
Normal-GS: 3D Gaussian Splatting with
Normal-Involved Rendering

Meng Wei1 Qianyi Wu1 Jianmin Zheng2 Hamid Rezatofighi1 Jianfei Cai1
1Monash Univeristy 2Nanyang Technological University

{meng.wei,qianyi.wu,hamid.rezatofighi,jianfei.cai}@monash.edu
{ASJMZheng}@ntu.edu.sg

Abstract

Rendering and reconstruction are long-standing topics in computer vision and
graphics. Achieving both high rendering quality and accurate geometry is a chal-
lenge. Recent advancements in 3D Gaussian Splatting (3DGS) have enabled
high-fidelity novel view synthesis at real-time speeds. However, the noisy and
discrete nature of 3D Gaussian primitives hinders accurate surface estimation.
Previous attempts to regularize 3D Gaussian normals often degrade rendering
quality due to the fundamental disconnect between normal vectors and the ren-
dering pipeline in 3DGS-based methods. Therefore, we introduce Normal-GS, a
novel approach that integrates normal vectors into the 3DGS rendering pipeline.
The core idea is to model the interaction between normals and incident lighting
using the physically-based rendering equation. Our approach re-parameterizes
surface colors as the product of normals and a designed Integrated Directional
Illumination Vector (IDIV). To save memory usage and simplify the optimization,
we employ an anchor-based 3DGS to implicitly encode locally-shared IDIVs. Ad-
ditionally, Normal-GS leverages optimized normals and Integrated Directional
Encoding (IDE) to accurately model specular effects, enhancing both rendering
quality and surface normal precision. Extensive experiments demonstrate that
Normal-GS achieves near state-of-the-art visual quality while obtaining accurate
surface normals and preserving real-time rendering performance.

1 Introduction

Radiance Fields have emerged as a prominent representation in 3D vision, largely propelled by the
pioneering advancements of Neural Radiance Fields (NeRF) [1]. Despite their success, NeRFs are
hindered by prolonged rendering times and cumbersome training processes. Recently, 3D Gaussian
Splatting (3DGS) has been introduced to represent Radiance Fields using millions of 3D Gaussians,
each endowed with additional attributes such as opacity and color [2]. 3DGS significantly enhances
rendering efficiency through CUDA-accelerated rasterization [3], achieving comparable or superior
fidelity to NeRF-based models. The advantages of 3DGS have garnered significant attention [4],
prompting numerous studies aiming at enhancing its rendering capabilities [5–7] and improving the
quality of its underlying geometry [8–10].

However, a critical issue continues to plague the development of 3DGS: the quality of appearance
and geometry seemingly oscillates like a seesaw. Efforts to refine the geometry often involve the
incorporation of regularization techniques [8, 11] or additional geometry supervision [12, 13], which
may compromise rendering fidelity. Conversely, advancements in appearance modeling, such as the
integration of implicit networks [6] and sophisticated shading attributes [5, 7], struggle to concurrently
elevate both appearance and geometry quality. This raises a pertinent question: Is it feasible to achieve
a high-quality appearance while also capturing precise underlying geometry information in 3DGS?

38th Conference on Neural Information Processing Systems (NeurIPS 2024).



Figure 1: The "seesaw" characteristic between the rendering quality and the normal accuracy of
3DGS-based methods. Our Normal-GS is able to efficiently achieve accurate normal estimation
while preserving competitive rendering quality. Our method successfully captures the normals of the
cover of the semi-transparent box behind the table.

Revisiting the classical rendering equation [14], we identify a fundamental issue in the appearance-
geometry conflict: the disconnection between surface normals and the rendering process in current
3DGS methods. Specifically, the existing methods render pixel colors by alpha-blending colored 3D
Gaussians. The color of each Gaussian is queried by the function value among Spherical Harmon-
ics [15] along the ray direction, which disregards the contributions of surface normals. This oversight
hampers the ability to achieve a balanced integration of appearance and geometry. Our framework
draws inspiration from the conventional rendering equation, which incorporates surface normals
into appearance calculations. Although prior attempts have explored this integration in contexts
such as inverse rendering [16, 17] and specular appearance modeling [7, 5], they leverage simplified
model [18] or approximation approaches like split-sum [19] or global environmental map [20, 21]
to decompose appearance into several individual components with meticulous regularization terms,
which either compromising in rendering quality or geometric accuracy. This challenge highlights the
complexity of balancing various components for physically-based rendering, prompting our design
of a straightforward method to integrate normal information explicitly and simply into Gaussian
appearance modeling.

In this work, we propose a normal-involved shading for 3DGS, called Normal-GS, for high-quality
rendering and accurate normal estimation, while maintaining real-time performance. Our method
directly accounts for normal contributions in the 3DGS rendering pipeline, enabling gradient signals
to backpropagate properly to better align 3D Gaussians. Specifically, Normal-GS considers the
normal and incident lighting interactions at the surface from the physically-based shading perspective
and explicitly models normals’ contributions for diffuse and specular components. By considering
the low-frequency nature of the incident light field, we further implicitly model it with MLPs. With
our strategy, compared with the state-of-the-art (SOTA) 3DGS methods, we achieve competitive
rendering quality, more accurate normal information, and real-time rendering, see one example
in Fig. 1. Our contributions are summarized below.

• We propose a new formulation to involve normal information in appearance modeling for
3DGS, which strives for a good balance between appearance and geometry modeling.

• We leverage an effective structure to regularize our framework using anchor-based MLPs,
without introducing many extra regularization terms and achieving better quality.

• Extensive experiments demonstrate our framework for obtaining superior view synthesis and
normal estimation. Our design could serve as a plug-in component for 3DGS approaches.

2 Related Works

Radiance Fields: From Neural Radiance Fields to 3D Gaussian Splatting. Neural Radiance
Field (NeRF) has significantly influenced the field of 3D vision with its impressive novel view
synthesis capabilities [1]. NeRF catalyzed advancements in neural rendering, inspiring a multitude of
subsequent research focused on enhancing rendering quality under complex lighting and material
conditions [22–24], varying camera distributions [25–27], and scalability for large scenes [28–30].

2



However, the implicit representation used in NeRF, which relies on a Multi-layer Perceptron (MLP)
to compute density and radiance for any given 3D position and ray direction, necessitates extensive
computations. This inefficiency has spurred efforts to enhance the practicality of NeRF, with notable
strides made in accelerating its processing efficiency [2, 31, 32].

