
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ACCELERATING NEWTON-SCHULZ ITERATION FOR
ORTHOGONALIZATION VIA CHEBYSHEV-TYPE
POLYNOMIALS

Anonymous authors
Paper under double-blind review

ABSTRACT

The problem of computing optimal orthogonal approximation to a given matrix has
attracted growing interest in machine learning. Notable applications include the
recent Muon optimizer or Riemannian optimization on the Stiefel manifold. Among
existing approaches, the Newton-Schulz iteration has emerged as a particularly
effective solution, as it relies solely on matrix multiplications and thus achieves
high computational efficiency on GPU hardware. Despite its efficiency, the method
has inherent limitations—its coefficients are fixed and thus not optimized for
a given matrix. In this paper we address this issue by proposing a Chebyshev-
optimized version of Newton-Schulz (CANS). Based on the Chebyshev’s alternance
theorem, we theoretically derive optimal coefficients for the 3-rd order Newton-
Schulz iteration and apply a Remez algorithm to compute optimal higher-degree
polynomials. We leverage these polynomials to construct controlled approximate
orthogonalization schemes, which is of interest in deep learning applications.
Practically, we demonstrate the method’s effectiveness in two key applications:
orthogonalization in the Muon optimizer, and providing an efficient retraction
alternative for Riemannian optimization on the Stiefel manifold.

1 INTRODUCTION

Polar decomposition of a matrix X ∈ Rm×n,m ≥ n is a factorization X = WH , where W ∈ Rm×n

has orthonormal columns and H ∈ Rn×n is a positive semidefinite symmetric matrix (or Hermitian in
the complex case). An important application of the polar decomposition is the orthogonal Procrustes
problem:

min
Q:QTQ=I

∥Q−X∥F ,

with the solution being Q = W the polar factor of X . For generalization, see (Schönemann, 1966).

Polar decomposition can be computed directly using the singular value decomposition X = USV T ,
which immediately leads to W = UV T , H = V SV T . However, calculating the SVD can be costly
for many applications. There are several iterative methods available, including Newton (Kenney &
Laub, 1992) and Halley’s methods (Nakatsukasa et al., 2010), which require matrix inversion. In
this work, we consider the Newton-Schulz iteration (Björck & Bowie, 1971; Kovarik, 1970; Higham,
2008), which only requires matrix multiplication:

Xk+1 =
3

2
Xk −

1

2
XkX

T
k Xk, X1 = X. (1)

This iteration converges to the orthogonal factor of the polar decomposition if σ1(X) <
√
3 and

σn(X) > 0. Classical Newton-Schulz iteration can be also extended to higher degrees (Bernstein &
Newhouse, 2024):

Xk+1 = αk
1Xk + αk

3XkX
T
k Xk + αk

5Xk(X
T
k Xk)

2 + · · ·+ αk
2t+1Xk(X

T
k Xk)

t,

which can be rewritten using SVD of Xk = USkV
T as follows:

Xk+1 = U(αk
1Sk + αk

3S
3
k + αk

5S
5
k + · · ·+ αk

2d+1S
2d+1
k)V T = Upk(Sk)V

T .

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

In order for these iterations to converge to the orthogonal polar factor, the composition of polynomials
pk(pk−1(. . . p1(x))) should converge to the unity function f ≡ 1 on the segment [σn(X), σ1(X)].
Indeed, the desired property is:

∥Xk+1 − UV T ∥2 = ∥U(pk(Sk)− I)V T ∥2 = ∥pk(Sk)− I∥2
= ∥pk(pk−1(. . . p1(S)))− I∥2
= max

i
|pk(pk−1(. . . p1(si)))− 1|

≤ max
s∈[σn,σ1]

|pk(pk−1(. . . p1(s)))− 1| → 0, k →∞,

(2)

where we used orthogonal invariance of the spectral norm. However, in some applications (e.g., Muon
optimizer), high orthogonalization accuracy may not be necessary and finding an approximation of
f ≡ 1 with an error ε is sufficient. This allows to balance between accuracy and efficiency when
selecting polynomials.

In this work, we propose algorithms for optimizing the coefficients of the classical Newton-Schulz
method, based on the Chebyshev alternation theorem. This framework, which we call Chebyshev-
accelerated Newton-Schulz (CANS), enables us to obtain polynomials with the desired properties and
accelerated convergence. Our main contributions are:

• We derive theory for finding odd polynomials that optimally approximate the unity function
on a given segment [a, b] (Section 3.1). This leads us to explicit formulas when pk are of
degree 3 and Remez algorithm for larger degrees. Given the bounds on the singular values,
these polynomials lead to methods that outperform Newton-Schulz (Section 3.2).

• We develop new polynomials that are confined within the interval [1− δ, 1 + δ] with a user-
specified δ (inexact orthogonalization), while maximizing the polynomial derivative in the
vicinity of zero (Section 4). This is motivated by the needs of the orthogonalization procedure
of the Muon optimizer (Jordan et al., 2024b). For the same target δ, our polynomials achieve
a larger derivative compared to original Muon polynomial and those from (Jiacheng, 2024),
and yield faster convergence of the optimizer when training the NanoGPT (Section 5.2).

• We further demonstrate that by maximizing the derivative at the origin, our inexact orthogo-
nalization polynomials can serve as an effective preprocessing step for an iterative method
of choice. This is particularly useful when information about the smallest singular value is
not available. We also show that the largest singular value can be accurately approximated
via Gelfand’s formula with negligible computational overhead (Section 3.3).

• In Section 5.3, we demonstrate the application of CANS for building an efficient retraction on
the Stiefel manifold, which speeds up training of WideResNet with orthogonal constraints.

2 RELATED WORK

Iterative methods. First iterative method for the orthogonal polar factor, based on Taylor series
expansion, was introduced in (Björck & Bowie, 1971; Kovarik, 1970). The work (Higham &
Schreiber, 1990) developed an algorithm balancing inversion and multiplication. Subsequent methods
like scaled Newton (Higham, 2008), Halley’s method, QDWH (Nakatsukasa et al., 2010), and Zolo-pd
(Nakatsukasa & Freund, 2016) improved convergence but require matrix inversion or QR, which is
less GPU-friendly than pure matrix multiplications. The stability of these methods is analyzed in
(Nakatsukasa & Higham, 2012). Scaling of Newton-Schulz iteration was explored in (Chen & Chow,
2014b;a). Notably, the polynomials derived in (Chen & Chow, 2014b) align with our formula for
optimal third-degree polynomials, although our approach is applicable for higher degree polynomials.
Concurrently with our work, Amsel et al. (2025) also studied optimal polynomials for the Newton-
Schulz iteration. They independently derived the same optimal third-order polynomial (which also
matches the formula in (Chen & Chow, 2014a)) and the same recursive scheme for polynomial
composition (see Eq. 4). While Amsel et al. (2025) prove the optimality of such composition, their
method and analysis is restricted to the exact case. In contrast, our work focuses primarily on the
inexact case, introducing a method to construct polynomials that satisfy a given tolerance δ while also
maximizing derivatives at zero to accelerate the convergence of smaller singular values. A further
distinction concerns the use of Gelfand’s formula.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Deep learning. In neural networks, Newton-Schulz iteration is applied for enforcing orthonormality
of the weight matrices (Anil et al., 2019). Its computational efficiency has made it particularly
valuable for optimizers requiring orthogonalization, including Muon (Jordan et al., 2024b; Bernstein
& Newhouse, 2024) and Scion (Pethick et al., 2025). Related approaches have employed Newton
iteration for computing matrix p-th roots in other optimizers (Anil et al., 2020).

Riemannian optimization. In Riemannian optimization on the Stiefel manifold, polar decomposition
is one of the possible retractions (Absil et al., 2009) to the manifold, alongside Cayley transform (Li
et al., 2020; Zhu, 2017; Gao et al., 2021) and QR.

3 OPTIMAL ODD POLYNOMIALS AND NEWTON-SCHULZ ITERATIONS

3.1 OPTIMAL ODD POLYNOMIALS

As stated in equation 2, our goal is to find an odd polynomial that best approximates the unity function
f ≡ 1 on a given segment, in which the singular values of the matrix fall [σn(X), σ1(X)] ∈ [a, b].

By Ln we shall denote the space of odd polynomials of degree 2n− 1, that is,

Ln = {α1x+ α3x
3 + · · ·+ α2n−1x

2n−1 : α1, α3, . . . , α2n−1 ∈ R}.

Note that dimLn = n. Now fix 0 < a < b and n ∈ N. We endow the space C[a, b] with its standard
norm, i.e. ∥f∥C[a,b] = maxt∈[a,b] |f(t)|. For a function f ∈ C[a, b] we consider the problem of
finding p ∈ Ln such that ∥f − p∥C[a,b] = min{∥f − q∥C[a,b] : q ∈ Ln}. A polynomial p with the
foregoing property we shall call the best uniform odd polynomial approximation of f of degree 2n−1.
Since we do not consider approximations in any other sense, we shall use a shorter term best odd
polynomial approximation omitting the explicit mention of the degree, if it is clear from the context.
The powerful method of studying best polynomial approximations is provided by the Chebyshev
equioscillation theorem (see (Trefethen, 2020, Section 10) for classical formulation, and (Hörmander,
2018, Theorem 5) for the general version). In our case it reduces to the following fact.
Theorem 1. Let 0 < a < b, n ∈ N, and f ∈ C[a, b]. Then the following statements hold.

(i) The best odd polynomial approximation of f is unique.

