

ACCELERATING NEWTON-SCHULZ ITERATION FOR ORTHOGONALIZATION VIA CHEBYSHEV-TYPE POLYNOMIALS

006 **Anonymous authors**

007 Paper under double-blind review

ABSTRACT

013 The problem of computing optimal orthogonal approximation to a given matrix has
 014 attracted growing interest in machine learning. Notable applications include the
 015 recent Muon optimizer or Riemannian optimization on the Stiefel manifold. Among
 016 existing approaches, the Newton-Schulz iteration has emerged as a particularly
 017 effective solution, as it relies solely on matrix multiplications and thus achieves
 018 high computational efficiency on GPU hardware. Despite its efficiency, the method
 019 has inherent limitations—its coefficients are fixed and thus not optimized for
 020 a given matrix. In this paper we address this issue by proposing a Chebyshev-
 021 optimized version of Newton-Schulz (CANS). Based on the Chebyshev's alternance
 022 theorem, we theoretically derive optimal coefficients for the 3-rd order Newton-
 023 Schulz iteration and apply a Remez algorithm to compute optimal higher-degree
 024 polynomials. We leverage these polynomials to construct controlled approximate
 025 orthogonalization schemes, which is of interest in deep learning applications.
 026 Practically, we demonstrate the method's effectiveness in two key applications:
 027 orthogonalization in the Muon optimizer, and providing an efficient retraction
 028 alternative for Riemannian optimization on the Stiefel manifold.

1 INTRODUCTION

031 Polar decomposition of a matrix $X \in \mathbb{R}^{m \times n}$, $m \geq n$ is a factorization $X = WH$, where $W \in \mathbb{R}^{m \times n}$
 032 has orthonormal columns and $H \in \mathbb{R}^{n \times n}$ is a positive semidefinite symmetric matrix (or Hermitian in
 033 the complex case). An important application of the polar decomposition is the orthogonal Procrustes
 034 problem:

$$\min_{Q: Q^T Q = I} \|Q - X\|_F,$$

035 with the solution being $Q = W$ the polar factor of X . For generalization, see (Schönemann, 1966).

036 Polar decomposition can be computed directly using the singular value decomposition $X = USV^T$,
 037 which immediately leads to $W = UV^T$, $H = VS^T$. However, calculating the SVD can be costly
 038 for many applications. There are several iterative methods available, including Newton (Kenney &
 039 Laub, 1992) and Halley's methods (Nakatsukasa et al., 2010), which require matrix inversion. In
 040 this work, we consider the Newton-Schulz iteration (Björck & Bowie, 1971; Kovarik, 1970; Higham,
 041 2008), which only requires matrix multiplication:

$$044 X_{k+1} = \frac{3}{2}X_k - \frac{1}{2}X_k X_k^T X_k, \quad X_1 = X. \quad (1)$$

045 This iteration converges to the orthogonal factor of the polar decomposition if $\sigma_1(X) < \sqrt{3}$ and
 046 $\sigma_n(X) > 0$. Classical Newton-Schulz iteration can be also extended to higher degrees (Bernstein &
 047 Newhouse, 2024):

$$048 X_{k+1} = \alpha_1^k X_k + \alpha_3^k X_k X_k^T X_k + \alpha_5^k X_k (X_k^T X_k)^2 + \cdots + \alpha_{2t+1}^k X_k (X_k^T X_k)^t,$$

052 which can be rewritten using SVD of $X_k = US_k V^T$ as follows:

$$053 X_{k+1} = U(\alpha_1^k S_k + \alpha_3^k S_k^3 + \alpha_5^k S_k^5 + \cdots + \alpha_{2d+1}^k S_k^{2d+1})V^T = Up_k(S_k)V^T.$$

054 In order for these iterations to converge to the orthogonal polar factor, the composition of polynomials
 055 $p_k(p_{k-1}(\dots p_1(x)))$ should converge to the unity function $f \equiv 1$ on the segment $[\sigma_n(X), \sigma_1(X)]$.
 056 Indeed, the desired property is:

$$\begin{aligned}
 058 \quad \|X_{k+1} - UV^T\|_2 &= \|U(p_k(S_k) - I)V^T\|_2 = \|p_k(S_k) - I\|_2 \\
 059 \quad &= \|p_k(p_{k-1}(\dots p_1(S))) - I\|_2 \\
 060 \quad &= \max_i |p_k(p_{k-1}(\dots p_1(s_i))) - 1| \\
 061 \quad &\leq \max_{s \in [\sigma_n, \sigma_1]} |p_k(p_{k-1}(\dots p_1(s))) - 1| \rightarrow 0, \quad k \rightarrow \infty,
 \end{aligned} \tag{2}$$

064 where we used orthogonal invariance of the spectral norm. However, in some applications (e.g., Muon
 065 optimizer), high orthogonalization accuracy may not be necessary and finding an approximation of
 066 $f \equiv 1$ with an error ε is sufficient. This allows to balance between accuracy and efficiency when
 067 selecting polynomials.

068 In this work, we propose algorithms for optimizing the coefficients of the classical Newton-Schulz
 069 method, based on the Chebyshev alternation theorem. This framework, which we call *Chebyshev-*
 070 *accelerated Newton-Schulz (CANS)*, enables us to obtain polynomials with the desired properties and
 071 accelerated convergence. Our main contributions are:

- 072 • We derive theory for finding odd polynomials that optimally approximate the unity function
 073 on a given segment $[a, b]$ (Section 3.1). This leads us to explicit formulas when p_k are of
 074 degree 3 and Remez algorithm for larger degrees. Given the bounds on the singular values,
 075 these polynomials lead to methods that outperform Newton-Schulz (Section 3.2).
- 076 • We develop new polynomials that are confined within the interval $[1 - \delta, 1 + \delta]$ with a user-
 077 specified δ (inexact orthogonalization), while maximizing the polynomial derivative in the
 078 vicinity of zero (Section 4). This is motivated by the needs of the orthogonalization procedure
 079 of the *Muon* optimizer (Jordan et al., 2024b). For the same target δ , our polynomials achieve
 080 a larger derivative compared to original Muon polynomial and those from (Jiacheng, 2024),
 081 and yield faster convergence of the optimizer when training the NanoGPT (Section 5.2).
- 082 • We further demonstrate that by maximizing the derivative at the origin, our inexact orthogo-
 083 nalization polynomials can serve as an effective preprocessing step for an iterative method
 084 of choice. This is particularly useful when information about the smallest singular value is
 085 not available. We also show that the largest singular value can be accurately approximated
 086 via Gelfand’s formula with negligible computational overhead (Section 3.3).
- 087 • In Section 5.3, we demonstrate the application of CANS for building an efficient retraction on
 088 the Stiefel manifold, which speeds up training of WideResNet with orthogonal constraints.

091 2 RELATED WORK

093 **Iterative methods.** First iterative method for the orthogonal polar factor, based on Taylor series
 094 expansion, was introduced in (Björck & Bowie, 1971; Kovarik, 1970). The work (Higham &
 095 Schreiber, 1990) developed an algorithm balancing inversion and multiplication. Subsequent methods
 096 like scaled Newton (Higham, 2008), Halley’s method, QDWH (Nakatsukasa et al., 2010), and Zolo-pd
 097 (Nakatsukasa & Freund, 2016) improved convergence but require matrix inversion or QR, which is
 098 less GPU-friendly than pure matrix multiplications. The stability of these methods is analyzed in
 099 (Nakatsukasa & Higham, 2012). Scaling of Newton-Schulz iteration was explored in (Chen & Chow,
 100 2014b;a). Notably, the polynomials derived in (Chen & Chow, 2014b) align with our formula for
 101 optimal third-degree polynomials, although our approach is applicable for higher degree polynomials.
 102 **Concurrently with our work, Amsel et al. (2025) also studied optimal polynomials for the Newton-**
 103 **Schulz iteration. They independently derived the same optimal third-order polynomial (which also**
 104 **matches the formula in (Chen & Chow, 2014a)) and the same recursive scheme for polynomial**
 105 **composition (see Eq. 4). While Amsel et al. (2025) prove the optimality of such composition, their**
 106 **method and analysis is restricted to the exact case. In contrast, our work focuses primarily on the**
 107 **inexact case, introducing a method to construct polynomials that satisfy a given tolerance δ while also**
 108 **maximizing derivatives at zero to accelerate the convergence of smaller singular values. A further**
 109 **distinction concerns the use of Gelfand’s formula.**

108 **Deep learning.** In neural networks, Newton-Schulz iteration is applied for enforcing orthonormality
 109 of the weight matrices (Anil et al., 2019). Its computational efficiency has made it particularly
 110 valuable for optimizers requiring orthogonalization, including Muon (Jordan et al., 2024b; Bernstein
 111 & Newhouse, 2024) and Scion (Pethick et al., 2025). Related approaches have employed Newton
 112 iteration for computing matrix p-th roots in other optimizers (Anil et al., 2020).

113 **Riemannian optimization.** In Riemannian optimization on the Stiefel manifold, polar decomposition
 114 is one of the possible retractions (Absil et al., 2009) to the manifold, alongside Cayley transform (Li
 115 et al., 2020; Zhu, 2017; Gao et al., 2021) and QR.

117 3 OPTIMAL ODD POLYNOMIALS AND NEWTON-SCHULZ ITERATIONS

119 3.1 OPTIMAL ODD POLYNOMIALS

121 As stated in equation 2, our goal is to find an odd polynomial that best approximates the unity function
 122 $f \equiv 1$ on a given segment, in which the singular values of the matrix fall $[\sigma_n(X), \sigma_1(X)] \in [a, b]$.

124 By L_n we shall denote the space of odd polynomials of degree $2n - 1$, that is,

$$125 \quad L_n = \{\alpha_1 x + \alpha_3 x^3 + \cdots + \alpha_{2n-1} x^{2n-1} : \alpha_1, \alpha_3, \dots, \alpha_{2n-1} \in \mathbb{R}\}.$$

127 Note that $\dim L_n = n$. Now fix $0 < a < b$ and $n \in \mathbb{N}$. We endow the space $C[a, b]$ with its standard
 128 norm, i.e. $\|f\|_{C[a,b]} = \max_{t \in [a,b]} |f(t)|$. For a function $f \in C[a, b]$ we consider the problem of
 129 finding $p \in L_n$ such that $\|f - p\|_{C[a,b]} = \min\{\|f - q\|_{C[a,b]} : q \in L_n\}$. A polynomial p with the
 130 foregoing property we shall call *the best uniform odd polynomial approximation of f of degree $2n - 1$* .
 131 Since we do not consider approximations in any other sense, we shall use a shorter term *best odd*
 132 *polynomial approximation* omitting the explicit mention of the degree, if it is clear from the context.
 133 The powerful method of studying best polynomial approximations is provided by the Chebyshev
 134 equioscillation theorem (see (Trefethen, 2020, Section 10) for classical formulation, and (Hörmander,
 135 2018, Theorem 5) for the general version). In our case it reduces to the following fact.