Among these advancements, 3D Gaussian Splatting (3DGS) has emerged as a promising solution
[2]. By explicitly modeling 3D scenes using sets of 3D Gaussians and employing tile-based GPU
rasterization, 3DGS achieves real-time rendering with competitive quality. Its success has spurred
applications in areas like 3D generation [33, 34], physical simulation [35], and sparse view recon-
struction [36, 37], despite its higher memory requirements for scene representation. Innovations
such as feature anchoring in Scaffold-GS [6], value pruning and quantization techniques [38–40] and
mining spatial relationship [41–43] are among the efforts to reduce the memory footprint of 3DGS,
thereby enhancing storage efficiency and rendering fidelity.

Geometry and Appearance in 3DGS: From Surface Reconstruction to Inverse Rendering.
Geometry and appearance are central to 3D reconstruction, and the discrete and explicit nature of
3DGS can result in noisy underlying geometry [8, 10, 11, 13, 44]. SuGaR [8] was an initial attempt
to refine mesh extraction from 3DGS, applying regularization to align the Gaussian Splatting with
the actual surface contours. To better define geometry, capturing normal information is essential,
leading to innovations like transforming 3DGS into 2D Gaussian Splatting (2DGS) and Gaussian
Surfels [10, 44]. These methods apply regularization to depth and normal rendering, ensuring that
the Gaussians are appropriately distributed across surfaces. While these approaches improve surface
reconstruction, they often sacrifice rendering fidelity in novel view synthesis due to the lack of a clear
relationship between geometry and appearance [7, 10, 44].

In appearance modeling, the focus has shifted to inverse rendering for 3DGS, which aims to separate
scene elements into materials, lighting, and geometries. This inherently unconstrained problem
challenges traditional rendering equations. Techniques such as Monte Carlo integration, point-based
ray tracing [17, 45], and baking [16] are employed to handle the complex integrals, often relying
on simplified models like the Disney Bidirectional Reflectance Distribution Function (BRDF) [18]
and approximation methods such as split-sum [16, 17, 45, 46] or environmental mapping [7, 46, 47].
Despite their efforts, these simplifications generally result in lower rendering quality, as reflected in
reduced Peak Signal-to-Noise Ratios (PSNR) [16, 17, 45], failing to match the original 3DGS.

It is worth noting that some concurrent works [47, 48] have a similar motivation as ours. [48]
simultaneously enhance geometry accuracy and rendering quality by incorporating a laborious dual-
branch framework, which uses 3DGS for appearance rendering and an implicit neural surface for
geometry production. While this approach integrates the strengths of each system, it is hampered
by slower training speeds relative to standalone 3DGS, due to its additional networks for surface
representation. [47] also distills geometry information from an extra neural implicit surface network
for deferred rendering. Our solution proposes a new perspective from a rendering standpoint to
consider geometry and appearance simultaneously without an extra implicit network for the surface.

3 Method

Our goal is to simultaneously enhance both image quality and normal estimation capability of 3DGS,
while maintaining real-time rendering. To achieve this, we first analyze the existing rendering
pipeline in 3DGS to identify its limitations in not involving surface normals in color modeling
(Sec. 3.1). We then design a normal-involved rendering strategy that aligns with the physically
based rendering equation. Our method effectively models interactions between normals and incident
lighting, parameterized by the proposed Integrated Directional Illumination Vectors (IDIV) (Sec. 3.2).
We employ an anchor-based GS to implicitly encode locally shared IDIVs to save memory and aid
optimization (Sec. 3.3). The training details of our framework are provided in Sec. 3.4.

3.1 Preliminary

3D Gaussian Splatting [2]. 3DGS models scenes using a set of discrete 3D Gaussians, each defined
by its spatial mean µ and covariance matrix Σ:

G(p) = exp(−1

2
(p− µ)TΣ−1(p− µ)). (1)

3



The covariance matrix Σ is parameterized by a scaling matrix S and a rotation matrix R, such that
Σ = RSSTRT , ensuring it remains positive semi-definite during optimization.

Each 3D Gaussian is associated with a color c and an opacity α. During rendering, these Gaussians
are projected (rasterized) onto the image plane, forming 2D Gaussian splats G′(x), as described in [3].
The 2D Gaussian splats are sorted from front to back tile-wisely, and α-blending [49] is performed
for each pixel x to render its color as follows:

C(x) =
∑
i∈N

ciσi

i−1∏
j=1

(1− σj), σi = αiG
′
i(x) (2)

where N specifies the number of 2D Gaussian splats covering the current pixel. Heuristic densification
and pruning strategies [2] are employed to address potential under- and over-reconstruction and
ensure multi-view consistency in rendered images.

The color of each Gaussian, c, is represented by Spherical Harmonics (SH) as kml Y m
l (ωview) to

provide view-dependent effects, where (l,m) is the degree and order of the SH basis Y m
l , kml is

the corresponding SH coefficient, and ωview specifies the viewing direction. 3DGS usually uses a
maximum degree l of 3, formulating c(ωview) =

∑3
l=0

∑l
m=−l k

m
l Y m

l (ωview).

In Eq. (2), standard 3DGS treats colors as intrinsic attributes, independent of surface normals. This
independence prevents surface normals from receiving gradient signals during the backpropagation
pass when optimizing surface colors. Moreover, this separation significantly undermines our goal of
simultaneously enhancing image quality and normal estimation capability, since improvements in
normals cannot contribute to the rendering quality in the forward shading pass of 3DGS.

3.2 Normal-Involved Shading Strategy

Physically Based Rendering. To integrate surface normals into both the backward and forward
rendering passes of 3DGS effectively, we propose a normal-involved rendering strategy. This strategy
adopts principles from physically based surface rendering [14] in computer graphics, which models
the out radiance Lout of a surface point as a function of the incident lighting Lin and normals.
Specifically, for each 3D point, its out-radiance in the outward direction ωo = −ωview is defined as:

c(ωview) = Lout(ωo) = LE(ωo) +

∫
Ω+

Lin(ωi)(ωi · n)fr(ωi,ωo) dωi (3)

where LE is the emitted radiance along the outward direction, the integral is defined over the upper
hemisphere Ω+ of the surface; ωi is the incident light direction; BRDF fr(·) describes how light is
reflected from ωi to ωo; the cosine term (ωi · n) accounts for the light geometric attenuation.

