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ABSTRACT

The problem of computing optimal orthogonal approximation to a given matrix has
attracted growing interest in machine learning. Notable applications include the
recent Muon optimizer or Riemannian optimization on the Stiefel manifold. Among
existing approaches, the Newton-Schulz iteration has emerged as a particularly
effective solution, as it relies solely on matrix multiplications and thus achieves
high computational efficiency on GPU hardware. Despite its efficiency, the method
has inherent limitations—its coefficients are fixed and thus not optimized for
a given matrix. In this paper we address this issue by proposing a Chebyshev-
optimized version of Newton-Schulz (CANS). Based on the Chebyshev’s alternance
theorem, we theoretically derive optimal coefficients for the 3-rd order Newton-
Schulz iteration and apply a Remez algorithm to compute optimal higher-degree
polynomials. We leverage these polynomials to construct controlled approximate
orthogonalization schemes, which is of interest in deep learning applications.
Practically, we demonstrate the method’s effectiveness in two key applications:
orthogonalization in the Muon optimizer, and providing an efficient retraction
alternative for Riemannian optimization on the Stiefel manifold.

1 INTRODUCTION

Polar decomposition of a matrix X ∈ Rm×n,m ≥ n is a factorization X = WH , where W ∈ Rm×n

has orthonormal columns and H ∈ Rn×n is a positive semidefinite symmetric matrix (or Hermitian in
the complex case). An important application of the polar decomposition is the orthogonal Procrustes
problem:

min
Q:QTQ=I

∥Q−X∥F ,

with the solution being Q = W the polar factor of X . For generalization, see (Schönemann, 1966).

Polar decomposition can be computed directly using the singular value decomposition X = USV T ,
which immediately leads to W = UV T , H = V SV T . However, calculating the SVD can be costly
for many applications. There are several iterative methods available, including Newton (Kenney &
Laub, 1992) and Halley’s methods (Nakatsukasa et al., 2010), which require matrix inversion. In
this work, we consider the Newton-Schulz iteration (Björck & Bowie, 1971; Kovarik, 1970; Higham,
2008), which only requires matrix multiplication:

Xk+1 =
3

2
Xk −

1

2
XkX

T
k Xk, X1 = X. (1)

This iteration converges to the orthogonal factor of the polar decomposition if σ1(X) <
√
3 and

σn(X) > 0. Classical Newton-Schulz iteration can be also extended to higher degrees (Bernstein &
Newhouse, 2024):

Xk+1 = αk
1Xk + αk

3XkX
T
k Xk + αk

5Xk(X
T
k Xk)

2 + · · ·+ αk
2t+1Xk(X

T
k Xk)

t,

which can be rewritten using SVD of Xk = USkV
T as follows:

Xk+1 = U(αk
1Sk + αk

3S
3
k + αk

5S
5
k + · · ·+ αk

2d+1S
2d+1
k )V T = Upk(Sk)V

T .
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In order for these iterations to converge to the orthogonal polar factor, the composition of polynomials
pk(pk−1(. . . p1(x))) should converge to the unity function f ≡ 1 on the segment [σn(X), σ1(X)].
Indeed, the desired property is:

∥Xk+1 − UV T ∥2 = ∥U(pk(Sk)− I)V T ∥2 = ∥pk(Sk)− I∥2
= ∥pk(pk−1(. . . p1(S)))− I∥2
= max

i
|pk(pk−1(. . . p1(si)))− 1|

≤ max
s∈[σn,σ1]

|pk(pk−1(. . . p1(s)))− 1| → 0, k →∞,

(2)

where we used orthogonal invariance of the spectral norm. However, in some applications (e.g., Muon
optimizer), high orthogonalization accuracy may not be necessary and finding an approximation of
f ≡ 1 with an error ε is sufficient. This allows to balance between accuracy and efficiency when
selecting polynomials.

In this work, we propose algorithms for optimizing the coefficients of the classical Newton-Schulz
method, based on the Chebyshev alternation theorem. This framework, which we call Chebyshev-
accelerated Newton-Schulz (CANS), enables us to obtain polynomials with the desired properties and
accelerated convergence. Our main contributions are:

• We derive theory for finding odd polynomials that optimally approximate the unity function
on a given segment [a, b] (Section 3.1). This leads us to explicit formulas when pk are of
degree 3 and Remez algorithm for larger degrees. Given the bounds on the singular values,
these polynomials lead to methods that outperform Newton-Schulz (Section 3.2).

• We develop new polynomials that are confined within the interval [1− δ, 1 + δ] with a user-
specified δ (inexact orthogonalization), while maximizing the polynomial derivative in the
vicinity of zero (Section 4). This is motivated by the needs of the orthogonalization procedure
of the Muon optimizer (Jordan et al., 2024b). For the same target δ, our polynomials achieve
a larger derivative compared to original Muon polynomial and those from (Jiacheng, 2024),
and yield faster convergence of the optimizer when training the NanoGPT (Section 5.2).

• We further demonstrate that by maximizing the derivative at the origin, our inexact orthogo-
nalization polynomials can serve as an effective preprocessing step for an iterative method
of choice. This is particularly useful when information about the smallest singular value is
not available. We also show that the largest singular value can be accurately approximated
via Gelfand’s formula with negligible computational overhead (Section 3.3).

• In Section 5.3, we demonstrate the application of CANS for building an efficient retraction on
the Stiefel manifold, which speeds up training of WideResNet with orthogonal constraints.

2 RELATED WORK

Iterative methods. First iterative method for the orthogonal polar factor, based on Taylor series
expansion, was introduced in (Björck & Bowie, 1971; Kovarik, 1970). The work (Higham &
Schreiber, 1990) developed an algorithm balancing inversion and multiplication. Subsequent methods
like scaled Newton (Higham, 2008), Halley’s method, QDWH (Nakatsukasa et al., 2010), and Zolo-pd
(Nakatsukasa & Freund, 2016) improved convergence but require matrix inversion or QR, which is
less GPU-friendly than pure matrix multiplications. The stability of these methods is analyzed in
(Nakatsukasa & Higham, 2012). Scaling of Newton-Schulz iteration was explored in (Chen & Chow,
2014b;a). Notably, the polynomials derived in (Chen & Chow, 2014b) align with our formula for
optimal third-degree polynomials, although our approach is applicable for higher degree polynomials.
Concurrently with our work, Amsel et al. (2025) also studied optimal polynomials for the Newton-
Schulz iteration. They independently derived the same optimal third-order polynomial (which also
matches the formula in (Chen & Chow, 2014a)) and the same recursive scheme for polynomial
composition (see Eq. 4). While Amsel et al. (2025) prove the optimality of such composition, their
method and analysis is restricted to the exact case. In contrast, our work focuses primarily on the
inexact case, introducing a method to construct polynomials that satisfy a given tolerance δ while also
maximizing derivatives at zero to accelerate the convergence of smaller singular values. A further
distinction concerns the use of Gelfand’s formula.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Deep learning. In neural networks, Newton-Schulz iteration is applied for enforcing orthonormality
of the weight matrices (Anil et al., 2019). Its computational efficiency has made it particularly
valuable for optimizers requiring orthogonalization, including Muon (Jordan et al., 2024b; Bernstein
& Newhouse, 2024) and Scion (Pethick et al., 2025). Related approaches have employed Newton
iteration for computing matrix p-th roots in other optimizers (Anil et al., 2020).

Riemannian optimization. In Riemannian optimization on the Stiefel manifold, polar decomposition
is one of the possible retractions (Absil et al., 2009) to the manifold, alongside Cayley transform (Li
et al., 2020; Zhu, 2017; Gao et al., 2021) and QR.

3 OPTIMAL ODD POLYNOMIALS AND NEWTON-SCHULZ ITERATIONS

3.1 OPTIMAL ODD POLYNOMIALS

As stated in equation 2, our goal is to find an odd polynomial that best approximates the unity function
f ≡ 1 on a given segment, in which the singular values of the matrix fall [σn(X), σ1(X)] ∈ [a, b].

