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ABSTRACT

Large Language Models (LLMs) are transforming the landscape of generative AI,
delivering groundbreaking performance across diverse tasks. Yet, their immense
model sizes tether most LLMs to the cloud, posing challenges for tasks that de-
mand processing private and proprietary data. In this paper, we introduce a grey-
box prompt optimization and fine-tuning framework for cloud-edge LLMs-paving
the way for a seamless, hybrid approach that merges the best of both private and
public cloud environments. This framework not only boosts flexibility and scal-
ability but also empowers users with heightened security and compliance, opti-
mizing cost and performance. Beyond that, it ensures robust disaster recovery
and business continuity through redundancy and smart workload distribution. At
the heart of our solution is an efficient algorithm with guaranteed convergence,
specifically tailored to the structure of the grey-box optimization problem. We
rigorously analyze and derive its non-asymptotic convergence rate. Our extensive
experiments reveal that sandwiched tuning-our novel fine-tuning method-delivers
up to a 47.9% performance improvement over traditional methods across multiple
tasks.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated unprecedented performance across a wide range
of tasks, from natural language understanding (Karanikolas et al., 2023) to generative applications
(Li et al., 2023), owing to their large-scale architectures and training on massive datasets (Raiaan
et al., 2024). Traditional LLMs are typically hosted in the cloud due to their significant computa-
tional requirements (Wang et al., 2023), including extensive memory, storage, and processing power,
making them impractical to run on local devices. However, cloud-hosted LLMs come with certain
drawbacks, such as potential privacy and security risks when sensitive or proprietary data is trans-
mitted to and processed by remote servers (McEnroe et al., 2022). Additionally, reliance on cloud
infrastructure can lead to latency issues, especially for real-time applications where fast response
times are critical. Furthermore, the continuous use of cloud-hosted LLMs can incur significant op-
erational costs, particularly for applications that require constant access to large-scale models.

To address these challenges, we propose a cloud-edge LLM agent framework in this paper, which
leverages the best of both cloud and edge computing. By offloading the resource-intensive model
training (Zhang et al., 2024b) and large-scale processing tasks to the cloud, the framework en-
sures that scalability and computational efficiency are maintained, allowing users to benefit from the
powerful capabilities of large language models. Meanwhile, edge devices handle tasks that require
sensitive data processing or real-time interactions, ensuring that privacy is preserved by keeping sen-
sitive data local and reducing the latency typically associated with cloud-only deployments (Zhang
et al., 2024c). This hybrid approach not only enhances privacy and security by minimizing data
transmission to the cloud but also allows for more personalized and context-aware applications, as
edge devices can tailor LLM responses to specific user needs or local conditions. Furthermore, the
framework optimizes resource utilization by distributing tasks intelligently between the cloud and
edge, ensuring that each task is executed in the most appropriate environment, leading to improved
performance, reduced bandwidth usage, and enhanced user experience in real-time applications.

However, while the cloud-edge framework offers flexibility, scalability, and enhanced security and
privacy, integrating cloud and edge LLMs seamlessly to perform generation tasks remains a sig-
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nificant challenge. One of the primary difficulties lies in coordinating the cloud-hosted and edge-
deployed models, ensuring smooth collaboration without introducing delays or inconsistencies in
task execution. In addition, existing cloud-edge collaboration frameworks for LLMs (Zhang et al.,
2024a; Yang et al., 2024b; Hao et al., 2024; Yao et al., 2024; Ding et al., 2024) only involve col-
laboration during the inference stage. Due to the black-box nature of cloud-hosted LLMs (Li et al.,
2024), which often restricts insight into their internal workings, it is particularly challenging to
optimize prompts (Sabbatella et al., 2024) or perform fine-tuning (Lin et al., 2024) effectively, espe-
cially when the goal is to handle these operations entirely at the edge to safeguard data privacy. This
limitation makes it difficult to tailor or adapt the LLM’s performance to specific tasks without risk-
ing the exposure of sensitive data, posing a technical barrier to achieving fully private and efficient
cloud-edge LLM interactions (Yan et al., 2024).