136 **Theorem 1.** *Let $0 < a < b$, $n \in \mathbb{N}$, and $f \in C[a, b]$. Then the following statements hold.*

- 137 (i) *The best odd polynomial approximation of f is unique.*
- 138 (ii) *$p \in L_n$ is the best odd polynomial approximation of f of degree $2n - 1$ if and only if
 139 there exist points $x_0 < x_1 < \cdots < x_n$ on the interval $[a, b]$ such that $|p(x_j) - f(x_j)| =$
 140 $\|p - f\|_{C[a,b]}$ for all $j = 0, \dots, n$ and $p(x_j) - f(x_j) = -(p(x_{j-1}) - f(x_{j-1}))$ for all
 141 $j = 1, \dots, n$.*

143 *Proof.* See Appendix A. □

145 The points x_0, \dots, x_n from Theorem 1 are said to form the *Chebyshev alternance for $p - f$* .

147 We shall need further properties of the best odd polynomial approximation of the unity function
 148 $f \equiv 1$. Given $0 < a < b$ and $n \in \mathbb{N}$ we denote by $p_{n,a,b}$ the best degree $2n - 1$ odd polynomial
 149 approximation of the unity on the interval $[a, b]$ and by $\varepsilon(n, a, b)$ we denote the value $\|p_{n,a,b} - 1\|_{C[a,b]}$.
 150 The following proposition contains basic properties of $p_{n,a,b}$.

151 **Proposition 1.** *Let $0 < a < b$ and let $n \in \mathbb{N}$. Then the following statements hold.*

- 153 (i) *If $x_0 < \cdots < x_n$ are the points of the Chebyshev alternance for $p_{n,a,b} - 1$, then $x_0 = a$
 154 and $x_n = b$.*
- 155 (ii) *If $\varepsilon = \|p_{n,a,b} - 1\|_{C[a,b]}$, then $p_{n,a,b}(x_j) = 1 - (-1)^j \varepsilon$ for all $j = 0, \dots, n$.*
- 157 (iii) *The derivative $p'_{n,a,b}(x)$ attains a local maximum at $x = 0$ and decreases on the interval
 158 $[0, x_1]$. Moreover, $p'_{n,a,b}(0) \geq (1 - \varepsilon)/a$.*
- 160 (iv) *For any $t > 0$ we have $\varepsilon(n, ta, tb) = \varepsilon(n, a, b)$ and $p_{n,ta,tb}(tx) = p_{n,a,b}(x)$.*

161 *Proof.* See Appendix B. □

162 Using the foregoing proposition it is easy to find a closed-form expression for $p_{2,a,b}$.
 163

164 **Proposition 2.** *Let $0 < a < b$. Then*

$$165 \quad p_{2,a,b} = \frac{2}{2 \left(\frac{a^2+ab+b^2}{3} \right)^{3/2} + a^2b + b^2a} \left((a^2 + ab + b^2)x - x^3 \right).$$

$$166$$

$$167$$

168 Moreover, this polynomial attains its maximum on $[a, b]$ at $x = e = \sqrt{(a^2 + ab + b^2)/3}$. Finally,
 169

$$170 \quad \varepsilon(2, a, b) = \|p_{2,a,b} - 1\|_{C[a,b]} = \frac{2 \left(\frac{a^2+ab+b^2}{3} \right)^{3/2} - a^2b - b^2a}{2 \left(\frac{a^2+ab+b^2}{3} \right)^{3/2} + a^2b + b^2a}. \quad (3)$$

$$171$$

$$172$$

$$173$$

174 *Proof.* see Appendix C. \square
 175

176 For the polynomials of higher degree, finding explicit formulas seems to be unrealistic, as the problem
 177 reduces to finding roots of polynomials of degree more than 4. Also we were not able to construct
 178 any transcendental formula for $p_{n,a,b}$. However, we can use an adaptation of the well-known Remez
 179 algorithm (see, e.g. (Trefethen, 2020, Section 10)) for finding optimal polynomials of higher degrees.
 180 We describe Remez algorithm in Appendix F.
 181

182 3.2 NEWTON-SCHULZ ITERATIONS BASED ON OPTIMAL ODD POLYNOMIALS

183 We outline several reasonable choices of polynomials for Newton-Schulz iterations of a matrix X .
 184

185 At first we consider the case when we are given a priori estimates on the singular values of X , i.e.
 186 $a \leq \sigma_k(X) \leq b$ for all $k = 1, \dots, n$. In this case it is natural to consider an integer $d_0 \in \mathbb{N}$ and
 187 an optimal odd polynomial $p_{d_0,a,b} = \sum_{k=1}^{d_0} \alpha_{2k-1} x^{2k-1}$. All singular values of the matrix $X_1 =$
 188 $\sum_{k=1}^{d_0} \alpha_{2k-1} X (X^T X)^{k-1}$ are contained in the interval $[a_1, b_1] = [1 - \varepsilon(d_0, a, b), 1 + \varepsilon(d_0, a, b)]$.
 189 Thus, we can again choose an integer d_1 (possibly distinct from d_0) and repeat this process with
 190 p_{d_1,a_1,b_1} and matrix X_1 . If d_0, d_1, \dots are chosen to be greater or equal than 2, then this process
 191 converges to the orthogonal factor UV^T of X in its polar decomposition (Algorithm 1). We present
 192 analysis of the convergence of these iterations in case of polynomials of degree 3 ($d_i = 2$).
 193

194 Let $0 < a < b$ and consider the following recursion:
 195

$$196 \quad a_0 = a, \quad b_0 = b, \quad 0 < a < b$$

$$197 \quad a_{n+1} = 1 - \varepsilon(2, a_n, b_n), \quad b_{n+1} = 1 + \varepsilon(2, a_n, b_n). \quad (4)$$

$$198$$

$$199$$

200 We also have $\varepsilon(d_k, a, b) = \|X_k - UV^T\|_2$.
 201

202 **Proposition 3.** *With the definition above, the error of approximation $\varepsilon_{n+1} = \varepsilon(2, a_n, b_n)$ converges
 203 to zero quadratically. More precisely,*

$$204 \quad \varepsilon_{n+1} \leq \varepsilon_n^2 \quad \text{and} \quad \lim_{n \rightarrow \infty} \frac{\varepsilon_{n+1}}{\varepsilon_n^2} = \frac{3}{4}.$$

$$205$$

$$206$$

207 *Proof.* See Appendix D. \square
 208

209 **Corollary 1.** *For the starting segment $[a_0, b_0]$, where $0 < a_0 < 1$ and $b_0 = 1$, the number of
 210 iterations necessary to achieve the desired error of approximation ε in the spectral norm is as follows:*
 211

$$212 \quad n \geq \left\lceil \log_2 \left(\frac{\ln \varepsilon}{\ln(1 - a_0)} \right) \right\rceil.$$

$$213$$

$$214$$

215 *Proof.* See Appendix E. \square

Figure 1: Illustration of the selection of a degree-3 ($d = 2$) polynomial with a large derivative at zero. The green polynomial falls into $[1 - \delta, 1 + \delta]$, but has insufficient derivative. The blue polynomial $q_{d,\delta}$ has the highest possible derivative among polynomials from $\mathcal{P}_{d,\delta}$. The purple polynomial is not part of $\mathcal{P}_{d,\delta}$, and its derivative is too large.

3.3 NORMALIZATION OF A MATRIX PRIOR TO NEWTON-SCHULZ ITERATIONS

To achieve the desired behavior of Newton-Schulz iterations (both classical Newton-Schulz and our modifications), one has to impose upper estimates for singular values of a matrix. That is, the first step of any algorithm based on Newton-Schulz is to normalize the matrix so that its singular values fall into the convergence range of polynomials (e.g. $(0, \sqrt{3})$ for classical NS, $[\varepsilon, 1]$ in our case). The easiest approach is to normalize by Frobenius norm, but this may significantly decrease small singular values and slow down the convergence. Ideally, the matrix should be normalized by its largest singular value. To estimate σ_1 efficiently, one may use power method (but it estimates σ_1 from below), randomized estimates (Dixon, 1983), (Halko et al., 2011, Lemma 4.1) or Gelfand's formula: $\sigma_1(A) \leq \|(A^T A)^k\|_F^{1/(2k)}$. If needed, the Gelfand's formula can be implemented without introducing extra matmuls because $(A^T A)^k$ is computed during Newton-Schulz iterations:

1. Compute matrices $(A^T A)^i$ for $i = 1 \dots k$ and save them.
2. Compute $c = \|(A^T A)^k\|_F^{1/(2k)}$.
3. Compute $p_1(A/c) = (\sum_i^k \alpha_i (A^T A)^i / c^{2i})(A/c)$. Use $p_1(A/c)$ for the next iteration.

Note that for third-degree polynomials, we do not need to save extra matrices.

4 POLYNOMIALS WITH LARGE DERIVATIVES AT $x = 0$

Now we aim to construct polynomials that can rapidly uplift the smallest singular values, while deviating from 1 by no more than given δ . It implies that they should have a large derivative at zero.

At first let us discuss the conditions that we impose on polynomials. Since it is desirable that the value $p(p(\dots p(x) \dots))$ falls into the interval $[1 - \delta, 1 + \delta]$ after sufficient number of iterations, it is natural to require that $p([1 - \delta, 1 + \delta]) \subset [1 - \delta, 1 + \delta]$. On the other hand, for $x \in [0, 1 - \delta]$ we want to guarantee, that x is not moved further away from the desired interval. Hence, for $x \in [0, 1 - \delta]$ we require the condition $p(x) \geq x$. On the other hand, we do not impose any conditions on the behaviour of p for $x > 1 + \delta$, thus we also need to add the restriction $p(x) \leq 1 + \delta$ for $x \in [0, 1 - \delta]$ (otherwise, we can not control the behaviour with respect to iterations of p). With the above considerations we introduce the set

$$\mathcal{P}_{d,\delta} = \{p \in L_d : x \leq p(x) \leq 1 + \delta \quad \forall x \in [0, 1 - \delta], \quad 1 - \delta \leq p(x) \leq 1 + \delta \quad \forall x \in [1 - \delta, 1 + \delta]\}.$$

The problem posed at the beginning of the section can be now formulated as an optimization problem

$$\max_{p \in \mathcal{P}_{d,\delta}} p'(0). \quad (5)$$

We shall not solve this problem directly, but instead we replace it by another one, the solution of which can be reduced to the problem of finding best polynomial approximation of the unity function.

