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ABSTRACT

In medium-term weather forecasting, deep learning techniques have emerged as
a strong alternative to classical numerical solvers for partial differential equations
that describe the underlying physical system. While well-established deep learn-
ing models such as Fourier Neural Operators are effective at predicting future
states of the system, extending these methods to provide ensemble predictions
still poses a challenge. However, it is known that ensemble predictions are crucial
in real-world applications such as weather, where local dynamics are not neces-
sarily accounted for due to the coarse data resolution. In this paper, we explore
different methods for generating ensemble predictions with Fourier Neural Oper-
ators trained on a simple one-dimensional PDE dataset: input perturbations and
training for multiple outputs via a statistical loss function. Moreover, we pro-
pose a Laplace approximation for Fourier layers and show improved uncertainty
quantification.

1 INTRODUCTION

Partial differential equations (PDEs) are used to model complex interactions in real-world phenom-
ena like weather and climate. In recent years, several deep learning methods such as FourCast-
Net (Pathak et al., 2022), PanguWeather (Bi et al., 2023), and GraphCast (Lam et al., 2023) have
been developed to provide deterministic medium-term PDE predictions. This marks an important
step in moving from simulated PDE datasets towards real-world data, which comes with additional
challenges such as local weather dynamics that are not resolved in the input data. To address the
uncertainties accompanying reanalysis data, ensemble predictions have a long history in weather
forecasting. In existing literature, two primary methodologies have been used for adding ensemble
predictions to the architectures mentioned above: perturbing the input (Pathak et al., 2022) and train-
ing for multiple trajectories via statistical loss function (Lessig et al., 2023). An alternative approach
arises from the Bayesian perspective on Deep Learning, by sampling new models from a posterior
distribution conditioned on the training data (Gal, 2016). In this context, Laplace approximations
have shown to be competitive with more popular alternatives such as variational Bayes or deep
ensembles, both in terms of performance and computational cost (Daxberger et al., 2021). While
Laplace approximations have been previously explored for Graph Neural Operators (Magnani et al.,
2022), its application remains unexplored within the context of Fourier Neural Operators (FNOs).
In this paper, we hence focus on FNOs and equip the parameters of the last Fourier layer with an
uncertainty estimate. Our primary objective is to compare the resulting ensemble predictions with
the existing methodologies mentioned above. Since proper comparison studies of such approaches
are missing, we start our analysis in this paper with a simple one-dimensional toy problem of pro-
ducing ensemble predictions for the trajectories of Korteweg-de Vries equations for different initial
states. This stands in contrary to new methods like NeuralGCM (Kochkov et al., 2023) and Gen-
Cast (Price et al., 2023) that explore new architectures for explicitly modeling ensemble predictions.
Such further comparisons and higher-dimensional experiments are left for future work.
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2 FOURIER NEURAL OPERATORS

Neural Operators (Kovachki et al., 2023; Li et al., 2021a; 2020b;a; 2021b) are a type of neural
network fθ - with parameters θ ∈ Cd or θ ∈ Rd - designed to learn solution operators of PDEs.
Their training and test sets consist of input-output functions D = {un, vn}Nn=1 discretized on some
spatio-temporal mesh. The input is usually an initial state un(·, t0), and the output corresponds
to the solution of the PDE after a certain time T , i.e. vn := un(·, T ). Different types of Neural
Operator architectures have been developed (Li et al., 2020a;b; 2021a). One prominent method is
the so-called Fourier Neural Operator, which consists of pointwise operating linear mappings and
so-called Fourier layers. The original Fourier layer (Li et al., 2021a) can be written as

FL(z) = σ
(
F−1(RF(z)

)
+Wz), (1)

where R is a linear transform acting only on the lower Fourier modes and W is a linear mapping
operating pointwise in the spatial domain. The higher Fourier modes are truncated, having a similar
effect as the non-linear activation function σ. The restriction to pointwise operations and the trans-
formation into the Fourier domain makes it possible to transfer between different discretizations.

