital environments.

1 Introduction

001

002

011

012

017

The growth and popularity of social media over the past two decades has created many opportunities for natural language processing and computational social science researchers to study short-form text. During this time, researchers have buildt a wide 024 variety of text classifiers to understand these social media posts, including for sentiment analysis (Wang et al., 2018), discrete emotion detec-027 tion (Bakkialakshmi and Sudalaimuthu, 2022), life events identification (Cavalin et al., 2015), and even depression detection (Hosseini-Saravani et al., 2020). Overwhelmingly, these efforts have focused on negative or unwanted online content. For example, research efforts have focused on the identification of misinformation, disinformation, or bot activity (P et al., 2022; Su et al., 2020; Srinivas et al., 2021). Similarly, there are hundreds of studies discussing NLP classifiers for malicious (Gharge and Chavan, 2017) or toxic language (Garlapati et al., 2022). At face value, the emphasis on building classifiers for unwanted content makes sense: One very

common use case for NLP classifiers is to identify content for removal, whether it be spam messages (Garg and Girdhar, 2021) or content seen as toxic (Babakov et al., 2024). 041

042

043

044

045

047

048

051

054

056

060

061

062

063

064

065

066

067

068

069

071

072

073

074

075

076

078

079

And yet, there is little discussion regarding what desired language on social media would look like. Simply put, NLP research has focused greatly on building classifiers to remove unwanted content on social media but has paid less attention to classifiers that detect wanted or desired content. To fill this gap, we advocate for and build a classifier for one such language feature: connectivity. As we explain below, connectivity is an essential aspect of human communication, and recent social science research highlights the importance of connective language to facilitate pro-democratic conversations (Overgaard et al., 2022). This research suggests that connective language can help facilitate discussion (Overgaard et al., 2021), empower citizens (Iranzo-Cabrera and Casero-Ripollés, 2023), and contribute to a healthier public square.

Drawing from the literature in communication research and in natural language processing, this paper introduces and illustrates the use of a multiplatform connective language classifier. First, we build a human-labeled training set using a mix of social media messages from Reddit, Twitter, and Facebook. We use this novel training dataset to build a BERT classifier and LLM-based (GPT-3.5 Turbo) classifier for connective language. Finally, we compare the connective language classifier to concepts for which there are existing classifiers, such as politeness, to show how they are semantically distinct.

2 Related Work

2.1 **Pro-Democratic NLP Efforts**

Given that amount of language and conversation, both political or otherwise, that occurs online and through digital platforms, natural language process-

173

174

175

176

177

178

179

180

181

131

132

133

ing is increasingly important for pro-democratic efforts, from studying free speech efforts (Dore et al., 2023) and improving public service accessibility (Mariani et al., 2022) to encouraging citizen participation (Arana-Catania et al., 2021).

081

094

095

097

101

102

103

105

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125 126

127

128

130

One pivotal area of NLP research is political opinion and information detection (Sen et al., 2020; Falk and Lapesa, 2022). These efforts can be used to decrease political animosity (Jia et al., 2024) and improve different perspective on a political issue (Reuver et al., 2021). While acknowledging that language models may themselves have political biases (Gover, 2023), they nevertheless are essential for helping citizens sort through the overwhelming amount of content now produced online.

2.2 Polite, Civil, and Deliberative Language

Identifying quality discourse has been a key feature of past research. Much of the work draws from deliberative theory, which has been defined in numerous ways, but often includes the idea that interlocutors, treated equally, respectfully engage in fact-based discussions to reach consensus. As summarized in Table1, many past studies draw from this approach when analyzing discourse, whether in face-to-face conversations, within comment sections, or, most popular recently, on social media. Studies examine whether there is evidence of rational information exchange, including the citation of evidence, the presence of reasoned arguments, and whether people are asking genuine questions. Also consistent with some definitions of deliberation, past work has examined utterances that provide solutions or build toward consensus. Quality exchanges, according to several studies, also include interactivity and reciprocity among participants.

Beyond the informational content and the presence of interactivity, some studies also have looked at the tone of the conversation. Civility and respect characterize some operationalizations of quality discussion, yet most of the research looks for the presence of incivility and disrespect, as opposed to language indicating civility and respect. This is critical because a comment that does not use uncivil or disrespectful language is not necessarily civil and respectful. The final discourse quality category we identified across studies, labeled Acknowledgment in Table1, looks at how people treat others and others' arguments in a discussion. The concepts used vary broadly. Some involve acknowledging others' views, regardless of whether one is sympathetic. Others involve meta-reflection on the conversation

overall. Yet others involve empathy for different viewpoints.

In a highly polarized context such as the United States, the opportunity for deliberation as conceived of by deliberative theorists is optimistic, but slim (e.g., Mutz, 2006). Political partisans routinely do not engage in deliberation, let alone agree upon facts, engage with each other, or respectfully work toward consensus. Rather than focusing on deliberation as solely important, scholars have noted that it may be better to consider related concepts—other forms of desired language that may lead do (but are not necessarily) deliberation (Shugars, 2020; Overgaard et al., 2022).

For example, identifying language that recognizes the humanity of the interlocutors or indicates an acknowledgement of differing opinions may help connect ideologically divergent groups, such as Democrats and Republicans in the United States. Although a few concepts from Table 1 may hold promise, such as empathy and respect for counterarguments, it is equally important to consider (1) how these individual concepts may operate together to facilitate pro-democratic connectivity and (2) how one might computationally-detect such concepts.

A handful of NLP studies have sought to identify desired language styles, including polite language (Priya et al., 2024) and empathy (Zhou et al., 2021). These studies rely on background literature from social science disciplines, but leverage computational and NLP expertise to build pro-social classifiers that have the potential to improve online conversation (Kolhatkar et al., 2020).

2.3 Connective Language

Connective language is distinct from these past work in that it emphasizes linguistically building connections. It includes encouraging engagement, understanding, and conversation, using techniques such as expressing openness to alternative viewpoints. Although it has some aspects in common with the use of polite language, there are many forms of polite language that would not be connective (e.g. saying please). The idea also is related, but distinct from empathy, as connective posts are not about how one internalizes others' views. Rather, connective posts are about presenting one's own point in a manner that invites others to engage productively.