By Ln we shall denote the space of odd polynomials of degree 2n− 1, that is,

Ln = {α1x+ α3x
3 + · · ·+ α2n−1x

2n−1 : α1, α3, . . . , α2n−1 ∈ R}.

Note that dimLn = n. Now fix 0 < a < b and n ∈ N. We endow the space C[a, b] with its standard
norm, i.e. ∥f∥C[a,b] = maxt∈[a,b] |f(t)|. For a function f ∈ C[a, b] we consider the problem of
finding p ∈ Ln such that ∥f − p∥C[a,b] = min{∥f − q∥C[a,b] : q ∈ Ln}. A polynomial p with the
foregoing property we shall call the best uniform odd polynomial approximation of f of degree 2n−1.
Since we do not consider approximations in any other sense, we shall use a shorter term best odd
polynomial approximation omitting the explicit mention of the degree, if it is clear from the context.
The powerful method of studying best polynomial approximations is provided by the Chebyshev
equioscillation theorem (see (Trefethen, 2020, Section 10) for classical formulation, and (Hörmander,
2018, Theorem 5) for the general version). In our case it reduces to the following fact.
Theorem 1. Let 0 < a < b, n ∈ N, and f ∈ C[a, b]. Then the following statements hold.

(i) The best odd polynomial approximation of f is unique.

(ii) p ∈ Ln is the best odd polynomial approximation of f of degree 2n − 1 if and only if
there exist points x0 < x1 < · · · < xn on the interval [a, b] such that |p(xj) − f(xj)| =
∥p − f∥C[a,b] for all j = 0, . . . , n and p(xj) − f(xj) = −(p(xj−1) − f(xj−1)) for all
j = 1, . . . , n.

Proof. See Appendix A.

The points x0, . . . , xn from Theorem 1 are said to form the Chebyshev alternance for p− f .

We shall need further properties of the best odd polynomial approximation of the unity function
f ≡ 1. Given 0 < a < b and n ∈ N we denote by pn,a,b the best degree 2n − 1 odd polynomial
approximation of the unity on the interval [a, b] and by ε(n, a, b) we denote the value ∥pn,a,b−1∥C[a,b].
The following proposition contains basic properties of pn,a,b.
Proposition 1. Let 0 < a < b and let n ∈ N. Then the following statements hold.

(i) If x0 < · · · < xn are the points of the Chebyshev alternance for pn,a,b − 1, then x0 = a
and xn = b.

(ii) If ε = ∥pn,a,b − 1∥C[a,b], then pn,a,b(xj) = 1− (−1)jε for all j = 0, . . . , n.

(iii) The derivative p′n,a,b(x) attains a local maximum at x = 0 and decreases on the interval
[0, x1]. Moreover, p′n,a,b(0) ≥ (1− ε)/a.

(iv) For any t > 0 we have ε(n, ta, tb) = ε(n, a, b) and pn,ta,tb(tx) = pn,a,b(x).

Proof. See Appendix B.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Using the foregoing proposition it is easy to find a closed-form expression for p2,a,b.

Proposition 2. Let 0 < a < b. Then

p2,a,b =
2

2
(
a2+ab+b2

3

)3/2
+ a2b+ b2a

((
a2 + ab+ b2

)
x− x3

)
.

Moreover, this polynomial attains its maximum on [a, b] at x = e =
√
(a2 + ab+ b2) /3. Finally,

ε(2, a, b) = ∥p2,a,b − 1∥C[a,b] =
2
(

a2+ab+b2

3

)3/2
− a2b− b2a

2
(
a2+ab+b2

3

)3/2
+ a2b+ b2a

. (3)

Proof. see Appendix C.

For the polynomials of higher degree, finding explicit formulas seems to be unrealistic, as the problem
reduces to finding roots of polynomials of degree more than 4. Also we were not able to construct
any transcendental formula for pn,a,b. However, we can use an adaptation of the well-known Remez
algorithm (see, e.g. (Trefethen, 2020, Section 10)) for finding optimal polynomials of higher degrees.
We describe Remez algorithm in Appendix F.

3.2 NEWTON-SCHULZ ITERATIONS BASED ON OPTIMAL ODD POLYNOMIALS

We outline several reasonable choices of polynomials for Newton-Schulz iterations of a matrix X .

At first we consider the case when we are given a priori estimates on the singular values of X , i.e.
a ≤ σk(X) ≤ b for all k = 1, . . . , n. In this case it is natural to consider an integer d0 ∈ N and
an optimal odd polynomial pd0,a,b =

∑d0

k=1 α2k−1x
2k−1. All singular values of the matrix X1 =∑d0

k=1 α2k−1X(XTX)k−1 are contained in the interval [a1, b1] = [1− ε(d0, a, b), 1 + ε(d0, a, b)].
Thus, we can again choose an integer d1 (possibly distinct from d0) and repeat this process with
pd1,a1,b1 and matrix X1. If d0, d1, . . . are chosen to be greater or equal than 2, then this process
converges to the orthogonal factor UV T of X in its polar decomposition (Algorithm 1). We present
analysis of the convergence of these iterations in case of polynomials of degree 3 (di = 2).

Let 0 < a < b and consider the following recursion:

a0 = a, b0 = b, 0 < a < b

an+1 = 1− ε (2, an, bn) , bn+1 = 1 + ε (2, an, bn) .
(4)

We also have ε(dk, a, b) = ∥Xk − UV T ∥2.

Proposition 3. With the definition above, the error of approximation εn+1 = ε(2, an, bn) converges
to zero quadratically. More precisely,

εn+1 ≤ ε2n and lim
n→∞

εn+1

ε2n
=

3

4
.

Proof. See Appendix D.

Corollary 1. For the starting segment [a0, b0], where 0 < a0 < 1 and b0 = 1, the number of
iterations necessary to achieve the desired error of approximation ε in the spectral norm is as follows:

n ≥
⌈
log2

(
ln ε

ln(1− a0)

)⌉
.

Proof. See Appendix E.

4
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0 1 1+a=0.4 a=0.6

1-
1

1+

y=x

=0.2

p d,
optimal qd, d,
p d,

Figure 1: Illustration of the selection of a degree-3 (d = 2) polynomial with a large derivative at zero.
The green polynomial falls into [1− δ, 1 + δ], but has insufficient derivative. The blue polynomial
qd,δ has the highest possible derivative among polynomials from Pd,δ . The purple polynomial is not
part of Pd,δ , and its derivative is too large.

3.3 NORMALIZATION OF A MATRIX PRIOR TO NEWTON-SCHULZ ITERATIONS

To achieve the desired behavior of Newton-Schulz iterations (both classical Newton-Schulz and our
modifications), one has to impose upper estimates for singular values of a matrix. That is, the first
step of any algorithm based on Newton-Schulz is to normalize the matrix so that its singular values
fall into the convergence range of polynomials (e.g. (0,

√
3) for classical NS, [ε, 1] in our case).

The easiest approach is to normalize by Frobenius norm, but this may significantly decrease small
singular values and slow down the convergence. Ideally, the matrix should be normalized by its
largest singular value. To estimate σ1 efficiently, one may use power method (but it estimates σ1

from below), randomized estimates (Dixon, 1983), (Halko et al., 2011, Lemma 4.1) or Gelfand’s
formula: σ1(A) ≤ ∥(ATA)k∥1/(2k)F . If needed, the Gelfand’s formula can be implemented without
introducing extra matmuls because (ATA)k is computed during Newton-Schulz iterations:

1. Compute matrices (ATA)i for i = 1...k and save them.

2. Compute c = ∥(ATA)k∥1/(2k)F .

3. Compute p1(A/c) = (
∑k

i αi(A
TA)i/c2i)(A/c). Use p1(A/c) for the next iteration.

Note that for third-degree polynomials, we do not need to save extra matrices.

4 POLYNOMIALS WITH LARGE DERIVATIVES AT x = 0

Now we aim to construct polynomials that can rapidly uplift the smallest singular values, while
deviating from 1 by no more than given δ. It implies that they should have a large derivative at zero.