270 Consider for a polynomial $p \in \mathcal{P}_{d,\delta}$ the number $\alpha_\delta(p) = \sup\{x \in [0, 1 - \delta] : p(x) < 1 - \delta\}$. That
 271 is, $\alpha_\delta(p)$ is the left boundary of the biggest segment $[a, 1 + \delta]$ on which the values of a polynomial
 272 p falls into $[1 - \delta, 1 + \delta]$. Intuitively, to increase the derivative of a polynomial p at zero, we need
 273 to shift the left boundary a of the described segment as close to zero as possible until there does
 274 not exist a polynomial that fits into the restrictions of $\mathcal{P}_{d,\delta}$ (see the shift from the green to the blue
 275 polynomial in Figure 1). Thus, we consider the optimization problem

$$\min_{p \in \mathcal{P}_{d,\delta}} \alpha_\delta(p). \quad (6)$$

278 Below we show that the problem (6) has a unique solution that can be found explicitly for polynomials
 279 of degree 3 and by binary search for higher degrees (Algorithm 2). Moreover, we show the equivalence
 280 of problems (5) and (6) (i.e. optimal polynomials for these problems coincide) if δ is large enough.
 281

Proposition 4. *Let $\delta \in (0, 1)$ and $d \in \mathbb{N}, d \geq 2$. Then the following statements hold.*

- 283 (i) *There is a unique number $a = a(d, \delta) \in (0, 1 - \delta)$ such that $\varepsilon(d, a, 1 + \delta) = \delta$.*
- 284 (ii) *The solution to the optimization problem (6) is unique, the minimum is equal to $a = a(d, \delta)$
 285 from (i) and is attained on the polynomial $q_{d,\delta} = p_{d,a,1+\delta}$ (optimal odd polynomial on
 286 $[a, 1 + \delta]$ of degree $2d - 1$, see Section 3.1).*
- 287 (iii) *The solution $q_{d,\delta}$ to the problem equation 6 satisfies the inequality $q_{d,\delta}(x) \geq cx$ for all
 288 $x \in [0, a(d, \delta)]$ with $c = (1 - \delta)/a(d, \delta) > 1$.*
- 289 (iv) *Let $x_0 = a(d, \delta) < x_1 < \dots < x_d = 1 + \delta$ denote the alternance points for the polynomial
 290 $q_{d,\delta}$. If $x_2 \geq 1 - \delta$, then $q_{d,\delta}$ is the solution to the problem in (5), i.e. it maximizes the
 291 derivative at zero on the set $\mathcal{P}_{d,\delta}$.*

294 *Proof.* See Appendix G. □

296 Using a sequence of different polynomials, rather than iterating a single one, can push singular values
 297 into the target interval $[1 - \delta, 1 + \delta]$ more effectively and produce a faster-growing derivative at zero.
 298 The composition of polynomials can be constructed as follows:

- 300 1. Start with the target $\delta \in (0, 1)$.
- 301 2. Choose a degree $d_1 \in \mathbb{N}$ and find a larger interval $[1 - \delta_1, 1 + \delta_1]$ that a polynomial p_1 can
 302 map into $[1 - \delta_1, 1 + \delta_1]$ (in other words, $\varepsilon(d_1, 1 - \delta_1, 1 + \delta_1) = \delta$).
- 303 3. Repeat this, choosing yet another $d_2 \in \mathbb{N}$ and polynomial p_2 to map an even larger interval
 304 $[1 - \delta_2, 1 + \delta_2]$ into the previous $[1 - \delta_1, 1 + \delta_1]$. Repeat this process l times.

306 It is easy to see that the composition $f(x) = p_1(p_2(\dots p_l(x) \dots))$ maps the interval $[1 - \delta_l, 1 + \delta_l]$
 307 into $[1 - \delta, 1 + \delta]$. Moreover, f monotonically increases on $[0, 1 - \delta_l]$ and satisfies $f(x) > x$ for
 308 all $x \in [0, 1 - \delta_l]$. After rescaling the argument by multiplying with $(1 + \delta)/(1 + \delta_l)$ we obtain
 309 a function $g(x) = f(x(1 + \delta_l)/(1 + \delta))$ that has similar properties to iteration of $q_{d,\delta}$ but with a
 310 crucial advantage: its derivative at zero is higher. For example, if $d_i = d$, then $g'(0) \geq \left(q'_{d,\delta}(0)\right)^l$.
 311

312 Polynomials with high derivatives at zero can be applied to matrices with rapidly decreasing singular
 313 values before orthogonalization (Algorithms 1, 2). This helps to speed up orthogonalization (see
 314 Figure 2). The number of iterations ℓ can be chosen either in advance, based on the desired budget of
 315 matmuls (the muon case), or until convergence to the desired accuracy ε (the orthogonalization case).
 316
 317
 318
 319
 320
 321
 322
 323

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377**Algorithm 1** Orthogonalization with CANS.

```

Input Normalized matrix  $X \in \mathbb{R}^{n \times p}$ ,  $p \leq n$ ;  

 $[a, b]$  where singular values of  $X$  lie; number  

of iterations  $\ell$ ; polynomials' degrees  $2d_i - 1$ .  

if  $a$  is unknown then  

 $X, a, b =$   

 $= \delta\text{-orthogonalization}(X)$   

for  $i$  in  $0 \dots \ell$  do  

if  $d_i = 2$  then  

 $p_i, \varepsilon$  are found using Proposition 2  

else  

 $p_i, \varepsilon = \text{remez}(a, b, 2d_i - 1)$   

 $a, b = 1 - \varepsilon, 1 + \varepsilon$   

 $X = p_s(p_{s-1}(\dots p_1(p_0(X))))$   

Return  $X$ 

```

Algorithm 2 δ -orthogonalization.

```

Input Normalized  $X \in \mathbb{R}^{n \times p}$ ,  $p \leq n$ ; right  

boundary  $B$ ; degrees  $2d_i - 1$ ,  $i = 0 \dots \ell$ ; de-  

sired  $\delta$ ;  $eps = 1e-7$ .  

 $A_l, A_r = 0, 1 - \delta$   

while  $|\delta - \varepsilon| > eps$  do  

 $a, b = (A_l + A_r)/2, B$   

for  $i$  in  $0 \dots s$  do  

 $p, \varepsilon = \text{remez}(a, b, 2d_i - 1)$   

 $a, b = 1 - \varepsilon, 1 + \varepsilon$   

if  $\varepsilon < \delta$  then:  

 $A_r = (A_r + A_l)/2$   

else  

 $A_l = (A_l + A_r)/2$   

 $X = p(X)$   

Return  $X, 1 - \delta, 1 + \delta$ 

```

5 APPLICATIONS

5.1 ORTHOGONALIZATION

Let us consider the problem of computing the orthogonal polar factor of a matrix A . We compare the performance of the classical Newton-Schulz (equation 1) to the CANS method (Algorithm 1). To find the composition of 3-rd order polynomials, we use explicit formulas from Proposition 2, for the 5-th order polynomials – the Remez algorithm. The Figure 2 shows the convergence of these algorithms for a matrix $A \in \mathbb{R}^{1000 \times 1000}$ with entries sampled from $\mathcal{N}(0, 1)$.

We conclude that the iterations with tuned coefficients converge noticeably faster than the classical Newton-Schulz (matmuls are proportional to time, see Table 3). CANS algorithm performs better when the boundaries of the spectrum are determined more accurately. Overestimating the smallest singular value results in faster convergence than underestimating it. δ -orthogonalization helps to accelerate the convergence of the algorithm, even if the smallest singular value is not available.

5.2 MUON OPTIMIZER

Muon (Jordan et al., 2024b) is a recently developed optimizer for matrix-shaped parameters in neural networks, that has shown promising results in improving convergence and training speed (Liu et al., 2025). The key idea of Muon is the orthogonalization of the momentum M_k :

$$M_k = \beta M_{k-1} + (1 - \beta)G_k,$$

$$W_k = W_{k-1} - \eta \text{Ortho}(M_k),$$

where G_k is the gradient on the step k , M_k is the momentum, W are the parameters that we wish to update, η is the learning rate, $\text{Ortho}(M_k) = \arg \min_O \{ \|M_k - O\|_F : O^T O = I \text{ or } O O^T = I\}$ (which is known as Procrustes problem with exact solution being polar factor $O = UV^T$ of $M_k = USV^T$). However, due to the prohibitive cost of SVD, authors instead choose to apply Newton-Schulz iteration with tuned coefficients for approximate orthogonalization. Authors empirically find, that in practice the singular values of the resulting matrix may deviate from 1 without harming the performance of optimizer for small models (for original Muon polynomial (Jordan et al., 2024b) the singular values fall into $[0.7, 1.2]$). However, further investigation suggested that decreased deviation improves the performance for larger models, e.g. GPT-2 medium (Cesista et al., 2025). In addition, higher derivative of composition of polynomials in zero $\phi(0)'$ noticeably improves the performance. Thus, the objective is to find composition $\phi(x)$:

$$\phi(x) = p_n(p_{n-1}(\dots p_1(x))) \in [1 - \delta, 1 + \delta], \text{ s.t. } \phi(0)' \rightarrow \max.$$

Prior works (Cesista et al., 2025; Jiacheng, 2024) have attempted to construct such polynomials using computational search. However, our theory allows to find optimal polynomials with these constraints.

Figure 2: Convergence of iterative algorithms for matrix orthogonalization. The solid lines show the performance when the exact values of $\sigma_1(A), \sigma_n(A)$ are known, and the matrix is normalized by $\sigma_1(A)$. In other cases, the matrix is normalized by $\|(A^T A)^2\|_F^{1/4}$ and the precise value of the left boundary is $\sigma_n(A)/\|(A^T A)^2\|_F^{1/4}=9e-5$. The striped lines show performance for overestimated boundary $a_0=1e-3$, the dotted lines – for underestimated $a_0=1e-7$. The dashdotted lines show convergence of algorithm with 4 iterations of δ -orthogonalization (Algorithm 2).

Figure 3: Comparison of CANS with the original Muon polynomial. Zoomed plot shows behavior near zero. “iter” denotes number of polynomials in composition, “mm” - total number of matmuls.

We have set the deviation $\delta = 0.3$ and generated a composition of 5 polynomials of 5-th degree (purple) and 7 polynomials of 3-rd degree (black), which are shown in Figure 3. Both polynomials have higher derivative at zero than original Muon polynomial $p(x) = 3.4445x - 4.7750x^3 + 2.0315x^5$, while requiring no more matmuls. Compositions of 9 3-rd order polynomials for $\delta = 0.00188$ (purple) and $\delta = 0.00443$ (blue) (Figure 4) also have higher derivatives than (Jiacheng, 2024) polynomial found by computational search. Polynomials’ coefficients are presented in Appendix J.

The performance of Muon optimizer with proposed polynomials is tested on the task of training NanoGPT (Jordan et al., 2024a) (see Appendix H for details). The convergence of Muon with different polynomials is shown in the Figure 5. We observe, that CANS polynomial requiring 12 matmuls (purple) outperforms Muon polynomial with the same number of matmuls (4 iterations, cyan). The difference in convergence may be more pronounced when training larger models.

5.3 RIEMANNIAN OPTIMIZATION ON THE STIEFEL MANIFOLD

Let us introduce the following definitions, based on (Absil et al., 2009; Li et al., 2020).

Figure 4: Comparison of CANS polynomials with (Jiacheng, 2024).

Figure 5: Test loss of NanoGPT trained using Muon optimizer with different polynomials.

Definition 1. A Riemannian manifold (\mathcal{M}, ρ) is a smooth manifold whose tangent spaces $T_x(\mathcal{M})$ are endowed with a smoothly varying inner product $\rho_x(\cdot, \cdot) : T_x(\mathcal{M}) \times T_x(\mathcal{M}) \rightarrow \mathbb{R}$, which is called the Riemannian metric.