Integrated directional illumination vectors for Lambertian objects. We first consider a simple
ideal case where the scene contains only Lambertian objects. For more complex materials, we handle
them in Sec. 3.4. Given that the diffuse reflection of Lambertian objects is view-independent, the
complicated BRDF function fr(·) can be reduced to a spatially varying albedo term kD. Omitting the
emitted radiance LE, the rendering equation accounting for the diffuse reflectance LD becomes:

LD =

∫
Ω+

Lin(ωi) · kD · (ωi · n) dωi = kD

∫
Ω+

Lin(ωi)(ωi · n) dωi. (4)

We want to find a way to explicitly re-parameterize LD as a function of normal n, meanwhile avoiding
complicated integrals to save time. Specifically, we want to represent LD as a dot product between
n and some illumination vector l. Inspired by the traditional shape-from-shading strategy [50], we
extract the normal out of Eq. (4):

LD = kD · n ·
[∫

Ω+

Lin(ωi)ωi dωi

]
. (5)

By defining a new term called “integrated directional illumination vector (IDIV)” as

l =

∫
Ω+

Lin(ωi)ωi dωi, (6)

we model the color for Lambertian objects as the albedo times a dot product between IDIV and the
surface normal: c = LD = kD · n · l. Compared with the original 3DGS and the method [7] that
directly use a constant diffuse color, our re-parameterization successfully accounts for the normal’s
contributions to the diffuse component of surface colors.

4



Figure 2: Our normal-involved GS, Normal-GS, reparameterizes the original colors into the diffuse
and specular components, c = LD +LS (bottom). It models the diffuse component as the dot product
between the normal vector n and the Integrated Directional Illumination Vector (IDIV) l, and utilizes
the Integrated Directional Encoding (IDE) [22] to capture view-dependent specular effects. Inherent
parameters are encoded implicitly by a locally shared anchor Gaussian (left) and decoded using
MLPs (top). Our method accounts for the contributions of normals to colors, effectively enhancing
geometry accuracy and rendering quality.

Analysis. Our re-parameterization of the diffuse color enables the normal vector to be computation-
ally involved in the rendering pass. As such, during backpropagation, by the chain rule, the surface
color could pass gradient signals to the normal vectors as follows

dL
dn

=
dL
dc

· dc

dn
=

dL
dc

· (kD · l). (7)

Other image-based methods [7, 16, 46] usually optimize a single environment map E and query this
map using normals to determine diffuse colors. Consequently, their gradients on normals function by
rotating the 3D Gaussians until the queried environment map color matches the pixel color, making
the optimization process heavily dependent on the quality of E. These methods assume the existence
of a global environment map, which may not be valid for general real scenes. In contrast, our
approach employs IDIVs to capture local incident lighting, eliminating the reliance on such a strong
assumption and providing a more flexible and accurate framework for optimizing surface normals.

3.3 Modeling Locally Shared Integrated Directional Illumination Vectors

Replacing 3D Gaussian colors c with kD · n · l introduces additional free parameters. Therefore, it is
necessary to regularize the solution space of the introduced variables kD and l to stabilize the training
process and avoid overfitting.

Regularizing the solution space. Xu et al. [50] address solution space constraints from an opti-
mization perspective. They have introduced several regularizers, such as total variation and Laplacian
terms, to enhance the performance. However, their mesh-based method relies on a connected topology,
which is incompatible with the discrete and sparse nature of 3D Gaussians. Although k-NN can be
used to find connected primitives, it severely hampers training speed. Moreover, since 3D Gaussians
can be semi-transparent, directly applying their methods to our case is unsuitable.

Instead, we approach the problem from a neural rendering perspective. As observed in [6, 42, 51, 52],
3D Gaussians with similar textures usually cluster together. A similar situation applies to incident
lighting, which tends to be locally shared and exhibits low-frequency variations. To avoid the
redundancy of storing Integrated Directional Illumination Vectors (IDIVs) for each Gaussian and
capture local coherence, we propose to encode IDIVs with locally shared features and decode
them using MLPs. An additional advantage of using MLPs to approximate IDIVs is their inherent
smoothness in function approximations, aligning with our objectives.

In particular, we employ an anchor-based Gaussian Splatting (GS) method, Scaffold-GS [6], to
implicitly represent IDIVs using locally shared features fv stored at anchors v and decode them using

5



a global MLP, θl(fv) = {lkv}Kk=1, where K IDIVs share a local feature fv . Therefore, we only need
to learn a compact set of per-anchor local features and use the MLP to generate per-Gaussian IDIVs,
significantly reducing the dimensionality of the problem. Further details on our model configurations
can be found in the following Sec. 3.4 and Appendix A.2.

3.4 Training Details

Our method adopts the established 3DGS pipeline [2], which first performs Structure-from-Motion
[53] on input images to generate sparse points. These points serve as initial 3D Gaussians and are
optimized to model the scene.

Defining surface normals on 3D Gaussians. During optimization, 3D Gaussians often exhibit
flatness around the surface areas, as observed in [5, 7, 45]. For a near-flat Gaussian ellipsoid, its
shortest axis thus functions as the normal vector. However, the shortest axis of 3D Gaussians does
not physically represent the actual surface normal. In contrast, implicit radiance fields leverage the
gradient of densities to naturally approximate surfaces, and the Signed Distance Function (SDF) has
its gradients as surface normals by definition. To make the shortest axis of 3D Gaussians align with
the real surface normal, we employ a depth regularized loss term on normals, similar to [7, 10, 44].

We first render the depth and normal images, {D,N}, using the 3DGS tile-based rasterizer, which is
achieved by replacing the color term in Eq. 2 with depths and normals of 3D Gaussians, respectively.
Then we compute the image-space gradients of the depth image ∇(u,v)D and finally perform the
cross product of the gradients, resulting in ND. The depth regularized loss term on normals is defined
as LN = 1−ND · N . Although there are other methods for improving normals, since our primary
goal is to introduce a normal-involved shading method, we find this self-regularizer is enough for our
models. Other methods are welcome to be combined with our strategy for future improvements.

Capturing specular effects. Our derivation on Sec. 3.2 is based on the Lambertian assumption.
To make our framework more generalizable, similar to our parameterization of the diffuse term, we
aim to express the specular term, Ls, as a function of the normal vector n. Unlike view-independent
diffuse colors, specular reflectance is highly sensitive to the view direction due to the complex
BRDF, fr(ωi,ωo). Since normal vectors are implicitly involved in the BRDF to capture effects
such as the Fresnel effect [18], we cannot directly extract the normal vector as we did for IDIVs
in Sec. 3.2. Inspired by the Ref-NeRF [22], we model the specular component as a function of the
reflection direction of the viewing direction with surface normals involved: ωr = 2(ωo · n)n− ωo.
By applying the Integrated Directional Encoding (IDE) [22] on the reflection direction, we have
LS = θ(ϕIDE(ωr),n,fv). The final color of the Gaussian is the summation of LD and LS. More
details can be found in the Appendix.