At first let us discuss the conditions that we impose on polynomials. Since it is desirable that the
value p(p(. . . p(x) . . . )) falls into the interval [1− δ, 1 + δ] after sufficient number of iterations, it is
natural to require that p([1− δ, 1+ δ]) ⊂ [1− δ, 1+ δ]. On the other hand, for x ∈ [0, 1− δ] we want
to guarantee, that x is not moved further away from the desired interval. Hence, for x ∈ [0, 1− δ] we
require the condition p(x) ≥ x. On the other hand, we do not impose any conditions on the behaviour
of p for x > 1+ δ, thus we also need to add the restriction p(x) ≤ 1+ δ for x ∈ [0, 1− δ] (otherwise,
we can not control the behaviour with respect to iterations of p). With the above considerations we
introduce the set

Pd,δ = {p ∈ Ld : x ≤ p(x) ≤ 1+ δ ∀x ∈ [0, 1− δ], 1− δ ≤ p(x) ≤ 1+ δ ∀x ∈ [1− δ, 1+ δ]}.

The problem posed at the beginning of the section can be now formulated as an optimization problem

max
p∈Pd,δ

p′(0). (5)

We shall not solve this problem directly, but instead we replace it by another one, the solution of
which can be reduced to the problem of finding best polynomial approximation of the unity function.

5
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Consider for a polynomial p ∈ Pd,δ the number aδ(p) = sup{x ∈ [0, 1− δ] : p(x) < 1− δ}. That
is, aδ(p) is the left boundary of the biggest segment [a, 1 + δ] on which the values of a polynomial
p falls into [1− δ, 1 + δ]. Intuitively, to increase the derivative of a polynomial p at zero, we need
to shift the left boundary a of the described segment as close to zero as possible until there does
not exist a polynomial that fits into the restrictions of Pd,δ (see the shift from the green to the blue
polynomial in Figure 1). Thus, we consider the optimization problem

min
p∈Pd,δ

aδ(p). (6)

Below we show that the problem (6) has a unique solution that can be found explicitly for polynomials
of degree 3 and by binary search for higher degrees (Algorithm 2). Moreover, we show the equivalence
of problems (5) and (6) (i.e. optimal polynomials for these problems coincide) if δ is large enough.
Proposition 4. Let δ ∈ (0, 1) and d ∈ N, d ≥ 2. Then the following statements hold.

(i) There is a unique number a = a(d, δ) ∈ (0, 1− δ) such that ε(d, a, 1 + δ) = δ.

(ii) The solution to the optimization problem (6) is unique, the minimum is equal to a = a(d, δ)
from (i) and is attained on the polynomial qd,δ = pd,a,1+δ (optimal odd polynomial on
[a, 1 + δ] of degree 2d− 1, see Section 3.1).

(iii) The solution qd,δ to the problem equation 6 satisfies the inequality qd,δ(x) ≥ cx for all
x ∈ [0, a(d, δ)] with c = (1− δ)/a(d, δ) > 1.

(iv) Let x0 = a(d, δ) < x1 < · · · < xd = 1+ δ denote the alternance points for the polynomial
qd,δ. If x2 ≥ 1 − δ, then qd,δ is the solution to the problem in (5), i.e. it maximizes the
derivative at zero on the set Pd,δ .

Proof. See Appendix G.

Using a sequence of different polynomials, rather than iterating a single one, can push singular values
into the target interval [1− δ, 1 + δ] more effectively and produce a faster-growing derivative at zero.
The composition of polynomials can be constructed as follows:

1. Start with the target δ ∈ (0, 1).
2. Choose a degree d1 ∈ N and find a larger interval [1− δ1, 1 + δ1] that a polynomial p1 can

map into [1− δ1, 1 + δ1] (in other words, ε(d1, 1− δ1, 1 + δ1) = δ).
3. Repeat this, choosing yet another d2 ∈ N and polynomial p2 to map an even larger interval

[1− δ2, 1 + δ2] into the previous [1− δ1, 1 + δ1]. Repeat this process l times.

It is easy to see that the composition f(x) = p1(p2(. . . pl(x) . . . )) maps the interval [1− δl, 1 + δl]
into [1 − δ, 1 + δ]. Moreover, f monotonically increases on [0, 1 − δl] and satisfies f(x) > x for
all x ∈ [0, 1 − δl]. After rescaling the argument by multiplying with (1 + δ)/(1 + δl) we obtain
a function g(x) = f (x(1 + δl)/(1 + δ)) that has similar properties to iteration of qd,δ but with a

crucial advantage: its derivative at zero is higher. For example, if di = d, then g′(0) ≥
(
q′d,δ(0)

)l
.

Polynomials with high derivatives at zero can be applied to matrices with rapidly decreasing singular
values before orthogonalization (Algorithms 1, 2). This helps to speed up orthogonalization (see
Figure 2). The number of iterations ℓ can be chosen either in advance, based on the desired budget of
matmuls (the muon case), or until convergence to the desired accuracy ε (the orthogonalization case).

6
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Algorithm 1 Orthogonalization with CANS.

Input Normalized matrix X ∈ Rn×p, p ≤ n;
[a, b] where singular values of X lie; number
of iterations ℓ; polynomials’ degrees 2di − 1.

if a is unknown then
X, a, b =

= δ-orthogonalization(X)

for i in 0 . . . ℓ do
if di = 2 then

pi, ε are found using Proposition 2
else

pi, ε = remez(a, b, 2di − 1)

a, b = 1− ε, 1 + ε

X = ps(ps−1(. . . p1(p0(X))))
Return X

Algorithm 2 δ-orthogonalization.

Input Normalized X ∈ Rn×p, p ≤ n; right
boundary B; degrees 2di − 1, i = 0 . . . ℓ; de-
sired δ; eps = 1e-7.
Al, Ar = 0, 1− δ
while |δ − ε| > eps do

a, b = (Al +Ar)/2, B
for i in 0 . . . s do

p, ε = remez(a, b, 2di − 1)
a, b = 1− ε, 1 + ε

if ε < δ then:
Ar = (Ar +Al)/2

else
Al = (Al +Ar)/2

X = p(X)
Return X, 1− δ, 1 + δ

5 APPLICATIONS

5.1 ORTHOGONALIZATION

Let us consider the problem of computing the orthogonal polar factor of a matrix A. We compare
the performance of the classical Newton-Schulz (equation 1) to the CANS method (Algorithm 1).
To find the composition of 3-rd order polynomials, we use explicit formulas from Proposition 2, for
the 5-th order polynomials – the Remez algorithm. The Figure 2 shows the convergence of these
algorithms for a matrix A ∈ R1000×1000 with entries sampled from N (0, 1).

We conclude that the iterations with tuned coefficients converge noticeably faster than the classical
Newton-Schulz (matmuls are proportional to time, see Table 3). CANS algorithm performs better
when the boundaries of the spectrum are determined more accurately. Overestimating the smallest
singular value results in faster convergence than underestimating it. δ-orthogonalization helps to
accelerate the convergence of the algorithm, even if the smallest singular value is not available.

5.2 MUON OPTIMIZER

Muon (Jordan et al., 2024b) is a recently developed optimizer for matrix-shaped parameters in neural
networks, that has shown promising results in improving convergence and training speed (Liu et al.,
2025).The key idea of Muon is the orthogonalization of the momentum Mk:

Mk = βMk−1 + (1− β)Gk,

Wk = Wk−1 − ηOrtho(Mk),

where Gk is the gradient on the step k, Mk is the momentum, W are the parameters that we wish
to update, η is the learning rate, Ortho(Mk) = argminO{∥Mk −O∥F : OTO = I orOOT = I}
(which is known as Procrustes problem with exact solution being polar factor O = UV T of Mk =
USV T ). However, due to the prohibitive cost of SVD, authors instead choose to apply Newton-
Schulz iteration with tuned coefficients for approximate orthogonalization. Authors empirically find,
that in practice the singular values of the resulting matrix may deviate from 1 without harming the
performance of optimizer for small models (for original Muon polynomial (Jordan et al., 2024b) the
singular values fall into [0.7, 1.2]). However, further investigation suggested that decreased deviation
improves the performance for larger models, e.g. GPT-2 medium (Cesista et al., 2025). In addition,
higher derivative of composition of polynomials in zero ϕ(0)′ noticeably improves the performance.
Thus, the objective is to find composition ϕ(x):

ϕ(x) = pn(pn−1(. . . p1(x))) ∈ [1− δ, 1 + δ], s.t. ϕ(0)′ → max .