Research suggests that this type of language can reduce affective polarization. First, there's good evidence that exposure to sympathetic out-

Category	Description					
Rationality	Evidence	(Stromer-Galley, 2007; Halpern and Gibbs,				
		2013; Rowe, 2015; Esau et al., 2023)				
	Justification	(Steenbergen et al., 2003; Esau et al., 2017;				
		Gold et al., 2017; Friess et al., 2021)				
	Relevance	(Halpern and Gibbs, 2013; Ziegele et al., 2020;				
		Esau et al., 2023; Murray et al., 2023)				
	Opinion expression	(Ziegele et al., 2020)				
	Reflexivity	(Del Valle et al., 2020; Ziegele et al., 2020)				
	Argument repertoire	(Cappella et al., 2002; Menon et al., 2020)				
Questions	General questions	(Del Valle et al., 2020)				
	Genuine questions	(Esau et al., 2023)				
	Inflammatory questions	(Murray et al., 2023).				
Consensus/Solutions	Working toward consensus	(Friess and Eilders, 2015)				
	Proposing solutions	(Friess et al., 2021; Esau et al., 2023)				
	Resolving conflicts	(Jaidka et al., 2022)				
Interactivity/Reciprocity	Replying	(Halpern and Gibbs, 2013; Esau et al., 2023)				
	Referencing	(Esau et al., 2017; Del Valle et al., 2020)				
Respect/Civility	Incivility	(Halpern and Gibbs, 2013; Coe et al., 2014)				
	Interruption	(Steenbergen et al., 2003; Gold et al., 2017)				
	Impoliteness	(Halpern and Gibbs, 2013; Esau et al., 2017;				
		Friess et al., 2021; Esau et al., 2023)				
	Negative empathy	(Del Valle et al., 2020)				
	Civility	(Friess and Eilders, 2015)				
	Respect for others	(Steenbergen et al., 2003)				
Acknowledgement	Value another's statement	(Freelon, 2015)				
	Respect for arguments	(Menon et al., 2020; Esau et al., 2023).				

Table 1: Related Work on Attributes of Quality Discourse

partisans can curb affective polarization (Voelkel et al., 2023). Outpartisans writing connective posts should be seen as more sympathetic. Second, the use of humility—one form of connective language—can improve people's attitudes toward commenters from an opposing political party (Murray et al., 2021) and research on inter-group contact theory finds that positive interactions with individual outparty members can generalize to evaluations of the opposing party as a whole (Pettigrew and Tropp, 2013).

3 Proposed Method

182

183

185

186

190

191

192

193

194To build a connective language classifier, we apply195the following approach: first, we build a multi-196platform dataset consisting of content from users197who are likely to be engaging in discussion on a198topic about which they disagree. This includes a199mix of political topics (e.g., for whom should a cit-200izen vote?) and apolitical discussion (e.g., should

pineapple be a pizza topping?). We then construct a gold-standard training set of connective language using human labelers. After achieving inter-coder agreement, four undergraduate students labeled 14,107 social media posts. We then use these messages to build a connective language BERT classifier. We compare this classifier to one built using GPT 3.5 turbo, a large-language model. We also analyze how connective language is distinct from other similar concepts, including politeness and constructiveness. 201

202

203

204

205

207

208

209

210

211

212

213

214

215

216

217

218

219

220

3.1 Dataset

The dataset used to train this classifier is a combination of English-language Reddit data (n = 6,107), Twitter data (n = 5,000), and Facebook data (n = 3,000). Public Twitter data were gathered using the Twitter 2.0 Academic Track API from January 1, 2012 to December 31, 2022. To collect this data, we used two queries (one keyword-based and one user-based). The case-insensitive keyword query

included the following 12 terms: imo, imho, in-221 myopinion, "in my opinion", "I hear you", "never thought about it", "my perspective", "see where you're coming from", "see where ur coming from", "thanks for sharing", "complicated issue", "correct me if". In addition to these keywords, which are often used to establish connection, we also query 227 from several accounts that have engaged in connective or deliberative discourse. This includes 31 accounts: "The65Project", "PreetBharara", "BarbMcQuade", "mashagessen", "ianbremmer", "NateSilver538", "Yascha_Mounk", "KHayhoe", "uniteamerica", "NickTroiano", "KarenKornbluh", "BrennanCenter", "NowThisPolitics", "kylegrif-234 fin1", "politico", "hrw", "cliffordlevy", "Zeke-235 JMiller", "CREWcrew", "PhilipRucker", "tribelaw", "glennkirschner2", "HeartlandSignal", "nprpolitics", "ezraklein", "johnkingCNN", "txpolproject", "ap_politics", "mattyglesias", "HeerJeet", "UNHumanRights", "bbcpolitics". Posts from these accounts were subsampled for posts using the afore-241 mentioned 12 terms.

For Reddit, posts published from January 1, 2012 to December 31, 2022 were gathered from July 1 to 17, 2023 using Pushshift (Baumgartner et al., 2020) from the following subreddits: r/ChangeMyView and r/politics (two English-based subreddits, with the former including apolitical posts and the latter focused on political posts), using the above list of 12 query terms. Both subreddits are highly active with many users; at the time of the collection, r/ChangeMyView had 3.6 million followers and r/politics had .5 million followers in 2024.

Public Facebook data (from public groups and pages) were gathered using Crowdtangle from January 1, 2012 to December 31, 2022. To collect this data, we used the aforementioned 12 words to query for relevant posts.

Using different query parameters for each data collection has become an increasingly common practice to account for temporal, discursive, and platform diversity (for similar collections, see (Avalle et al., 2024; Roccabruna et al., 2022). Identifying information from this dataset, including the pseudonym or name of the account producing the content, has been removed from the dataset.