Model architecture. Figure. 2 illustrates the whole process of our method. We follow [6] to define
a set of anchor Gaussians {v}, where each v is associated with a position xv, a local feature fv, a
scaling factor sv and k offsets Ok

v for k nearby 3D Gaussians. Anchor-wise features together with
global MLPs are employed to predict attributes of 3D Gaussians. We utilize our normal-involved
rendering to compute surface colors c = LD+LS. Colors are finally gathered following the traditional
3DGS pipeline, together with rendered normals and depths for self-regularization. The final loss L
consists of the original photo-metric loss LP used in 3DGS [2], the volume regularization loss Lvol
used in Scaffold-GS [6] and the self-regularized depth-normal loss LN :

L = LP + λvolLvol + λNLN . (8)

4 Experiments

We evaluated our Normal-GS method against several state-of-the-art 3DGS-based methods across
multiple datasets, presenting both qualitative and quantitative results.

Baselines. We selected the following baseline methods for comparison: 1) 3DGS [2] and Scaffold-
GS [6]: These served as the vanilla and baseline methods. 2) GaussianShader (GShader) [7] and
SpecGaussian [5]: These 3DGS-based methods modeled specular effects and used surface normals.
Both methods computed the reflected direction ωr of the viewing direction w.r.t the normal. GShader

6



Figure 3: Qualitative comparisons of the rendering quality and normal estimation. Our method
produced clean normals estimation and preserved good rendering quality.

used ωr to query a learned environment map for shading, while SpecGaussian used ωr to query the
learned Spherical Gaussians. Additionally, we designed a new baseline method based on Scaffold-
GS. In the original Scaffold-GS, anchor features fv were passed into a color MLP to predict 3D
Gaussian colors. In our new baseline method, we also fed normals into the same color MLP, implicitly
incorporating normal information. We referred to this baseline method as 3) ScaffoldGS w/ N.

Datasets and evaluation metrics. We followed the original 3DGS [2] methodology and used the
NeRF Synthetic [1], Mip-NeRF 360 [26], Tank and Temple [54], and Deep Blending [55] datasets to
demonstrate the performance of our method. Due to licensing issues, we tested on 7 out of 9 scenes
in the Mip-NeRF 360 dataset. Following [2, 26], we selected every 8th image for testing and used the
remaining images for training. We reported PSNR, SSIM, and LPIPS to measure rendering quality
and the Mean Angular Error (MAE) of normals on the NeRF Synthetic [1] dataset.

Implementation details. We implemented our method in Python using the PyTorch framework
[56]. Our rasterization pipeline followed the CUDA-based rasterizer described in [2]. We trained
our models for 30k iterations, following the settings of baseline methods. Consistent with [2, 6],
we set λvol = 0.001. For the depth-normal loss, we used λN = 0.01. Because the depth and
normals were inaccurate at the start of training, we added the depth-normal loss after training for 5k
iterations. We will release our code after publication. More implementation details were included in
the Appendix A.2.

We tested our method and the baseline methods using their original released implementations with
default hyperparameters on an NVIDIA RTX 3090 GPU with 24 GB of memory. To obtain normals
for comparisons, we retrained most of the baseline methods, except for 3DGS, which provided its
optimized data. For methods without defined normals, such as 3DGS [2] and Scaffold-GS [6], we
used the shortest axis of 3D Gaussians as normals for evaluation, consistent with ours.

4.1 Results

We first present a comprehensive comparison of rendering quality and normal estimation in Fig.3,
demonstrating that our method either matches or surpasses state-of-the-art (SOTA) approaches in
metrics of PSNR/SSIM/LPIPS (Tab.1). Notably, our approach significantly outperforms the baseline

7



Table 1: Quantitative comparisons of the rendering quality. Our methods achieve comparable or
even better results compared with the SOTA approach, SpecGaussian [5]. However, SpecGaussian
performs much worse in normal estimation, while ours achieves a good balance between geometry
and appearance quality. † denotes the results quoted from their paper. GShader* fails on the Deep
Blending scene.

Mip-NeRF360 Tanks & Temples Deep Blending

Method PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

3DGS† 28.691 0.870 0.182 23.142 0.840 0.183 29.405 0.903 0.243
ScaffoldGS 29.267 0.869 0.190 24.088 0.851 0.175 30.140 0.905 0.256
ScaffoldGS w/ N 29.177 0.870 0.192 23.976 0.852 0.176 30.163 0.905 0.263
GShader 26.060 0.825 0.233 21.262 0.785 0.254 19.159* 0.769* 0.453*
SpecGaussian 29.287 0.864 0.196 24.502 0.855 0.175 30.114 0.905 0.252

Normal-GS (Ours) 29.341 0.869 0.194 24.219 0.854 0.174 30.187 0.910 0.252

Figure 4: b) Our method successfully captures specular effects. c) GShader [7] relying on an
environment map performs poorly when d) its learned environment map fails. Scenes are taken from
the Mip-NeRF 360 dataset [26], which have complicated lighting conditions.

method (ScaffoldGS) and its variant incorporating normals (ScaffoldGS w/ N) in almost all metrics.
This comparison underscores the limitations of the implicit normal utilization in ScaffoldGS w/N,
which fails to accurately model appearance. In contrast, our method adopts an explicit modeling of
color as a function of normals, directly derived from the rendering equation. This explicit integration
enhances both the forward and backward passes during training, providing clearer cues for the
network to capture nuanced color details, thereby improving rendering quality.

Our approach also demonstrates superior rendering performance compared to methods like
GShader [7], which depend on global environment maps to model specular effects, as evidenced in
Tab. 1. The dependency of normal gradients on environment map quality, described by the equation
dL
dN = dL

dE
dE
dN [7, 47], often leads to inaccuracies in capturing detailed information, as shown in Fig.4

and further evidenced by performance issues on challenging datasets like DeepBlending[55] in Tab. 1.
Our framework’s capability to learn local incident light field attributes tied to distinct anchors in 3D
space allows for more effective handling of complex lighting effects.

Although SpecGaussian [5] achieves competitive rendering quality through the use of Spherical
Gaussian encoding and neural networks, it falls short in accurate normal modeling, as depicted in
Fig.3. This suggests the insufficiency of relying solely on neural networks for integrating normal
information into geometric modeling. Our method, with its explicit integration of normals into
the rendering process, not only maintains high rendering quality but also ensures the accuracy and
smoothness of normals. Our approach underscores the crucial role of direct geometric involvement in
the rendering pipeline for achieving both high geometric accuracy and visual fidelity. More results
are available in Appendix A.3.

To quantitatively evaluate normal estimation, we conducted tests on the Synthetic-NeRF dataset,
which includes ground-truth normal data. As shown in Tab. 2(a), our method outperforms others
in the normal Mean Angular Error (MAE) metric. Visual results in Tab. 2(b) confirm our method’s
superior capability in capturing accurate geometry alongside high-fidelity rendering, as highlighted
in the yellow box, showcasing the effectiveness of our design.