Prior works (Cesista et al., 2025; Jiacheng, 2024) have attempted to construct such polynomials using
computational search. However, our theory allows to find optimal polynomials with these constraints.

7
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Figure 2: Convergence of iterative algorithms for matrix orthogonalization. The solid lines show
the performance when the exact values of σ1(A), σn(A) are known, and the matrix is normalized
by σ1(A). In other cases, the matrix is normalized by ∥(ATA)2∥1/4F and the precise value of the
left boundary is σn(A)/∥(ATA)2∥1/4F =9e-5. The striped lines show performance for overestimated
boundary a0=1e-3, the dotted lines – for underestimated a0=1e-7. The dashdotted lines show
convergence of algorithm with 4 iterations of δ-orthogonalization (Algorithm 2).
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Figure 3: Comparison of CANS with the original Muon polynomial. Zoomed plot shows behavior
near zero. “iter” denotes number of polynomials in composition, “mm” - total number of matmuls.

We have set the deviation δ = 0.3 and generated a composition of 5 polynomials of 5-th degree
(purple) and 7 polynomials of 3-rd degree (black), which are shown in Figure 3. Both polynomials
have higher derivative at zero than original Muon polynomial p(x) = 3.4445x−4.7750x3+2.0315x5,
while requiring no more matmuls. Compositions of 9 3-rd order polynomials for δ = 0.00188 (purple)
and δ = 0.00443 (blue) (Figure 4) also have higher derivatives than (Jiacheng, 2024) polynomial
found by computational search. Polynomials’ coefficients are presented in Appendix J.

The performance of Muon optimizer with proposed polynomials is tested on the task of training
NanoGPT (Jordan et al., 2024a) (see Appendix H for details). The convergence of Muon with
different polynomials is shown in the Figure 5. We observe, that CANS polynomial requiring 12
matmuls (purple) outperforms Muon polynomial with the same number of matmuls (4 iterations,
cyan). The difference in convergence may be more pronounced when training larger models.

5.3 RIEMANNIAN OPTIMIZATION ON THE STIEFEL MANIFOLD

Let us introduce the following definitions, based on (Absil et al., 2009; Li et al., 2020).
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Figure 4: Comparison of CANS polynomials with (Jiacheng, 2024).
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Figure 5: Test loss of NanoGPT trained using Muon optimizer with different polynomials.

Definition 1. A Riemannian manifold (M, ρ) is a smooth manifold whose tangent spaces Tx(M)
are endowed with a smoothly varying inner product ρx(·, ·) : Tx(M)×Tx(M)→ R, which is called
the Riemannian metric.
Definition 2. A geodesic is a curve representing the locally shortest path between two points
on manifold. An exponential map Expx : Tx(M) → M maps a tangent vector to the manifold.
Expx(tv) represents a geodesic γ(t), t ∈ [0, 1], s.t. γ(0) = x, γ̇(0) = v. A retraction is a smooth
mapping from the tangent bundle to the manifold Retrx : Tx(M) → M iff Retrx(0) = x and
DRetrx(0) = idTx(M), where D denotes derivative. Usually, retraction is a computationally efficient
alternative to exponential mapping.

The Stiefel manifold is a Riemannian manifold, consisting of n× p, n ≥ p matrices with orthonormal
columnsM = St(n, p) = {X ∈ Rn×p : XTX = I}. The tangent space ofM is defined as:

TX(M) = {Z : ZTX +XTZ = 0}.
The projection onM can be written as:

πX(Z) = Z − 1

2
X(ZTX +XTZ) = WX, (7)

W = Ŵ − ŴT , Ŵ = ZXT − 1

2
X(XTZXT ). (8)

The process of Riemannian optimization of the function f on the manifoldM can be split into three
steps. At first, the gradient ∇f in the Euclidean space is projected onto tangent space TXk

(M) to
obtain∇Mf(Xk) = πXk

(∇f). Secondly, momentum Mk is transported to TX(M) and combined
linearly with∇Mf(Xk) to get the updated momentum Mk+1. Finally, Xk+1 is computed as a step
along the curve on the manifold with initial direction Mk+1. Parameters can be updated using the
exponential map and parallel transport of momentum, but due to the computational complexity of
these methods, retraction and vector transport are often used instead.

Let ξX , ηX ∈ TX(M) be tangent vectors. The vector transport of ξX along retraction map RetrX(ηX)
can be computed as τηX

ξX = πRetrX(ηX)(ξX). The projection is a linear mapping, so the first two
steps can be combined Mk+1 = απXk

(∇f(Xk)) + βτMk
(Mk) = πXk

(α∇f(Xk) + βMk).

There are several retractions of vector ξ in point X , that can be used in practice (Absil et al., 2009).
QR decomposition: RetrX(ξ) = qr(X + ξ), where qr(A) is the Q factor from QR decomposition.
Cayley transform: RetrX(ξ) = (I− 1

2W (ξ))−1(I+ 1
2W (ξ))X, with W (Z) denoted in 8. (Li et al.,

2020) approximates closed-form Cayley transform using iterative algorithm. Polar decomposition:
RetrX(ξ) = UV T = (X + ξ)(I + ξT ξ)−1/2, where USV T = X + ξ is SVD decomposition. Note
that this retraction is known to be of the second order (Absil et al., 2009; Gawlik & Leok, 2018).

In this work, we propose to approximate the polar retraction using Newton-Schulz iteration with
carefully chosen polynomials. The step of the Riemannian gradient descent can be written as

Xk+1 = RetrXk
(απX(ξ)). (9)

To find the interval for estimation of the polynomial’s coefficients, we should estimate the condition
number σp(A)/σ1(A) of the matrix A = Xk + απX(ξ). Let us compute the Gram matrix:

ATA = (X +W (ξ)X)T (X +W (ξ)X) = I +XTW (ξ)TW (ξ)X.

9
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Therefore, σp(A) =
√
σp(ATA) ≥ 1. Since A has size n× p, p ≤ n and p nonzero singular values,

it follows that σ1(A) ≤
√
∥A∥2F − (p− 1) = c, which yields a highly accurate estimate in this

setting. Thus, we can normalize A by c, set [a, b] = [1/c, 1] and perform CANS orthogonalization.

5.4 EXPERIMENTS

Following the work (Li et al., 2020), we benchmark the performance of Riemannian optimization
methods on the task of training CNN with orthogonal constraints. We train Wide ResNet (Zagoruyko
& Komodakis, 2016) on classification of CIFAR-10. The convolutional kernels K ∈ Rcout×cin×k×h

are reshaped into p× n = cout × (cin · k · h) matrices, which are restricted to Stiefel manifold. We
optimize these parameters using Riemannian SGD with momentum and Riemannian ADAM, using
vector transport and proposed polar retraction (see Appendix I, H). Other parameters are optimized
with standard SGD or ADAM.

Tables 2, 1 show that our method has the lowest per epoch training time among other retractions,
while achieving the same accuracy. It has a simple explanation. To form the matrix W ∈ Rn×n

for Cayley retraction as in (Li et al., 2020), 3 matmuls are needed (see 8) and multiplying by W
has asymptotics O(n2p). Cayley retraction can also be done using the Woodbury formula with
asymptoticsO(np2), but more matmuls (see Appendix I). In contrast, forming πX(ξ) using formula 7
requires 2 matmuls; multiplications with n× p, p ≤ n matrix A in CANS have asymptotics O(np2).

Table 1: Accuracy and training time for Wide ResNet-16-10 on CIFAR-10 using Adam.