3.2 Labeled Data

243

244

245

246

247

251

256

258

261

264

271

To build a connective language classifier, we developed a codebook and hired four undergraduate students to code posts. The faculty co-authors initially conducted a comprehensive literature review on how various fields had conceptualized and operationalized concepts like connective language. A synthesis of this literature was developed into a preliminary codebook and shared with the students, who then brainstormed with the faculty authors to come up with broad categories of how we would operationalize the concept of "connective posts" versus "not connective posts." Then the students coded repeated random samples of 100 posts each drawn from our universe to practice coding and iterate on the coding guide, based on post content. Next the students conducted eight rounds of coding, meeting weekly until they achieved a reliable Krippendorff' α (0.73) using a sample of 1,000 posts. Once the students achieved an inter-coder reliability above a 0.7 threshold, we then had students code 6,107 Reddit posts, 5,000 Twitter posts, and 3,000 Facebook posts, over three rounds, using the following coding guide:

272

273

274

275

276

277

278

279

281

282

283

285

286

287

289

290

291

292

293

294

295

296

297

298

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

A connective post was coded "1" and defined as a post that:

- Encourages engagement, understanding, and conversation, sometimes by asking questions, or expressing openness to alternative views.
- contains language that conveys openness by including phrases, such as "in my opinion," "imo," "imho," "in my viewpoint," "here's how I see it," "in my mind," "my 2 cents is."
- Other indicators of a connective posts include phrases such as "I respectfully disagree," "I disagree to an extent," "You're right about xxx," "I see where you're coming from," "You've changed my view," "I never thought about it like that," "Can you clarify," "I'm not trying to debate, but want to offer an opinion," "That's an interesting perspective," "I appreciate your feedback."
- Clarification: Hate speech (e.g., racist, sexist, homophobic, or xenophobic language) would invalidate a post as "connective," but profanity alone would not.

A non-connective post was coded 0 and defined as a post that:

- Lacks any of the elements of connective posts described above or included hate speech.
- Demonizes another person or is disrespectful
 to other points of view.
 319

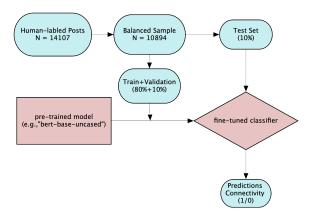


Figure 1: Pipeline of fine-tuning a BERT classifier for detecting connective language

• Contains no discussion.

320

321

322

324

325

327

331

333

336

337

341

347

351

354

To validate this operationalization of connective posts, accounting for variations in gender, race/ethnicity, and political beliefs, we conducted an online survey(n = 621) and find little to no demographic differences across evaluations regarding connective language. These details can be found in the Appendix A.1.

3.3 BERT Classifier

Using human-labeled data, we trained a BERT (Bidirectional Encoder Representations from Transformers, Kenton and Toutanova, 2019) classifier to predict the presence of connective language in text content. Compared to traditional text classification methods, such as logistic regression and Naive Bayes models, a BERT classifier excels due to its deep understanding of context and language nuances (Shen and Liu, 2021; Shushkevich et al., 2022; Moreira et al., 2023), which is particularly useful in complex tasks, such as detecting connective language in texts.

As seen in Figure 1, we use the following approach: from the entire human-coded dataset, we first created a balanced sample (N = 10,894) by undersampling the "1" group, due to fewer instances of "0" s in the labeled data. A balanced dataset is crucial as it ensures that the model learns to recognize patterns associated with both classes equally, which leads to more accurate and generalizable results (Batista et al., 2004).

We then utilized the bert-base-uncased model (Devlin et al., 2018) for fine-tuning with our balanced labeled sample. The data was divided into training, validation, and test sets to effectively train the model while preventing overfitting. During training of the BERT classifier for binary classification, we employed TFBertForSequenceClassification with an Adam optimizer set at a learning rate of 2×10^{-5} . Essential callbacks like EarlyStopping, ModelCheckpoint, and ReduceLROnPlateau were incorporated to enhance training efficiency and optimization on a MacBook Pro with an Apple M1 Pro chip. Default parameters from the scikit-learn package (Pedregosa et al., 2011) were used. The training process involved multiple iterations where the model predicted labels on the training data and these predictions were compared against the actual labels, continuing until the fine-tuned model demonstrated satisfactory precision and recall.

355

356

357

360

361

362

363

364

365

366

367

369

371

372

373

374

375

376

377

378

379

380

381

382

383

3.4 LLM Classifier

We employed the LLM model, specifically OpenAI's "GPT 3.5 Turbo," accessed via the OpenAI API, to classify social media texts for connectivity¹. The GPT 3.5 Turbo model is the most recently available version of OpenAI's language models, known for its enhanced speed and accuracy, which makes it ideal for real-time text classification tasks. The classification process involved a prompt that defined "connectivity" and requested that the model classify an unlabeled post as either "1" (connective) or "0" (non-connective). After several attempts (see Appendix A.2), the final prompt provided to the model was as follows:

Please perform a text annotation task: 385 Below is the definition of 'connectivity' and an unlabeled post. Your task is to classify the post based on whether it demonstrates connectivity. Respond 389 only with '1' for connective or '0' for 390 non-connective. Definition of Connectiv-391 ity: Connectivity indicates the tone of a message. A post is considered connec-393 tive if it shows a willingness to engage 394 in conversation with others, especially 395 those with differing opinions, uses hedg-396 ing, or maintains a polite tone when sharing opinions or facts. Phrases like 'in 398 my honest opinion' are also markers of 399 connective language. This definition is 400 derived from the codebook used by the 401 human coders. Here is the post: "TEXT" 402

¹https://platform.openai.com/docs/models/gpt-3-5-turbo

We sampled a balanced set of 1000 texts (500 connective, 500 non-connective), stratified by platform, from our human-labeled dataset. We then compared the classifications made by the GPT model to the human labels, treating the human labels as actual values and the GPT's outputs as predictions.

3.5 Comparison to Other Concepts

409

410

411

412

413 414

415

416

417

418

419 420

421

422

423

494

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446 447

448

449

450

451

To demonstrate the conceptual uniqueness of the "connectivity", we compared the result of connective language detection (human-labeled results) with several other related concepts, including politeness, civility, and a set of attributes related to political discussion quality such as constructiveness, justification, relevance, and reciprocity (Jaidka, 2022). Through correlation analysis between the score of connective language and other concepts for the same texts, we show the connectivity is a distinct attribute of political and social discussions.

For detecting toxicity, we employed the Perspective API², a tool developed by Jigsaw and Google that uses machine learning models to identify and score the degree of perceived harmfulness or unpleasantness in written content. The output from Perspective API provides a set of scores for various sub-attributes, such as personal attacks, among others, in addition to an overall toxicity score. For our analysis, we specifically utilize the overall toxicity score, ranging from 0 (not toxic at all) to 1 (extremely toxic), to assess the general level of toxicity in the texts. This score synthesizes insights from all the sub-attributes into a single comprehensive measure, enabling a clear and focused evaluation of toxicity. We also compare the classifier to the new perspective API attributes, which are experimental: affinity, compassion, curiosity, nuance, personal story, reasoning, and respect. These results can be found in the Appendix A.3.