4.2 Ablation studies

Our contributions are significant in two key areas: the integration of Integrated Directional Illu-
mination Vectors (IDIV) and the implementation of an anchor-based regularization design. We

8



Table 2: Comparison on Synthetic-NeRF dataset. (a) The numerical results on normal consistency.
Our method achieved state-of-the-art results among all methods. (b) We visualized the rendered
normals for qualitative comparison. Our framework produced the best geometry.

Normals MAE ↓
SpecGaussian [5] 45.98

ScaffoldGS [6] 25.56
GShader [7] 23.56

Normal-GS (Ours) 20.71

(a) Normals comparision (b) Visualization of rendered normals

Figure 5: Ablation study about our proposed components. The IDIV together with our regulariza-
tion strategy produces better quality in rendering quality and normal accuracy.

initially validate the impact of IDIV through an ablation study conducted within a conventional 3DGS
framework, detailed in Sec. 3.2. Introducing IDIV necessitates additional parameters, requiring the
adoption of regularization techniques such as Laplacian and Total-Variation loss, referenced in [50].
The outcomes, illustrated in Fig. 5 (a) and (b), demonstrate substantial enhancements in rendering
quality and the smoothing of normals.

However, we found that the model’s performance is highly sensitive to the tuning of loss weights. To
address this, we implemented an anchor-based IDIV regularization strategy in Sec. 3.3 with results
illustrated in Fig. 5 (c). This approach employs neural networks to model locally shared IDIVs,
proving to be both robust and efficient in regularizing the solution space. Notably, the simplicity
yet effectiveness of our final loss term, defined in Eq. 8, underscores the potential of our design to
enhance both geometric and rendering quality. When considering the specular component, our full
(Fig. 5 (d)) model achieves superior results.

We also performed quantitative ablation stud-
ies on the DTU dataset [57] to further vali-
date the effectiveness of our components. The
DTU dataset contains 15 scenes, each with
scanned geometries provided as ground truth.
We conducted the ablation study by compar-
ing the mean Chamfer distance (mCD) for
geometry accuracy and PSNR for rendering

Table 3: Quantitative ablation studies on DTU.

Model mCD ↓ PSNR ↑
(a): Scaffold-GS [6] 1.84 38.14
(b): (a) + LN 0.95 35.90
(c): (b) + Lspecular 0.93 37.37
(d): Full model 0.94 37.63

quality evaluation. We followed [44] to pre-process the data, extract meshes and evaluate obtained
results. As shown in Tab. 3, our base model is Scaffold-GS [6]. We add the self-regularized depth-
normal loss, LN , as defined in Sec.3.4. The results of (b) in Tab. 3 indicate that the depth-normal
loss can significantly improve the geometry quality but ruin the rendering with more than 2dB PSNR
drop. Then we introduce the specular component into (b), which can improve the rendering quality

9



Table 4: Rendering quality comparisons with NeRF-
based methods on the Mip-NeRF 360 dataset.

Method PSNR ↑ SSIM ↑ LPIPS ↓
Mip-NeRF 360 [26] 29.231 0.844 0.207
Ref-NeRF [22] 28.553 0.849 0.196
Zip-NeRF [58] 30.077 0.876 0.170
Ours 29.341 0.869 0.194

Table 5: Geometric and rendering qual-
ity comparisons on the DTU dataset.

Method mCD ↓ PSNR ↑
3DGS [2] 1.96 35.76
SuGaR [8] 1.33 34.57
2DGS [44] 0.80 34.52
Ours 0.94 37.63

without compromising the geometry, which further assures the importance of involving normal into
the rendering. Finally, we add the proposed IDIV to get our final model (d), which further improves
the PSNR by more than 0.2 dB with similar geometry quality. Compared with the base model (a), our
full model achieves a better balance between the geometry quality and the rendering fidelity.

4.3 Geometric reconstruction comparisons

In addition to evaluating normal accuracy, we compare the overall geometry quality of our method
with existing 3DGS-based approaches [2, 8, 44] on the DTU dataset [57]. For a fair comparison, we
follow the pipeline described in [44] and measure the mean Chamfer distance (mCD) and PSNR to
assess both geometric reconstruction and rendering quality. The results for 3DGS [2], SuGaR [8],
and 2DGS [44] are directly adopted from [44]. As Tab. 5 illustrates, our method achieves outstanding
rendering quality while maintaining better geometric quality than 3DGS and SuGaR. 2DGS, however,
sacrifices some rendering fidelity in novel view synthesis due to the lack of a clear relationship
between geometry and appearance, as seen in Tab. 5. Unlike 2DGS, our method explicitly addresses
the interactions between lighting and normals. It is also worth noting that 2DGS and our approach
are conceptually orthogonal and could potentially be combined for further improvements.

4.4 Comparisons with NeRF-based methods

Finally, for completeness, we conduct comparisons with existing state-of-the-art NeRF-based methods,
including Mip-NeRF 360 [26], Ref-NeRF [22], and Zip-NeRF [58]. In Tab. 4, we present their original
results for 7 out of the 9 scenes from the Mip-NeRF 360 dataset [26], aligning with our experimental
setup. Our method performs the second best in terms of the PSNR and achieves comparable SSIM
and LPIPS scores. However, the training time for Zip-NeRF exceeds 10 hours on high-performance
GPUS. In contrast, 3DGS-based methods, including ours, are relatively fast and can support real-time
rendering, offering a significant speed advantage over NeRF-based approaches.

5 Discussions

Conclusion. We introduce a novel shading technique within the 3D Gaussian Splatting (3DGS)
framework to improve view synthesis and normal estimation. By integrating Directional Illumination
Vectors (IDIV) as advanced attributes for color representation and utilizing an anchor-based design
with a neural MLP for IDIV prediction, our approach achieves a superior balance between rendering
quality and geometric accuracy. This enhancement not only elevates image fidelity but also ensures
precise normal estimations, pushing the boundaries of 3DGS technology in real-world applications.

Limitation and Future Work. We acknowledge existing limitations within our framework. Notably,
the self-regularized normal loss proves suboptimal for certain outdoor scenes at a distance (as
observed in the Appendix 7), negatively impacting rendering quality in these regions. This issue
could potentially be addressed with more sophisticated normal guidance techniques. In future research,
we plan to delve into a more granular decomposition of the Integrated Directional Illumination Vectors
(IDIV) and specular components. This exploration aims to enhance capabilities in texture editing and
relighting, thereby broadening the practical applications of our framework.

Boarder Impact. As our approaches require per-scene optimization to obtain the 3D model for each
scene, the computational resources for model training could be a concern for global climate change.