To this end, we propose a grey-box joint prompt optimization and fine-tuning framework for cloud-
edge LLM agents, aimed at integrating the powerful capabilities of cloud-hosted LLMs with edge-
deployed LLM agents for personalized applications. By leveraging a grey-box approach, we can
partially access the cloud-hosted LLM’s behavior through input-output evaluations, enabling us
to perform prompt optimization and fine-tuning at the edge without compromising privacy. This
method allows for personalized and adaptive use of LLMs in sensitive environments while main-
taining the computational efficiency of cloud resources, offering a balance between performance
and privacy in cloud-edge LLM architectures. Our main contributions can be summarized as fol-
lows.

• Apart from traditional cloud-hosted LLM architectures, this paper presents a cutting-edge
cloud-edge LLM agent framework by harnessing the power of cloud scalability and cost-
efficiency alongside the security and low-latency benefits of edge computing. This hybrid
approach offers a balanced solution, optimizing performance, data privacy, and resource
management. Additionally, we develop an innovative method that combines prompt opti-
mization and fine-tuning, all through the lens of grey-box optimization. To the best of our
knowledge, this is the first grey-box optimization-based approach for fine-tuning an LLM
agent in a hybrid cloud environment.

• Building on the unique structure of the grey-box optimization problem, we develop a
Sandwiched Tuning framework for cloud-edge LLM agents, featuring a memory-efficient
Zeroth-Order Cutting Plane (ZoCP) algorithm designed specifically for edge deployment.
This approach unlocks privacy-preserving, personalized fine-tuning directly on edge de-
vices, bridging the gap between performance and data security. Furthermore, the decom-
posable nature of cutting planes could facilitate a distributed implementation of the frame-
work, which may improve scalability and computational efficiency for large-scale cloud-
edge deployments. We rigorously derive a non-asymptotic convergence rate that is inde-
pendent of the number of optimization parameters for the ZoCP algorithm, highlighting its
scalability on large-scale models.

• We have conducted extensive experiments on a variety of challenging tasks, including LLM
task decomposition, tool use, and multi-turn dialogue, alongside natural language under-
standing tasks like text classification, multiple choice, and single-turn question answering,
using LLMs with parameter sizes ranging from 0.5B to 8B as base models for edge agents.
The results demonstrate that the proposed method significantly outperforms state-of-the-art
approaches, with performance improvements as high as more than 40% in certain cases.

2 RELATED WORK

Cloud-Edge Collaboration for LLMs. Existing methods mainly emphasize cloud-edge collabora-
tion specifically during the LLM inference phase, overlooking other stages that could benefit from
more integrated approaches (Friha et al., 2024). These methods can be broadly divided into two
categories, i.e., task assignment based methods (Zhang et al., 2024a; Yang et al., 2024b) and task
correction based methods (Hao et al., 2024; Yao et al., 2024). By leveraging a collaborative frame-
work, edge LLMs can take over inference tasks when the cloud-based LLM service is unavailable,
ensuring continuous service for the user Ding et al. (2024). However, these methods are limited
to using pre-trained language models for inference, with minimal research exploring cloud-edge
collaboration for joint prompt optimization and fine-tuning. Another concept related to LLM cloud-
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edge collaboration is Split Federated Learning (SFL), which outsources LLM components to remote
servers. However, existing SFL approaches generally assume known structures and parameters for
both cloud and edge models. Additionally, SFL typically requires transmission of activations and
gradients, whereas this paper uses prompt-level text for more efficient communication. Lastly, SFL
necessitates joint cloud-edge operation for both training and inference, hindering low-latency edge
standalone inference.

Prompt Optimization and Model Fine-Tuning. Existing works on prompt optimization can be
mainly categorized into parametric model-based approaches (Diao et al., 2022; Shum et al., 2023)
and LLM-based methods (Pryzant et al., 2023; Yang et al., 2023; Cheng et al., 2023). LLM-based
prompt optimization methods (Pryzant et al., 2023; Yang et al., 2023; Cheng et al., 2023) lever-
age the LLMs to generate prompts that are both effective and easily understandable by humans.
Fine-tuning LLMs (Ding et al., 2023) can be primarily categorized into three groups, including par-
tial approaches, re-parameterized approaches, and additive approaches (Xu et al., 2023). Partial
approaches (Zaken et al., 2021) and re-parameterized methods (Hu et al., 2021) require creating
a task-specific copy of the entire model for each downstream task (Lester et al., 2021). In con-
trast, additive approaches (Houlsby et al., 2019) achieve greater parameter sharing by introducing
additional learnable parameters tailored to specific tasks, while keeping the original network’s pa-
rameters fixed. Recently, the potential for jointly performing prompt optimization and fine-tuning
has been explored, but current work remains limited to white-box scenarios (Soylu et al., 2024).