To detect politeness, we utilized the R package "politeness" (Yeomans et al., 2023), a statistical tool designed to analyze linguistic cues and determine the levels of courtesy and respect present in text.We utilized the politenessModel function, which is a wrapper that can be used around a pretrained model for detecting politeness from texts (Danescu-Niculescu-Mizil et al., 2013). This function outputs a score ranging from -1 to 1, where higher values represent higher politeness, and lower values indicate less politeness or rudeness.

In addition to toxicity and politeness, we also

compared the connective language with a set of attributes related to the quality of political discussions proposed by Jaidka (2022). We are specifically concerned with six attributes that are related to connective language, constructiveness, justification, relevance, reciprocity, empathy/respect, and incivility. We used the classifiers featured in this paper to do the classifications.

4 Result

4.1 Descriptives

Platform	Connective	Count	Percentage
Facebook	0	1196	43.9%
(N = 2723)	1	1527	56.1%
Reddit	0	2733	50.7%
(N = 5384)	1	2661	49.3%
Twitter	0	1903	38.5%
(N=4944)	1	3041	61.5%

Table 2: Descriptive of Human-coded Posts by Platform

The Table 2 provides a descriptive summary of human-coded posts used for training machine learning classifiers, showing the distribution of posts labeled as connective (1) and non-connective (0) across three major platforms: Facebook, Reddit, and Twitter. Notably, the data highlights variability in connective language usage, with Twitter exhibiting a higher percentage of connective posts (61.5%), compared to Reddit and Facebook.

4.2 Model Evaluation: BERT vs GPT

To evaluate and compare the performance of two classifiers, BERT and GPT-3.5 Turbo, we assessed their ability to predict whether social media posts convey "connective language" by comparing the predicted values from each classifier against the human-labeled results on the same data. The evaluation metrics used included precision, recall, and F1-score, as detailed in Table 3. The BERT model, "bert-base-uncased," analyzed 1,000 posts and demonstrated a precision of 0.85, recall of 0.84, and an F1-score of 0.85.

Metric	bert-base-uncased	GPT 3.5 turbo
N	1000	1000
Precision	0.85	0.55
Recall	0.84	0.42
F1-Score	0.85	0.48

Table 3: Evaluation metrics of BERT and LLM classifier

6

455 456 457

452

453

454

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

²https://support.perspectiveapi.com/

In contrast, the GPT-3.5 Turbo model, when evaluating the same 1,000 posts, recorded lower scores across all metrics with a precision of 0.55, recall of 0.42, and F1-score of 0.48. These results indicate that the BERT model outperforms the GPT-3.5 Turbo in accurately identifying the conveyance of connective language in social media posts.

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

501

503

508

510

511

512

513

514

515

516

517

518

519

524

4.3 Comparing Connectivity to Other Concepts

We conducted a correlation analysis (see Table 4) to explore the relationship between the new metric of connectivity and established measures within the context of political discussions. This analysis highlighted the unique aspects of the connectivity metric and its interactions with other key qualities of online discussions.

The findings reveal that connectivity negatively correlates, although not significantly, with toxicity, with coefficients ranging from -.36 to -.37, suggesting that discussions characterized by higher connectivity tend to exhibit lower toxicity levels. Additionally, connectivity shows a positive correlation with politeness and empathy-respect, with coefficients of .57 and .52 respectively, when measured by BERT and human raters. This implies that conversations with greater connectivity are also labeled as more polite and respectful.

However, we found no statistically significant correlation between measurements of connectivity and any other measurements—such as toxicity, politeness, constructiveness, justification, relevance, reciprocity, empathy-respect, and incivility—underscoring its uniqueness as a dimension in online discussions. These findings provide robust evidence that connectivity captures elements of communication that are not fully addressed by traditional metrics. This distinctiveness is vital for a deeper understanding of the structural and relational dynamics that are often neglected in conventional content-focused analyses of online discussions.

5 Discussion

525 Connectivity emerged as an important attribute of
526 online discussions. In this study, we proposed two
527 types of classifiers to detect connective language
528 from social media posts. First, we found that the
529 BERT classifier outperforms GPT-3.5 turbo in classifying texts into connective and non-connective
530 sifying texts indicates the superior effectiveness

of BERT in identifying connective language within political discussions. Additionally, we found that connective language is conceptually distinct from other related concepts such as politeness, toxicity, constructiveness, reciprocity, among others, suggesting that connectivity represents a unique dimension of discourse quality. Furthermore, our results demonstrate the ability to use BERT to construct multi-platform classifiers, enhancing the versatility and applicability of our approach and potentially laying the foundation for platform-generalizable classifiers. 532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

570

571

572

573

574

575

576

577

578

579

580

5.1 Limitations

As with any study, we recognize that there are several limitations to this study that we were unable to address or were beyond the scope of our study. First, we constructed our sample in an effort to oversample for connective language. To do so, we sought out digital spaces where discussion and disagreement occurs, and we used keywords that literature suggests may be used when disagreement occurs. Therefore, the proportion of connective posts in our sample is not necessarily representative of a typical virtual conversation or topic. Future studies can build on this work by applying the classifier to more generalizable contexts.

Additionally, while we were able to build a classifier using multi-platform annotations from Facebook, Reddit, and Twitter, we do not consider a wide variety of other platforms, including audiobased and video-based platforms such as YouTube and TikTok. The consideration of spoken languagebased classifiers, while important, was beyond the scope of our analysis and should be considered in future work.

6 Conclusion

This work is foremost motivated by a desire to advance NLP classifiers that identify desirable language and contribute to quality discussion. Drawing from literature on the importance of interactivity, respectfulness, and expressions of openness (Stromer-Galley, 2007; Steenbergen et al., 2003; Murray et al., 2023; Freelon, 2015), our work is among the first to propose an NLP classifier to detect connective language.