Retraction Accuracy Time per epoch (s)

- 94.68 35.0
Cayley (Li et al., 2020) 95.77 71.2

Cayley (Woodbury) 95.69 70.9
QR 95.57 61.7

CANS 95.82 45.1

6 CONCLUSION

This work presented efficient algorithms for deriving the theoretically optimal coefficients for Newton-
Schulz iteration. The practical effectiveness of CANS was demonstrated in accelerating the com-
putation of the unitary polar factor, orthogonalization in the Muon optimizer, and fast retraction on
the Stiefel manifold. We believe that our method can be useful for other applications as well, as it
provides a general-purpose framework for finding optimized polynomials with desired accuracy.

7 REPRODUCIBILITY STATEMENT

The experimental details are described in Sections 5.2, 5.4 and Appendix H. The coefficients of
polynomials are presented in Appendix J. Our code is planned to be made public after publication.
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A PROOF OF THEOREM 1 FOR ODD POLYNOMIALS

In a nutshell, the result follows from a generalized version of the Chebyshev equioscillation theorem
from (Hörmander, 2018). It applies to function spaces where an element is guaranteed to be zero if it
vanishes at sufficiently many distinct points – a condition that holds in our case of odd polynomials.

The generalized version of the Chebyshev equioscillation theorem (Hörmander, 2018, Theorems 4-
5) states the following. Consider a compact metric space X and an n-dimensional vector space
L ⊂ C(X). Assume that any f ∈ L that has n distinct zeroes in X is identically equal to zero. Then
the following statements hold.

1. For all g ∈ C(X) there is a unique best approximation to g in the space L, i.e. a function
G ∈ L such that ∥g −G∥C(X) = minf∈C(X) ∥g − f∥C(X).

2. Moreover, G ∈ L is the best approximation to g if and only if there exists a set E ⊂ Xthat
consists exactly of n+1 points such that ∥g−G∥C(X) = ∥g−G∥C(E) = minf∈C(X) ∥g−
f∥C(E).

Applying (1): At first we show that this theorem is applicable to L = Ln and X = [a, b], where
0 < a < b and Ln is the space of odd polynomials of degree ≤ 2n− 1. Indeed assume that f ∈ Ln

has n distinct zeroes in [a, b]. Then it also has n distinct zeroes in [−b,−a], so f has at least 2n distinct
zeroes. As deg f < 2n we conclude that f = 0. Thus, the generalized Chebyshev equioscillation
theorem implies that the best odd polynomial approximation G ∈ Ln to g ∈ C[a, b] is unique and
that there exists E ⊂ [a, b] that consists of exactly n+ 1 point such that G is the best approximation
to g in the sense of the norm ∥ · ∥C(E).

Applying (2): Now let E = {x0, ..., xn}, where a ≤ x0 < · · · < xn ≤ b. It remains to describe the
best approximation to g on the set E. We claim that if G ∈ Ln and ε satisfy (−1)jε = G(xj)−g(xj)
for all j, then G is the best approximation of g on E with error |ε|. Indeed, if F ∈ Ln approximates
g with error ≤ |ε| on E, then F −G has at least n zeroes on [a, b] counting multiplicity (because the
sign of the difference F (x)−G(x) is alternating on the points x0, . . . , xn). As above this implies
that F −G = 0 since this is an odd polynomial with n positive roots and deg(F −G) < 2n. On the
other hand, the conditions on G and ε above can be considered as a square linear system of equations
(on coefficients of G and ε). It is easy to verify that the matrix of this system of linear equations is
nonsingular, so such G and ε exist. Thus, the best approximation G ∈ Ln to g on E is unique and is
characterized by the fact that G− g equioscillates on E. Thus, Theorem 1 is proved.

B PROOF OF PROPOSITION 1

Proof. To simplify the notation we denote pn,a,b simply by p throughout this proof.

(i) At first we note that the polynomial p′ is not identically zero and vanishes at the points
x1, . . . , xn−1, as these points are extrema of the function p − 1 and lie in the interior of the in-
terval [a, b]. Clearly, p′ is even, so it also vanishes at −x1, . . . ,−xn−1. As deg p′ ≤ 2n − 2, p′
cannot have any other roots, and, in particular, p′(x0) ̸= 0 and p′(xn) ̸= 0. Therefore, x0 and xn

belong to the boundary of [a, b], so the statement (i) is proved.

(ii) In order to prove (ii) it suffices to verify that

p(a) = 1− ε,

as the values p(xj) are uniquely determined by the value p(x0) due to Theorem 1 (ii). Assume the
contrary, i.e. that

p(a) = 1 + ε.

Let r denote a point on the interval [0, a], where p attains its maximum value. If r is an interior point
of [0, a], then, clearly, p′(r) = 0. In the case r = a, we again conclude that p′(r) = 0, as

p(x) ≤ 1 + ε = p(a)

for x ∈ [a, b]. In either case r is a root of the polynomial p′ distinct from x1, . . . , xn−1, so we have
arrived at a contradiction with the fact that deg p′ = 2n− 2.
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(iii) It is easy to see that p′′ has a root sj on each open interval (xj , xj+1), j = 1, . . . , n− 2. Since
p′′ is odd it also has the roots 0,−s1, . . . ,−sn−2. Clearly, since deg p′′ ≤ 2n− 3, it does not have
any other roots. Therefore, p′ is monotone on the interval [0, x1]. If it increases on this interval,
then it is negative there, as p′(x1) = 0. So, in this case, p decreases on the interval [0, x1], which
contradicts the fact p(a) > 0. Thus, p′ decreases on the interval [0, x1]. Moreover, it has a maximum
at x = 0, for it is an even polynomial. Finally, there exists a point x ∈ (0, a) such that

p′(x) = (1− ε)/a,

since p(0) = 0 and p(a) = 1− ε. Due to monotonicity of p′ we conclude

p′(0) ≥ (1− ε)/a.

(iv) Consider t > 0 and let q(x) = pn,ta,tb(tx). Also consider the points y0 = ta, y1, . . . , yn = tb
of the Chebyshev alternance for pn,ta,tb − 1. It is easy to see that the points y0/t, y1/t, . . . , yn/t
constitute a Chebyshev alternance for q − 1 and by Theorem 1 we conclude that q = pn,a,b. The
equality ε(n, ta, tb) = ε(n, a, b) easily follows.

C PROOF OF PROPOSITION 2

Proof. We denote p2,a,b and ε(2, a, b) by p and ε respectively throughout this proof. From Propo-
sition 1 we conclude that p satisfies p(a) = 1 − ε, p(e) = 1 + ε, and p(b) = 1 − ε, where
e ∈ (a, b) and ε = ∥p − 1∥C[a,b]. Since p′(e) = 0 it is clear that p′(x) = α

(
e2 − x2

)
and,

therefore, p(x) = α
(
e2x− x3/3

)
for some α ∈ R. Now the equation p(a) = p(b) implies

e2(a−b) =
(
a3 − b3

)
/3, so e2 =

(
a2 + ab+ b2

)
/3. That is, p(x) = α/3

((
a2 + ab+ b2

)
x− x3

)
with some α ∈ R. In order to find α and ε we calculate

1− ε = p(a) = p(b) =
α

3

(
a2b+ b2a

)
, 1 + ε = p(e) =

2α

3

(
a2 + ab+ b2

3

)3/2

.

Thus,

α

3

(
2

(
a2 + ab+ b2

3

)3/2

+ a2b+ b2a

)
= 2

α =
6

2
(
a2+ab+b2

3

)3/2
+ a2b+ b2a

ε =
α

6

(
2

(
a2 + ab+ b2

3

)3/2

− a2b− b2a

)
=

2
(

a2+ab+b2

3

)3/2
− a2b− b2a

2
(
a2+ab+b2

3

)3/2
+ a2b+ b2a

D PROOF OF PROPOSITION 3

Proposition 5. With the definitions 4 the sequences an and bn converge to 1, and bn − an converges
to zero quadratically. More precisely,

lim
n→∞

bn+1 − an+1

(bn − an)
2 =

3

8
.