Grey-box Optimization. Unlike white-box or black-box optimization (Bajaj et al., 2021), grey-box
optimization problems (Astudillo & Frazier, 2021) refer to optimization problems where the nested
function involves both white-box and black-box functions. In particular, in nested optimization
problems (Gergel et al., 2016), grey-box optimization occurs when the gradients of some optimiza-
tion variables remain unknown. The zeroth-order optimization (ZOO) (Chen et al., 2017) offers
a promising approach to handle gradient-free optimization, using function evaluations rather than
gradients to tackle optimization problems. Liu et al. (2020b); Xu et al. (2020); Wang et al. (2020);
Huang et al. (2022) focus Min-Max zeroth-order optimization problems with strongly-concave in-
ner problems. Chen et al. (2023a) proposes a gradient-free method for nested optimization with a
convex inner problem. However, these methods are not directly applicable to the problem at hand,
as they do not account for the unique structural challenges involved.

3 JOINT PROMPT AND FINE TUNING VIA GREY-BOX OPTIMIZATION

The joint prompt and fine-tuning via grey-box optimization approach is termed as Sandwiched Tun-
ing framework. As shown in Fig.(1), it comprises an edge LLM agent, a high-performance cloud-
hosted LLM, and a lightweight adapter model. The cloud LLM and edge LLM agent can collaborate
on specific tasks through distinct operational paradigms. For instance, the edge LL agent can func-
tion as a prompt optimizer, refining the prompt before sending it to the cloud LLM. Another edge
component of the framework, the adapter model, is responsible for processing the cloud LLM’s re-
sponse by mapping it to a loss function value, thus establishing an end-to-end training loop for the
entire framework. Through this framework, the cloud-hosted LLM and edge LLM agent can collab-
orate seamlessly to perform tasks, leveraging the adapter model to enable the supervision training
and automated optimization of edge models’ parameters.

After collaborative training with cloud-based LLMs, the edge LLM has the potential to approach
near-parity with the capabilities of cloud LLMs. Users can then make trade-offs between perfor-
mance, cost, and privacy. During the inference phase, the performance of Edge Standalone Infer-
ence Mode may be slightly lower than that of cloud-edge collaboration; however, it does not require
access to cloud services, resulting in lower latency, reduced overhead, and enhanced protection of
local data privacy.

3.1 PROBLEM FORMULATION

Let model functions f(·), g(·), v(·) denote respectively the input output relationships of edge LLM,
the cloud-hosted LLM, and the adapter model. Let x ∈ Rn and y ∈ Rm denote the learnable
parameters associated with f(·) and v(·), where n and m respectively represent the number of
parameters. To reduce computational costs, it is common practice to train only a subset of key
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Figure 1: The Sandwiched Tuning framework.

parameters while keeping the remaining ones frozen. This approach minimizes resource usage while
maintaining task-specific performance. Let F (x,y) = L(v(g(f(x)),y)) denote the loss function
of the downstream task, where g(·) is a black-box function. The overall process of the proposed
sandwiched tuning is formulated as the following nested grey-box optimization problem:

min
x

F (x,y)

s.t. y = argmin
y′

F (x,y′),
(1)

where the outer problem minx F (x,y) aims to optimize the model parameters x of the edge LLM,
and the inner optimization problem y = argminy′ F (x,y′) aims to optimize the parameters y of
the adapter model.

3.2 SANDWICHED TUNING

It is known that solving a nested optimization problem remains NP-hard (Kleinert et al., 2021).
We employ a strategy that reformulates the nested zeroth-order optimization problem into a more
tractable single-layer problem by incorporating the inner problem as a constraint within the outer
optimization problem. To address the resulting formulation, we introduce a cutting plane method,
inspired by Yang et al. (2014), which leverages zeroth-order gradient estimation techniques to effi-
ciently solve the problem.