(ii) p ∈ Ln is the best odd polynomial approximation of f of degree 2n − 1 if and only if
there exist points x0 < x1 < · · · < xn on the interval [a, b] such that |p(xj) − f(xj)| =
∥p − f∥C[a,b] for all j = 0, . . . , n and p(xj) − f(xj) = −(p(xj−1) − f(xj−1)) for all
j = 1, . . . , n.

Proof. See Appendix A.

The points x0, . . . , xn from Theorem 1 are said to form the Chebyshev alternance for p− f .

We shall need further properties of the best odd polynomial approximation of the unity function
f ≡ 1. Given 0 < a < b and n ∈ N we denote by pn,a,b the best degree 2n − 1 odd polynomial
approximation of the unity on the interval [a, b] and by ε(n, a, b) we denote the value ∥pn,a,b−1∥C[a,b].
The following proposition contains basic properties of pn,a,b.
Proposition 1. Let 0 < a < b and let n ∈ N. Then the following statements hold.

(i) If x0 < · · · < xn are the points of the Chebyshev alternance for pn,a,b − 1, then x0 = a
and xn = b.

(ii) If ε = ∥pn,a,b − 1∥C[a,b], then pn,a,b(xj) = 1− (−1)jε for all j = 0, . . . , n.

(iii) The derivative p′n,a,b(x) attains a local maximum at x = 0 and decreases on the interval
[0, x1]. Moreover, p′n,a,b(0) ≥ (1− ε)/a.

(iv) For any t > 0 we have ε(n, ta, tb) = ε(n, a, b) and pn,ta,tb(tx) = pn,a,b(x).

Proof. See Appendix B.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Using the foregoing proposition it is easy to find a closed-form expression for p2,a,b.

Proposition 2. Let 0 < a < b. Then

p2,a,b =
2

2
(
a2+ab+b2

3

)3/2
+ a2b+ b2a

((
a2 + ab+ b2

)
x− x3

)
.

Moreover, this polynomial attains its maximum on [a, b] at x = e =
√
(a2 + ab+ b2) /3. Finally,

ε(2, a, b) = ∥p2,a,b − 1∥C[a,b] =
2
(

a2+ab+b2

3

)3/2
− a2b− b2a

2
(
a2+ab+b2

3

)3/2
+ a2b+ b2a

. (3)

Proof. see Appendix C.

For the polynomials of higher degree, finding explicit formulas seems to be unrealistic, as the problem
reduces to finding roots of polynomials of degree more than 4. Also we were not able to construct
any transcendental formula for pn,a,b. However, we can use an adaptation of the well-known Remez
algorithm (see, e.g. (Trefethen, 2020, Section 10)) for finding optimal polynomials of higher degrees.
We describe Remez algorithm in Appendix F.

3.2 NEWTON-SCHULZ ITERATIONS BASED ON OPTIMAL ODD POLYNOMIALS

We outline several reasonable choices of polynomials for Newton-Schulz iterations of a matrix X .

At first we consider the case when we are given a priori estimates on the singular values of X , i.e.
a ≤ σk(X) ≤ b for all k = 1, . . . , n. In this case it is natural to consider an integer d0 ∈ N and
an optimal odd polynomial pd0,a,b =

∑d0

k=1 α2k−1x
2k−1. All singular values of the matrix X1 =∑d0

k=1 α2k−1X(XTX)k−1 are contained in the interval [a1, b1] = [1− ε(d0, a, b), 1 + ε(d0, a, b)].
Thus, we can again choose an integer d1 (possibly distinct from d0) and repeat this process with
pd1,a1,b1 and matrix X1. If d0, d1, . . . are chosen to be greater or equal than 2, then this process
converges to the orthogonal factor UV T of X in its polar decomposition (Algorithm 1). We present
analysis of the convergence of these iterations in case of polynomials of degree 3 (di = 2).

Let 0 < a < b and consider the following recursion:

a0 = a, b0 = b, 0 < a < b

an+1 = 1− ε (2, an, bn) , bn+1 = 1 + ε (2, an, bn) .
(4)

We also have ε(dk, a, b) = ∥Xk − UV T ∥2.

Proposition 3. With the definition above, the error of approximation εn+1 = ε(2, an, bn) converges
to zero quadratically. More precisely,

εn+1 ≤ ε2n and lim
n→∞

εn+1

ε2n
=

3

4
.

Proof. See Appendix D.

Corollary 1. For the starting segment [a0, b0], where 0 < a0 < 1 and b0 = 1, the number of
iterations necessary to achieve the desired error of approximation ε in the spectral norm is as follows:

n ≥
⌈
log2

(
ln ε

ln(1− a0)

)⌉
.

Proof. See Appendix E.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

0 1 1+a=0.4 a=0.6

1-
1

1+

y=x

=0.2

p d,
optimal qd, d,
p d,

Figure 1: Illustration of the selection of a degree-3 (d = 2) polynomial with a large derivative at zero.
The green polynomial falls into [1− δ, 1 + δ], but has insufficient derivative. The blue polynomial
qd,δ has the highest possible derivative among polynomials from Pd,δ . The purple polynomial is not
part of Pd,δ , and its derivative is too large.

3.3 NORMALIZATION OF A MATRIX PRIOR TO NEWTON-SCHULZ ITERATIONS

To achieve the desired behavior of Newton-Schulz iterations (both classical Newton-Schulz and our
modifications), one has to impose upper estimates for singular values of a matrix. That is, the first
step of any algorithm based on Newton-Schulz is to normalize the matrix so that its singular values
fall into the convergence range of polynomials (e.g. (0,

√
3) for classical NS, [ε, 1] in our case).

The easiest approach is to normalize by Frobenius norm, but this may significantly decrease small
singular values and slow down the convergence. Ideally, the matrix should be normalized by its
largest singular value. To estimate σ1 efficiently, one may use power method (but it estimates σ1

from below), randomized estimates (Dixon, 1983), (Halko et al., 2011, Lemma 4.1) or Gelfand’s
formula: σ1(A) ≤ ∥(ATA)k∥1/(2k)F . If needed, the Gelfand’s formula can be implemented without
introducing extra matmuls because (ATA)k is computed during Newton-Schulz iterations:

1. Compute matrices (ATA)i for i = 1...k and save them.

2. Compute c = ∥(ATA)k∥1/(2k)F .

3. Compute p1(A/c) = (
∑k

i αi(A
TA)i/c2i)(A/c). Use p1(A/c) for the next iteration.

Note that for third-degree polynomials, we do not need to save extra matrices.

4 POLYNOMIALS WITH LARGE DERIVATIVES AT x = 0

Now we aim to construct polynomials that can rapidly uplift the smallest singular values, while
deviating from 1 by no more than given δ. It implies that they should have a large derivative at zero.

At first let us discuss the conditions that we impose on polynomials. Since it is desirable that the
value p(p(. . . p(x) . . .)) falls into the interval [1− δ, 1 + δ] after sufficient number of iterations, it is
natural to require that p([1− δ, 1+ δ]) ⊂ [1− δ, 1+ δ]. On the other hand, for x ∈ [0, 1− δ] we want
to guarantee, that x is not moved further away from the desired interval. Hence, for x ∈ [0, 1− δ] we
require the condition p(x) ≥ x. On the other hand, we do not impose any conditions on the behaviour
of p for x > 1+ δ, thus we also need to add the restriction p(x) ≤ 1+ δ for x ∈ [0, 1− δ] (otherwise,
we can not control the behaviour with respect to iterations of p). With the above considerations we
introduce the set

Pd,δ = {p ∈ Ld : x ≤ p(x) ≤ 1+ δ ∀x ∈ [0, 1− δ], 1− δ ≤ p(x) ≤ 1+ δ ∀x ∈ [1− δ, 1+ δ]}.

The problem posed at the beginning of the section can be now formulated as an optimization problem

max
p∈Pd,δ

p′(0). (5)

We shall not solve this problem directly, but instead we replace it by another one, the solution of
which can be reduced to the problem of finding best polynomial approximation of the unity function.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Consider for a polynomial p ∈ Pd,δ the number aδ(p) = sup{x ∈ [0, 1− δ] : p(x) < 1− δ}. That
is, aδ(p) is the left boundary of the biggest segment [a, 1 + δ] on which the values of a polynomial
p falls into [1− δ, 1 + δ]. Intuitively, to increase the derivative of a polynomial p at zero, we need
to shift the left boundary a of the described segment as close to zero as possible until there does
not exist a polynomial that fits into the restrictions of Pd,δ (see the shift from the green to the blue
polynomial in Figure 1). Thus, we consider the optimization problem

min
p∈Pd,δ

aδ(p). (6)

Below we show that the problem (6) has a unique solution that can be found explicitly for polynomials
of degree 3 and by binary search for higher degrees (Algorithm 2). Moreover, we show the equivalence
of problems (5) and (6) (i.e. optimal polynomials for these problems coincide) if δ is large enough.
Proposition 4. Let δ ∈ (0, 1) and d ∈ N, d ≥ 2. Then the following statements hold.

(i) There is a unique number a = a(d, δ) ∈ (0, 1− δ) such that ε(d, a, 1 + δ) = δ.

(ii) The solution to the optimization problem (6) is unique, the minimum is equal to a = a(d, δ)
from (i) and is attained on the polynomial qd,δ = pd,a,1+δ (optimal odd polynomial on
[a, 1 + δ] of degree 2d− 1, see Section 3.1).

(iii) The solution qd,δ to the problem equation 6 satisfies the inequality qd,δ(x) ≥ cx for all
x ∈ [0, a(d, δ)] with c = (1− δ)/a(d, δ) > 1.