3 UNCERTAINTY QUANTIFICATION FOR FNOS

We denote for an input un the ensemble of |K| predictions by either (fθ(un,k))k∈K , (fθ(un)k)k∈K

or (fθk(un))k∈K , highlighting the different positions where the ensemble is introduced. For eval-
uating an ensemble, we consider its empirical mean f̂(un) and the standard deviation σ̂n. In the
rest of this section, we outline the different approaches and derive the Laplace approximation for the
Fourier layer.

FNO-Perturbed. A direct approach for extending any model to generate ensemble predictions is
by forwarding a batch of perturbed versions of a single input un. One way is to sample noise
ϵx,t ∼ N (0, τ2) for each input value of the discretized function state un(x, t) (Pathak et al., 2022).

FNO-Ensemble. Recently Lessig et al. (2023) suggested training directly for |K| predictions, by
optimizing |K| parallel prediction heads via an extended loss function. This loss is given by sum-
ming over the squared error loss for each prediction, a statistical loss, and the ensemble spread

l(vn, (fθ(un)k)k∈K) =
∑
k

|vn − fθ(un)k|2 + |1−Gf̂(un),σ̂n
(vn)|2 +

√
σ̂n, (2)

where G is the Gaussian cumulative density function.

Laplace approximation for FNOs. The Bayesian approach for modeling weight-space uncertainty
is based on the observation, that the supervised learning objective - extended by a weight regularizer
r(θ) - can be viewed as summing over the negative log-likelihood and a negative log-prior over the
weight vector θ (Bishop, 2006):

θ∗ = argmin
θ∈Cd

N∑
n=1

L(vn, fθ(un)) + r(θ) = argmin
θ∈Cd

−
N∑

n=1

log p (vn|fθ(un))− log p(θ)

The weight-space uncertainty under a Laplace approximation is then described by the (unnormal-
ized) log density

log p(θ|D) ≈ log p(θ∗|D)− 1

2
(θ − θ∗)T

[
−∇2

θθ log p(θ|D)
]
(θ − θ∗)

of the Normal distribution N
(
θ∗,−∇2

θθ log p(θ|D)−1
)

(Daxberger et al., 2021). In the deep
learning setting, the optimized weights θ∗ are not necessarily a minimizer of the negative log-
posterior and therefore the Hessian might not be positive definite, i.e. a valid inverse covariance
matrix. A common positive definite approximation is given by the generalized Gauss-Newton
matrix GGN(θ) := Jθ(fθ(un))

TΛ(fθ(un))Jθ(fθ(un)), where Jθ(fθ(un)) := ∇θfθ(un) and
Λ(fθ(un)) = ∇2

fθ(un)fθ(un)
L(vn, fθ(un)) (Botev, 2020).
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However, for computational efficiency, the GGN is only calculated using a batch of data points and
usually only a subset of weights is modeled probabilistically, where the focus is often set on the
weights of the last layer. In the case of FNOs, the last linear map is only applied pointwise to the
function and therefore does not capture any global structure. As an alternative, we suggest modeling
the complex Fourier space parameters θFL := vec(R) of the last Fourier layer probabilistically. To
do so, we consider a Kronecker-factored approximation (K-FAC, cf. Martens & Grosse (2015)) to
further reduce the cost of computing the GGN. This approximation is based on the observation that
JθFL

(fθ(un)) := Jvec(RF(zn))fθ(un)JθFL
RF(zn) and JθFL

RF(zn) = F(zn)
T ⊗ Ihidden. The

K-FAC approximation of the covariance matrix can then be derived similarly to Eschenhagen et al.
(2023) and Ritter et al. (2018) as follows

ΣθFL
≈

[√
N

B

B∑
n=1

F(zn)F(zn)
T + τI

]−1

⊗

[√
N

B

B∑
n=1

bnΛ(fθ(un))b
T
n + τI

]−1

, (3)

where we assume a centered Gaussian prior with covariance matrix given by τ2I and denote bn :=
Jvec(RF(zn))fθ(un). By sampling new weights θFL ∼ N (θ∗FL,ΣFL), and passing a single input
un through the ensemble of resulting models (fθFL,k∪θ∗)k∈K , we obtain a corresponding ensemble
prediction (fθFL,k∪θ∗(un))k∈K . We denote this approach by FNO-FL.