10



References

[1] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng.
Nerf: Representing scenes as neural radiance fields for view synthesis. Communications of the ACM, 65
(1):99–106, 2021.

[2] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkuehler, and George Drettakis. 3d gaussian splatting
for real-time radiance field rendering. ACM Transactions on Graphics, 42(4):1–14, August 2023. ISSN
0730-0301, 1557-7368. doi: 10.1145/3592433.

[3] M. Zwicker, H. Pfister, J. van Baar, and M. Gross. Ewa volume splatting. In Proceedings Visualization,
2001. VIS ’01., pages 29–538, 2001. doi: 10.1109/VISUAL.2001.964490.

[4] Tong Wu, Yu-Jie Yuan, Ling-Xiao Zhang, Jie Yang, Yan-Pei Cao, Ling-Qi Yan, and Lin Gao. Recent
advances in 3d gaussian splatting. arXiv preprint arXiv:2403.11134, 2024.

[5] Ziyi Yang, Xinyu Gao, Yangtian Sun, Yihua Huang, Xiaoyang Lyu, Wen Zhou, Shaohui Jiao, Xiaojuan Qi,
and Xiaogang Jin. Spec-gaussian: Anisotropic view-dependent appearance for 3d gaussian splatting. arXiv
preprint arXiv:2402.15870, 2024.

[6] Tao Lu, Mulin Yu, Linning Xu, Yuanbo Xiangli, Limin Wang, Dahua Lin, and Bo Dai. Scaffold-gs:
Structured 3d gaussians for view-adaptive rendering. In 2024 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2024.

[7] Yingwenqi Jiang, Jiadong Tu, Yuan Liu, Xifeng Gao, Xiaoxiao Long, Wenping Wang, and Yuexin Ma.
Gaussianshader: 3d gaussian splatting with shading functions for reflective surfaces. In Conference on
Computer Vision and Pattern Recognition (CVPR), 2024.

[8] Antoine Guédon and Vincent Lepetit. Sugar: Surface-aligned gaussian splatting for efficient 3d mesh
reconstruction and high-quality mesh rendering. In Conference on Computer Vision and Pattern Recognition
(CVPR), 2024.

[9] Kai Cheng, Xiaoxiao Long, Kaizhi Yang, Yao Yao, Wei Yin, Yuexin Ma, Wenping Wang, and Xuejin Chen.
Gaussianpro: 3d gaussian splatting with progressive propagation. arXiv preprint arXiv:2402.14650, 2024.

[10] Pinxuan Dai, Jiamin Xu, Wenxiang Xie, Xinguo Liu, Huamin Wang, and Weiwei Xu. High-quality surface
reconstruction using gaussian surfels. In SIGGRAPH 2024 Conference Papers. Association for Computing
Machinery, 2024. doi: 10.1145/3641519.3657441.

[11] Hanlin Chen, Chen Li, and Gim Hee Lee. Neusg: Neural implicit surface reconstruction with 3d gaussian
splatting guidance. arXiv preprint arXiv:2312.00846, 2023.

[12] Jiahe Li, Jiawei Zhang, Xiao Bai, Jin Zheng, Xin Ning, Jun Zhou, and Lin Gu. Dngaussian: Optimizing
sparse-view 3d gaussian radiance fields with global-local depth normalization. In Conference on Computer
Vision and Pattern Recognition (CVPR), 2024.

[13] Matias Turkulainen, Xuqian Ren, Iaroslav Melekhov, Otto Seiskari, Esa Rahtu, and Juho Kannala. Dn-
splatter: Depth and normal priors for gaussian splatting and meshing. arXiv preprint arXiv:2403.17822,
2024.

[14] James T Kajiya. The rendering equation. In Proceedings of the 13th annual conference on Computer
graphics and interactive techniques, pages 143–150, 1986.

[15] Ernest William Hobson. The theory of spherical and ellipsoidal harmonics. CUP Archive, 1931.

[16] Zhihao Liang, Qi Zhang, Ying Feng, Ying Shan, and Kui Jia. Gs-ir: 3d gaussian splatting for inverse
rendering. In Conference on Computer Vision and Pattern Recognition (CVPR), 2024.

[17] Jian Gao, Chun Gu, Youtian Lin, Hao Zhu, Xun Cao, Li Zhang, and Yao Yao. Relightable 3d gaussian:
Real-time point cloud relighting with brdf decomposition and ray tracing. In Conference on Computer
Vision and Pattern Recognition (CVPR), 2024.

[18] Brent Burley and Walt Disney Animation Studios. Physically-based shading at disney. In Acm Siggraph,
volume 2012, pages 1–7. vol. 2012, 2012.

[19] Brian Karis and Epic Games. Real shading in unreal engine 4. Proc. Physically Based Shading Theory
Practice, 4(3):1, 2013.

11



[20] Ned Greene. Environment mapping and other applications of world projections. IEEE computer graphics
and Applications, 6(11):21–29, 1986.

[21] Ravi Ramamoorthi and Pat Hanrahan. An efficient representation for irradiance environment maps. In
Proceedings of the 28th annual conference on Computer graphics and interactive techniques, pages
497–500, 2001.

[22] Dor Verbin, Peter Hedman, Ben Mildenhall, Todd Zickler, Jonathan T Barron, and Pratul P Srinivasan.
Ref-nerf: Structured view-dependent appearance for neural radiance fields. In 2022 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages 5481–5490. IEEE, 2022.

[23] Yao Yao, Jingyang Zhang, Jingbo Liu, Yihang Qu, Tian Fang, David McKinnon, Yanghai Tsin, and Long
Quan. Neilf: Neural incident light field for physically-based material estimation. In European Conference
on Computer Vision, pages 700–716. Springer, 2022.

[24] Jingyang Zhang, Yao Yao, Shiwei Li, Jingbo Liu, Tian Fang, David McKinnon, Yanghai Tsin, and Long
Quan. Neilf++: Inter-reflectable light fields for geometry and material estimation. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages 3601–3610, 2023.

[25] Jonathan T Barron, Ben Mildenhall, Matthew Tancik, Peter Hedman, Ricardo Martin-Brualla, and Pratul P
Srinivasan. Mip-nerf: A multiscale representation for anti-aliasing neural radiance fields. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pages 5855–5864, 2021.

[26] Jonathan T Barron, Ben Mildenhall, Dor Verbin, Pratul P Srinivasan, and Peter Hedman. Mip-nerf 360:
Unbounded anti-aliased neural radiance fields. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 5470–5479, 2022.