In addition to building a classifier for a relatively understudied concept, our connective language classifier also contributes to ongoing scholarly efforts to build multi-platform classifiers (e.g.,

Variable	Μ	SD	1	2	3	4	5	6	7	8	9	10
1. Connectivity (BERT)	0.15	0.39										
2. Connectivity (Human)	0.16	0.38	.95**									
3. Connectivity (GPT)	0.14	0.31	04	02								
4. Toxicity	0.05	0.33	37	36	36							
5. Politeness	0.08	0.36	.57	.55	09	53						
6. Constructiveness	0.09	0.36	63*	61*	06	.19	62*					
7. Justification	0.17	0.40	40	38	.36	08	42	.36				
8. Relevance	0.15	0.40	43	40	.37	11	37	.30	.98**			
9. Reciprocity	0.07	0.32	26	25	08	.10	18	05	30	25		
10. Empathy-Respect	0.11	0.37	.52	.46	.17	46	.55	65*	11	10	05	
11. Incivility	0.02	0.38	38	36	40	.37	43	.54	22	25	01	81**

Table 4: Correlations Between Connectivity and Other Concepts

(Van Bruwaene et al., 2020; Salminen et al., 2020). While single-platform analyses have served as a useful starting point, this work can fail to consider the ever-expanding nature of our multi-platform digital ecosystem.

We consider this work to be "in conversation" with the plethora of NLP scholarship building classifiers for harmful or toxic language (e.g., (Babakov et al., 2024; Jia et al., 2024). While the study of harmful or toxic language is certainly important, especially for removal efforts, it is equally important (and comparatively uncommon) to study and build classifiers for desired language styles. We hope this work inspires others to build and develop classifiers for both undesired and desired online content.

References

581

582

584

587

588

593 594

595

598 599

600

601

606

607

608

610

611 612

613

614

615

616

- Miguel Arana-Catania, Felix-Anselm Van Lier, Rob Procter, Nataliya Tkachenko, Yulan He, Arkaitz Zubiaga, and Maria Liakata. 2021. Citizen participation and machine learning for a better democracy. *Digital Government: Research and Practice*, 2(3):1–22.
- Michele Avalle, Niccolò Di Marco, Gabriele Etta, Emanuele Sangiorgio, Shayan Alipour, Anita Bonetti, Lorenzo Alvisi, Antonio Scala, Andrea Baronchelli, Matteo Cinelli, et al. 2024. Persistent interaction patterns across social media platforms and over time. *Nature*, 628(8008):582–589.
- Nikolay Babakov, Varvara Logacheva, and Alexander Panchenko. 2024. Beyond plain toxic: building datasets for detection of flammable topics and inappropriate statements. *Language Resources and Evaluation*, 58(2):459–504.
- V. S. Bakkialakshmi and T. Sudalaimuthu. 2022. Anomaly Detection in Social Media Using Text-Mining and Emotion Classification with Emotion

Detection. In <i>Cognition and Recognition</i> , pages 67–78, Cham. Springer Nature Switzerland.	617 618
Gustavo EAPA Batista, Ronaldo C Prati, and Maria Car-	619
olina Monard. 2004. A study of the behavior of sev-	620
eral methods for balancing machine learning train-	621
ing data. ACM SIGKDD explorations newsletter,	622
6(1):20–29.	623
Jason Baumgartner, Savvas Zannettou, Brian Keegan,	624
Megan Squire, and Jeremy Blackburn. 2020. The	625
pushshift reddit dataset. In Proceedings of the inter-	626
national AAAI conference on web and social media,	627
volume 14, pages 830–839.	628
Joseph N Cappella, Vincent Price, and Lilach Nir. 2002.	629
Argument repertoire as a reliable and valid measure	630
of opinion quality: Electronic dialogue during cam-	631
paign 2000. Political Communication, 19(1):73–93.	632
Paulo R. Cavalin, Luis G. Moyano, and Pedro P. Mi-	633
randa. 2015. A Multiple Classifier System for Clas-	634
sifying Life Events on Social Media. In 2015 IEEE	635
International Conference on Data Mining Workshop	636
(ICDMW), pages 1332–1335. ISSN: 2375-9259.	637
Kevin Coe, Kate Kenski, and Stephen A Rains. 2014.	638
Online and uncivil? patterns and determinants of	639
incivility in newspaper website comments. Journal	640
of communication, 64(4):658–679.	641
Cristian Danescu-Niculescu-Mizil, Moritz Sudhof, Dan	642
Jurafsky, Jure Leskovec, and Christopher Potts.	643
2013. A computational approach to politeness	644
with application to social factors. arXiv preprint	645
arXiv:1306.6078.	646
Marc Esteve Del Valle, Rimmert Sijtsma, Hanne Stege-	647
man, and Rosa Borge. 2020. Online deliberation	648
and the public sphere: Developing a coding manual	649
to assess deliberation in twitter political networks.	650
Javnost-The Public, 27(3):211–229.	651
Jacob Devlin, Ming-Wei Chang, Kenton Lee, and	652

Kristina Toutanova. 2018. BERT: pre-training of

653

- 708 709 710 711 714 715 716 717 718 720 721 723
- 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761

659 660	About Freedom of the Press in Hong Kon Nature.
661 662	Katharina Esau, Dennis Friess, and Christi 2017. Design matters! an empirical ana
663 664	line deliberation on different news platfo & <i>Internet</i> , 9(3):321–342.
665 666	Katharina Esau, Lena Wilms, Janine Balei Keller. 2023. For deliberation sake, show
667	structive emotion! how different types of
668 669	affect the deliberative quality of interactive ments. <i>Javnost-The Public</i> , 30(4):472–49
670 671	Neele Falk and Gabriella Lapesa. 2022. discourse quality annotation for political
672	Proceedings of the Thirteenth Language
673	and Evaluation Conference, pages 3301-
674	Deen Freelon. 2015. Discourse architectur
675	and democratic norms in online political
676	New media & society, 17(5):772–791.
677	Dennis Friess and Christiane Eilders. 2015
678 679	atic review of online deliberation researc <i>Internet</i> , 7(3):319–339.
680	Dennis Friess, Marc Ziegele, and Dominiqu
681 682	2021. Collective civic moderation for de exploring the links between citizens' or
683	gagement in comment sections and the
684	quality of online discussions. <i>Political</i> C
685	<i>tion</i> , 38(5):624–646.
686	Pranjul Garg and Nancy Girdhar. 2021. A
687 688	Review on Spam Filtering Techniques ba ural Language Processing Framework. In
689	International Conference on Cloud Comp
690	Science & Engineering (Confluence), page
691 692	Anusha Garlapati, Neeraj Malisetty, an Narayanan. 2022. Classification of Toxic
693	ments using NLP and LSTM. In 2022
694	national Conference on Advanced Com
695	Communication Systems (ICACCS), volu
696	16–21. ISSN: 2575-7288.
697	Sagar Gharge and Manik Chavan. 2017. An
698	approach for malicious tweets detection
699 700	In 2017 International Conference on Inv munication and Computational Techno
700	<i>CCT</i>), pages 435–438.
702	Valentin Gold, Mennatallah El-Assady, Ann
703 704	Janisz, Tina Bögel, Christian Rohrdan Butt, Katharina Holzinger, and Daniel H
704 705	Visual linguistic analysis of political of
706	Measuring deliberative quality. <i>Digital</i>
707	in the Humanities, 32(1):141–158.