Specifically, denote φ(x) = argminy′ F (x,y′) and h(x,y) = ||y − φ(x)||2. Consequently, the
inner problem in Eq.(1) is equivalent to h(x,y) = 0, and we can regard the inner problem in
Eq.(1) as a constraint of the outer problem to convert the original nested problem in Eq.(1) into the
following single-level optimization problem:

min
x,y

F (x,y)

s.t. h(x,y) = 0.
(2)

In Eq.(2), one important issue is how to calculate φ(x) in function h(·). Since we are optimizing
the parameters of neural networks, the function F (·) can be highly non-convex and it is therefore
difficult to calculate argminy′ F (x,y′) exactly. As has been proven effective by previous work
(Yang et al., 2021; Jiao et al., 2022), given the outer variable x, we may approximate φ(x) through
stochastic gradient descent as:

φ(x) = y′ − ηy∇yF̃ (x,y′;B), (3)
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where B denotes a specific mini-batch of data samples drawn from the distribution D, ηy is the step
size. F̃ (·) represents the first-order Taylor approximation of F (·), that is, for a given point x̄, we
have F̃ (x,y′) = F (x̄,y′) + ∇xF (x̄,y′)⊤(x − x̄). The existence of the black-box function g(·)
prevents us from directly computing ∇xF (x̄,y′). Therefore, we further approximate ∇xF (x̄,y′)
by stochastic samples and a zeroth-order gradient estimator (Liu et al., 2020a) as

∇̂xF (x̄,y′;B) = F (x̄+ ϵz,y′;B)− F (x̄− ϵz,y′;B)
2ϵ

z, (4)

where z is randomly sampled with z ∼ N (0, In), ϵ is the perturbation scale. The estimation in
Eq.(4) can be averaged over d sampled z. We take d = 1 for the sake of efficiency.

According to Eq.(3) and Eq.(4), we can obtain a relaxed problem of Eq.(2) as:

min
x,y

F (x,y)

s.t. h(x,y) ≤ ε,
(5)

where ε > 0 is a constant. Note that h(x,y) is convex w.r.t. (x,y) according to the fact that these
operations preserve convexity (Boyd et al., 2004). Therefore, the feasible set of h(x,y) ≤ ε is a
convex set. To approximate this feasible set, we adopt a cutting plane method (Yang et al., 2014),
which has been proven to be computationally efficient. The primary idea underlying the cutting-
plane method is to approximate the optimal solution by introducing linear constraints (called cutting
planes) iteratively into the feasible solution space of the target problem. These constraints form a
linear relaxation of the problem, ensuring that the solutions remain within this relaxed polyhedron.
Precisely, the polyhedron can be denoted as:

P = {a⊤
l x+ b⊤l y + cl ≤ 0,∀l ∈ [|P |]}, (6)

where al ∈ Rn, bl ∈ Rm, and cl ∈ R1 are parameters of the lth cutting planes. |P | < p is the
number of cutting planes. Then the problem in Eq.(5) can be approximated as follows:

min
x,y

F (x,y)

s.t. a⊤
l x+ b⊤l y + cl ≤ 0,∀l ∈ [|P |].

(7)

The Lagrangian function of Eq.(7) is:

Lp(x,y, {λl}) = F (x,y) +

|P|∑
l=1

λl(a
⊤
l x+ b⊤l y + cl), (8)

where λl ∈ R1 is the dual variable. Then in the (t + 1)th iteration, we update the parameters as
follows:

xt+1 = xt − η∇̂xLp(x
t,yt, {λt

l};B), (9)

yt+1 = yt − η∇yLp(x
t+1,yt, {λt

l};B), (10)

λt+1
l = λt

l + η∇λl
Lp(x

t+1,yt+1, {λt
l};B), l = 1, · · · , |Pt|, (11)

where Pt denotes the polyhedron in the (t+1)th iteration. η is the step size. ∇̂xLp(x
t,yt, {λt

l};B)
denotes the gradient estimated as:

∇̂xLp(x
t,yt, {λt

l};B) =
Lp(x

t + ϵz,yt, {λt
l};B)− Lp(x

t − ϵz,yt, {λt
l};B)

2ϵ
z, (12)

where z ∈ Rn is randomly sampled with z ∼ N (0, In).