Proof. At first it is easy to see that an + bn = 2 for all n ∈ N. So, without loss of generality we can
assume that a+ b = 2. With this assumption we can rewrite the function ε(2, ·, ·) in the following
form

ε(2, a, b) =

(
4−ab

3

)3/2 − ab(
4−ab

3

)3/2
+ ab

.
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Now we claim that ε(2, a, b) < (b − a)/2. This can be checked directly from the formula, but
the implicit argument can be made based on the definition of ε. Since the polynomial p(x) = x
satisfies ∥p − 1∥C[a,b] = (b − a)/2 and p is not optimal, we get that ε(2, a, b) < (b − a)/2. From
this we conclude that a1 > a and b1 < b. By induction we get that {an} is increasing and {bn} is
decreasing. Since also an < bn for all n we obtain that these sequences converge to some points
A and B respectively. Clearly, a < A ⩽ B < b and A+ B = 2. Since ε is a continuous function,
we can pass to the limit and obtain A = 1 − ε(2, A,B) and B = 1 + ε(2, A,B). Again, it can
be checked directly that this implies A = B, but according to definition of ε we get that provided
A < B,A = 1 − ε(2, A,B), and B = 1 + ε(2, A,B) it follows that p(x) = x is the best degree
three odd polynomial approximation of unity of [A,B], which is not true. Thus, A = B = 1 and it
remains to prove the quadratic rate of convergence.

Using the assumption a+ b = 2 we get that ab =
(
(a+ b)2 − (a− b)2

)
/4 = 1− (a− b)2/4. Now

with this we calculate (we let γ(a, b) denote the expression
(
4−ab

3

)3/2
+ ab

)
b1 − a1 = 2ε(2, a, b) = 2

(
4−ab

3

)3/2 − ab(
4−ab

3

)3/2
+ ab

= 2

(
4−ab

3

)3 − a2b2

γ(a, b)2
=

2

27γ(a, b)2
(
(4− ab)3 − 27a2b2

)
=

2

27γ(a, b)2
(
64− 48ab− 15a2b2 − a3b3

)
=

2(b− a)2

27γ(a, b)2

(
81

4
− 9

8
(b− a)2 +

(b− a)4

64

)
.

Since this calculation also works for bn+1 − an+1 and using that an, bn → 1 we get that

bn+1 − an+1

(bn − an)
2 =

2

27γ (an, bn)
2

(
81

4
− 9

8
(bn − an)

2
+

(bn − an)
4

64

)
→ 3

8

as γ(1, 1) = 2.

Now we are ready to prove Proposition 3.

Proof. From the definition of an, bn, it follows that

bn − an = (1− εn)− (1 + εn) = 2εn.

Using Proposition 5, we get
εn+1

ε2n
=

1
2 (bn+1 − an+1)

1
4 (bn − an)

2 → 3

4
.

From the proof of Proposition 5, we know that

bn+1 − an+1

(bn − an)2
=

2

27γ (an, bn)
2

(
81

4
− 9

8
(bn − an)

2
+

(bn − an)
4

64

)
=

=
2
(
81
4 −

9
8 (2εn)

2 + 1
64 (2εn)

4
)

27

((
4−(1−εn)(1+εn)

3

)3/2
+ (1− εn)(1 + εn)

)2 =

=

(
81
2 − 9ε2n + 1

2ε
4
n

)
27

((
1 +

ε2n
3

)3/2
+ 1− ε2n

)2 ,

For εn ∈ (0, 1), this expression is no more than 1/2.

2εn+1

4ε2n
=

bn+1 − an+1

(bn − an)2
≤ 1

2

Therefore, εn+1 ≤ ε2n.

15
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E PROOF OF COROLLARY 1

Proof. Let [a0, b0] = [a0, 1] be the starting segment, 0 < a0 < 1. From 3, we can write approxima-
tion error after the first iteration:

ε0 =
2
(

a2
0+a0+1

3

)3/2
− a20 − a0

2
(

a2
0+a0+1

3

)3/2
+ a20 + a0

= 1− 2a20 + 2a0

2
(

a2
0+a0+1

3

)3/2
+ a20 + a0

< 1− a0.

After the first iteration, we start the recursion

an+1 = 1− εn, bn+1 = 1 + εn.

From Proposition 3, εn+1 ≤ ε2n and by recursion we get

εn ≤ ε2
n

0 ≤ (1− a0)
2n .

Then we can find the number of steps, necessary to get the desired error of approximation ε:

n ≤
⌈
log2

(
ln ε

ln(1− a0)

)⌉
.

F REMEZ ALGORITHM

Let us describe the main idea of the Remez algorithm. Assume that we are given a set {x1, . . . , xn−1}
of distinct points on the open interval (a, b).

1. Use x0 = a, x1, . . . , xn−1, xn = b as a guess for the Chebyshev alternance points for
pn,a,b − 1. It is easy to see that there is a unique pair (p, ε) such that p ∈ Ln (that is, p
is odd and has degree ≤ 2n− 1), ε ∈ R, and p(xj) = 1− (−1)jε for all j = 0, 1, . . . , n.
The equations p(xj) = 1 − (−1)jε for j = 0, . . . , n form a nonsingular system of linear
equations in n + 1 unknowns, namely, ε and coefficients of p. Thus, p and ε are, indeed,
uniquely determined by the above conditions.

2. Solve the system p(xj) = 1− (−1)jε, where j = 0, . . . , n to find ε and coefficients of p.
Unfortunately, x0, . . . , xn may not constitute a Chebyshev alternance for p− 1, as p is not
guaranteed to satisfy p([a, b]) ⊂ [1− ε, 1 + ε]. However, it is clear that p has exactly n− 1
distinct extremal points {y1, . . . , yn−1} in the open interval (a, b).

3. Find the extremal points {y1, . . . , yn−1} of |p − 1| in the interval (a, b), where p has
discovered coefficients. The collection of points y0 = a, y1, . . . , yn−1, yn = b (consisting
of boundaries of the interval and extremal points of p) serves as a new guess for the
Chebyshev alternance points for pn,a,b − 1, and this guess is better than the previous.

4. Repeat algorithm starting with y0 . . . yn. By repeating the above construction with points
y1, . . . , yn−1 instead of x1, . . . , xn−1, we obtain a new pair (q, δ) with similar properties. By
a fairly straightforward argument one can show that δ ≥ ε and ∥q−1∥C[a,b] ≤ ∥p−1∥C[a,b].
Iterating this process yields a sequence of polynomials that is guaranteed to converge to
pn,a,b.

The pseudocode is presented in Algorithm 3 below.

It should be noted that Remez algorithm is notorious for its instability when dealing with polynomials
of sufficiently high degree. However, we have not observed an improvement of our methods when
using polynomials of degrees higher than 5.
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Algorithm 3 Remez algorithm

Require: n = (degree+ 1)/2, a < b, max_iterations > 0, tolerance
Ensure: Optimal polynomial p ∈ Ln and error bound ε

Initialize x← [x0, x1, . . . , xn] where x0 = a, xn = b
iteration_count← 0
prev_epsilon← 0
for iteration_count = 1 . . .max_iterations do

Construct (n+1)×(n+1) matrix A, where Aij = x2j+1
i for j = 0 . . . n−1, Ai,n = (−1)i+1

Construct right-hand side vector b, where bi = 1
solution← SolveLinearSystem(A, b)
pcoeffs ← solution[0:n] ▷ Polynomial coefficients
ε← solution[n] ▷ Error parameter
Find all local extrema y1, . . . , yn−1 of |p(x)− 1| in (a, b)
Update points: x← [a, y1, y2, . . . , yn−1, b]
εnew ← maxi(|p(yi)− 1|) ▷ New error
if ε < εnew + tolerance then

return (p, ε)

return (p, ε)

G PROOF OF PROPOSITION 4

Proof. (i). d ∈ N, d ≥ 2 and consider the function E(t) = ε(d, t, 1 + δ). It is easy to see that E is
continuous, E monotonically decreases on the interval t ∈ (0, 1+δ) and satisfies E(t)→ 1 as t→ 0,
and E(t)→ 0 as t→ 1+ δ. Thus, there exists a unique a = a(d, δ) ∈ (0, 1+ δ) such that E(a) = δ.
Note that E(1− δ) < δ, as the polynomial p(x) = x approximates unity with error δ on the interval
[1− δ, 1 + δ], even though it is not optimal (since d ≥ 2). Thus, the error of the best approximation
on [1− δ, 1 + δ] has to be strictly less than δ. Therefore, E(1− δ) < δ, so a(d, δ) ∈ (0, 1− δ).