4 EXPERIMENTAL RESULTS

We consider a one-dimensional FNO with 4 Fourier layers, truncation to 16 modes, and 64 hidden
dimensions. It was trained to predict 20 time steps of a solution to the Korteweg-de Vries equation
(cf. 4) given the solution at 20 previous time steps.

∂

∂t
u(x, t) = −u(x, t) · ∂

∂x
u(x, t)− ∂3

∂x3
u(x, t) (4)

The training, validation, and test set consists of 512 solutions for varying initial conditions, each
discretized at 256 spatial and 140 time points (Auzina, 2022). For comparing the methods outlined
above in the context of model convergence, we consider a short and a long training run. The same
training is used for the FNO-Perturbed and FNO-FL, while the FNO-Ensemble is trained for |K| =
10 predictions separately. For comparison both short training runs are stopped after the RMSE on
the validation set reaches 0.28, and the long training runs after reaching 0.09. The τ parameters
in the FNO-Perturbed and FNO-FL are optimized by a simple bisection search and we draw 100
ensemble members.

We consider the following evaluation metrics (Chung et al., 2021):

RMSE =

√
1

C

∑
n,x,t

(f̂(un)(x, t)− vn(x, t))2, (5)

Q =
1

C

∑
n,x,t

(fθ∗(un)(x, t)− vn(x, t))
2

σ̂2
n,x,t

, and (6)

NLL =
1

2C

∑
n,x,t

[
log 2πσ̂2

n,x,t +
(fθ∗(un)(x, t)− vn(x, t))

2

σ̂2
n,x,t

]
, (7)

where C is the number of summands. The RMSE describes the match of the ensemble prediction
mean and should be close to zero. The Q estimate indicates the posterior calibration and should be
close to one, while the average Gaussian negative-log-likelihood should be low and represents the
trade-off between low standard deviations and error terms.

The results of the metrics evaluated on the test set can be found in Table 1. An ensemble prediction
for a single test data sample is shown in Figure 1.

5 CONCLUSION

While FNO-Ensemble is more expensive to train, FNO-Perturbed and FNO-FL need prior precision
tuning. Once a suitable τ value is found, FNO-FL is an effective tool for quantifying uncertainty
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Table 1: Evaluation metrics on 500 training and test samples.
Short training run Long training run

Training set Test set Training set Test set

RMSE Q NLL RMSE Q NLL RMSE Q NLL RMSE Q NLL

FNO-Perturbed 0.26 0.83 0.26 0.25 0.83 0.25 0.08 0.85 -0.59 0.08 0.99 -0.52
FNO-Ensemble 0.25 28.71 12.39 0.25 28.62 12.34 0.08 2.82 -1.35 0.08 3.61 -1.01
FNO-FL 0.25 1.02 -0.01 0.24 1.01 -0.02 0.08 0.88 -1.32 0.07 1.09 -1.30
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Figure 1: Comparison of FNO-Perturbed (gold), FNO-Ensemble (pink), and FNO-FL (blue) on a
single test data sample (black) for both short (left) and long (right) training runs. Each ensemble is
depicted by its mean (colored thick line), a 95% c.i. (shaded region) and five members.

in shorter training runs in which the model has not yet converged. However, for longer training
runs, its performance is not as clear. In general, the samples from FNO-Ensemble and FNO-FL are
considerably more plausible in comparison to the noisy FNO-Perturbed samples.

Note that the uncertainty quantification provided by the Laplace approximation in FNO-FL is ar-
guably strictly more powerful than the other two methods since it is given by a full probability
measure on weights as opposed to one approximated by samples.

These promising findings strongly encourage further exploration of ensemble predictions using
weight-space uncertainty with Laplace approximations. However, there are still many aspects
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to investigate, such as uncertainty in W and scaling these methods to larger networks and high-
dimensional data.
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