(iv) Let x0 = a(d, δ) < x1 < · · · < xd = 1+ δ denote the alternance points for the polynomial
qd,δ. If x2 ≥ 1 − δ, then qd,δ is the solution to the problem in (5), i.e. it maximizes the
derivative at zero on the set Pd,δ .

Proof. See Appendix G.

Using a sequence of different polynomials, rather than iterating a single one, can push singular values
into the target interval [1− δ, 1 + δ] more effectively and produce a faster-growing derivative at zero.
The composition of polynomials can be constructed as follows:

1. Start with the target δ ∈ (0, 1).
2. Choose a degree d1 ∈ N and find a larger interval [1− δ1, 1 + δ1] that a polynomial p1 can

map into [1− δ1, 1 + δ1] (in other words, ε(d1, 1− δ1, 1 + δ1) = δ).
3. Repeat this, choosing yet another d2 ∈ N and polynomial p2 to map an even larger interval

[1− δ2, 1 + δ2] into the previous [1− δ1, 1 + δ1]. Repeat this process l times.

It is easy to see that the composition f(x) = p1(p2(. . . pl(x) . . .)) maps the interval [1− δl, 1 + δl]
into [1 − δ, 1 + δ]. Moreover, f monotonically increases on [0, 1 − δl] and satisfies f(x) > x for
all x ∈ [0, 1 − δl]. After rescaling the argument by multiplying with (1 + δ)/(1 + δl) we obtain
a function g(x) = f (x(1 + δl)/(1 + δ)) that has similar properties to iteration of qd,δ but with a

crucial advantage: its derivative at zero is higher. For example, if di = d, then g′(0) ≥
(
q′d,δ(0)

)l
.

Polynomials with high derivatives at zero can be applied to matrices with rapidly decreasing singular
values before orthogonalization (Algorithms 1, 2). This helps to speed up orthogonalization (see
Figure 2). The number of iterations ℓ can be chosen either in advance, based on the desired budget of
matmuls (the muon case), or until convergence to the desired accuracy ε (the orthogonalization case).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Algorithm 1 Orthogonalization with CANS.

Input Normalized matrix X ∈ Rn×p, p ≤ n;
[a, b] where singular values of X lie; number
of iterations ℓ; polynomials’ degrees 2di − 1.

if a is unknown then
X, a, b =

= δ-orthogonalization(X)

for i in 0 . . . ℓ do
if di = 2 then

pi, ε are found using Proposition 2
else

pi, ε = remez(a, b, 2di − 1)

a, b = 1− ε, 1 + ε

X = ps(ps−1(. . . p1(p0(X))))
Return X

Algorithm 2 δ-orthogonalization.

Input Normalized X ∈ Rn×p, p ≤ n; right
boundary B; degrees 2di − 1, i = 0 . . . ℓ; de-
sired δ; eps = 1e-7.
Al, Ar = 0, 1− δ
while |δ − ε| > eps do

a, b = (Al +Ar)/2, B
for i in 0 . . . s do

p, ε = remez(a, b, 2di − 1)
a, b = 1− ε, 1 + ε

if ε < δ then:
Ar = (Ar +Al)/2

else
Al = (Al +Ar)/2

X = p(X)
Return X, 1− δ, 1 + δ

5 APPLICATIONS

5.1 ORTHOGONALIZATION

Let us consider the problem of computing the orthogonal polar factor of a matrix A. We compare
the performance of the classical Newton-Schulz (equation 1) to the CANS method (Algorithm 1).
To find the composition of 3-rd order polynomials, we use explicit formulas from Proposition 2, for
the 5-th order polynomials – the Remez algorithm. The Figure 2 shows the convergence of these
algorithms for a matrix A ∈ R1000×1000 with entries sampled from N (0, 1).

We conclude that the iterations with tuned coefficients converge noticeably faster than the classical
Newton-Schulz (matmuls are proportional to time, see Table 3). CANS algorithm performs better
when the boundaries of the spectrum are determined more accurately. Overestimating the smallest
singular value results in faster convergence than underestimating it. δ-orthogonalization helps to
accelerate the convergence of the algorithm, even if the smallest singular value is not available.

5.2 MUON OPTIMIZER

Muon (Jordan et al., 2024b) is a recently developed optimizer for matrix-shaped parameters in neural
networks, that has shown promising results in improving convergence and training speed (Liu et al.,
2025).The key idea of Muon is the orthogonalization of the momentum Mk:

Mk = βMk−1 + (1− β)Gk,

Wk = Wk−1 − ηOrtho(Mk),

where Gk is the gradient on the step k, Mk is the momentum, W are the parameters that we wish
to update, η is the learning rate, Ortho(Mk) = argminO{∥Mk −O∥F : OTO = I orOOT = I}
(which is known as Procrustes problem with exact solution being polar factor O = UV T of Mk =
USV T). However, due to the prohibitive cost of SVD, authors instead choose to apply Newton-
Schulz iteration with tuned coefficients for approximate orthogonalization. Authors empirically find,
that in practice the singular values of the resulting matrix may deviate from 1 without harming the
performance of optimizer for small models (for original Muon polynomial (Jordan et al., 2024b) the
singular values fall into [0.7, 1.2]). However, further investigation suggested that decreased deviation
improves the performance for larger models, e.g. GPT-2 medium (Cesista et al., 2025). In addition,
higher derivative of composition of polynomials in zero ϕ(0)′ noticeably improves the performance.
Thus, the objective is to find composition ϕ(x):

ϕ(x) = pn(pn−1(. . . p1(x))) ∈ [1− δ, 1 + δ], s.t. ϕ(0)′ → max .

Prior works (Cesista et al., 2025; Jiacheng, 2024) have attempted to construct such polynomials using
computational search. However, our theory allows to find optimal polynomials with these constraints.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0 10 20 30 40 50 60
matmuls

10 12

10 9

10 6

10 3

100

er
ro

r

classic Newton-Schultz
3-rd order
5-th order
classic Newton-Schultz
3-rd order, a0=1e-3
5-th order, a0=1e-3
3-rd order, a0=1e-7
5-th order, a0=1e-7
3-rd order, =0.99
5-rd order, =0.99

Figure 2: Convergence of iterative algorithms for matrix orthogonalization. The solid lines show
the performance when the exact values of σ1(A), σn(A) are known, and the matrix is normalized
by σ1(A). In other cases, the matrix is normalized by ∥(ATA)2∥1/4F and the precise value of the
left boundary is σn(A)/∥(ATA)2∥1/4F =9e-5. The striped lines show performance for overestimated
boundary a0=1e-3, the dotted lines – for underestimated a0=1e-7. The dashdotted lines show
convergence of algorithm with 4 iterations of δ-orthogonalization (Algorithm 2).

0.0 0.2 0.4 0.6 0.8 1.0
x

0.00

0.25

0.50

0.75

1.00

1.25

po
ly

no
m

ia
l(x

)

0.000 0.002 0.0040

1
CANS, order=5, iter=5, mm=15
CANS, order=3, iter=7, mm=14
Muon, iter=5, mm=15

Figure 3: Comparison of CANS with the original Muon polynomial. Zoomed plot shows behavior
near zero. “iter” denotes number of polynomials in composition, “mm” - total number of matmuls.

We have set the deviation δ = 0.3 and generated a composition of 5 polynomials of 5-th degree
(purple) and 7 polynomials of 3-rd degree (black), which are shown in Figure 3. Both polynomials
have higher derivative at zero than original Muon polynomial p(x) = 3.4445x−4.7750x3+2.0315x5,
while requiring no more matmuls. Compositions of 9 3-rd order polynomials for δ = 0.00188 (purple)
and δ = 0.00443 (blue) (Figure 4) also have higher derivatives than (Jiacheng, 2024) polynomial
found by computational search. Polynomials’ coefficients are presented in Appendix J.

The performance of Muon optimizer with proposed polynomials is tested on the task of training
NanoGPT (Jordan et al., 2024a) (see Appendix H for details). The convergence of Muon with
different polynomials is shown in the Figure 5. We observe, that CANS polynomial requiring 12
matmuls (purple) outperforms Muon polynomial with the same number of matmuls (4 iterations,
cyan). The difference in convergence may be more pronounced when training larger models.

5.3 RIEMANNIAN OPTIMIZATION ON THE STIEFEL MANIFOLD

Let us introduce the following definitions, based on (Absil et al., 2009; Li et al., 2020).

0.002 0.004 0.006 0.008 0.010
x

0.980

0.985

0.990

0.995

1.000

1.005

po
ly

no
m

ia
l(x

)

0.000 0.002 0.0040

1

CANS, order=3, iter=9, mm=18
CANS, order=3, iter=9, mm=18
Jiacheng, order=5, iter=6, mm=18

Figure 4: Comparison of CANS polynomials with (Jiacheng, 2024).

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

5200 5400 5600 5800 6000 6200
Steps

3.32

3.34

3.36

3.38

Te
st

 lo
ss

Muon, iter=4, mm=12
Muon, iter=5, mm=15
Jiacheng, iter=5, mm=15
Jiacheng, iter=6, mm=18
CANS, order=5, iter=4, mm=12
CANS, order=3, iter=7, mm=14
CANS, order=3, iter=9, mm=18

Figure 5: Test loss of NanoGPT trained using Muon optimizer with different polynomials.