(ii) and (iii). Let a denote the solution of the equation ε(d, a, 1+δ) = δ and consider the corresponding
polynomial qd,δ = pd,a,1+δ . By definition qd,δ(x) ∈ [1− δ, 1+ δ] for x ∈ [a, 1+ δ]. Moreover, from
Proposition 1 (iii) it follows that qd,δ is concave and increasing on the interval [0, a], so from the
fact qd,δ(a) = 1− δ we derive the inequalities 1− δ ≥ qd,δ(x) ≥ (1− δ)x/a for x ∈ [0, a]. Thus,
qd,δ ∈ Pd,δ. Note that, in particular, we have proved the inequality of (iii) for qd,δ. Now we prove
that for all p ∈ Pd,δ such that p ̸= q we have aδ(p) > a. From the definition of aδ(p) we get that
∥p− 1∥C[aδ(p),1+δ] ≤ δ, hence, E(aδ(p) = ε(d, aδ(p), 1 + δ) ≤ δ. Thus, by monotonicity of E we
infer that aδ(p) ≥ a. If the equality aδ(p) = a holds, then p is an approximation of unity on [a, 1+ δ]
with the error δ, so it coincides with qd,δ by the uniqueness of the best polynomial approximation.
Otherwise, aδ(p) > a.

(iv). Let us state an auxiliary fact. Assume that polynomials p, q ∈ Ld and points 0 < y1 < y2 <
· · · < yd satisfy the inequalities (−1)j−1(q(yj) − p(yj)) ≥ 0 hold for all j = 1, . . . , d. Then
q′(0) ≥ p′(0). Assuming that this fact is true we can easily finish the proof. Indeed, assume that
x0 = a(d, δ) < x1 < · · · < xd = 1 + δ are the alternance points of qd,δ and that x2 ≥ 1− δ. Now
consider arbitrary p ∈ Pd,δ. We claim that (−1)j−1(qd,δ(xj) − p(xj)) ≥ 0 for all j = 1, . . . , d.
Indeed, if j = 1, then qd,δ(x1) = 1+ δ ≥ p(x1) by definition of Pd,δ . If j ≥ 2, then xj ≥ 1− δ and
the inequality holds since q(xj) = 1− (−1)jδ and |p(xj)− 1| ≤ δ. Thus, it remains to prove the
foregoing auxiliary fact. Let us fix polynomials p, q ∈ Ld and points 0 < y1 < y2 < · · · < yd such
that the inequalities (−1)j−1(q(yj)− p(yj)) ≥ 0 hold for all j = 1, . . . , d. Consider polynomials
λj ∈ Ld, j = 1, . . . , n such that lj(xk) = δjk, where δjk is the Kronecker’s symbol. It is easy to
verify that the polynomials lj indeed exist and are unique. Moreover, p and q can be recovered by an
analog of the Lagrange’s interpolation formula p =

∑d
j=1 p(xj)λj and q =

∑d
j=1 q(xj)λj . Thus,

q′(0)−p′(0) =
∑d

j=1(q(xj)−p(xj))λ
′
j(0). The proof finishes by observing that (−1)j−1λ′

j(0) > 0.
To prove this observation note that all 2d− 1 roots of λj are simple and real. Therefore, the sign of
the derivative λ′

j alternates on the roots of λj enumerated in increasing order. That is, in the vector(
λ′
j(0) λ′

j(x1) . . . λ′
j(xj−1) λ′

j(xj+1) . . . λ′
j(xd)

)
(10)
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the signs of components are alternating. Finally, since λj(xj) = 1 > 0 it follows that λ′
j(xj−1) ≥ 0

and λ′
j(xj+1) ≤ 0 (if j = 1 or j = d only one of these inequalities should be stated). The inequality

(−1)j−1λ′
j(0) > 0 now easily follows from the alternating property of the vector equation 10.

Remark.

1. The value a(d, δ) introduced in Proposition 4 (i) is given there as the solution of the equation
ε(d, a, 1 + δ) = δ. This allows to evaluate a(d, δ) by using binary search (given any
algorithm that computes the function ε), since the left part of this equation is a continuous
and decreasing function of a.

2. From Proposition 4 (iv) it is easy to see that qd,δ is the solution to the problem equation 5
for d = 2. For larger degrees this statement is no longer true in general. However, it
stays true provided δ is large enough. For example, by calculating qd,δ numerically we
observed that the condition of Proposition 4 (iv) is satisfied for d = 3, δ ≥ 0.073 and
d = 4, δ ≥ 0.201. In general, for each d there exists δd ∈ (0, 1) such that qd,δ is the solution
to the problem equation 5 for δ ≥ δd.

3. It is easy to derive the formula for the classical Newton-Schulz iterations from the poly-
nomials qd,δ. Indeed, consider d = 2 and then pass to the limit δ → 0. Clearly, the
polynomial q2,δ(x) converges to p(x) such that p(1) = 1 and p′(1) = 0. There is only one
odd polynomial of degree three satisfying these properties, namely, p(x) = 3x/2− x3/2,
which is used in the classical Newton-Schulz iterations.

H EXPERIMENTAL DETAILS

NanoGPT (Jordan et al., 2024a) is trained on a subset of 0.8B training tokens of FineWeb dataset
(Penedo et al., 2024) for 6200 steps with initial learning rate 0.0036 and trapezoidal schedule (1800
warmdown steps) on 1 A100 GPU. For normalization in our method, we used Gelfand’s formula. For
normalization in original Muon optimizer, Frobenius norm was used.

In practice, we have not observed any noticeable difference in runtime of Muon with different
polynomials in experiment with NanoGPT. Each training step required 2.5-2.9 seconds for different
polynomials. Theoretically this can be explained as follows. The FLOP overhead of Muon over
SGD is (T/3)m/B (see runtime analysis in (Jordan et al., 2024b)), where m is matrix dimension,
B - sequence length, by T we will denote number of matmuls (T = 15 for original Muon). The
difference in overhead of Muon with polynomials with T1 and T2 matmuls is ((T1 − T2)/3)m/B. In
our experiment with NanoGPT, m=768, B=524288, the difference with original Muon is T1−T2 ≤ 3
so overhead is ((T1 − T2)/3)m/B ≤ 0.0015.

For training Wide ResNet-16-10 on CIFAR-10 with Riemannian SGD and ADAM, the learning rate
is set to 0.2 and 0.4 for parameters restricted to Stiefel manifold and 0.01 otherwise. For standard
SGD and ADAM learning rate is set to 0.1 and 0.0003 respectively. The experiments were run on 1
V100 GPU. For CANS retraction, one iteration of Algorithm 1 was enough in practice to perform
orthogonalization.

I RIEMANNIAN SGD AND ADAM ON STIEFEL MANIFOLD

Table 2 shows results of training Wide ResNet-16-10 on CIFAR-10 with SGD on Stiefel manifold.

Algorithms 4 and 5 present Riemannian SGD and Adam on Stiefel manifold. Algorithm 6 presents
algorithm of performing Cayley retraction using Woodbury formula.
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Table 2: Accuracy and training time for Wide ResNet-16-10 on CIFAR-10 using SGD.