[27] Wenbo Hu, Yuling Wang, Lin Ma, Bangbang Yang, Lin Gao, Xiao Liu, and Yuewen Ma. Tri-miprf:
Tri-mip representation for efficient anti-aliasing neural radiance fields. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 19774–19783, 2023.

[28] Haithem Turki, Deva Ramanan, and Mahadev Satyanarayanan. Mega-nerf: Scalable construction of
large-scale nerfs for virtual fly-throughs. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 12922–12931, 2022.

[29] Peng Wang, Yuan Liu, Zhaoxi Chen, Lingjie Liu, Ziwei Liu, Taku Komura, Christian Theobalt, and
Wenping Wang. F2-nerf: Fast neural radiance field training with free camera trajectories. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 4150–4159, 2023.

[30] Jonathan T Barron, Ben Mildenhall, Dor Verbin, Pratul P Srinivasan, and Peter Hedman. Zip-nerf: Anti-
aliased grid-based neural radiance fields. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 19697–19705, 2023.

[31] Alex Yu, Ruilong Li, Matthew Tancik, Hao Li, Ren Ng, and Angjoo Kanazawa. Plenoctrees for real-time
rendering of neural radiance fields. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pages 5752–5761, 2021.

[32] Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. Instant neural graphics primitives
with a multiresolution hash encoding. ACM transactions on graphics (TOG), 41(4):1–15, 2022.

[33] Jiaxiang Tang, Jiawei Ren, Hang Zhou, Ziwei Liu, and Gang Zeng. Dreamgaussian: Generative gaus-
sian splatting for efficient 3d content creation. In The Twelfth International Conference on Learning
Representations, 2023.

[34] Taoran Yi, Jiemin Fang, Junjie Wang, Guanjun Wu, Lingxi Xie, Xiaopeng Zhang, Wenyu Liu, Qi Tian,
and Xinggang Wang. Gaussiandreamer: Fast generation from text to 3d gaussians by bridging 2d and 3d
diffusion models. In CVPR, 2024.

[35] Tianyi Xie, Zeshun Zong, Yuxin Qiu, Xuan Li, Yutao Feng, Yin Yang, and Chenfanfu Jiang. Physgaussian:
Physics-integrated 3d gaussians for generative dynamics. In CVPR, 2024.

[36] David Charatan, Sizhe Li, Andrea Tagliasacchi, and Vincent Sitzmann. pixelsplat: 3d gaussian splats from
image pairs for scalable generalizable 3d reconstruction. In Conference on Computer Vision and Pattern
Recognition (CVPR), 2024.

[37] Yuedong Chen, Haofei Xu, Chuanxia Zheng, Bohan Zhuang, Marc Pollefeys, Andreas Geiger, Tat-Jen
Cham, and Jianfei Cai. Mvsplat: Efficient 3d gaussian splatting from sparse multi-view images. arXiv
preprint arXiv:2403.14627, 2024.

12



[38] Joo Chan Lee, Daniel Rho, Xiangyu Sun, Jong Hwan Ko, and Eunbyung Park. Compact 3d gaussian
representation for radiance field. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2024.

[39] Zhiwen Fan, Kevin Wang, Kairun Wen, Zehao Zhu, Dejia Xu, and Zhangyang Wang. Lightgaussian:
Unbounded 3d gaussian compression with 15x reduction and 200+ fps. arXiv preprint arXiv:2311.17245,
2023.

[40] Simon Niedermayr, Josef Stumpfegger, and Rüdiger Westermann. Compressed 3d gaussian splatting for
accelerated novel view synthesis. arXiv preprint arXiv:2401.02436, 2023.

[41] Wieland Morgenstern, Florian Barthel, Anna Hilsmann, and Peter Eisert. Compact 3d scene representation
via self-organizing gaussian grids. arXiv preprint arXiv:2312.13299, 2023.

[42] Yihang Chen, Qianyi Wu, Jianfei Cai, Mehrtash Harandi, and Weiyao Lin. Hac: Hash-grid assisted context
for 3d gaussian splatting compression. arXiv preprint arXiv:2403.14530, 2024.

[43] Runyi Yang, Zhenxin Zhu, Zhou Jiang, Baijun Ye, Xiaoxue Chen, Yifei Zhang, Yuantao Chen, Jian
Zhao, and Hao Zhao. Spectrally pruned gaussian fields with neural compensation. arXiv preprint
arXiv:2405.00676, 2024.

[44] Binbin Huang, Zehao Yu, Anpei Chen, Andreas Geiger, and Shenghua Gao. 2d gaussian splatting for
geometrically accurate radiance fields. In SIGGRAPH 2024 Conference Papers. Association for Computing
Machinery, 2024. doi: 10.1145/3641519.3657428.

[45] Yahao Shi, Yanmin Wu, Chenming Wu, Xing Liu, Chen Zhao, Haocheng Feng, Jingtuo Liu, Liangjun
Zhang, Jian Zhang, Bin Zhou, et al. Gir: 3d gaussian inverse rendering for relightable scene factorization.
arXiv preprint arXiv:2312.05133, 2023.

[46] Keyang Ye, Qiming Hou, and Kun Zhou. 3d gaussian splatting with deferred reflection. arXiv preprint
arXiv:2404.18454, 2024.

[47] Tong Wu, Jia-Mu Sun, Yu-Kun Lai, Yuewen Ma, Leif Kobbelt, and Lin Gao. Deferredgs: Decoupled and
editable gaussian splatting with deferred shading. arXiv preprint arXiv:2404.09412, 2024.

[48] Mulin Yu, Tao Lu, Linning Xu, Lihan Jiang, Yuanbo Xiangli, and Bo Dai. Gsdf: 3dgs meets sdf for
improved rendering and reconstruction. arXiv preprint arXiv:2403.16964, 2024.

[49] Georgios Kopanas, Julien Philip, Thomas Leimkühler, and George Drettakis. Point-based neural rendering
with per-view optimization. Computer Graphics Forum (Proceedings of the Eurographics Symposium on
Rendering), 40(4), June 2021. URL http://www-sop.inria.fr/reves/Basilic/2021/KPLD21.

[50] Di Xu, Qi Duan, Jianmin Zheng, Juyong Zhang, Jianfei Cai, and Tat-Jen Cham. Shading-based surface
detail recovery under general unknown illumination. IEEE transactions on pattern analysis and machine
intelligence, 40(2):423–436, 2017.

[51] Mingqiao Ye, Martin Danelljan, Fisher Yu, and Lei Ke. Gaussian grouping: Segment and edit anything in
3d scenes. arXiv preprint arXiv:2312.00732, 2023.

[52] Evangelos Ververas, Rolandos Alexandros Potamias, Jifei Song, Jiankang Deng, and Stefanos Zafeiriou.
Sags: Structure-aware 3d gaussian splatting. arXiv preprint arXiv:2404.19149, 2024.