deep bidirectional transformers for language understanding. CoRR, abs/1810.04805.

655

658

- Giovanna Maria Dora Dore, Arya D McCarthy, and James A Scharf. 2023. A Free Press, If You Can Keep It: What Natural Language Processing Reveals g. Springer
- iane Eilders. alysis of onorms. Policy
- s, and Birte w some conof emotions ve user com-.95.
- Scaling up science. In e Resources -3318.
- e, ideology, discussion.
- A systemch. Policy &
- e Heinbach. eliberation? ganized endeliberative Communica-
- **Systematic** ased on Natn 2021 11th outing, Data ges 30–35.
- d Gayathri city in Com-2 8th Internputing and me 1, pages
- n integrated using NLP. entive Comlogies (ICI-
- nette Hautlintz, Miriam Keim. 2017. discussions: Scholarship

- Lucas Gover. 2023. Political bias in large language models. The Commons: Puget Sound Journal of Politics, 4(1):2.
- Daniel Halpern and Jennifer Gibbs. 2013. Social media as a catalyst for online deliberation? exploring the affordances of facebook and youtube for political expression. Computers in human behavior, 29(3):1159-1168.
- Seyed Habib Hosseini-Saravani, Sara Besharati, Hiram Calvo, and Alexander Gelbukh. 2020. Depression Detection in Social Media Using a Psychoanalytical Technique for Feature Extraction and a Cognitive Based Classifier. In Advances in Computational Intelligence, pages 282-292, Cham. Springer International Publishing.
- Maria Iranzo-Cabrera and Andreu Casero-Ripollés. 2023. Political entrepreneurs in social media: Selfmonitoring, authenticity and connective democracy. The case of Íñigo Errejón. Heliyon, 9(2):e13262.
- Kokil Jaidka. 2022. Developing a multilabel corpus for the quality assessment of online political talk. In Proceedings of the Thirteenth Language Resources and Evaluation Conference, pages 5503–5510, Marseille, France. European Language Resources Association.
- Kokil Jaidka, Alvin Zhou, Yphtach Lelkes, Jana Egelhofer, and Sophie Lecheler. 2022. Beyond anonymity: Network affordances, under deindividuation, improve social media discussion quality. Journal of Computer-Mediated Communication, 27(1):zmab019.
- Chenyan Jia, Michelle S Lam, Minh Chau Mai, Jeffrey T Hancock, and Michael S Bernstein. 2024. Embedding democratic values into social media ais via societal objective functions. Proceedings of the ACM on Human-Computer Interaction, 8(CSCW1):1-36.
- Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina Toutanova. 2019. Bert: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of naacL-HLT, volume 1, page 2.
- Varada Kolhatkar, Nithum Thain, Jeffrey Sorensen, Lucas Dixon, and Maite Taboada. 2020. Classifying constructive comments. arXiv preprint arXiv:2004.05476.
- Ilaria Mariani, Maryam Karimi, Grazia Concilio, Giuseppe Rizzo, and Alberto Benincasa. 2022. Improving public services accessibility through natural language processing: Challenges, opportunities and obstacles. In Proceedings of SAI Intelligent Systems Conference, pages 272-289. Springer.
- Sanju Menon, Weiyu Zhang, and Simon T Perrault. 2020. Nudge for deliberativeness: How interface features influence online discourse. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, pages 1-13.

817

Lara Souto Moreira, Gabriel Machado Lunardi, Matheus de Oliveira Ribeiro, Williamson Silva, and Fabio Paulo Basso. 2023. A study of algorithmbased detection of fake news in brazilian election: Is bert the best. *IEEE Latin America Transactions*, 21(8):897–903.

762

763

772

775

780 781

782

783

784

785

790

791

799

801

810

811

812

813

814

815

816

- Caroline Murray, Marley Duchovnay, and Natalie Jomini Stroud. 2021. Making your political point online without driving people away. Online report, Center for Media Engagement, Austin, TX.
- Caroline Murray, Martin J Riedl, and Natalie J Stroud. 2023. Using facebook messenger versus groups for news engagement. *Digital Journalism*, pages 1–19.
 - Diana C Mutz. 2006. *Hearing the other side: Deliberative versus participatory democracy*. Cambridge University Press.
 - Aviv Ovadya and Luke Thorburn. 2023. Bridging systems: open problems for countering destructive divisiveness across ranking, recommenders, and governance. *arXiv preprint arXiv:2301.09976*.
- Christian Staal Bruun Overgaard, Anthony Dudo, Matthew Lease, Gina M. Masullo, Natalie Jomini Stroud, Scott R. Stroud, and Samuel C. Woolley. 2021. Building connective democracy: Interdisciplinary solutions to the problem of polarisation. In *The Routledge Companion to Media Disinformation and Populism*. Routledge. Num Pages: 10.
- Christian Staal Bruun Overgaard, Gina M. Masullo, Marley Duchovnay, and Casey Moore. 2022. Theorizing Connective Democracy: A New Way to Bridge Political Divides. *Mass Communication and Society*, 25(6):861–885. Publisher: Routledge _eprint: https://doi.org/10.1080/15205436.2022.2119870.
- Latha P, Sumitra V, V. Sasikala, J. Arunarasi, A. R. Rajini, and N. Nithiya. 2022. Fake Profile Identification in Social Network using Machine Learning and NLP. In 2022 International Conference on Communication, Computing and Internet of Things (IC3IoT), pages 1–4.
- Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. 2011. Scikit-learn: Machine learning in python. *the Journal of machine Learning research*, 12:2825–2830.
- Thomas F Pettigrew and Linda R Tropp. 2013. *When* groups meet: The dynamics of intergroup contact. Psychology Press.
- Priyanshu Priya, Mauajama Firdaus, and Asif Ekbal. 2024. Computational politeness in natural language processing: A survey. *ACM Computing Surveys*, 56(9):1–42.
- Myrthe Reuver, Nicolas Mattis, Marijn Sax, Suzan Verberne, Nava Tintarev, Natali Helberger, Judith Moeller, Sanne Vrijenhoek, Antske Fokkens, and