Definition 1. A Riemannian manifold (M, ρ) is a smooth manifold whose tangent spaces Tx(M)
are endowed with a smoothly varying inner product ρx(·, ·) : Tx(M)×Tx(M)→ R, which is called
the Riemannian metric.
Definition 2. A geodesic is a curve representing the locally shortest path between two points
on manifold. An exponential map Expx : Tx(M) → M maps a tangent vector to the manifold.
Expx(tv) represents a geodesic γ(t), t ∈ [0, 1], s.t. γ(0) = x, γ̇(0) = v. A retraction is a smooth
mapping from the tangent bundle to the manifold Retrx : Tx(M) → M iff Retrx(0) = x and
DRetrx(0) = idTx(M), where D denotes derivative. Usually, retraction is a computationally efficient
alternative to exponential mapping.

The Stiefel manifold is a Riemannian manifold, consisting of n× p, n ≥ p matrices with orthonormal
columnsM = St(n, p) = {X ∈ Rn×p : XTX = I}. The tangent space ofM is defined as:

TX(M) = {Z : ZTX +XTZ = 0}.
The projection onM can be written as:

πX(Z) = Z − 1

2
X(ZTX +XTZ) = WX, (7)

W = Ŵ − ŴT , Ŵ = ZXT − 1

2
X(XTZXT). (8)

The process of Riemannian optimization of the function f on the manifoldM can be split into three
steps. At first, the gradient ∇f in the Euclidean space is projected onto tangent space TXk

(M) to
obtain∇Mf(Xk) = πXk

(∇f). Secondly, momentum Mk is transported to TX(M) and combined
linearly with∇Mf(Xk) to get the updated momentum Mk+1. Finally, Xk+1 is computed as a step
along the curve on the manifold with initial direction Mk+1. Parameters can be updated using the
exponential map and parallel transport of momentum, but due to the computational complexity of
these methods, retraction and vector transport are often used instead.

Let ξX , ηX ∈ TX(M) be tangent vectors. The vector transport of ξX along retraction map RetrX(ηX)
can be computed as τηX

ξX = πRetrX(ηX)(ξX). The projection is a linear mapping, so the first two
steps can be combined Mk+1 = απXk

(∇f(Xk)) + βτMk
(Mk) = πXk

(α∇f(Xk) + βMk).

There are several retractions of vector ξ in point X , that can be used in practice (Absil et al., 2009).
QR decomposition: RetrX(ξ) = qr(X + ξ), where qr(A) is the Q factor from QR decomposition.
Cayley transform: RetrX(ξ) = (I− 1

2W (ξ))−1(I+ 1
2W (ξ))X, with W (Z) denoted in 8. (Li et al.,

2020) approximates closed-form Cayley transform using iterative algorithm. Polar decomposition:
RetrX(ξ) = UV T = (X + ξ)(I + ξT ξ)−1/2, where USV T = X + ξ is SVD decomposition. Note
that this retraction is known to be of the second order (Absil et al., 2009; Gawlik & Leok, 2018).

In this work, we propose to approximate the polar retraction using Newton-Schulz iteration with
carefully chosen polynomials. The step of the Riemannian gradient descent can be written as

Xk+1 = RetrXk
(απX(ξ)). (9)

To find the interval for estimation of the polynomial’s coefficients, we should estimate the condition
number σp(A)/σ1(A) of the matrix A = Xk + απX(ξ). Let us compute the Gram matrix:

ATA = (X +W (ξ)X)T (X +W (ξ)X) = I +XTW (ξ)TW (ξ)X.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Therefore, σp(A) =
√
σp(ATA) ≥ 1. Since A has size n× p, p ≤ n and p nonzero singular values,

it follows that σ1(A) ≤
√
∥A∥2F − (p− 1) = c, which yields a highly accurate estimate in this

setting. Thus, we can normalize A by c, set [a, b] = [1/c, 1] and perform CANS orthogonalization.

5.4 EXPERIMENTS

Following the work (Li et al., 2020), we benchmark the performance of Riemannian optimization
methods on the task of training CNN with orthogonal constraints. We train Wide ResNet (Zagoruyko
& Komodakis, 2016) on classification of CIFAR-10. The convolutional kernels K ∈ Rcout×cin×k×h

are reshaped into p× n = cout × (cin · k · h) matrices, which are restricted to Stiefel manifold. We
optimize these parameters using Riemannian SGD with momentum and Riemannian ADAM, using
vector transport and proposed polar retraction (see Appendix I, H). Other parameters are optimized
with standard SGD or ADAM.

Tables 2, 1 show that our method has the lowest per epoch training time among other retractions,
while achieving the same accuracy. It has a simple explanation. To form the matrix W ∈ Rn×n

for Cayley retraction as in (Li et al., 2020), 3 matmuls are needed (see 8) and multiplying by W
has asymptotics O(n2p). Cayley retraction can also be done using the Woodbury formula with
asymptoticsO(np2), but more matmuls (see Appendix I). In contrast, forming πX(ξ) using formula 7
requires 2 matmuls; multiplications with n× p, p ≤ n matrix A in CANS have asymptotics O(np2).

Table 1: Accuracy and training time for Wide ResNet-16-10 on CIFAR-10 using Adam.

Retraction Accuracy Time per epoch (s)

- 94.68 35.0
Cayley (Li et al., 2020) 95.77 71.2

Cayley (Woodbury) 95.69 70.9
QR 95.57 61.7

CANS 95.82 45.1

6 CONCLUSION

This work presented efficient algorithms for deriving the theoretically optimal coefficients for Newton-
Schulz iteration. The practical effectiveness of CANS was demonstrated in accelerating the com-
putation of the unitary polar factor, orthogonalization in the Muon optimizer, and fast retraction on
the Stiefel manifold. We believe that our method can be useful for other applications as well, as it
provides a general-purpose framework for finding optimized polynomials with desired accuracy.

7 REPRODUCIBILITY STATEMENT

The experimental details are described in Sections 5.2, 5.4 and Appendix H. The coefficients of
polynomials are presented in Appendix J. Our code is planned to be made public after publication.

REFERENCES

P-A Absil, Robert Mahony, and Rodolphe Sepulchre. Optimization algorithms on matrix manifolds.
In Optimization Algorithms on Matrix Manifolds. Princeton University Press, 2009.

Noah Amsel, David Persson, Christopher Musco, and Robert M Gower. The polar express: Optimal
matrix sign methods and their application to the muon algorithm. arXiv preprint arXiv:2505.16932,
2025.

Cem Anil, James Lucas, and Roger Grosse. Sorting out lipschitz function approximation. In
International conference on machine learning, pp. 291–301. PMLR, 2019.

Rohan Anil, Vineet Gupta, Tomer Koren, Kevin Regan, and Yoram Singer. Scalable second order
optimization for deep learning. arXiv preprint arXiv:2002.09018, 2020.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Jeremy Bernstein and Laker Newhouse. Modular duality in deep learning. arXiv preprint
arXiv:2410.21265, 2024.

Å Björck and C Bowie. An iterative algorithm for computing the best estimate of an orthogonal
matrix. SIAM Journal on Numerical Analysis, 8(2):358–364, 1971.

Franz Louis Cesista, YouJiacheng, and Keller Jordan. Squeezing 1-2% efficiency gains out of muon
by optimizing the newton-schulz coefficients, 2025. URL http://leloykun.github.io/
ponder/muon-opt-coeffs/.

Jie Chen and Edmond Chow. A newton-schulz variant for improving the initial convergence in matrix
sign computation. Preprint ANL/MCS-P5059-0114, Mathematics and Computer Science Division,
Argonne National Laboratory, Argonne, IL, 60439, 2014a.

Jie Chen and Edmond Chow. A stable scaling of newton-schulz for improving the sign function
computation of a hermitian matrix. Preprint ANL/MCS-P5059-0114 (https://www. mcs. anl.
gov/papers/P5059-0114. pdf), 2014b.

John D Dixon. Estimating extremal eigenvalues and condition numbers of matrices. SIAM Journal
on Numerical Analysis, 20(4):812–814, 1983.

Bin Gao, Nguyen Thanh Son, P-A Absil, and Tatjana Stykel. Riemannian optimization on the
symplectic stiefel manifold. SIAM Journal on Optimization, 31(2):1546–1575, 2021.

Evan S Gawlik and Melvin Leok. High-order retractions on matrix manifolds using projected
polynomials. SIAM Journal on Matrix Analysis and Applications, 39(2):801–828, 2018.

Nathan Halko, Per-Gunnar Martinsson, and Joel A Tropp. Finding structure with randomness:
Probabilistic algorithms for constructing approximate matrix decompositions. SIAM review, 53(2):
217–288, 2011.

Nicholas J Higham. Functions of matrices: theory and computation. SIAM, 2008.

Nicholas J Higham and Robert S Schreiber. Fast polar decomposition of an arbitrary matrix. SIAM
Journal on Scientific and Statistical Computing, 11(4):648–655, 1990.

Lars Hörmander. Applications Of Helly’s Theorem To Estimates Of Tchebycheff Type, pp. 1–14.
Springer International Publishing, Cham, 2018. ISBN 978-3-319-69850-2. doi: 10.1007/
978-3-319-69850-2_1. URL https://doi.org/10.1007/978-3-319-69850-2_1.

You Jiacheng. Computational search for finding coefficients for muon, 2024. URL https:
//gist.github.com/YouJiacheng/393c90cbdc23b09d5688815ba382288b/
5bff1f7781cf7d062a155eecd2f13075756482ae.

Keller Jordan, Jeremy Bernstein, Brendan Rappazzo, @fernbear.bsky.social, Boza Vlado,
You Jiacheng, Franz Cesista, Braden Koszarsky, and @Grad62304977. modded-nanogpt:
Speedrunning the nanogpt baseline, 2024a. URL https://github.com/KellerJordan/
modded-nanogpt.