The last issue we are concerned with is how to update the cutting planes. Most existing cutting
plane methods assume that all the parameters and gradients of the model are available and therefore
cannot be directly applied to our problem. Denote the feasible region of the problem in Eq.(5) as Z .
If (xt+1,yt+1) is not feasible for Eq.(5), that is, h(xt+1,yt+1) > ε, we aim to find a cutting plane
to separate (xt+1,yt+1) from Z . Generally, a valid cutting plane satisfies the following:{

a⊤
l x+ b⊤l y + cl ≤ 0,∀(x,y) ∈ Z

a⊤
l x+ b⊤l y + cl > 0, otherwise

. (13)
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Since we utilize a first-order Taylor approximation of F (·) and one-step gradient descent to approx-
imate φ(x), h(x,y) is a convex function. So we have:

h(x,y) ≥ h(xt+1,yt+1) +


∂h(xt+1,yt+1)

∂x
∂h(xt+1,yt+1)

∂y


⊤([

x

y

]
−

[
xt+1

yt+1

])
. (14)

According to Eq.(13) and Eq.(14), it is obvious that we can find a new cutting plane cpnew, a⊤
newx+

b⊤newy + cnew ≤ 0, as follows:

h(xt+1,yt+1) +


∂h(xt+1,yt+1)

∂x
∂h(xt+1,yt+1)

∂y


⊤([

x

y

]
−

[
xt+1

yt+1

])
≤ ε. (15)

Precisely, the parameters of cutting planes are given by

anew =
∂h(xt+1,yt+1)

∂x
, bnew =

∂h(xt+1,yt+1)

∂y
,

cnew = h(xt+1,yt+1)−


∂h(xt+1,yt+1)

∂x
∂h(xt+1,yt+1)

∂y


⊤ [

xt+1

yt+1

]
− ε,

(16)

where ∂h(xt+1,yt+1)
∂y and ∂h(xt+1,yt+1)

∂x can be calculated according to Eq.(3) and Eq.(4). Then we
add cpnew to the polytope Pt+1 and add λnew to the set {λt+1

l }. Note that we update the cutting
planes every k iteration and the inactive cutting planes, whose dual variable is less than a threshold
for some successive iterations, will be deleted to save computing resources. The details of the
proposed ZoCP algorithm are summarized in Algorithm 1.

Algorithm 1 Zeroth-order Cutting Plane (ZoCP) Algorithm

Initialization: iteration t = 0, trainable parameters of the edge LLM x0, trainable parameters of
the adapter model y0, dual parameters {λ0

l }, polytope P0.
while not terminated do

Update parameters xt+1, yt+1, and {λt+1
l } according to Eq.(9), Eq.(10), and Eq.(11).

if (t+ 1) mod k == 0 then
if h(xt+1,yt+1) > ε then

Find new cutting plane according to Eq.(16) and update Pt+1 and {λt+1
l }.

end if
end if

end while

3.3 NON-ASYMPTOTIC CONVERGENCE ANALYSIS

In this section, we demonstrate that ZoCP is guaranteed to converge and carry out non-asymptotic
analysis in Theorem 1, focusing on quantifying how quickly this algorithm approaches an opti-
mal solution within a specified number of iterations or time steps, providing concrete guarantees for
performance over a finite number of steps. This type of analysis is particularly useful in practical ap-
plications where resource constraints, such as time or computational power, limit the number of iter-
ations an algorithm can run. Following previous works (Malladi et al., 2023; Ling et al., 2024; Chen
et al.), under the Assumptions on smoothness and Local r-effective rank of the Lp(x

t,yt, {λt
l})

function, we establish the following convergence rate for ZoCP.
Theorem 1. (Non-asymptotic Convergence Analysis) The optimal value of the objective function
in the approximate problem Eq. (7) converges monotonically when the number of cutting planes

6
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increases progressively. In addition, under Assumptions on smoothness and Local r-effective rank
of the Lp(x

t,yt, {λt
l}) function (Malladi et al., 2023), ZoCP achieves E[Lp(x

t,yt, {λt
l})] ≤ L∗

p+ϵ
after

t = O((
r

d
+ 1)(

1

p
)(
L

µ
+

Lα

µ2B
) log

Lp(x
0,y0, {λ0

l })− L∗
p

ϵ
) (17)

iterations. The proof of Theorem 1 is given in Appendix A.1.