Definition 2. A geodesic is a curve representing the locally shortest path between two points on manifold. An exponential map $\text{Exp}_x : T_x(\mathcal{M}) \rightarrow \mathcal{M}$ maps a tangent vector to the manifold. $\text{Exp}_x(tv)$ represents a geodesic $\gamma(t)$, $t \in [0, 1]$, s.t. $\gamma(0) = x$, $\dot{\gamma}(0) = v$. A retraction is a smooth mapping from the tangent bundle to the manifold $\text{Retr}_x : T_x(\mathcal{M}) \rightarrow \mathcal{M}$ iff $\text{Retr}_x(0) = x$ and $D\text{Retr}_x(0) = \text{id}_{T_x(\mathcal{M})}$, where D denotes derivative. Usually, retraction is a computationally efficient alternative to exponential mapping.

The Stiefel manifold is a Riemannian manifold, consisting of $n \times p$, $n \geq p$ matrices with orthonormal columns $\mathcal{M} = \text{St}(n, p) = \{X \in \mathbb{R}^{n \times p} : X^T X = I\}$. The tangent space of \mathcal{M} is defined as:

$$T_X(\mathcal{M}) = \{Z : Z^T X + X^T Z = 0\}.$$

The projection on \mathcal{M} can be written as:

$$\pi_X(Z) = Z - \frac{1}{2}X(Z^T X + X^T Z) = W X, \quad (7)$$

$$W = \hat{W} - \hat{W}^T, \quad \hat{W} = ZX^T - \frac{1}{2}X(X^T ZX^T). \quad (8)$$

The process of Riemannian optimization of the function f on the manifold \mathcal{M} can be split into three steps. At first, the gradient ∇f in the Euclidean space is projected onto tangent space $T_{X_k}(\mathcal{M})$ to obtain $\nabla_{\mathcal{M}} f(X_k) = \pi_{X_k}(\nabla f)$. Secondly, momentum M_k is transported to $T_X(\mathcal{M})$ and combined linearly with $\nabla_{\mathcal{M}} f(X_k)$ to get the updated momentum M_{k+1} . Finally, X_{k+1} is computed as a step along the curve on the manifold with initial direction M_{k+1} . Parameters can be updated using the exponential map and parallel transport of momentum, but due to the computational complexity of these methods, retraction and vector transport are often used instead.

Let $\xi_X, \eta_X \in T_X(\mathcal{M})$ be tangent vectors. The vector transport of ξ_X along retraction map $\text{Retr}_X(\eta_X)$ can be computed as $\tau_{\eta_X} \xi_X = \pi_{\text{Retr}_X(\eta_X)}(\xi_X)$. The projection is a linear mapping, so the first two steps can be combined $M_{k+1} = \alpha \pi_{X_k}(\nabla f(X_k)) + \beta \tau_{M_k}(M_k) = \pi_{X_k}(\alpha \nabla f(X_k) + \beta M_k)$.

There are several retractions of vector ξ in point X , that can be used in practice (Absil et al., 2009).

QR decomposition: $\text{Retr}_X(\xi) = qr(X + \xi)$, where $qr(A)$ is the Q factor from QR decomposition.

Cayley transform: $\text{Retr}_X(\xi) = (I - \frac{1}{2}W(\xi))^{-1}(I + \frac{1}{2}W(\xi))X$, with $W(Z)$ denoted in 8. (Li et al., 2020) approximates closed-form Cayley transform using iterative algorithm.

Polar decomposition: $\text{Retr}_X(\xi) = UV^T = (X + \xi)(I + \xi^T \xi)^{-1/2}$, where $USV^T = X + \xi$ is SVD decomposition. Note that this retraction is known to be of the second order (Absil et al., 2009; Gawlik & Leok, 2018).

In this work, we propose to approximate the polar retraction using Newton-Schulz iteration with carefully chosen polynomials. The step of the Riemannian gradient descent can be written as

$$X_{k+1} = \text{Retr}_{X_k}(\alpha \pi_X(\xi)). \quad (9)$$

To find the interval for estimation of the polynomial's coefficients, we should estimate the condition number $\sigma_p(A)/\sigma_1(A)$ of the matrix $A = X_k + \alpha \pi_X(\xi)$. Let us compute the Gram matrix:

$$A^T A = (X + W(\xi)X)^T (X + W(\xi)X) = I + X^T W(\xi)^T W(\xi)X.$$

486 Therefore, $\sigma_p(A) = \sqrt{\sigma_p(A^T A)} \geq 1$. Since A has size $n \times p$, $p \leq n$ and p nonzero singular values,
 487 it follows that $\sigma_1(A) \leq \sqrt{\|A\|_F^2 - (p-1)} = c$, which yields a highly accurate estimate in this
 488 setting. Thus, we can normalize A by c , set $[a, b] = [1/c, 1]$ and perform CANS orthogonalization.
 489

490 5.4 EXPERIMENTS 491

492 Following the work (Li et al., 2020), we benchmark the performance of Riemannian optimization
 493 methods on the task of training CNN with orthogonal constraints. We train Wide ResNet (Zagoruyko
 494 & Komodakis, 2016) on classification of CIFAR-10. The convolutional kernels $K \in \mathbb{R}^{c_{out} \times c_{in} \times k \times h}$
 495 are reshaped into $p \times n = c_{out} \times (c_{in} \cdot k \cdot h)$ matrices, which are restricted to Stiefel manifold. We
 496 optimize these parameters using Riemannian SGD with momentum and Riemannian ADAM, using
 497 vector transport and proposed polar retraction (see Appendix I, H). Other parameters are optimized
 498 with standard SGD or ADAM.

499 Tables 2, 1 show that our method has the lowest per epoch training time among other retractions,
 500 while achieving the same accuracy. It has a simple explanation. To form the matrix $W \in \mathbb{R}^{n \times n}$
 501 for Cayley retraction as in (Li et al., 2020), 3 matmuls are needed (see 8) and multiplying by W
 502 has asymptotics $\mathcal{O}(n^2 p)$. Cayley retraction can also be done using the Woodbury formula with
 503 asymptotics $\mathcal{O}(np^2)$, but more matmuls (see Appendix I). In contrast, forming $\pi_X(\xi)$ using formula 7
 504 requires 2 matmuls; multiplications with $n \times p$, $p \leq n$ matrix A in CANS have asymptotics $\mathcal{O}(np^2)$.
 505

506 Table 1: Accuracy and training time for Wide ResNet-16-10 on CIFAR-10 using Adam.

	Retraction	Accuracy	Time per epoch (s)
509	-	94.68	35.0
510	Cayley (Li et al., 2020)	95.77	71.2
511	Cayley (Woodbury)	95.69	70.9
512	QR	95.57	61.7
513	CANS	95.82	<u>45.1</u>

514 6 CONCLUSION

515 This work presented efficient algorithms for deriving the theoretically optimal coefficients for Newton-
 516 Schulz iteration. The practical effectiveness of CANS was demonstrated in accelerating the com-
 517 putation of the unitary polar factor, orthogonalization in the Muon optimizer, and fast retraction on
 518 the Stiefel manifold. We believe that our method can be useful for other applications as well, as it
 519 provides a general-purpose framework for finding optimized polynomials with desired accuracy.
 520

521 7 REPRODUCIBILITY STATEMENT

522 The experimental details are described in Sections 5.2, 5.4 and Appendix H. The coefficients of
 523 polynomials are presented in Appendix J. Our code is planned to be made public after publication.
 524

525 526 REFERENCES

527 P-A Absil, Robert Mahony, and Rodolphe Sepulchre. Optimization algorithms on matrix manifolds.
 528 In *Optimization Algorithms on Matrix Manifolds*. Princeton University Press, 2009.

529 Noah Amsel, David Persson, Christopher Musco, and Robert M Gower. The polar express: Optimal
 530 matrix sign methods and their application to the muon algorithm. *arXiv preprint arXiv:2505.16932*,
 531 2025.

532 Cem Anil, James Lucas, and Roger Grosse. Sorting out lipschitz function approximation. In
 533 *International conference on machine learning*, pp. 291–301. PMLR, 2019.

534 Rohan Anil, Vineet Gupta, Tomer Koren, Kevin Regan, and Yoram Singer. Scalable second order
 535 optimization for deep learning. *arXiv preprint arXiv:2002.09018*, 2020.

540 Jeremy Bernstein and Laker Newhouse. Modular duality in deep learning. *arXiv preprint*
 541 *arXiv:2410.21265*, 2024.

542

543 Å Björck and C Bowie. An iterative algorithm for computing the best estimate of an orthogonal
 544 matrix. *SIAM Journal on Numerical Analysis*, 8(2):358–364, 1971.

545

546 Franz Louis Cesista, YouJiacheng, and Keller Jordan. Squeezing 1-2% efficiency gains out of muon
 547 by optimizing the newton-schulz coefficients, 2025. URL <http://leloykun.github.io/ponder/muon-opt-coeffs/>.

548

549 Jie Chen and Edmond Chow. A newton-schulz variant for improving the initial convergence in matrix
 550 sign computation. *Preprint ANL/MCS-P5059-0114, Mathematics and Computer Science Division,*
 551 *Argonne National Laboratory, Argonne, IL*, 60439, 2014a.

552

553 Jie Chen and Edmond Chow. A stable scaling of newton-schulz for improving the sign function
 554 computation of a hermitian matrix. *Preprint ANL/MCS-P5059-0114* (<https://www.mcs.anl.gov/papers/P5059-0114.pdf>), 2014b.

555

556 John D Dixon. Estimating extremal eigenvalues and condition numbers of matrices. *SIAM Journal*
 557 *on Numerical Analysis*, 20(4):812–814, 1983.

558

559 Bin Gao, Nguyen Thanh Son, P-A Absil, and Tatjana Stykel. Riemannian optimization on the
 560 symplectic stiefel manifold. *SIAM Journal on Optimization*, 31(2):1546–1575, 2021.

561

562 Evan S Gawlik and Melvin Leok. High-order retractions on matrix manifolds using projected
 563 polynomials. *SIAM Journal on Matrix Analysis and Applications*, 39(2):801–828, 2018.

564

565 Nathan Halko, Per-Gunnar Martinsson, and Joel A Tropp. Finding structure with randomness:
 566 Probabilistic algorithms for constructing approximate matrix decompositions. *SIAM review*, 53(2):
 567 217–288, 2011.

568

569 Nicholas J Higham. *Functions of matrices: theory and computation*. SIAM, 2008.

570

571 Nicholas J Higham and Robert S Schreiber. Fast polar decomposition of an arbitrary matrix. *SIAM*
Journal on Scientific and Statistical Computing, 11(4):648–655, 1990.

572

573 Lars Hörmander. *Applications Of Helly's Theorem To Estimates Of Tchebycheff Type*, pp. 1–14.
 Springer International Publishing, Cham, 2018. ISBN 978-3-319-69850-2. doi: 10.1007/
 574 978-3-319-69850-2_1. URL https://doi.org/10.1007/978-3-319-69850-2_1.