Wouter van Atteveldt. 2021. Are we human, or are we users? the role of natural language processing in human-centric news recommenders that nudge users to diverse content. In *1st workshop on NLP for positive impact*, pages 47–59. Association for Computational Linguistics.

- Gabriel Roccabruna, Steve Azzolin, Giuseppe Riccardi, et al. 2022. Multi-source multi-domain sentiment analysis with bert-based models. In *European Language Resources Association*, pages 581–589. European Language Resources Association.
- Ian Rowe. 2015. Deliberation 2.0: Comparing the deliberative quality of online news user comments across platforms. *Journal of broadcasting & electronic media*, 59(4):539–555.
- Joni Salminen, Maximilian Hopf, Shammur A Chowdhury, Soon-gyo Jung, Hind Almerekhi, and Bernard J Jansen. 2020. Developing an online hate classifier for multiple social media platforms. *Human-centric Computing and Information Sciences*, 10:1–34.
- Indira Sen, Fabian Flöck, and Claudia Wagner. 2020. On the reliability and validity of detecting approval of political actors in tweets. In *Proceedings of the* 2020 conference on empirical methods in natural language processing (EMNLP), pages 1413–1426.
- Yifan Shen and Jiahao Liu. 2021. Comparison of text sentiment analysis based on bert and word2vec. In 2021 IEEE 3rd international conference on frontiers technology of information and computer (ICFTIC), pages 144–147. IEEE.
- Sarah Shugars. 2020. *Reasoning Together: Network Methods for Political Talk and Normative Reasoning*. Ph.D. thesis, Northeastern University.
- Elena Shushkevich, Mikhail Alexandrov, and John Cardiff. 2022. Bert-based classifiers for fake news detection on short and long texts with noisy data: A comparative analysis. In *International Conference on Text, Speech, and Dialogue*, pages 263–274. Springer.
- J. Srinivas, K. Venkata Subba Reddy, G. J. Sunny Deol, and P. VaraPrasada Rao. 2021. Automatic Fake News Detector in Social Media Using Machine Learning and Natural Language Processing Approaches. In *Smart Computing Techniques and Applications*, pages 295–305, Singapore. Springer.
- Marco R Steenbergen, André Bächtiger, Markus Spörndli, and Jürg Steiner. 2003. Measuring political deliberation: A discourse quality index. *Comparative European Politics*, 1:21–48.
- Jennifer Stromer-Galley. 2007. Measuring deliberation's content: A coding scheme. *Journal of Deliberative Democracy*, 3(1).
- Qi Su, Mingyu Wan, Xiaoqian Liu, and Chu-Ren Huang. 2020. Motivations, Methods and Metrics of Misinformation Detection: An NLP Perspective. *Natural Language Processing Research*, 1(1-2):1–13. Publisher: Athena Publishing.

David Van Bruwaene, Qianjia Huang, and Diana Inkpen. 2020. A multi-platform dataset for detecting cyberbullying in social media. *Language Resources and Evaluation*, 54(4):851–874.

873

874

877

883

884

885

886

889

896

897

899

900

901

903

904

906

907

908

909

910

911

912

913

914

915

916

917

918

919

921

925

- Jan G Voelkel, Michael Stagnaro, James Chu, Sophia Pink, Joseph Mernyk, Chrystal Redekopp, Isaias Ghezae, Matthew Cashman, Dhaval Adjodah, Levi Allen, et al. 2023. Megastudy identifying effective interventions to strengthen americans' democratic attitudes. Working paper.
- Jenq-Haur Wang, Ting-Wei Liu, Xiong Luo, and Long Wang. 2018. An LSTM Approach to Short Text Sentiment Classification with Word Embeddings. In Proceedings of the 30th Conference on Computational Linguistics and Speech Processing (ROCLING 2018), pages 214–223, Hsinchu, Taiwan. The Association for Computational Linguistics and Chinese Language Processing (ACLCLP).
 - Mike Yeomans, Alejandro Kantor, and Dustin Tingley. 2023. politeness: Detecting Politeness Features in Text.
 - Ke Zhou, Luca Maria Aiello, Sanja Scepanovic, Daniele Quercia, and Sara Konrath. 2021. The language of situational empathy. *Proceedings of the ACM on Human-Computer Interaction*, 5(CSCW1):1–19.
 - Marc Ziegele, Oliver Quiring, Katharina Esau, and Dennis Friess. 2020. Linking news value theory with online deliberation: How news factors and illustration factors in news articles affect the deliberative quality of user discussions in sns' comment sections. *Communication Research*, 47(6):860–890.

A Appendix

A.1 Concept Validation

To assess the conceptualization and operationalization of connective language, we conducted an online survey with 621 individuals varying in gender, race/ethnicity, and political beliefs. Initially, 977 people participated in the survey, but data were not used for those who may have taken the survey more than once (n = 233), failed a validation check within the survey (n = 88), failed one or more attention checks (n = 7), did not indicate they were at least 18 years old (n = 6), or did not indicate they were a U.S. resident (n = 5), Participants were recruited using CloudResearch, an online platform that draws participants from Amazon Mechanical Turk (MTurk). CloudResearch screens out MTurker participants who may be bots, based on inconsistent answers to demographic questions and/or suspicious geolocations (Litman et al., 2017). We set quotas for gender, race, and political beliefs to ensure that we would get suitable diversity for comparisons.