Keller Jordan, Yuchen Jin, Vlado Boza, Jiacheng You, Franz Cesista, Laker Newhouse, and Jeremy
Bernstein. Muon: An optimizer for hidden layers in neural networks, 2024b. URL https:
//kellerjordan.github.io/posts/muon/.

Charles Kenney and Alan J Laub. On scaling newton’s method for polar decomposition and the
matrix sign function. SIAM Journal on Matrix Analysis and Applications, 13(3):688–706, 1992.

Zdislav Kovarik. Some iterative methods for improving orthonormality. SIAM Journal on Numerical
Analysis, 7(3):386–389, 1970.

Jun Li, Li Fuxin, and Sinisa Todorovic. Efficient riemannian optimization on the stiefel manifold via
the cayley transform. arXiv preprint arXiv:2002.01113, 2020.

11

http://leloykun.github.io/ponder/muon-opt-coeffs/
http://leloykun.github.io/ponder/muon-opt-coeffs/
https://doi.org/10.1007/978-3-319-69850-2_1
https://gist.github.com/YouJiacheng/393c90cbdc23b09d5688815ba382288b/5bff1f7781cf7d062a155eecd2f13075756482ae
https://gist.github.com/YouJiacheng/393c90cbdc23b09d5688815ba382288b/5bff1f7781cf7d062a155eecd2f13075756482ae
https://gist.github.com/YouJiacheng/393c90cbdc23b09d5688815ba382288b/5bff1f7781cf7d062a155eecd2f13075756482ae
https://github.com/KellerJordan/modded-nanogpt
https://github.com/KellerJordan/modded-nanogpt
https://kellerjordan.github.io/posts/muon/
https://kellerjordan.github.io/posts/muon/

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Jingyuan Liu, Jianlin Su, Xingcheng Yao, Zhejun Jiang, Guokun Lai, Yulun Du, Yidao Qin, Weixin
Xu, Enzhe Lu, Junjie Yan, Yanru Chen, Huabin Zheng, Yibo Liu, Shaowei Liu, Bohong Yin,
Weiran He, Han Zhu, Yuzhi Wang, Jianzhou Wang, Mengnan Dong, Zheng Zhang, Yongsheng
Kang, Hao Zhang, Xinran Xu, Yutao Zhang, Yuxin Wu, Xinyu Zhou, and Zhilin Yang. Muon is
scalable for llm training, 2025. URL https://arxiv.org/abs/2502.16982.

Yuji Nakatsukasa and Roland W Freund. Computing fundamental matrix decompositions accurately
via the matrix sign function in two iterations: The power of zolotarev’s functions. siam REVIEW,
58(3):461–493, 2016.

Yuji Nakatsukasa and Nicholas J Higham. Backward stability of iterations for computing the polar
decomposition. SIAM Journal on Matrix Analysis and Applications, 33(2):460–479, 2012.

Yuji Nakatsukasa, Zhaojun Bai, and François Gygi. Optimizing halley’s iteration for computing the
matrix polar decomposition. SIAM Journal on Matrix Analysis and Applications, 31(5):2700–2720,
2010.

Guilherme Penedo, Hynek Kydlíček, Anton Lozhkov, Margaret Mitchell, Colin A Raffel, Leandro
Von Werra, Thomas Wolf, et al. The fineweb datasets: Decanting the web for the finest text data at
scale. Advances in Neural Information Processing Systems, 37:30811–30849, 2024.

Thomas Pethick, Wanyun Xie, Kimon Antonakopoulos, Zhenyu Zhu, Antonio Silveti-Falls, and
Volkan Cevher. Training deep learning models with norm-constrained lmos. arXiv preprint
arXiv:2502.07529, 2025.

Peter H Schönemann. A generalized solution of the orthogonal procrustes problem. Psychometrika,
31(1):1–10, 1966.

Lloyd N. Trefethen. Approximation theory and approximation practice. Society for Industrial and
Applied Mathematics (SIAM), Philadelphia, PA, 2020. ISBN 978-1-611975-93-2. Extended
edition [of 3012510].

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. arXiv preprint arXiv:1605.07146,
2016.

Xiaojing Zhu. A riemannian conjugate gradient method for optimization on the stiefel manifold.
Computational optimization and Applications, 67:73–110, 2017.

12

https://arxiv.org/abs/2502.16982

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A PROOF OF THEOREM 1 FOR ODD POLYNOMIALS

In a nutshell, the result follows from a generalized version of the Chebyshev equioscillation theorem
from (Hörmander, 2018). It applies to function spaces where an element is guaranteed to be zero if it
vanishes at sufficiently many distinct points – a condition that holds in our case of odd polynomials.

The generalized version of the Chebyshev equioscillation theorem (Hörmander, 2018, Theorems 4-
5) states the following. Consider a compact metric space X and an n-dimensional vector space
L ⊂ C(X). Assume that any f ∈ L that has n distinct zeroes in X is identically equal to zero. Then
the following statements hold.

1. For all g ∈ C(X) there is a unique best approximation to g in the space L, i.e. a function
G ∈ L such that ∥g −G∥C(X) = minf∈C(X) ∥g − f∥C(X).

2. Moreover, G ∈ L is the best approximation to g if and only if there exists a set E ⊂ Xthat
consists exactly of n+1 points such that ∥g−G∥C(X) = ∥g−G∥C(E) = minf∈C(X) ∥g−
f∥C(E).

Applying (1): At first we show that this theorem is applicable to L = Ln and X = [a, b], where
0 < a < b and Ln is the space of odd polynomials of degree ≤ 2n− 1. Indeed assume that f ∈ Ln

has n distinct zeroes in [a, b]. Then it also has n distinct zeroes in [−b,−a], so f has at least 2n distinct
zeroes. As deg f < 2n we conclude that f = 0. Thus, the generalized Chebyshev equioscillation
theorem implies that the best odd polynomial approximation G ∈ Ln to g ∈ C[a, b] is unique and
that there exists E ⊂ [a, b] that consists of exactly n+ 1 point such that G is the best approximation
to g in the sense of the norm ∥ · ∥C(E).

Applying (2): Now let E = {x0, ..., xn}, where a ≤ x0 < · · · < xn ≤ b. It remains to describe the
best approximation to g on the set E. We claim that if G ∈ Ln and ε satisfy (−1)jε = G(xj)−g(xj)
for all j, then G is the best approximation of g on E with error |ε|. Indeed, if F ∈ Ln approximates
g with error ≤ |ε| on E, then F −G has at least n zeroes on [a, b] counting multiplicity (because the
sign of the difference F (x)−G(x) is alternating on the points x0, . . . , xn). As above this implies
that F −G = 0 since this is an odd polynomial with n positive roots and deg(F −G) < 2n. On the
other hand, the conditions on G and ε above can be considered as a square linear system of equations
(on coefficients of G and ε). It is easy to verify that the matrix of this system of linear equations is
nonsingular, so such G and ε exist. Thus, the best approximation G ∈ Ln to g on E is unique and is
characterized by the fact that G− g equioscillates on E. Thus, Theorem 1 is proved.

B PROOF OF PROPOSITION 1

Proof. To simplify the notation we denote pn,a,b simply by p throughout this proof.

(i) At first we note that the polynomial p′ is not identically zero and vanishes at the points
x1, . . . , xn−1, as these points are extrema of the function p − 1 and lie in the interior of the in-
terval [a, b]. Clearly, p′ is even, so it also vanishes at −x1, . . . ,−xn−1. As deg p′ ≤ 2n − 2, p′
cannot have any other roots, and, in particular, p′(x0) ̸= 0 and p′(xn) ̸= 0. Therefore, x0 and xn

belong to the boundary of [a, b], so the statement (i) is proved.

(ii) In order to prove (ii) it suffices to verify that

p(a) = 1− ε,

as the values p(xj) are uniquely determined by the value p(x0) due to Theorem 1 (ii). Assume the
contrary, i.e. that

p(a) = 1 + ε.

Let r denote a point on the interval [0, a], where p attains its maximum value. If r is an interior point
of [0, a], then, clearly, p′(r) = 0. In the case r = a, we again conclude that p′(r) = 0, as

p(x) ≤ 1 + ε = p(a)

for x ∈ [a, b]. In either case r is a root of the polynomial p′ distinct from x1, . . . , xn−1, so we have
arrived at a contradiction with the fact that deg p′ = 2n− 2.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

(iii) It is easy to see that p′′ has a root sj on each open interval (xj , xj+1), j = 1, . . . , n− 2. Since
p′′ is odd it also has the roots 0,−s1, . . . ,−sn−2. Clearly, since deg p′′ ≤ 2n− 3, it does not have
any other roots. Therefore, p′ is monotone on the interval [0, x1]. If it increases on this interval,
then it is negative there, as p′(x1) = 0. So, in this case, p decreases on the interval [0, x1], which
contradicts the fact p(a) > 0. Thus, p′ decreases on the interval [0, x1]. Moreover, it has a maximum
at x = 0, for it is an even polynomial. Finally, there exists a point x ∈ (0, a) such that

p′(x) = (1− ε)/a,

since p(0) = 0 and p(a) = 1− ε. Due to monotonicity of p′ we conclude

p′(0) ≥ (1− ε)/a.