575

576 You Jiacheng. Computational search for finding coefficients for muon, 2024. URL <https://gist.github.com/YouJiacheng/393c90cbdc23b09d5688815ba382288b/5bff1f7781cf7d062a155eecd2f13075756482ae>.

577

578 Keller Jordan, Jeremy Bernstein, Brendan Rappazzo, @fernbear.bsky.social, Boza Vlado,
 You Jiacheng, Franz Cesista, Braden Koszarsky, and @Grad62304977. modded-nanogpt:
 579 Speedrunning the nanogpt baseline, 2024a. URL <https://github.com/KellerJordan/modded-nanogpt>.

580

581 Keller Jordan, Yuchen Jin, Vlado Boza, Jiacheng You, Franz Cesista, Laker Newhouse, and Jeremy
 582 Bernstein. Muon: An optimizer for hidden layers in neural networks, 2024b. URL <https://kellerjordan.github.io/posts/muon/>.

583

584 Charles Kenney and Alan J Laub. On scaling newton's method for polar decomposition and the
 585 matrix sign function. *SIAM Journal on Matrix Analysis and Applications*, 13(3):688–706, 1992.

586

587 Zdislav Kovarik. Some iterative methods for improving orthonormality. *SIAM Journal on Numerical*
588 Analysis, 7(3):386–389, 1970.

589

590 Jun Li, Li Fuxin, and Sinisa Todorovic. Efficient riemannian optimization on the stiefel manifold via
 591 the cayley transform. *arXiv preprint arXiv:2002.01113*, 2020.

592

593

594 Jingyuan Liu, Jianlin Su, Xingcheng Yao, Zhejun Jiang, Guokun Lai, Yulun Du, Yidao Qin, Weixin
 595 Xu, Enzhe Lu, Junjie Yan, Yanru Chen, Huabin Zheng, Yibo Liu, Shaowei Liu, Bohong Yin,
 596 Weiran He, Han Zhu, Yuzhi Wang, Jianzhou Wang, Mengnan Dong, Zheng Zhang, Yongsheng
 597 Kang, Hao Zhang, Xinran Xu, Yutao Zhang, Yuxin Wu, Xinyu Zhou, and Zhilin Yang. Muon is
 598 scalable for lilm training, 2025. URL <https://arxiv.org/abs/2502.16982>.

599 Yuji Nakatsukasa and Roland W Freund. Computing fundamental matrix decompositions accurately
 600 via the matrix sign function in two iterations: The power of zolotarev's functions. *siam REVIEW*,
 601 58(3):461–493, 2016.

602 Yuji Nakatsukasa and Nicholas J Higham. Backward stability of iterations for computing the polar
 603 decomposition. *SIAM Journal on Matrix Analysis and Applications*, 33(2):460–479, 2012.

604 Yuji Nakatsukasa, Zhaojun Bai, and François Gygi. Optimizing halley's iteration for computing the
 605 matrix polar decomposition. *SIAM Journal on Matrix Analysis and Applications*, 31(5):2700–2720,
 606 2010.

607 Guilherme Penedo, Hynek Kydlíček, Anton Lozhkov, Margaret Mitchell, Colin A Raffel, Leandro
 608 Von Werra, Thomas Wolf, et al. The fineweb datasets: Decanting the web for the finest text data at
 609 scale. *Advances in Neural Information Processing Systems*, 37:30811–30849, 2024.

610 Thomas Pethick, Wanyun Xie, Kimon Antonakopoulos, Zhenyu Zhu, Antonio Silveti-Falls, and
 611 Volkan Cevher. Training deep learning models with norm-constrained lmos. *arXiv preprint*
 612 *arXiv:2502.07529*, 2025.

613 Peter H Schönemann. A generalized solution of the orthogonal procrustes problem. *Psychometrika*,
 614 31(1):1–10, 1966.

615 Lloyd N. Trefethen. *Approximation theory and approximation practice*. Society for Industrial and
 616 Applied Mathematics (SIAM), Philadelphia, PA, 2020. ISBN 978-1-611975-93-2. Extended
 617 edition [of 3012510].

618 Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. *arXiv preprint arXiv:1605.07146*,
 619 2016.

620 Xiaojing Zhu. A riemannian conjugate gradient method for optimization on the stiefel manifold.
 621 *Computational optimization and Applications*, 67:73–110, 2017.

622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647

648 A PROOF OF THEOREM 1 FOR ODD POLYNOMIALS
649650 In a nutshell, the result follows from a generalized version of the Chebyshev equioscillation theorem
651 from (Hörmander, 2018). It applies to function spaces where an element is guaranteed to be zero if it
652 vanishes at sufficiently many distinct points – a condition that holds in our case of odd polynomials.
653654 The generalized version of the Chebyshev equioscillation theorem (Hörmander, 2018, Theorems 4-
655 5) states the following. Consider a compact metric space X and an n -dimensional vector space
656 $L \subset C(X)$. Assume that any $f \in L$ that has n distinct zeroes in X is identically equal to zero. Then
657 the following statements hold.
658659

1. For all $g \in C(X)$ there is a unique best approximation to g in the space L , i.e. a function
660 $G \in L$ such that $\|g - G\|_{C(X)} = \min_{f \in C(X)} \|g - f\|_{C(X)}$.
2. Moreover, $G \in L$ is the best approximation to g if and only if there exists a set $E \subset X$ that
661 consists exactly of $n + 1$ points such that $\|g - G\|_{C(X)} = \|g - G\|_{C(E)} = \min_{f \in C(X)} \|g -$
662 $f\|_{C(E)}$.

663664 Applying (1): At first we show that this theorem is applicable to $L = L_n$ and $X = [a, b]$, where
665 $0 < a < b$ and L_n is the space of odd polynomials of degree $\leq 2n - 1$. Indeed assume that $f \in L_n$
666 has n distinct zeroes in $[a, b]$. Then it also has n distinct zeroes in $[-b, -a]$, so f has at least $2n$ distinct
667 zeroes. As $\deg f < 2n$ we conclude that $f = 0$. Thus, the generalized Chebyshev equioscillation
668 theorem implies that the best odd polynomial approximation $G \in L_n$ to $g \in C[a, b]$ is unique and
669 that there exists $E \subset [a, b]$ that consists of exactly $n + 1$ point such that G is the best approximation
670 to g in the sense of the norm $\|\cdot\|_{C(E)}$.671 Applying (2): Now let $E = \{x_0, \dots, x_n\}$, where $a \leq x_0 < \dots < x_n \leq b$. It remains to describe the
672 best approximation to g on the set E . We claim that if $G \in L_n$ and ε satisfy $(-1)^j \varepsilon = G(x_j) - g(x_j)$
673 for all j , then G is the best approximation of g on E with error $|\varepsilon|$. Indeed, if $F \in L_n$ approximates
674 g with error $\leq |\varepsilon|$ on E , then $F - G$ has at least n zeroes on $[a, b]$ counting multiplicity (because the
675 sign of the difference $F(x) - G(x)$ is alternating on the points x_0, \dots, x_n). As above this implies
676 that $F - G = 0$ since this is an odd polynomial with n positive roots and $\deg(F - G) < 2n$. On the
677 other hand, the conditions on G and ε above can be considered as a square linear system of equations
678 (on coefficients of G and ε). It is easy to verify that the matrix of this system of linear equations is
679 nonsingular, so such G and ε exist. Thus, the best approximation $G \in L_n$ to g on E is unique and is
680 characterized by the fact that $G - g$ equioscillates on E . Thus, Theorem 1 is proved.
681682 B PROOF OF PROPOSITION 1
683684 *Proof.* To simplify the notation we denote $p_{n,a,b}$ simply by p throughout this proof.
685686 (i) At first we note that the polynomial p' is not identically zero and vanishes at the points
687 x_1, \dots, x_{n-1} , as these points are extrema of the function $p - 1$ and lie in the interior of the
688 interval $[a, b]$. Clearly, p' is even, so it also vanishes at $-x_1, \dots, -x_{n-1}$. As $\deg p' \leq 2n - 2$, p'
689 cannot have any other roots, and, in particular, $p'(x_0) \neq 0$ and $p'(x_n) \neq 0$. Therefore, x_0 and x_n
690 belong to the boundary of $[a, b]$, so the statement (i) is proved.
691692 (ii) In order to prove (ii) it suffices to verify that
693

694
$$p(a) = 1 - \varepsilon,$$

695 as the values $p(x_j)$ are uniquely determined by the value $p(x_0)$ due to Theorem 1 (ii). Assume the
696 contrary, i.e. that
697

698
$$p(a) = 1 + \varepsilon.$$

699 Let r denote a point on the interval $[0, a]$, where p attains its maximum value. If r is an interior point
700 of $[0, a]$, then, clearly, $p'(r) = 0$. In the case $r = a$, we again conclude that $p'(r) = 0$, as
701

702
$$p(x) \leq 1 + \varepsilon = p(a)$$

703 for $x \in [a, b]$. In either case r is a root of the polynomial p' distinct from x_1, \dots, x_{n-1} , so we have
704 arrived at a contradiction with the fact that $\deg p' = 2n - 2$.
705

(iii) It is easy to see that p'' has a root s_j on each open interval (x_j, x_{j+1}) , $j = 1, \dots, n-2$. Since p'' is odd it also has the roots $0, -s_1, \dots, -s_{n-2}$. Clearly, since $\deg p'' \leq 2n-3$, it does not have any other roots. Therefore, p' is monotone on the interval $[0, x_1]$. If it increases on this interval, then it is negative there, as $p'(x_1) = 0$. So, in this case, p decreases on the interval $[0, x_1]$, which contradicts the fact $p(a) > 0$. Thus, p' decreases on the interval $[0, x_1]$. Moreover, it has a maximum at $x = 0$, for it is an even polynomial. Finally, there exists a point $x \in (0, a)$ such that

$$p'(x) = (1 - \varepsilon)/a,$$

since $p(0) = 0$ and $p(a) = 1 - \varepsilon$. Due to monotonicity of p' we conclude

$$p'(0) \geq (1 - \varepsilon)/a.$$

(iv) Consider $t > 0$ and let $q(x) = p_{n,ta,tb}(tx)$. Also consider the points $y_0 = ta, y_1, \dots, y_n = tb$ of the Chebyshev alternance for $p_{n,ta,tb} - 1$. It is easy to see that the points $y_0/t, y_1/t, \dots, y_n/t$ constitute a Chebyshev alternance for $q - 1$ and by Theorem 1 we conclude that $q = p_{n,a,b}$. The equality $\varepsilon(n, ta, tb) = \varepsilon(n, a, b)$ easily follows. \square