4 EXPERIMENTS

In this section, we first validate the effectiveness of the proposed framework in the following com-
plex real-world scenarios: 1) LLM task decomposition, 2) tool use, and 3) multi-turn dialogue.
We also examine the performance of the proposed sandwiched tuning framework over a diverse
set of natural language understanding (NLU) tasks, including text classification, multiple-choice,
and single-turn question answering. Our experiments use Qwen-max (Bai et al., 2023) as the cloud-
hosted LLM. The base LLMs of the edge agent considered in our experiments include Qwen2.5-0.5B
(Team, 2024), GPT-2 (1.5B) (Radford et al., 2019), Qwen2-7B (Yang et al., 2024a) and Llama3-8B
(Touvron et al., 2023). The edge LLMs are deployed on 1 NVIDIA A100 GPU and 2 NVIDIA
GeForce RTX 4090 GPUs for different experiments. It is worth mentioning that using a GPU on the
edge side is not necessary.

4.1 LLM TASK DECOMPOSITION

Task decomposition is the process of breaking down complex tasks into more specific subtasks or
task steps. The decomposition process requires LLMs to employ sophisticated semantic reasoning
and precise text generation to effectively break tasks down into manageable subtasks that can be
more easily solved.

In our experiments, we utilize GPT-2, Qwen2-7B, and Llama3-8B as the base models of edge agents,
while a BERT-Mini as the adapter model. The cloud-hosted LLM and the edge agent collaborate by
independently performing task decomposition and sharing insights, enhancing their overall problem-
solving capabilities. The experiments are conducted on the Orca-Math-200K (Mitra et al., 2024) and
TaskLAMA (Yuan et al., 2024) datasets to evaluate the effectiveness of the proposed framework.

Table 1: Performance Comparison on LLM Task Decomposition.

Model GPT2 GPT2 Qwen2-7B Qwen2-7B Llama3-8B Llama3-8B
(Optimized) (Optimized) (Optimized)

F1 SIM F1 SIM F1 SIM F1 SIM F1 SIM F1 SIM
Orca-Math-200K 18.4 72.4 18.6 72.9 37.9 85.7 39.4 88.0 50.5 91.7 51.9 92.2

TaskLAMA 3.7 65.3 3.8 65.4 25.3 87.6 27.9 89.4 32.6 88.3 34.7 90.1

The performance comparison results are presented in Table 1. The best results are highlighted in
bold, and the second-best method is underlined. F1 score (F1) and cosine similarity (SIM) are
used to reflect the gap in task decomposition capabilities between the cloud-hosted LLM and the
edge agent. Experiments have shown that cloud-hosted LLMs can improve edge agents’ perfor-
mance in task decomposition, with model size significantly influencing outcomes. Both Qwen2-7B
and Llama3-8B exhibited notable improvements after optimization. The results suggest that for
complex tasks like LLM task decomposition, effective performance is only achievable when model
parameters reach a certain scale, as demonstrated by GPT-2’s clear performance gap compared to
larger models. This aligns with LLM scaling laws, indicating a size threshold necessary for handling
specific tasks.

4.2 TOOL USE

Although LLMs perform well on complex natural language tasks, they may struggle with simpler
tasks that humans handle easily, such as character counting, resulting in high error rates. Recent
advances in tool utilization have shown promise in enhancing LLM capabilities (Qu et al., 2024).
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To validate the proposed approach, we evaluated it on three representative tasks: floating-point
arithmetic, mathematical comparison, and character counting.

We used GPT-2 (1.5B) (Radford et al., 2019) as the edge agent, and Qwen2.5-0.5B (Team, 2024)
as the adapter model. We conducted experiments under three different settings. a) Cloud-Only:
The cloud LLM independently infers the answer. b) Sandwiched Tuning. In an edge-cloud
collaborative framework, the cloud LLM is given an optimized prompt to rephrase the question or
generate a solution formula. The edge agent then uses specific tools (e.g., calculator, floating-point
comparison, character counting) to complete the task. c) Sandwiched Tuning-Edge. After
fine-tuning, only the edge agent is used, leveraging optimized prompts and tool capabilities for task
execution. We computed the success rate (Zhuang et al., 2023) between ground-truth answers and
predicted answers.