(iv) Consider t > 0 and let q(x) = pn,ta,tb(tx). Also consider the points y0 = ta, y1, . . . , yn = tb
of the Chebyshev alternance for pn,ta,tb − 1. It is easy to see that the points y0/t, y1/t, . . . , yn/t
constitute a Chebyshev alternance for q − 1 and by Theorem 1 we conclude that q = pn,a,b. The
equality ε(n, ta, tb) = ε(n, a, b) easily follows.

C PROOF OF PROPOSITION 2

Proof. We denote p2,a,b and ε(2, a, b) by p and ε respectively throughout this proof. From Propo-
sition 1 we conclude that p satisfies p(a) = 1 − ε, p(e) = 1 + ε, and p(b) = 1 − ε, where
e ∈ (a, b) and ε = ∥p − 1∥C[a,b]. Since p′(e) = 0 it is clear that p′(x) = α

(
e2 − x2

)
and,

therefore, p(x) = α
(
e2x− x3/3

)
for some α ∈ R. Now the equation p(a) = p(b) implies

e2(a−b) =
(
a3 − b3

)
/3, so e2 =

(
a2 + ab+ b2

)
/3. That is, p(x) = α/3

((
a2 + ab+ b2

)
x− x3

)
with some α ∈ R. In order to find α and ε we calculate

1− ε = p(a) = p(b) =
α

3

(
a2b+ b2a

)
, 1 + ε = p(e) =

2α

3

(
a2 + ab+ b2

3

)3/2

.

Thus,

α

3

(
2

(
a2 + ab+ b2

3

)3/2

+ a2b+ b2a

)
= 2

α =
6

2
(
a2+ab+b2

3

)3/2
+ a2b+ b2a

ε =
α

6

(
2

(
a2 + ab+ b2

3

)3/2

− a2b− b2a

)
=

2
(

a2+ab+b2

3

)3/2
− a2b− b2a

2
(
a2+ab+b2

3

)3/2
+ a2b+ b2a

D PROOF OF PROPOSITION 3

Proposition 5. With the definitions 4 the sequences an and bn converge to 1, and bn − an converges
to zero quadratically. More precisely,

lim
n→∞

bn+1 − an+1

(bn − an)
2 =

3

8
.

Proof. At first it is easy to see that an + bn = 2 for all n ∈ N. So, without loss of generality we can
assume that a+ b = 2. With this assumption we can rewrite the function ε(2, ·, ·) in the following
form

ε(2, a, b) =

(
4−ab

3

)3/2 − ab(
4−ab

3

)3/2
+ ab

.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Now we claim that ε(2, a, b) < (b − a)/2. This can be checked directly from the formula, but
the implicit argument can be made based on the definition of ε. Since the polynomial p(x) = x
satisfies ∥p − 1∥C[a,b] = (b − a)/2 and p is not optimal, we get that ε(2, a, b) < (b − a)/2. From
this we conclude that a1 > a and b1 < b. By induction we get that {an} is increasing and {bn} is
decreasing. Since also an < bn for all n we obtain that these sequences converge to some points
A and B respectively. Clearly, a < A ⩽ B < b and A+ B = 2. Since ε is a continuous function,
we can pass to the limit and obtain A = 1 − ε(2, A,B) and B = 1 + ε(2, A,B). Again, it can
be checked directly that this implies A = B, but according to definition of ε we get that provided
A < B,A = 1 − ε(2, A,B), and B = 1 + ε(2, A,B) it follows that p(x) = x is the best degree
three odd polynomial approximation of unity of [A,B], which is not true. Thus, A = B = 1 and it
remains to prove the quadratic rate of convergence.

Using the assumption a+ b = 2 we get that ab =
(
(a+ b)2 − (a− b)2

)
/4 = 1− (a− b)2/4. Now

with this we calculate (we let γ(a, b) denote the expression
(
4−ab

3

)3/2
+ ab

)
b1 − a1 = 2ε(2, a, b) = 2

(
4−ab

3

)3/2 − ab(
4−ab

3

)3/2
+ ab

= 2

(
4−ab

3

)3 − a2b2

γ(a, b)2
=

2

27γ(a, b)2
(
(4− ab)3 − 27a2b2

)
=

2

27γ(a, b)2
(
64− 48ab− 15a2b2 − a3b3

)
=

2(b− a)2

27γ(a, b)2

(
81

4
− 9

8
(b− a)2 +

(b− a)4

64

)
.

Since this calculation also works for bn+1 − an+1 and using that an, bn → 1 we get that

bn+1 − an+1

(bn − an)
2 =

2

27γ (an, bn)
2

(
81

4
− 9

8
(bn − an)

2
+

(bn − an)
4

64

)
→ 3

8

as γ(1, 1) = 2.

Now we are ready to prove Proposition 3.

Proof. From the definition of an, bn, it follows that

bn − an = (1− εn)− (1 + εn) = 2εn.

Using Proposition 5, we get
εn+1

ε2n
=

1
2 (bn+1 − an+1)

1
4 (bn − an)

2 → 3

4
.

From the proof of Proposition 5, we know that

bn+1 − an+1

(bn − an)2
=

2

27γ (an, bn)
2

(
81

4
− 9

8
(bn − an)

2
+

(bn − an)
4

64

)
=

=
2
(
81
4 −

9
8 (2εn)

2 + 1
64 (2εn)

4
)

27

((
4−(1−εn)(1+εn)

3

)3/2
+ (1− εn)(1 + εn)

)2 =

=

(
81
2 − 9ε2n + 1

2ε
4
n

)
27

((
1 +

ε2n
3

)3/2
+ 1− ε2n

)2 ,

For εn ∈ (0, 1), this expression is no more than 1/2.

2εn+1

4ε2n
=

bn+1 − an+1

(bn − an)2
≤ 1

2

Therefore, εn+1 ≤ ε2n.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

E PROOF OF COROLLARY 1

Proof. Let [a0, b0] = [a0, 1] be the starting segment, 0 < a0 < 1. From 3, we can write approxima-
tion error after the first iteration:

ε0 =
2
(

a2
0+a0+1

3

)3/2
− a20 − a0

2
(

a2
0+a0+1

3

)3/2
+ a20 + a0

= 1− 2a20 + 2a0

2
(

a2
0+a0+1

3

)3/2
+ a20 + a0

< 1− a0.

After the first iteration, we start the recursion

an+1 = 1− εn, bn+1 = 1 + εn.

From Proposition 3, εn+1 ≤ ε2n and by recursion we get

εn ≤ ε2
n

0 ≤ (1− a0)
2n .

Then we can find the number of steps, necessary to get the desired error of approximation ε:

n ≤
⌈
log2

(
ln ε

ln(1− a0)

)⌉
.

F REMEZ ALGORITHM

Let us describe the main idea of the Remez algorithm. Assume that we are given a set {x1, . . . , xn−1}
of distinct points on the open interval (a, b).

1. Use x0 = a, x1, . . . , xn−1, xn = b as a guess for the Chebyshev alternance points for
pn,a,b − 1. It is easy to see that there is a unique pair (p, ε) such that p ∈ Ln (that is, p
is odd and has degree ≤ 2n− 1), ε ∈ R, and p(xj) = 1− (−1)jε for all j = 0, 1, . . . , n.
The equations p(xj) = 1 − (−1)jε for j = 0, . . . , n form a nonsingular system of linear
equations in n + 1 unknowns, namely, ε and coefficients of p. Thus, p and ε are, indeed,
uniquely determined by the above conditions.

2. Solve the system p(xj) = 1− (−1)jε, where j = 0, . . . , n to find ε and coefficients of p.
Unfortunately, x0, . . . , xn may not constitute a Chebyshev alternance for p− 1, as p is not
guaranteed to satisfy p([a, b]) ⊂ [1− ε, 1 + ε]. However, it is clear that p has exactly n− 1
distinct extremal points {y1, . . . , yn−1} in the open interval (a, b).

3. Find the extremal points {y1, . . . , yn−1} of |p − 1| in the interval (a, b), where p has
discovered coefficients. The collection of points y0 = a, y1, . . . , yn−1, yn = b (consisting
of boundaries of the interval and extremal points of p) serves as a new guess for the
Chebyshev alternance points for pn,a,b − 1, and this guess is better than the previous.

4. Repeat algorithm starting with y0 . . . yn. By repeating the above construction with points
y1, . . . , yn−1 instead of x1, . . . , xn−1, we obtain a new pair (q, δ) with similar properties. By
a fairly straightforward argument one can show that δ ≥ ε and ∥q−1∥C[a,b] ≤ ∥p−1∥C[a,b].
Iterating this process yields a sequence of polynomials that is guaranteed to converge to
pn,a,b.

The pseudocode is presented in Algorithm 3 below.

It should be noted that Remez algorithm is notorious for its instability when dealing with polynomials
of sufficiently high degree. However, we have not observed an improvement of our methods when
using polynomials of degrees higher than 5.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Algorithm 3 Remez algorithm

Require: n = (degree+ 1)/2, a < b, max_iterations > 0, tolerance
Ensure: Optimal polynomial p ∈ Ln and error bound ε

Initialize x← [x0, x1, . . . , xn] where x0 = a, xn = b
iteration_count← 0
prev_epsilon← 0
for iteration_count = 1 . . .max_iterations do

Construct (n+1)×(n+1) matrix A, where Aij = x2j+1
i for j = 0 . . . n−1, Ai,n = (−1)i+1

Construct right-hand side vector b, where bi = 1
solution← SolveLinearSystem(A, b)
pcoeffs ← solution[0:n] ▷ Polynomial coefficients
ε← solution[n] ▷ Error parameter
Find all local extrema y1, . . . , yn−1 of |p(x)− 1| in (a, b)
Update points: x← [a, y1, y2, . . . , yn−1, b]
εnew ← maxi(|p(yi)− 1|) ▷ New error
if ε < εnew + tolerance then

return (p, ε)

return (p, ε)

G PROOF OF PROPOSITION 4

Proof. (i). d ∈ N, d ≥ 2 and consider the function E(t) = ε(d, t, 1 + δ). It is easy to see that E is
continuous, E monotonically decreases on the interval t ∈ (0, 1+δ) and satisfies E(t)→ 1 as t→ 0,
and E(t)→ 0 as t→ 1+ δ. Thus, there exists a unique a = a(d, δ) ∈ (0, 1+ δ) such that E(a) = δ.
Note that E(1− δ) < δ, as the polynomial p(x) = x approximates unity with error δ on the interval
[1− δ, 1 + δ], even though it is not optimal (since d ≥ 2). Thus, the error of the best approximation
on [1− δ, 1 + δ] has to be strictly less than δ. Therefore, E(1− δ) < δ, so a(d, δ) ∈ (0, 1− δ).