C PROOF OF PROPOSITION 2

Proof. We denote $p_{2,a,b}$ and $\varepsilon(2, a, b)$ by p and ε respectively throughout this proof. From Proposition 1 we conclude that p satisfies $p(a) = 1 - \varepsilon, p(e) = 1 + \varepsilon$, and $p(b) = 1 - \varepsilon$, where $e \in (a, b)$ and $\varepsilon = \|p - 1\|_{C[a,b]}$. Since $p'(e) = 0$ it is clear that $p'(x) = \alpha(e^2 - x^2)$ and, therefore, $p(x) = \alpha(e^2x - x^3/3)$ for some $\alpha \in \mathbb{R}$. Now the equation $p(a) = p(b)$ implies $e^2(a-b) = (a^3 - b^3)/3$, so $e^2 = (a^2 + ab + b^2)/3$. That is, $p(x) = \alpha/3((a^2 + ab + b^2)x - x^3)$ with some $\alpha \in \mathbb{R}$. In order to find α and ε we calculate

$$1 - \varepsilon = p(a) = p(b) = \frac{\alpha}{3}(a^2b + b^2a), \quad 1 + \varepsilon = p(e) = \frac{2\alpha}{3}\left(\frac{a^2 + ab + b^2}{3}\right)^{3/2}.$$

Thus,

$$\begin{aligned} \frac{\alpha}{3}\left(2\left(\frac{a^2 + ab + b^2}{3}\right)^{3/2} + a^2b + b^2a\right) &= 2 \\ \alpha &= \frac{6}{2\left(\frac{a^2 + ab + b^2}{3}\right)^{3/2} + a^2b + b^2a} \\ \varepsilon &= \frac{\alpha}{6}\left(2\left(\frac{a^2 + ab + b^2}{3}\right)^{3/2} - a^2b - b^2a\right) = \frac{2\left(\frac{a^2 + ab + b^2}{3}\right)^{3/2} - a^2b - b^2a}{2\left(\frac{a^2 + ab + b^2}{3}\right)^{3/2} + a^2b + b^2a} \end{aligned}$$

\square

D PROOF OF PROPOSITION 3

Proposition 5. *With the definitions 4 the sequences a_n and b_n converge to 1, and $b_n - a_n$ converges to zero quadratically. More precisely,*

$$\lim_{n \rightarrow \infty} \frac{b_{n+1} - a_{n+1}}{(b_n - a_n)^2} = \frac{3}{8}.$$

Proof. At first it is easy to see that $a_n + b_n = 2$ for all $n \in \mathbb{N}$. So, without loss of generality we can assume that $a + b = 2$. With this assumption we can rewrite the function $\varepsilon(2, \cdot, \cdot)$ in the following form

$$\varepsilon(2, a, b) = \frac{\left(\frac{4-ab}{3}\right)^{3/2} - ab}{\left(\frac{4-ab}{3}\right)^{3/2} + ab}.$$

Now we claim that $\varepsilon(2, a, b) < (b - a)/2$. This can be checked directly from the formula, but the implicit argument can be made based on the definition of ε . Since the polynomial $p(x) = x$ satisfies $\|p - 1\|_{C[a,b]} = (b - a)/2$ and p is not optimal, we get that $\varepsilon(2, a, b) < (b - a)/2$. From this we conclude that $a_1 > a$ and $b_1 < b$. By induction we get that $\{a_n\}$ is increasing and $\{b_n\}$ is decreasing. Since also $a_n < b_n$ for all n we obtain that these sequences converge to some points A and B respectively. Clearly, $a < A \leq B < b$ and $A + B = 2$. Since ε is a continuous function, we can pass to the limit and obtain $A = 1 - \varepsilon(2, A, B)$ and $B = 1 + \varepsilon(2, A, B)$. Again, it can be checked directly that this implies $A = B$, but according to definition of ε we get that provided $A < B$, $A = 1 - \varepsilon(2, A, B)$, and $B = 1 + \varepsilon(2, A, B)$ it follows that $p(x) = x$ is the best degree three odd polynomial approximation of unity of $[A, B]$, which is not true. Thus, $A = B = 1$ and it remains to prove the quadratic rate of convergence.

Using the assumption $a + b = 2$ we get that $ab = ((a + b)^2 - (a - b)^2)/4 = 1 - (a - b)^2/4$. Now with this we calculate (we let $\gamma(a, b)$ denote the expression $(\frac{4-ab}{3})^{3/2} + ab$)

$$b_1 - a_1 = 2\varepsilon(2, a, b) = 2 \frac{(\frac{4-ab}{3})^{3/2} - ab}{(\frac{4-ab}{3})^{3/2} + ab} = 2 \frac{(\frac{4-ab}{3})^3 - a^2b^2}{\gamma(a, b)^2} = \frac{2}{27\gamma(a, b)^2} ((4 - ab)^3 - 27a^2b^2) = \frac{2}{27\gamma(a, b)^2} (64 - 48ab - 15a^2b^2 - a^3b^3) = \frac{2(b - a)^2}{27\gamma(a, b)^2} \left(\frac{81}{4} - \frac{9}{8}(b - a)^2 + \frac{(b - a)^4}{64} \right).$$

Since this calculation also works for $b_{n+1} - a_{n+1}$ and using that $a_n, b_n \rightarrow 1$ we get that

$$\frac{b_{n+1} - a_{n+1}}{(b_n - a_n)^2} = \frac{2}{27\gamma(a_n, b_n)^2} \left(\frac{81}{4} - \frac{9}{8}(b_n - a_n)^2 + \frac{(b_n - a_n)^4}{64} \right) \rightarrow \frac{3}{8}$$

as $\gamma(1, 1) = 2$. \square

Now we are ready to prove Proposition 3.

Proof. From the definition of a_n, b_n , it follows that

$$b_n - a_n = (1 - \varepsilon_n) - (1 + \varepsilon_n) = 2\varepsilon_n.$$

Using Proposition 5, we get

$$\frac{\varepsilon_{n+1}}{\varepsilon_n^2} = \frac{\frac{1}{2}(b_{n+1} - a_{n+1})}{\frac{1}{4}(b_n - a_n)^2} \rightarrow \frac{3}{4}.$$

From the proof of Proposition 5, we know that

$$\begin{aligned} \frac{b_{n+1} - a_{n+1}}{(b_n - a_n)^2} &= \frac{2}{27\gamma(a_n, b_n)^2} \left(\frac{81}{4} - \frac{9}{8}(b_n - a_n)^2 + \frac{(b_n - a_n)^4}{64} \right) = \\ &= \frac{2 \left(\frac{81}{4} - \frac{9}{8}(2\varepsilon_n)^2 + \frac{1}{64}(2\varepsilon_n)^4 \right)}{27 \left(\left(\frac{4 - (1 - \varepsilon_n)(1 + \varepsilon_n)}{3} \right)^{3/2} + (1 - \varepsilon_n)(1 + \varepsilon_n) \right)^2} = \\ &= \frac{\left(\frac{81}{2} - 9\varepsilon_n^2 + \frac{1}{2}\varepsilon_n^4 \right)}{27 \left(\left(1 + \frac{\varepsilon_n^2}{3} \right)^{3/2} + 1 - \varepsilon_n^2 \right)^2}, \end{aligned}$$

For $\varepsilon_n \in (0, 1)$, this expression is no more than $1/2$.

$$\frac{2\varepsilon_{n+1}}{4\varepsilon_n^2} = \frac{b_{n+1} - a_{n+1}}{(b_n - a_n)^2} \leq \frac{1}{2}$$

Therefore, $\varepsilon_{n+1} \leq \varepsilon_n^2$. \square

810 E PROOF OF COROLLARY 1
811812 *Proof.* Let $[a_0, b_0] = [a_0, 1]$ be the starting segment, $0 < a_0 < 1$. From 3, we can write approxima-
813 tion error after the first iteration:

814
$$\varepsilon_0 = \frac{2 \left(\frac{a_0^2 + a_0 + 1}{3} \right)^{3/2} - a_0^2 - a_0}{2 \left(\frac{a_0^2 + a_0 + 1}{3} \right)^{3/2} + a_0^2 + a_0} = 1 - \frac{2a_0^2 + 2a_0}{2 \left(\frac{a_0^2 + a_0 + 1}{3} \right)^{3/2} + a_0^2 + a_0} < 1 - a_0.$$

815
816
817
818

819 After the first iteration, we start the recursion

820
$$a_{n+1} = 1 - \varepsilon_n, b_{n+1} = 1 + \varepsilon_n.$$

821

822 From Proposition 3, $\varepsilon_{n+1} \leq \varepsilon_n^2$ and by recursion we get

823
$$\varepsilon_n \leq \varepsilon_0^{2^n} \leq (1 - a_0)^{2^n}.$$

824

825 Then we can find the number of steps, necessary to get the desired error of approximation ε :

826
$$827 n \leq \left\lceil \log_2 \left(\frac{\ln \varepsilon}{\ln(1 - a_0)} \right) \right\rceil.$$

828

829 \square
830831 F REMEZ ALGORITHM
832833 Let us describe the main idea of the Remez algorithm. Assume that we are given a set $\{x_1, \dots, x_{n-1}\}$
834 of distinct points on the open interval (a, b) .
835836 1. **Use $x_0 = a, x_1, \dots, x_{n-1}, x_n = b$ as a guess for the Chebyshev alternance points for**
837 $p_{n,a,b} - 1$. It is easy to see that there is a unique pair (p, ε) such that $p \in L_n$ (that is, p
838 is odd and has degree $\leq 2n - 1$), $\varepsilon \in \mathbb{R}$, and $p(x_j) = 1 - (-1)^j \varepsilon$ for all $j = 0, 1, \dots, n$.
839 The equations $p(x_j) = 1 - (-1)^j \varepsilon$ for $j = 0, \dots, n$ form a nonsingular system of linear
840 equations in $n + 1$ unknowns, namely, ε and coefficients of p . Thus, p and ε are, indeed,
841 uniquely determined by the above conditions.
842 2. **Solve the system $p(x_j) = 1 - (-1)^j \varepsilon$, where $j = 0, \dots, n$ to find ε and coefficients of p .**
843 Unfortunately, x_0, \dots, x_n may not constitute a Chebyshev alternance for $p - 1$, as p is not
844 guaranteed to satisfy $p([a, b]) \subset [1 - \varepsilon, 1 + \varepsilon]$. However, it is clear that p has exactly $n - 1$
845 distinct extremal points $\{y_1, \dots, y_{n-1}\}$ in the open interval (a, b) .
846 3. **Find the extremal points $\{y_1, \dots, y_{n-1}\}$ of $|p - 1|$ in the interval (a, b) , where p has**
847 **discovered coefficients.** The collection of points $y_0 = a, y_1, \dots, y_{n-1}, y_n = b$ (consisting
848 of boundaries of the interval and extremal points of p) serves as a new guess for the
849 Chebyshev alternance points for $p_{n,a,b} - 1$, and this guess is better than the previous.
850 4. **Repeat algorithm starting with $y_0 \dots y_n$.** By repeating the above construction with points
851 y_1, \dots, y_{n-1} instead of x_1, \dots, x_{n-1} , we obtain a new pair (q, δ) with similar properties. By
852 a fairly straightforward argument one can show that $\delta \geq \varepsilon$ and $\|q - 1\|_{C[a,b]} \leq \|p - 1\|_{C[a,b]}$.
853 Iterating this process yields a sequence of polynomials that is guaranteed to converge to
854 $p_{n,a,b}$.855 The pseudocode is presented in Algorithm 3 below.
856857 It should be noted that Remez algorithm is notorious for its instability when dealing with polynomials
858 of sufficiently high degree. However, we have not observed an improvement of our methods when
859 using polynomials of degrees higher than 5.
860
861
862
863