For datasets, we used a publicly available dataset (APE-210k) for the mathematical reasoning task
(Zhao et al., 2020). We further created three datasets: “Float-Arithmetic” for real-world floating-
point problems, “Float-Comparison” for comparing two floating numbers, and “character counting”
for counting specific characters in a string. More details are provided in the Appendix A.2.3.

Table 2: Success Rate of Tool Use on Different Settings.

Cloud-Only Sandwiched Tuning Sandwiched Tuning-Edge

Float-Arithmetic 0.580 0.795 0.095
APE-210k 0.525 0.725 0.145

Float-Comparison 0.830 0.967 0.950
Character-Counting 0.670 0.991 0.972

The results in Table 2 show that the sandwiched tuning framework significantly improves perfor-
mance in challenging tasks where LLMs typically perform poorly. By leveraging an edge-cloud
collaborative setup, our method enhances performance in both complex mathematical calculations
and simpler tasks. Specifically, the sandwiched tuning framework achieved the highest success rate
improvement of up to 47.9% in individual tasks, with an average improvement of 33.8% compared
against the cloud-only setup. It is noteworthy that, in the float-arithmetic task, which requires high
reasoning capabilities, the sandwiched tuning framework boosted success rate from 9.5% (edge-
only) to 79.5% by combining the cloud model’s reasoning abilities with the edge model’s tool uti-
lization capabilities.

Table 3: Latency (s) of Float Arithmetic Task.

Cloud-Only Sandwiched Tuning Sandwiched Tuning-Edge

Float-Arithmetic 27.1 19.5 4.5

Furthermore, as shown in Table 3, the proposed cloud-edge architecture can significantly reduce the
latency in the floating-arithmetic task. Although Sandwiched Tuning increases the communication
overhead for transmitting data from the cloud LLM to the edge LLM compared to Cloud-Only meth-
ods, the edge LLM accelerates task inference by invoking tools, thereby significantly reducing the
overall latency. More experiment results on tradeoffs among cloud-edge load distribution, inference
latency, and inference accuracy can be found in Appendix A.2.3.

4.3 MULTI-TURN DIALOGUE GENERATION

Generating high-quality dialogues presents significant challenges, especially in ensuring contextual
relevance and coherence in conversations. Traditional LLMs such as GPT-4 and GPT-3.5 perform
well in general, but their dialogue generation can be improved by incorporating relevant conversation
history. Ensuring that the generated responses remain consistent with prior exchanges, while also
providing new, accurate, and relevant information, is a complex task that requires careful selection
of dialogue examples from historical data.
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In this task, the goal is to generate high-quality dialogues via incorporating relevant conversation
history. We conducted experiments across 6 customer support datasets (derived from Twitter in-
teractions (Axelbrooke, 2017)) to assess the effectiveness of our proposed framework in generating
more accurate and contextually relevant dialogues. We compare 2 strategies in selecting conversa-
tion examples, including Random, which selects dialogue samples without any specific optimiza-
tion; and ICL, which retrieves 5 examples and randomly selects 2 for generation. For our method,
Sandwiched Tuning, which also retrieves 5 dialogues but utilizes an edge agent to determine
the 2 most relevant ones. We report the “Win Rate” used in Dubois et al. (2024) across six datasets,
with the score reflecting how often each method generates higher-quality dialogues compared to its
competitors.

Table 4: Results of Dialogue Generation Quality.

Datasets Methods

Random ICL Sandwiched Tuning

Hulu Support 0.785 0.843 0.864
Sainsburys 0.680 0.765 0.782

Comcastcares 0.744 0.762 0.816
Sprintcare 0.686 0.713 0.761
UPSHelp 0.569 0.616 0.639

XboxSupport 0.699 0.732 0.754
AVG 0.694 0.739 0.769

The results, as shown in Table 4, demonstrate that the Sandwiched Tuning method consistently
surpasses both Random and ICL. Notably, our method achieves up to 7.1% improvement over ICL.
By utilizing an edge agent to intelligently select the most contextually relevant dialogue samples, our
method ensures that the generated conversations are not only accurate but also closely aligned with
the user’s question, without the need to construct specific dialogue states or predefined workflows.