(ii) and (iii). Let a denote the solution of the equation ε(d, a, 1+δ) = δ and consider the corresponding
polynomial qd,δ = pd,a,1+δ . By definition qd,δ(x) ∈ [1− δ, 1+ δ] for x ∈ [a, 1+ δ]. Moreover, from
Proposition 1 (iii) it follows that qd,δ is concave and increasing on the interval [0, a], so from the
fact qd,δ(a) = 1− δ we derive the inequalities 1− δ ≥ qd,δ(x) ≥ (1− δ)x/a for x ∈ [0, a]. Thus,
qd,δ ∈ Pd,δ. Note that, in particular, we have proved the inequality of (iii) for qd,δ. Now we prove
that for all p ∈ Pd,δ such that p ̸= q we have aδ(p) > a. From the definition of aδ(p) we get that
∥p− 1∥C[aδ(p),1+δ] ≤ δ, hence, E(aδ(p) = ε(d, aδ(p), 1 + δ) ≤ δ. Thus, by monotonicity of E we
infer that aδ(p) ≥ a. If the equality aδ(p) = a holds, then p is an approximation of unity on [a, 1+ δ]
with the error δ, so it coincides with qd,δ by the uniqueness of the best polynomial approximation.
Otherwise, aδ(p) > a.

(iv). Let us state an auxiliary fact. Assume that polynomials p, q ∈ Ld and points 0 < y1 < y2 <
· · · < yd satisfy the inequalities (−1)j−1(q(yj) − p(yj)) ≥ 0 hold for all j = 1, . . . , d. Then
q′(0) ≥ p′(0). Assuming that this fact is true we can easily finish the proof. Indeed, assume that
x0 = a(d, δ) < x1 < · · · < xd = 1 + δ are the alternance points of qd,δ and that x2 ≥ 1− δ. Now
consider arbitrary p ∈ Pd,δ. We claim that (−1)j−1(qd,δ(xj) − p(xj)) ≥ 0 for all j = 1, . . . , d.
Indeed, if j = 1, then qd,δ(x1) = 1+ δ ≥ p(x1) by definition of Pd,δ . If j ≥ 2, then xj ≥ 1− δ and
the inequality holds since q(xj) = 1− (−1)jδ and |p(xj)− 1| ≤ δ. Thus, it remains to prove the
foregoing auxiliary fact. Let us fix polynomials p, q ∈ Ld and points 0 < y1 < y2 < · · · < yd such
that the inequalities (−1)j−1(q(yj)− p(yj)) ≥ 0 hold for all j = 1, . . . , d. Consider polynomials
λj ∈ Ld, j = 1, . . . , n such that lj(xk) = δjk, where δjk is the Kronecker’s symbol. It is easy to
verify that the polynomials lj indeed exist and are unique. Moreover, p and q can be recovered by an
analog of the Lagrange’s interpolation formula p =

∑d
j=1 p(xj)λj and q =

∑d
j=1 q(xj)λj . Thus,

q′(0)−p′(0) =
∑d

j=1(q(xj)−p(xj))λ
′
j(0). The proof finishes by observing that (−1)j−1λ′

j(0) > 0.
To prove this observation note that all 2d− 1 roots of λj are simple and real. Therefore, the sign of
the derivative λ′

j alternates on the roots of λj enumerated in increasing order. That is, in the vector(
λ′
j(0) λ′

j(x1) . . . λ′
j(xj−1) λ′

j(xj+1) . . . λ′
j(xd)

)
(10)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

the signs of components are alternating. Finally, since λj(xj) = 1 > 0 it follows that λ′
j(xj−1) ≥ 0

and λ′
j(xj+1) ≤ 0 (if j = 1 or j = d only one of these inequalities should be stated). The inequality

(−1)j−1λ′
j(0) > 0 now easily follows from the alternating property of the vector equation 10.

Remark.

1. The value a(d, δ) introduced in Proposition 4 (i) is given there as the solution of the equation
ε(d, a, 1 + δ) = δ. This allows to evaluate a(d, δ) by using binary search (given any
algorithm that computes the function ε), since the left part of this equation is a continuous
and decreasing function of a.

2. From Proposition 4 (iv) it is easy to see that qd,δ is the solution to the problem equation 5
for d = 2. For larger degrees this statement is no longer true in general. However, it
stays true provided δ is large enough. For example, by calculating qd,δ numerically we
observed that the condition of Proposition 4 (iv) is satisfied for d = 3, δ ≥ 0.073 and
d = 4, δ ≥ 0.201. In general, for each d there exists δd ∈ (0, 1) such that qd,δ is the solution
to the problem equation 5 for δ ≥ δd.

3. It is easy to derive the formula for the classical Newton-Schulz iterations from the poly-
nomials qd,δ. Indeed, consider d = 2 and then pass to the limit δ → 0. Clearly, the
polynomial q2,δ(x) converges to p(x) such that p(1) = 1 and p′(1) = 0. There is only one
odd polynomial of degree three satisfying these properties, namely, p(x) = 3x/2− x3/2,
which is used in the classical Newton-Schulz iterations.

H EXPERIMENTAL DETAILS

NanoGPT (Jordan et al., 2024a) is trained on a subset of 0.8B training tokens of FineWeb dataset
(Penedo et al., 2024) for 6200 steps with initial learning rate 0.0036 and trapezoidal schedule (1800
warmdown steps) on 1 A100 GPU. For normalization in our method, we used Gelfand’s formula. For
normalization in original Muon optimizer, Frobenius norm was used.

In practice, we have not observed any noticeable difference in runtime of Muon with different
polynomials in experiment with NanoGPT. Each training step required 2.5-2.9 seconds for different
polynomials. Theoretically this can be explained as follows. The FLOP overhead of Muon over
SGD is (T/3)m/B (see runtime analysis in (Jordan et al., 2024b)), where m is matrix dimension,
B - sequence length, by T we will denote number of matmuls (T = 15 for original Muon). The
difference in overhead of Muon with polynomials with T1 and T2 matmuls is ((T1 − T2)/3)m/B. In
our experiment with NanoGPT, m=768, B=524288, the difference with original Muon is T1−T2 ≤ 3
so overhead is ((T1 − T2)/3)m/B ≤ 0.0015.

For training Wide ResNet-16-10 on CIFAR-10 with Riemannian SGD and ADAM, the learning rate
is set to 0.2 and 0.4 for parameters restricted to Stiefel manifold and 0.01 otherwise. For standard
SGD and ADAM learning rate is set to 0.1 and 0.0003 respectively. The experiments were run on 1
V100 GPU. For CANS retraction, one iteration of Algorithm 1 was enough in practice to perform
orthogonalization.

I RIEMANNIAN SGD AND ADAM ON STIEFEL MANIFOLD

Table 2 shows results of training Wide ResNet-16-10 on CIFAR-10 with SGD on Stiefel manifold.

Algorithms 4 and 5 present Riemannian SGD and Adam on Stiefel manifold. Algorithm 6 presents
algorithm of performing Cayley retraction using Woodbury formula.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 2: Accuracy and training time for Wide ResNet-16-10 on CIFAR-10 using SGD.

Retraction Accuracy Time per epoch (s)

- 95.97 34.9
Cayley (Li et al., 2020) 94.81 69.5

Cayley (Woodbury) 94.93 68.8
QR 94.80 61.0

CANS 94.73 43.6

Algorithm 4 SGD with momentum on Stiefel manifold

Input Momentum β, learning rate α.
Initialize X1 ∈ Rn×p as orthonormal matrix.
for 1 . . .n_iters do

Mk+1 = βMk −G(Xk)
Mk+1 = Mk+1 − 1

2Xk(M
T
k+1Xk +XT

k Mk+1)
Xk+1 = Retr(Xk + αMk+1)

Algorithm 5 Adam on Stiefel manifold

Input Momentum coefficients β1, β2, learning rate α.
Initialize X1 ∈ Rn×p as orthonormal matrix.
for k in 1 . . .n_iters do

vk+1 = β2vk + (1− β2)∥G(Xk)∥2F
v̂k+1 = vk+1/(1− βk

2)
Mk+1 = β1Mk − (1− β1)G(Xk)

M̂k+1 = Mk+1/(1− βk
1)

M̂k+1 = M̂k+1 − 1
2Xk(M̂

T
k+1Xk +XT

k M̂k+1)

Xk+1 = Retr(Xk − αM̂k+1/
√
v̂k+1 + ϵ)

Mk+1 = (1− βk
1)M̂k+1

Algorithm 6 Cayley retraction via Woodbury formula

Input Parameters Xk, step direction Mk+1, learning rate α.
L = [αMk+1;Xk]

R =

[
XT

k

α(MT
k+1XkX

T
k −MT

k+1)

]
Y = Xk + 1

2αMk+1

Xk+1 = Y + 1
2L(I −

1
2RL)−1RY

Return: Xk+1 = CayleyRetr(Xk + αMk+1)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

J POLYNOMIALS

Coefficients are presented from left to right from the minimal degree to maximum. For example,
for coefficients [(a, b), (c, d, e)] the composition is p2(p1(x)), where p1(x) = ax + bx3, p2(x) =
cx+ dx3 + ex5.