Retraction Accuracy Time per epoch (s)

- 95.97 34.9
Cayley (Li et al., 2020) 94.81 69.5

Cayley (Woodbury) 94.93 68.8
QR 94.80 61.0

CANS 94.73 43.6

Algorithm 4 SGD with momentum on Stiefel manifold

Input Momentum β, learning rate α.
Initialize X1 ∈ Rn×p as orthonormal matrix.
for 1 . . .n_iters do

Mk+1 = βMk −G(Xk)
Mk+1 = Mk+1 − 1

2Xk(M
T
k+1Xk +XT

k Mk+1)
Xk+1 = Retr(Xk + αMk+1)

Algorithm 5 Adam on Stiefel manifold

Input Momentum coefficients β1, β2, learning rate α.
Initialize X1 ∈ Rn×p as orthonormal matrix.
for k in 1 . . .n_iters do

vk+1 = β2vk + (1− β2)∥G(Xk)∥2F
v̂k+1 = vk+1/(1− βk

2 )
Mk+1 = β1Mk − (1− β1)G(Xk)

M̂k+1 = Mk+1/(1− βk
1 )

M̂k+1 = M̂k+1 − 1
2Xk(M̂

T
k+1Xk +XT

k M̂k+1)

Xk+1 = Retr(Xk − αM̂k+1/
√
v̂k+1 + ϵ)

Mk+1 = (1− βk
1 )M̂k+1

Algorithm 6 Cayley retraction via Woodbury formula

Input Parameters Xk, step direction Mk+1, learning rate α.
L = [αMk+1;Xk]

R =

[
XT

k

α(MT
k+1XkX

T
k −MT

k+1)

]
Y = Xk + 1

2αMk+1

Xk+1 = Y + 1
2L(I −

1
2RL)−1RY

Return: Xk+1 = CayleyRetr(Xk + αMk+1)
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J POLYNOMIALS

Coefficients are presented from left to right from the minimal degree to maximum. For example,
for coefficients [(a, b), (c, d, e)] the composition is p2(p1(x)), where p1(x) = ax + bx3, p2(x) =
cx+ dx3 + ex5.

Original Muon coefficients of 3-rd order polynomial for any number of iterations: [(3.4445, -4.7750,
2.0315)]*num_iters (green in Figure 3, 5).

CANS, eps=0.3, order=3, iter=7, mm=14 (black in Figure 3)
[(5.181702879894027,−5.177039351076183),
(2.5854225645668487,−0.6478627820075661),
(2.565592012027513,−0.6452645701961278),
(2.5162233474315263,−0.6387826202434335),
(2.401068707564606,−0.6235851252726741),
(2.1708447617901196,−0.5928497805346629),
(1.8394377168195162,−0.5476683622291173)]
CANS, eps=0.3, order=5, iter=5, mm=15 (purple in Figure 3)
[(8.492217149995927,−25.194520609944842, 18.698048862325017),
4.219515965675824,−3.1341586924049167, 0.5835102469062495),
(4.102486923388631,−3.0527342942729288, 0.5742243021935801),
(3.6850049522776493,−2.756862315006488, 0.5405198817097779),
2.734387280007103,−2.036641382834855, 0.4592314693659632)]
CANS, eps=0.00188, order=3, iter=9, mm=18 (purple in Figure 4)
[(5.179622107852338,−5.174287102735334),
(2.5836099434139492,−0.6476254200945953),
(2.5610021062961206,−0.6446627537769272),
(2.505058237036672,−0.6373139418181356),
(2.3764825571306125,−0.6203257475007262),
(2.1279007426858794,−0.5870609391939776),
(1.7930526112541054,−0.5412446350453286),
(1.5582262242936464,−0.5082920767544266),
(1.5021988305175455,−0.5003140810786916)]
CANS, eps=0.00443, order=3, iter=9, mm=18 (blue in Figure 4)
[(5.182503604966906,−5.178098480082684),
(2.586120737395915,−0.6479542005271643),
(2.567364126726186,−0.6454968804392178),
(2.520560084348265,−0.6393528082067044),
(2.410759275435182,−0.6248683598710716),
(2.1883348130094173,−0.5952022073798908),
(1.8595760874873613,−0.5504490972723968),
(1.589020160467417,−0.5126569802066718),
(1.5051653981684994,−0.5007377068751799)]
CANS, eps=0.0035, order=3, iter=9, mm=18 (grey in Figure 5)
[(5.181724335835382,−5.177067731075524),
(2.585441267930541,−0.6478652310697918),
(2.5656394547047783,−0.6452707898813249),
(2.5163392603382473,−0.6387978622974516),
(2.401326686185833,−0.6236192975654269),
(2.17130618635129,−0.5929118810597139),
(1.8399595521688579,−0.5477404797274893),
(1.5792011481985957,−0.5112666878668612),
(1.5040821254913361,−0.500583031372834)]
CANS, eps=0.3, order=5, iter=4, mm=12 (purple in Figure 5)
[(8.420293602126344,−24.910491192120688, 18.472094206318726),
(4.101228661246281,−3.0518555467946813, 0.5741241025302702),
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(3.6809819251109155,−2.75396502307162, 0.5401902781108926),
(2.7280916801566666,−2.0315492757300913, 0.45866431681858805)]
Jiacheng’s, order=5, iter=6, mm=18 (green in Figure 4)
[(3955/1024,−8306/1024, 5008/1024),
(3735/1024,−6681/1024, 3463/1024),
(3799/1024,−6499/1024, 3211/1024),
(4019/1024,−6385/1024, 2906/1024),
(2677/1024,−3029/1024, 1162/1024),
(2172/1024,−1833/1024, 682/1024)]
Jiacheng’s, order=5, iter=5, mm=18
[(3839/1024,−8060/1024, 4883/1024),
(3851/1024,−7277/1024, 3966/1024),
(4011/1024,−6812/1024, 3318/1024),
(2738/1024,−3261/1024, 1321/1024),
(2172/1024,−1833/1024, 683/1024)]

K TIME

The number of matmuls is proportional to FLOPS and to the spent time up to the errors. Table 3
below shows time for Figure 2 (on CPU in seconds).

Table 3: Time for matrix orthogonalization in Figure 1 (on CPU in seconds).

Method Matmuls Time

classic Newton-Schultz 60 6.57
3-rd order 26 2.70
5-th order 24 1.96

classic Newton-Schultz, Gelfand 60 6.57
3-rd order, Gelfand, a0 = 1e− 3 32 3.27
5-th order, Gelfand, a0 = 1e− 3 30 2.79
3-rd order, Gelfand, a0 = 1e− 7 44 4.72
5-th order, Gelfand, a0 = 1e− 7 42 3.80

L ABLATION OF MATRIX NORMALIZATION

We compare the effect of normalization before orthogonalization in the Muon optimizer. Figure 6
shows that Muon with Gelfand’s normalization has improved convergence.

5200 5400 5600 5800 6000 6200
Steps

3.32

3.34

3.36

3.38

Te
st

 lo
ss

Muon, iter=5, mm=15, Frobenius
Muon, iter=5, mm=15, Gelfand
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Figure 6: NanoGPT test loss curves for Muon with Gelfand’s and Frobenius normalization before
orthogonalization.

Figures 7 and 9 show the full training and test loss curves of NanoGPT.
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Figure 7: NanoGPT full train loss curve.
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Figure 8: NanoGPT full test loss curve.
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Figure 9: NanoGPT smoothed train loss curve.
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Table 4: Time for retraction of n× p matrix.

n p Cayley QR CANS

1024 32 0.11 0.28 0.07
1024 64 0.13 0.47 0.07
1024 128 0.19 0.86 0.08
1024 256 0.28 1.83 0.11
1024 512 0.43 3.55 0.23
1024 1024 0.70 6.61 0.59

2048 32 0.22 0.32 0.07
2048 64 0.29 0.54 0.08
2048 256 0.77 2.35 0.15
2048 512 1.33 4.54 0.43
2048 1024 2.53 9.08 1.11
2048 2048 4.98 18.03 3.99

4096 32 0.68 0.48 0.08
4096 64 0.96 0.89 0.09
4096 512 5.08 7.99 0.71
4096 1024 9.74 15.84 2.13
4096 2048 18.89 34.02 8.20
4096 4096 37.04 68.19 30.57

8192 32 2.46 0.67 0.08
8192 64 3.59 1.30 0.10
8192 1024 37.42 24.40 4.20
8192 2048 73.94 55.65 16.64
8192 4096 145.71 130.80 62.68
8192 8192 290.25 321.01 236.78

M TIME COMPARISON OF RETRACTIONS

Table 4 shows time (in seconds) for retraction of n × p matrix measured on A100. For a small
step-size, it is enough to make 2 iterations of Cayley or 1 CANS iteration to reach nearly the same
desired accuracy of orthogonalization.
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