4.4 NATURAL LANGUAGE UNDERSTANDING TASKS

In this section, we evaluate the effectiveness of our framework on a diverse set of NLU tasks.
Table 5 presents the comparison results against baseline methods on text classification, multiple-
choice questions answering (MCQA), and single-turn question answering tasks. The best results
are highlighted in bold, and the second-best method is underlined. We use Manual Prompting,
Zero-shot CoT (Kojima et al., 2022), Random ICL, and OPRO (Yang et al., 2023) as baseline
methods. The above prompt optimization baseline methods all use Qwen-max as the cloud LLM.
Detailed information regarding datasets, prompt templates, baselines, and experimental configura-
tions can be found in Appendix A.2.1.

The proposed sandwiched tuning method consistently achieves superior performance across most
datasets. Notably, the GPT-2 variant outperforms the second-best baseline by margins ranging from
1% to 43% (on the SQuAD dataset). These results validate the efficacy of the sandwiched tun-
ing framework, which leverages grey-box optimization to jointly perform prompt optimization and
fine-tuning. Besides, the LLM-based prompt optimization methods (Sandwiched Tuning and
OPRO) generally perform better than heuristic methods thanks to the semantic understanding capa-
bilities of LLMs. The heuristic prompt optimization methods are not stable, they may achieve good
performance in some scenarios but perform badly at other times. It can also be observed that the
performance of our framework improves with parameter size of the edge LLM agent, which aligns
with the Scaling Laws of LLMs.

4.5 ABLATION STUDY

We conduct ablation experiments and the results are shown in Table 6. ST-Prompt denotes
a stripped-down version of sandwiched tuning that only optimizes the edge LLM agent, and
ST-Adapter only optimizes the adapter model. Sandwiched Tuning outperforms all its
stripped-down versions in our experiments. Consistent with our motivation, the edge LLM agent
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Table 5: Performance comparison on NLU tasks.

Method Manual Zero-shot Random OPRO Ours Ours Ours
Prompt CoT ICL (GPT-2) (Qwen2-7B) (Llama3-8B)

Text Classification (Accuracy)
SST-2 0.714 0.869 0.688 0.879 0.888 0.895 0.920
MRPC 0.733 0.800 0.787 0.853 0.832 0.876 0.884

Tweets Hate 0.924 0.908 0.836 0.947 0.956 0.960 0.980
Wiki Toxic 0.556 0.764 0.336 0.849 0.872 0.912 0.924

FELM 0.588 0.452 0.336 0.560 0.708 0.728 0.780
BoolQ 0.879 0.870 0.880 0.876 0.900 0.908 0.960
WiC 0.702 0.668 0.705 0.713 0.730 0.732 0.736

MCQA (Accuracy)
COPA 0.936 0.844 0.941 0.948 0.960 0.984 0.988
SWAG 0.696 0.708 0.676 0.760 0.768 0.780 0.792

Single-Turn Question Answering (F1 Score)
SQuAD 0.330 0.317 0.641 0.584 0.832 0.840 0.897
DROP 0.185 0.144 0.385 0.203 0.472 0.485 0.502

facilitates the model’s understanding of human intentions, and the adapter model enhances adapta-
tion to downstream tasks.

Table 6: Ablation Study of Different Components of the Sandwiched Tuning Framework.

ST-Prompt ST-Adapter Sandwiched Tuning (GPT-2)
SST-2 0.860 0.850 0.888
MRPC 0.800 0.784 0.832

Tweets Hate 0.940 0.926 0.956
Wiki Toxic 0.890 0.880 0.912

FELM 0.700 0.694 0.708
BoolQ 0.752 0.746 0.768
WiC 0.712 0.704 0.730

5 CONCLUSION

The grey-box prompt optimization and fine-tuning framework introduced in this paper provides a
transformative solution for cloud-edge LLMs, addressing key challenges in balancing security, scal-
ability, and performance. By leveraging a hybrid approach, the proposed framework allows for
the secure processing of private data while taking advantage of the computational power of cloud-
hosted LLMs. The proposed sandwiched tuning algorithm, with its guaranteed non-asymptotic con-
vergence, ensures efficient optimization tailored to the joint prompt optimization and fine-tuning
problem. The extensive experimental results demonstrate the superiority of our sandwiched tuning
method, delivering substantial performance improvements of up to 47.9% over traditional meth-
ods. We hope this work paves the way for more flexible and resilient LLM deployment and tun-
ing, offering a promising path forward for applications requiring both privacy-preserving and high-
performance LLM deployment and tuning solutions.
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