Original Muon coefficients of 3-rd order polynomial for any number of iterations: [(3.4445, -4.7750,
2.0315)]*num_iters (green in Figure 3, 5).

CANS, eps=0.3, order=3, iter=7, mm=14 (black in Figure 3)
[(5.181702879894027,−5.177039351076183),
(2.5854225645668487,−0.6478627820075661),
(2.565592012027513,−0.6452645701961278),
(2.5162233474315263,−0.6387826202434335),
(2.401068707564606,−0.6235851252726741),
(2.1708447617901196,−0.5928497805346629),
(1.8394377168195162,−0.5476683622291173)]
CANS, eps=0.3, order=5, iter=5, mm=15 (purple in Figure 3)
[(8.492217149995927,−25.194520609944842, 18.698048862325017),
4.219515965675824,−3.1341586924049167, 0.5835102469062495),
(4.102486923388631,−3.0527342942729288, 0.5742243021935801),
(3.6850049522776493,−2.756862315006488, 0.5405198817097779),
2.734387280007103,−2.036641382834855, 0.4592314693659632)]
CANS, eps=0.00188, order=3, iter=9, mm=18 (purple in Figure 4)
[(5.179622107852338,−5.174287102735334),
(2.5836099434139492,−0.6476254200945953),
(2.5610021062961206,−0.6446627537769272),
(2.505058237036672,−0.6373139418181356),
(2.3764825571306125,−0.6203257475007262),
(2.1279007426858794,−0.5870609391939776),
(1.7930526112541054,−0.5412446350453286),
(1.5582262242936464,−0.5082920767544266),
(1.5021988305175455,−0.5003140810786916)]
CANS, eps=0.00443, order=3, iter=9, mm=18 (blue in Figure 4)
[(5.182503604966906,−5.178098480082684),
(2.586120737395915,−0.6479542005271643),
(2.567364126726186,−0.6454968804392178),
(2.520560084348265,−0.6393528082067044),
(2.410759275435182,−0.6248683598710716),
(2.1883348130094173,−0.5952022073798908),
(1.8595760874873613,−0.5504490972723968),
(1.589020160467417,−0.5126569802066718),
(1.5051653981684994,−0.5007377068751799)]
CANS, eps=0.0035, order=3, iter=9, mm=18 (grey in Figure 5)
[(5.181724335835382,−5.177067731075524),
(2.585441267930541,−0.6478652310697918),
(2.5656394547047783,−0.6452707898813249),
(2.5163392603382473,−0.6387978622974516),
(2.401326686185833,−0.6236192975654269),
(2.17130618635129,−0.5929118810597139),
(1.8399595521688579,−0.5477404797274893),
(1.5792011481985957,−0.5112666878668612),
(1.5040821254913361,−0.500583031372834)]
CANS, eps=0.3, order=5, iter=4, mm=12 (purple in Figure 5)
[(8.420293602126344,−24.910491192120688, 18.472094206318726),
(4.101228661246281,−3.0518555467946813, 0.5741241025302702),

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

(3.6809819251109155,−2.75396502307162, 0.5401902781108926),
(2.7280916801566666,−2.0315492757300913, 0.45866431681858805)]
Jiacheng’s, order=5, iter=6, mm=18 (green in Figure 4)
[(3955/1024,−8306/1024, 5008/1024),
(3735/1024,−6681/1024, 3463/1024),
(3799/1024,−6499/1024, 3211/1024),
(4019/1024,−6385/1024, 2906/1024),
(2677/1024,−3029/1024, 1162/1024),
(2172/1024,−1833/1024, 682/1024)]
Jiacheng’s, order=5, iter=5, mm=18
[(3839/1024,−8060/1024, 4883/1024),
(3851/1024,−7277/1024, 3966/1024),
(4011/1024,−6812/1024, 3318/1024),
(2738/1024,−3261/1024, 1321/1024),
(2172/1024,−1833/1024, 683/1024)]

K TIME

The number of matmuls is proportional to FLOPS and to the spent time up to the errors. Table 3
below shows time for Figure 2 (on CPU in seconds).

Table 3: Time for matrix orthogonalization in Figure 1 (on CPU in seconds).

Method Matmuls Time

classic Newton-Schultz 60 6.57
3-rd order 26 2.70
5-th order 24 1.96

classic Newton-Schultz, Gelfand 60 6.57
3-rd order, Gelfand, a0 = 1e− 3 32 3.27
5-th order, Gelfand, a0 = 1e− 3 30 2.79
3-rd order, Gelfand, a0 = 1e− 7 44 4.72
5-th order, Gelfand, a0 = 1e− 7 42 3.80

L ABLATION OF MATRIX NORMALIZATION

We compare the effect of normalization before orthogonalization in the Muon optimizer. Figure 6
shows that Muon with Gelfand’s normalization has improved convergence.

5200 5400 5600 5800 6000 6200
Steps

3.32

3.34

3.36

3.38

Te
st

 lo
ss

Muon, iter=5, mm=15, Frobenius
Muon, iter=5, mm=15, Gelfand
CANS, order=3, iter=9, mm=18, Frobenius
CANS, order=3, iter=9, mm=18, Gelfand

Figure 6: NanoGPT test loss curves for Muon with Gelfand’s and Frobenius normalization before
orthogonalization.

Figures 7 and 9 show the full training and test loss curves of NanoGPT.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

0 1000 2000 3000 4000 5000 6000
Steps

3.0

3.5

4.0

4.5

5.0

5.5

6.0
Tr

ai
n

lo
ss

Muon, iter=4, mm=12
Muon, iter=5, mm=15
Jiacheng, iter=5, mm=15
Jiacheng, iter=6, mm=18
CANS, order=5, iter=4, mm=12
CANS, order=3, iter=7, mm=14
CANS, order=3, iter=9, mm=18

Figure 7: NanoGPT full train loss curve.

0 1000 2000 3000 4000 5000 6000
Steps

3.32

3.5

4.0

5.0

Te
st

 lo
ss

Muon, iter=4, mm=12
Muon, iter=5, mm=15
Jiacheng, iter=5, mm=15
Jiacheng, iter=6, mm=18
CANS, order=5, iter=4, mm=12
CANS, order=3, iter=7, mm=14
CANS, order=3, iter=9, mm=18

Figure 8: NanoGPT full test loss curve.

5000 5200 5400 5600 5800 6000 6200
Steps

3.20

3.25

3.30

3.35

3.40

Tr
ai

n
lo

ss

Muon, iter=4, mm=12
Muon, iter=5, mm=15
Jiacheng, iter=5, mm=15
Jiacheng, iter=6, mm=18
CANS, order=5, iter=4, mm=12
CANS, order=3, iter=7, mm=14
CANS, order=3, iter=9, mm=18

Figure 9: NanoGPT smoothed train loss curve.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 4: Time for retraction of n× p matrix.

n p Cayley QR CANS

1024 32 0.11 0.28 0.07
1024 64 0.13 0.47 0.07
1024 128 0.19 0.86 0.08
1024 256 0.28 1.83 0.11
1024 512 0.43 3.55 0.23
1024 1024 0.70 6.61 0.59

2048 32 0.22 0.32 0.07
2048 64 0.29 0.54 0.08
2048 256 0.77 2.35 0.15
2048 512 1.33 4.54 0.43
2048 1024 2.53 9.08 1.11
2048 2048 4.98 18.03 3.99

4096 32 0.68 0.48 0.08
4096 64 0.96 0.89 0.09
4096 512 5.08 7.99 0.71
4096 1024 9.74 15.84 2.13
4096 2048 18.89 34.02 8.20
4096 4096 37.04 68.19 30.57

8192 32 2.46 0.67 0.08
8192 64 3.59 1.30 0.10
8192 1024 37.42 24.40 4.20
8192 2048 73.94 55.65 16.64
8192 4096 145.71 130.80 62.68
8192 8192 290.25 321.01 236.78

M TIME COMPARISON OF RETRACTIONS

Table 4 shows time (in seconds) for retraction of n × p matrix measured on A100. For a small
step-size, it is enough to make 2 iterations of Cayley or 1 CANS iteration to reach nearly the same
desired accuracy of orthogonalization.

23

	Introduction
	Related work
	Optimal odd polynomials and Newton-Schulz iterations
	Optimal odd polynomials
	Newton-Schulz iterations based on optimal odd polynomials
	Normalization of a matrix prior to Newton-Schulz iterations

	Polynomials with large derivatives at x=0
	Applications
	Orthogonalization
	Muon optimizer
	Riemannian optimization on the Stiefel manifold
	Experiments

	Conclusion
	Reproducibility Statement
	Proof of Theorem 1 for odd polynomials
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Proposition 3
	Proof of Corollary 1
	Remez algorithm
	Proof of Proposition 4
	Experimental details
	Riemannian SGD and ADAM on Stiefel manifold
	Polynomials
	Time
	Ablation of matrix normalization
	Time comparison of retractions