864 **Algorithm 3** Remez algorithm

865

866 **Require:** $n = (\text{degree} + 1)/2$, $a < b$, $\text{max_iterations} > 0$, tolerance

867 **Ensure:** Optimal polynomial $p \in L_n$ and error bound ε

868 Initialize $x \leftarrow [x_0, x_1, \dots, x_n]$ where $x_0 = a$, $x_n = b$

869 iteration_count $\leftarrow 0$

870 prev_epsilon $\leftarrow 0$

871 **for** iteration_count = 1 . . . max_iterations **do**

872 Construct $(n+1) \times (n+1)$ matrix A , where $A_{ij} = x_i^{2j+1}$ for $j = 0 \dots n-1$, $A_{i,n} = (-1)^{i+1}$

873 Construct right-hand side vector b , where $b_i = 1$

874 solution $\leftarrow \text{SolveLinearSystem}(A, b)$

875 $p_{\text{coeffs}} \leftarrow \text{solution}[0:n]$ ▷ Polynomial coefficients

876 $\varepsilon \leftarrow \text{solution}[n]$ ▷ Error parameter

877 Find all local extrema y_1, \dots, y_{n-1} of $|p(x) - 1|$ in (a, b)

878 Update points: $x \leftarrow [a, y_1, y_2, \dots, y_{n-1}, b]$

879 $\varepsilon_{\text{new}} \leftarrow \max_i(|p(y_i) - 1|)$ ▷ New error

880 **if** $\varepsilon < \varepsilon_{\text{new}} + \text{tolerance}$ **then**

881 **return** (p, ε)

882

883

884 **return** (p, ε)

G PROOF OF PROPOSITION 4

886 *Proof.* (i). $d \in \mathbb{N}$, $d \geq 2$ and consider the function $E(t) = \varepsilon(d, t, 1 + \delta)$. It is easy to see that E is
 887 continuous, E monotonically decreases on the interval $t \in (0, 1 + \delta)$ and satisfies $E(t) \rightarrow 1$ as $t \rightarrow 0$,
 888 and $E(t) \rightarrow 0$ as $t \rightarrow 1 + \delta$. Thus, there exists a unique $a = a(d, \delta) \in (0, 1 + \delta)$ such that $E(a) = \delta$.
 889 Note that $E(1 - \delta) < \delta$, as the polynomial $p(x) = x$ approximates unity with error δ on the interval
 890 $[1 - \delta, 1 + \delta]$, even though it is not optimal (since $d \geq 2$). Thus, the error of the best approximation
 891 on $[1 - \delta, 1 + \delta]$ has to be strictly less than δ . Therefore, $E(1 - \delta) < \delta$, so $a(d, \delta) \in (0, 1 - \delta)$.

892 (ii) and (iii). Let a denote the solution of the equation $\varepsilon(d, a, 1 + \delta) = \delta$ and consider the corresponding
 893 polynomial $q_{d,\delta} = p_{d,a,1+\delta}$. By definition $q_{d,\delta}(x) \in [1 - \delta, 1 + \delta]$ for $x \in [a, 1 + \delta]$. Moreover, from
 894 Proposition 1 (iii) it follows that $q_{d,\delta}$ is concave and increasing on the interval $[0, a]$, so from the
 895 fact $q_{d,\delta}(a) = 1 - \delta$ we derive the inequalities $1 - \delta \geq q_{d,\delta}(x) \geq (1 - \delta)x/a$ for $x \in [0, a]$. Thus,
 896 $q_{d,\delta} \in \mathcal{P}_{d,\delta}$. Note that, in particular, we have proved the inequality of (iii) for $q_{d,\delta}$. Now we prove
 897 that for all $p \in \mathcal{P}_{d,\delta}$ such that $p \neq q$ we have $\alpha_\delta(p) > a$. From the definition of $\alpha_\delta(p)$ we get that
 898 $\|p - 1\|_{C[\alpha_\delta(p), 1+\delta]} \leq \delta$, hence, $E(\alpha_\delta(p)) = \varepsilon(d, \alpha_\delta(p), 1 + \delta) \leq \delta$. Thus, by monotonicity of E we
 899 infer that $\alpha_\delta(p) \geq a$. If the equality $\alpha_\delta(p) = a$ holds, then p is an approximation of unity on $[a, 1 + \delta]$
 900 with the error δ , so it coincides with $q_{d,\delta}$ by the uniqueness of the best polynomial approximation.
 901 Otherwise, $\alpha_\delta(p) > a$.

902 (iv). Let us state an *auxiliary fact*. Assume that polynomials $p, q \in L_d$ and points $0 < y_1 < y_2 <$
 903 $\dots < y_d$ satisfy the inequalities $(-1)^{j-1}(q(y_j) - p(y_j)) \geq 0$ hold for all $j = 1, \dots, d$. Then
 904 $q'(0) \geq p'(0)$. Assuming that this fact is true we can easily finish the proof. Indeed, assume that
 905 $x_0 = a(d, \delta) < x_1 < \dots < x_d = 1 + \delta$ are the alternance points of $q_{d,\delta}$ and that $x_2 \geq 1 - \delta$. Now
 906 consider arbitrary $p \in \mathcal{P}_{d,\delta}$. We claim that $(-1)^{j-1}(q_{d,\delta}(x_j) - p(x_j)) \geq 0$ for all $j = 1, \dots, d$.
 907 Indeed, if $j = 1$, then $q_{d,\delta}(x_1) = 1 + \delta \geq p(x_1)$ by definition of $\mathcal{P}_{d,\delta}$. If $j \geq 2$, then $x_j \geq 1 - \delta$ and
 908 the inequality holds since $q(x_j) = 1 - (-1)^j \delta$ and $|p(x_j) - 1| \leq \delta$. Thus, it remains to prove the
 909 foregoing auxiliary fact. Let us fix polynomials $p, q \in L_d$ and points $0 < y_1 < y_2 < \dots < y_d$ such
 910 that the inequalities $(-1)^{j-1}(q(y_j) - p(y_j)) \geq 0$ hold for all $j = 1, \dots, d$. Consider polynomials
 911 $\lambda_j \in L_d$, $j = 1, \dots, n$ such that $\lambda_j(x_k) = \delta_{jk}$, where δ_{jk} is the Kronecker's symbol. It is easy to
 912 verify that the polynomials λ_j indeed exist and are unique. Moreover, p and q can be recovered by an
 913 analog of the Lagrange's interpolation formula $p = \sum_{j=1}^d p(x_j) \lambda_j$ and $q = \sum_{j=1}^d q(x_j) \lambda_j$. Thus,
 914 $q'(0) - p'(0) = \sum_{j=1}^d (q(x_j) - p(x_j)) \lambda'_j(0)$. The proof finishes by observing that $(-1)^{j-1} \lambda'_j(0) > 0$.
 915 To prove this observation note that all $2d - 1$ roots of λ_j are simple and real. Therefore, the sign of
 916 the derivative λ'_j alternates on the roots of λ_j enumerated in increasing order. That is, in the vector
 917

$$(\lambda'_j(0) \quad \lambda'_j(x_1) \quad \dots \quad \lambda'_j(x_{j-1}) \quad \lambda'_j(x_{j+1}) \quad \dots \quad \lambda'_j(x_d)) \quad (10)$$

918 the signs of components are alternating. Finally, since $\lambda_j(x_j) = 1 > 0$ it follows that $\lambda'_j(x_{j-1}) \geq 0$
 919 and $\lambda'_j(x_{j+1}) \leq 0$ (if $j = 1$ or $j = d$ only one of these inequalities should be stated). The inequality
 920 $(-1)^{j-1}\lambda'_j(0) > 0$ now easily follows from the alternating property of the vector equation 10.
 921

□

923 *Remark.*
 924

925 1. The value $a(d, \delta)$ introduced in Proposition 4 (i) is given there as the solution of the equation
 926 $\varepsilon(d, a, 1 + \delta) = \delta$. This allows to evaluate $a(d, \delta)$ by using binary search (given any
 927 algorithm that computes the function ε), since the left part of this equation is a continuous
 928 and decreasing function of a .

929 2. From Proposition 4 (iv) it is easy to see that $q_{d,\delta}$ is the solution to the problem equation 5
 930 for $d = 2$. For larger degrees this statement is no longer true in general. However, it
 931 stays true provided δ is large enough. For example, by calculating $q_{d,\delta}$ numerically we
 932 observed that the condition of Proposition 4 (iv) is satisfied for $d = 3, \delta \geq 0.073$ and
 933 $d = 4, \delta \geq 0.201$. In general, for each d there exists $\delta_d \in (0, 1)$ such that $q_{d,\delta}$ is the solution
 934 to the problem equation 5 for $\delta \geq \delta_d$.

935 3. It is easy to derive the formula for the classical Newton-Schulz iterations from the poly-
 936 nomials $q_{d,\delta}$. Indeed, consider $d = 2$ and then pass to the limit $\delta \rightarrow 0$. Clearly, the
 937 polynomial $q_{2,\delta}(x)$ converges to $p(x)$ such that $p(1) = 1$ and $p'(1) = 0$. There is only one
 938 odd polynomial of degree three satisfying these properties, namely, $p(x) = 3x/2 - x^3/2$,
 939 which is used in the classical Newton-Schulz iterations.

941 **H EXPERIMENTAL DETAILS**

944 NanoGPT (Jordan et al., 2024a) is trained on a subset of 0.8B training tokens of FineWeb dataset
 945 (Penedo et al., 2024) for 6200 steps with initial learning rate 0.0036 and trapezoidal schedule (1800
 946 warmdown steps) on 1 A100 GPU. For normalization in our method, we used Gelfand's formula. For
 947 normalization in original Muon optimizer, Frobenius norm was used.

948 In practice, we have not observed any noticeable difference in runtime of Muon with different
 949 polynomials in experiment with NanoGPT. Each training step required 2.5-2.9 seconds for different
 950 polynomials. Theoretically this can be explained as follows. The FLOP overhead of Muon over
 951 SGD is $(T/3)m/B$ (see runtime analysis in (Jordan et al., 2024b)), where m is matrix dimension,
 952 B - sequence length, by T we will denote number of matmuls ($T = 15$ for original Muon). The
 953 difference in overhead of Muon with polynomials with T_1 and T_2 matmuls is $((T_1 - T_2)/3)m/B$. In
 954 our experiment with NanoGPT, $m=768$, $B=524288$, the difference with original Muon is $T_1 - T_2 \leq 3$
 955 so overhead is $((T_1 - T_2)/3)m/B \leq 0.0015$.

956 For training Wide ResNet-16-10 on CIFAR-10 with Riemannian SGD and ADAM, the learning rate
 957 is set to 0.2 and 0.4 for parameters restricted to Stiefel manifold and 0.01 otherwise. For standard
 958 SGD and ADAM learning rate is set to 0.1 and 0.0003 respectively. The experiments were run on 1
 959 V100 GPU. For CANS retraction, one iteration of Algorithm 1 was enough in practice to perform
 960 orthogonalization.