Participants were first invited to rate four posts-two rated as "connective" and two rated as "not connective" by our undergraduate coders-but the participants were not told of these undergraduates' ratings. They rated how much they disagreed or agreed on a 1 to 5 scale with each of the following statements for each validation comment they viewed: "The person who wrote this posts seems open to understanding the views of someone who might disagree," "The post might help someone with a different viewpoint to understand this person's beliefs," "This post has the potential to build connections with people who disagree with it," and "Someone who disagrees with the views expressed in this post would likely find this post respectful." Responses were averaged together for each validation comment, and only data for those participants who answered all the validation questions correctly were used to actually rate the comments.

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

Then participants were randomly assigned to answer the same questions about five additional comments out of 40 total possible comments (20 that undergraduates had rated as "connective," and 20 that they had rated as "not connective.") These 40 comments were randomly selected out of the dataset. After averaging together ratings for each of the 40 comments, we conducted a series of chi square tests of independence that examined whether there was a relationship between gender, race, or political beliefs, and whether people rated the comments as "connective" or "not connective."

Only two comments of 40 comments were rated differently based on demographics. In one case, women and men differed in their ratings: "Um, if every square inch of a park has smokers, honestly it may be on the family to find a less crowded park and clearly the smokers have a bigger interest than the family since they would outnumber the family. Cars really dont have that much benefit besides they destroyed the public transit system and we waste a shit ton of resources on them. We also are unhealthier, waste money, and waste land because of them. Smoking in general seems to be associated with lower income." Women interpreted this post to be connective, whereas men interpreted this post to be non-connective. In another, Black Indigenous People of Color (BIPOC) people disagreed with white people: "I understand it's not polite to try to talk with random strangers while they are trying to shop. *You* understand that. Kids don't. They'll go up to any interesting person and yammer on unless you teach them not to. This is one way to

1028

978

979

teach them not to." White people perceived this as slightly more connective, whereas BIPOC people did not.

Both of these comments had been rated as nonconnective by our trained undergraduate coders. Given that only two analyses out of the 120 chi squares showed any relationships between demographics and how people answered, we are confident that our operationalization of connective posts resonates across various groups.

A.2 Prompt Engineering

To develop the final prompt we used, we tried two alternatives and tuned them to improve on the classification task for the third and final prompt.

First Prompt Please perform a text annotation task: I will provide you with the definition of 'connectivity' and several example posts which demonstrate "connectivity". Then, I will show you some unlabeled posts. Your task is to classify the post based on whether it demonstrates connectivity or not. Label 1 if yes, 0 otherwise.

Here is the definition of connectivity. "Connectivity" reflects the tone of a message. A post is connective if it expresses a willingness to engage in conversation with others that they disagree with, includes a hedge, or is tonally polite when sharing an opinion or fact. For example, expressing honesty, such as "in my honest opinion," is a connective language marker.

Here are 5 example posts that demonstrate "connectivity":

[1] "I hear you there Roger.....Miss this girl every day." [2] "I love how Cake's friends had Eiw's back when Cake was away, and continued to so in times like this by showing up, Fee too. The siblings would need all the support they can get, killing off a character wasn't necessary in my opinion." [3] "Our fren got bounced off here last night–same night he debuted his newest (and best yet IMHO) vidya, Ëy..." [4] "So....documents were found in the VP office that belonged to President Biden. Correct me if I'm wrong but isn't that the..." [5] "No, that's a dangerous practice in a relationship and certainly not very smart or cool imho."

Please label the following posts as 1 = connective, 0 = non-connective

Second Prompt Please perform a text annotation task: I will provide you with the definition of 'connective democracy', some human-labeled social media posts, and some posts to be coded. Your task is to classify the unlabeled posts based on whether it demonstrates connective democracy or not.

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

Here is the definition of 'connective democracy': Connective democracy seeks to build bridges between divided groups so that they can hear each other in a deliberative manner. "Connectivity" refers to a willingness to prioritize relationships over competitiveness and engage in conversation with one's political adversaries to genuinely understand their viewpoints.

A.3 Correlation Matrix

Table 5 shows the results of a correlation test 1040 between three connective measurements: BERT (CONN_BERT), GPT, and Human (CONN_H), 1042 and seven measurements related to the "bridging 1043 system" (Ovadya and Thorburn, 2023) computed 1044 by Perspective API³: Affinity (AFFI), Compas-1045 sion (COMP), Curiosity (CURI), Nuance (NUAN), 1046 Personal Story (PERS), Reasoning (REAS), and 1047 Respect (RESP). The results show that the mea-1048 surements of connective language have no signif-1049 icant correlation with any of the "bridging" mea-1050 surements, indicating the conceptual uniqueness of 1051 connective language. 1052

A.4 Replication Files

The	labeled	dataset,	СС	odebook,	and	1054
BERT	model	can	be	found	here:	1055
https://	osf.io/xrkv	a/?viewo	nly		=	1056
6bd933	803651a421	1 eac 58 ad	720e	18a838		1057

³See https://developers.perspectiveapi.com/s/about-theapi-attributes-and-languages

	CONN_BERT	CONN_H	GPT	AFFI	COMP	CURI	NUAN	PERS	REAS	RESP
CONN_BERT	1.00	0.73	0.06	0.25	0.09	0.05	-0.11	0.14	-0.06	0.40
CONN_H	0.73	1.00	0.09	0.21	0.11	0.11	-0.06	0.14	-0.03	0.32
GPT	0.06	0.09	1.00	0.38	0.34	0.38	0.45	0.24	0.46	0.24
AFFI	0.25	0.21	0.38	1.00	0.65	0.47	0.47	0.59	0.47	0.59
COMP	0.09	0.11	0.34	0.65	1.00	0.42	0.54	0.45	0.54	0.37
CURI	0.05	0.11	0.38	0.47	0.42	1.00	0.62	0.22	0.54	0.23
NUAN	-0.11	-0.06	0.45	0.47	0.54	0.62	1.00	0.45	0.94	0.06
PERS	0.14	0.14	0.24	0.59	0.45	0.22	0.45	1.00	0.43	0.29
REAS	-0.06	-0.03	0.46	0.47	0.54	0.54	0.94	0.43	1.00	0.21
RESP	0.40	0.32	0.24	0.59	0.37	0.23	0.06	0.29	0.21	1.00

Table 5: Correlation Matrix Between Connectivity and "Bridging" Attributes