961 **I RIEMANNIAN SGD AND ADAM ON STIEFEL MANIFOLD**

963 Table 2 shows results of training Wide ResNet-16-10 on CIFAR-10 with SGD on Stiefel manifold.

965 Algorithms 4 and 5 present Riemannian SGD and Adam on Stiefel manifold. Algorithm 6 presents
 966 algorithm of performing Cayley retraction using Woodbury formula.

972
973974 Table 2: Accuracy and training time for Wide ResNet-16-10 on CIFAR-10 using SGD.
975

	Retraction	Accuracy	Time per epoch (s)
978	-	95.97	34.9
979	Cayley (Li et al., 2020)	94.81	69.5
980	Cayley (Woodbury)	94.93	68.8
981	QR	94.80	61.0
982	CANS	94.73	<u>43.6</u>

983
984
985
986987 **Algorithm 4** SGD with momentum on Stiefel manifold

988 **Input** Momentum β , learning rate α .
 989 Initialize $X_1 \in \mathbb{R}^{n \times p}$ as orthonormal matrix.
 990 **for** $1 \dots n_iters$ **do**
 991 $M_{k+1} = \beta M_k - G(X_k)$
 992 $M_{k+1} = M_{k+1} - \frac{1}{2} X_k (M_{k+1}^T X_k + X_k^T M_{k+1})$
 993 $X_{k+1} = \text{Retr}(X_k + \alpha M_{k+1})$

995
996
997
998999 **Algorithm 5** Adam on Stiefel manifold

1000 **Input** Momentum coefficients β_1, β_2 , learning rate α .
 1001 Initialize $X_1 \in \mathbb{R}^{n \times p}$ as orthonormal matrix.
 1002 **for** k in $1 \dots n_iters$ **do**
 1003 $v_{k+1} = \beta_2 v_k + (1 - \beta_2) \|G(X_k)\|_F^2$
 1004 $\hat{v}_{k+1} = v_{k+1} / (1 - \beta_2^k)$
 1005 $M_{k+1} = \beta_1 M_k - (1 - \beta_1) G(X_k)$
 1006 $\hat{M}_{k+1} = M_{k+1} / (1 - \beta_1^k)$
 1007 $\hat{M}_{k+1} = \hat{M}_{k+1} - \frac{1}{2} X_k (\hat{M}_{k+1}^T X_k + X_k^T \hat{M}_{k+1})$
 1008 $X_{k+1} = \text{Retr}(X_k - \alpha \hat{M}_{k+1} / \sqrt{\hat{v}_{k+1} + \epsilon})$
 1009 $M_{k+1} = (1 - \beta_1^k) \hat{M}_{k+1}$

1011
1012
1013
1014
10151016 **Algorithm 6** Cayley retraction via Woodbury formula

1017 **Input** Parameters X_k , step direction M_{k+1} , learning rate α .
 1018 $L = [\alpha M_{k+1}; X_k]$
 1019 $R = \begin{bmatrix} X_k^T \\ \alpha (M_{k+1}^T X_k X_k^T - M_{k+1}^T) \end{bmatrix}$
 1020 $Y = X_k + \frac{1}{2} \alpha M_{k+1}$
 1021 $X_{k+1} = Y + \frac{1}{2} L (I - \frac{1}{2} RL)^{-1} RY$
 1022 **Return:** $X_{k+1} = \text{CayleyRetr}(X_k + \alpha M_{k+1})$

1023
1024
1025

1026 **J POLYNOMIALS**
1027
10281029 Coefficients are presented from left to right from the minimal degree to maximum. For example,
1030 for coefficients [(a, b), (c, d, e)] the composition is $p_2(p_1(x))$, where $p_1(x) = ax + bx^3$, $p_2(x) =$
1031 $cx + dx^3 + ex^5$.1032 Original Muon coefficients of 3-rd order polynomial for any number of iterations: [(3.4445, -4.7750,
1033 2.0315)*num_iters (green in Figure 3, 5).
10341035 CANS, eps=0.3, order=3, iter=7, mm=14 (black in Figure 3)
1036 $[(5.181702879894027, -5.177039351076183),$
1037 $(2.5854225645668487, -0.6478627820075661),$
1038 $(2.565592012027513, -0.6452645701961278),$
1039 $(2.5162233474315263, -0.6387826202434335),$
1040 $(2.401068707564606, -0.6235851252726741),$
1041 $(2.1708447617901196, -0.5928497805346629),$
1042 $(1.8394377168195162, -0.5476683622291173)]$ 1043 CANS, eps=0.3, order=5, iter=5, mm=15 (purple in Figure 3)
1044 $[(8.492217149995927, -25.194520609944842, 18.698048862325017),$
1045 $4.219515965675824, -3.1341586924049167, 0.5835102469062495),$
1046 $(4.102486923388631, -3.0527342942729288, 0.5742243021935801),$
1047 $(3.6850049522776493, -2.756862315006488, 0.5405198817097779),$
1048 $2.734387280007103, -2.036641382834855, 0.4592314693659632)]$ 1049 CANS, eps=0.00188, order=3, iter=9, mm=18 (purple in Figure 4)
1050 $[(5.179622107852338, -5.174287102735334),$
1051 $(2.5836099434139492, -0.6476254200945953),$
1052 $(2.5610021062961206, -0.6446627537769272),$
1053 $(2.505058237036672, -0.6373139418181356),$
1054 $(2.3764825571306125, -0.6203257475007262),$
1055 $(2.1279007426858794, -0.5870609391939776),$
1056 $(1.7930526112541054, -0.5412446350453286),$
1057 $(1.5582262242936464, -0.5082920767544266),$
1058 $(1.5021988305175455, -0.5003140810786916)]$ 1059 CANS, eps=0.00443, order=3, iter=9, mm=18 (blue in Figure 4)
1060 $[(5.182503604966906, -5.178098480082684),$
1061 $(2.586120737395915, -0.6479542005271643),$
1062 $(2.567364126726186, -0.6454968804392178),$
1063 $(2.520560084348265, -0.6393528082067044),$
1064 $(2.410759275435182, -0.6248683598710716),$
1065 $(2.1883348130094173, -0.5952022073798908),$
1066 $(1.8595760874873613, -0.5504490972723968),$
1067 $(1.589020160467417, -0.5126569802066718),$
1068 $(1.5051653981684994, -0.5007377068751799)]$ 1069 CANS, eps=0.0035, order=3, iter=9, mm=18 (grey in Figure 5)
1070 $[(5.181724335835382, -5.177067731075524),$
1071 $(2.585441267930541, -0.6478652310697918),$
1072 $(2.5656394547047783, -0.6452707898813249),$
1073 $(2.5163392603382473, -0.6387978622974516),$
1074 $(2.401326686185833, -0.6236192975654269),$
1075 $(2.17130618635129, -0.5929118810597139),$
1076 $(1.8399595521688579, -0.5477404797274893),$
1077 $(1.5792011481985957, -0.5112666878668612),$
1078 $(1.5040821254913361, -0.500583031372834)]$ 1079 CANS, eps=0.3, order=5, iter=4, mm=12 (purple in Figure 5)
1080 $[(8.420293602126344, -24.910491192120688, 18.472094206318726),$
1081 $(4.101228661246281, -3.0518555467946813, 0.5741241025302702),$

1080 $(3.6809819251109155, -2.75396502307162, 0.5401902781108926),$
 1081 $(2.7280916801566666, -2.0315492757300913, 0.45866431681858805)]$

1082
 1083 Jiacheng's, order=5, iter=6, mm=18 (green in Figure 4)
 1084 $[(3955/1024, -8306/1024, 5008/1024),$
 1085 $(3735/1024, -6681/1024, 3463/1024),$
 1086 $(3799/1024, -6499/1024, 3211/1024),$
 1087 $(4019/1024, -6385/1024, 2906/1024),$
 1088 $(2677/1024, -3029/1024, 1162/1024),$
 1089 $(2172/1024, -1833/1024, 682/1024)]$

1089
 1090 Jiacheng's, order=5, iter=5, mm=18
 1091 $[(3839/1024, -8060/1024, 4883/1024),$
 1092 $(3851/1024, -7277/1024, 3966/1024),$
 1093 $(4011/1024, -6812/1024, 3318/1024),$
 1094 $(2738/1024, -3261/1024, 1321/1024),$
 1095 $(2172/1024, -1833/1024, 683/1024)]$

K TIME

1096 The number of matmuls is proportional to FLOPS and to the spent time up to the errors. Table 3
 1097 below shows time for Figure 2 (on CPU in seconds).

1100

1101 Table 3: Time for matrix orthogonalization in Figure 1 (on CPU in seconds).

1102

Method	Matmuls	Time
classic Newton-Schultz	60	6.57
3-rd order	26	2.70
5-th order	24	1.96
classic Newton-Schultz, Gelfand	60	6.57
3-rd order, Gelfand, $a_0 = 1e - 3$	32	3.27
5-th order, Gelfand, $a_0 = 1e - 3$	30	2.79
3-rd order, Gelfand, $a_0 = 1e - 7$	44	4.72
5-th order, Gelfand, $a_0 = 1e - 7$	42	3.80

L ABLATION OF MATRIX NORMALIZATION

1113 We compare the effect of normalization before orthogonalization in the Muon optimizer. Figure 6
 1114 shows that Muon with Gelfand's normalization has improved convergence.

Figure 6: NanoGPT test loss curves for Muon with Gelfand's and Frobenius normalization before orthogonalization.

Figures 7 and 9 show the full training and test loss curves of NanoGPT.

Figure 7: NanoGPT full train loss curve.

Figure 8: NanoGPT full test loss curve.

Figure 9: NanoGPT smoothed train loss curve.

1188
1189
1190 Table 4: Time for retraction of $n \times p$ matrix.
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214

n	p	Cayley	QR	CANS
1024	32	0.11	0.28	0.07
1024	64	0.13	0.47	0.07
1024	128	0.19	0.86	0.08
1024	256	0.28	1.83	0.11
1024	512	0.43	3.55	0.23
1024	1024	0.70	6.61	0.59
2048	32	0.22	0.32	0.07
2048	64	0.29	0.54	0.08
2048	256	0.77	2.35	0.15
2048	512	1.33	4.54	0.43
2048	1024	2.53	9.08	1.11
2048	2048	4.98	18.03	3.99
4096	32	0.68	0.48	0.08
4096	64	0.96	0.89	0.09
4096	512	5.08	7.99	0.71
4096	1024	9.74	15.84	2.13
4096	2048	18.89	34.02	8.20
4096	4096	37.04	68.19	30.57
8192	32	2.46	0.67	0.08
8192	64	3.59	1.30	0.10
8192	1024	37.42	24.40	4.20
8192	2048	73.94	55.65	16.64
8192	4096	145.71	130.80	62.68
8192	8192	290.25	321.01	236.78

1215
1216
1217 M TIME COMPARISON OF RETRACTIONS
12181219 Table 4 shows time (in seconds) for retraction of $n \times p$ matrix measured on A100. For a small
1220 step-size, it is enough to make 2 iterations of Cayley or 1 CANS iteration to reach nearly the same
1221 desired accuracy of orthogonalization.1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241