[53] Johannes Lutz Schönberger and Jan-Michael Frahm. Structure-from-motion revisited. In Conference on
Computer Vision and Pattern Recognition (CVPR), 2016.

[54] Arno Knapitsch, Jaesik Park, Qian-Yi Zhou, and Vladlen Koltun. Tanks and temples: Benchmarking
large-scale scene reconstruction. ACM Transactions on Graphics, 36(4), 2017.

[55] Peter Hedman, Julien Philip, True Price, Jan-Michael Frahm, George Drettakis, and Gabriel Brostow. Deep
blending for free-viewpoint image-based rendering. ACM Transactions on Graphics (Proc. SIGGRAPH
Asia), 37(6):257:1–257:15, 2018.

[56] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf,
Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. In Advances in Neural Information Processing Systems 32,
pages 8024–8035. Curran Associates, Inc., 2019. URL http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf.

13

http://www-sop.inria.fr/reves/Basilic/2021/KPLD21
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf


[57] Rasmus Jensen, Anders Dahl, George Vogiatzis, Engil Tola, and Henrik Aanæs. Large scale multi-view
stereopsis evaluation. In 2014 IEEE Conference on Computer Vision and Pattern Recognition, pages
406–413. IEEE, 2014.

[58] Jonathan T. Barron, Ben Mildenhall, Dor Verbin, Pratul P. Srinivasan, and Peter Hedman. Zip-nerf:
Anti-aliased grid-based neural radiance fields. ICCV, 2023.

14



A Appendix

A.1 Modeling the specular component using Integrated Directional Encodings (IDE)

As discussed in Sec. 3.4, we utilize the Integrated Directional Encoding (IDE) of the Ref-NeRF [22] to model
the specular component. Specifically, the IDE encodes the distribution of the reflection vectors using a set of
spherical harmonics {Y m

l }. This distribution follows the von Mises-Fisher (vMF) distribution, with the reflection
vector ωr as the center and the inverse roughness κ = 1/ρ as the concentration parameter. κ describes the width
of the vMF distributions, corresponding to the surface roughness. With this vMF distribution ω̂ ∼ vMF(ω̂r, κ),
Verbin et al. [22] define the IDE as

IDE(ω̂r, κ) = {Eω̂∼vMF(ω̂r,κ)[Y
m
l (ω̂)] : (l,m) ∈ ML} (9)

with ML = {(l,m) : l = 1, ..., 2L,m = 0, ..., l}. Verbin et al. [22] further show that the above expectation
equals Al(κ)Y

m
l (ω̂r) with

Al(κ) ≈ exp (− l(l + 1)

2κ
). (10)

For a detailed derivation and illustration, we recommend referring to their original paper [22].

After obtaining the IDE of the reflection direction, we pass ϕIDE(ωr), n and the adjacent anchor feature fv as
inputs to a global MLP θ, generating the final specular color as LS = θ(ϕIDE(ωr),n,fv). Details about our
MLP are provided as follows.

A.2 Implementation details

Neural network architectures We employ an anchor-based GS method, Scaffold-GS [6], to predict at-
tributes of 3D Gaussians. The overall architecture closely follows its original implementation, with modifications
made to the color modeling components. Specifically, we introduce two additional components to predict diffuse
LD and specular colors LS respectively. Other components including the updating strategy remain unchanged.
The neural network architecture of the newly introduced MLPs is consistent with those used in [6]. These MLPs
are fully connected networks with one hidden layer and utilize the ReLU activation function. The learning rates
and feature dimensions for these MLPs are set to match the original color MLP used by Scaffold-GS.

Defining normals on 3D Gaussians Recall that the covariance matrix Σ of a 3D Gaussian is parameterized
by a scaling matrix S and a rotation matrix R, Σ = RSSTRT , formulating a 3D ellipsoid. Let Λ = SST =
diag(s21, s22, s33), the eigenvalues of Λ are thus (s21, s

2
2, s

3
3), with the dummy eigenvectors (e1, e2, e3). In

Σ = RSSTRT = RΛRT , the rotation matrix R = [r1; r2; r3] acts like rotating eigenvectors of Λ and
preserves its eigenvalues. Consequently, the eigenvectors of the covariance matrix Σ indicate the principal axes
of the Gaussian ellipsoid and the eigenvalues correspond to the axes’ lengths. The shortest axis of the Gaussian
ellipsoid thus corresponds to the ith column of the rotation matrix, where si = min(s1, s2, s3).

Loss Our loss is defined as L = LP +λvolLvol +λNLN , with λN = 0.01 and λvol = 0.001. The photometric
loss, as defined in [2], is Lp = (1−λSSIM)L1+λSSIMLD-SSIM, with λSSIM = 0.2. The volumetric loss, as defined
in [6], is Lvol =

∑Ng

i=1 Prod(si), where Prod(·) stands for the product of the values of a vector and si is the
scales of each 3D Gaussian. Our self-regularized depth-normal loss LN has been discussed in Sec. 3.4.

A.3 More results

We include per-scene results, following the same evaluation strategies and metrics discussed in Sec. 4. We also
provide additional qualitative visualization results of baseline methods and ours in Fig. 6.

Table 6: Per-scene PSNR ↑ for the Mip-NeRF360 [26] dataset.
Method bicycle garden stump room counter kitchen bonsai Avg.

3DGS 25.25 27.41 26.55 30.63 28.70 30.32 31.98 28.691
ScaffoldGS* 25.18 27.51 26.56 31.92 29.56 31.53 32.61 29.267
ScaffoldGS w/ N 25.20 27.47 26.56 31.84 29.47 31.41 32.29 29.177
GShader* 22.74 26.44 24.66 24.82 26.60 27.68 29.48 26.060
SpecGaussian* 24.96 27.43 26.22 31.80 29.60 31.68 33.32 29.287

Ours 25.23 27.64 26.54 31.99 29.71 31.61 32.67 29.341

Limitations Our method uses the self-regularized depth-normal loss, which deteriorates the performance of
normal estimation and rendering at distant regions. Figure. 7 illustrates one failure case of our methods.

15



Figure 6: More qualitative comparisons of the rendering quality and normal estimation. Our
method produced clean normals estimation and preserved good rendering quality.

A.4 Metric definition.

Besides the common-used image quality metric in novel view synthesis evaluation in the main context, we
provide a geometry metric evaluation about normal MAE scores for qualitative comparison. Here we provide
the definition of it.

Denote the rendering normal as N and the ground-truth 2D normal map NGT , we aim to evaluate the similarity
between these two images. Assume there is a mask M for object definition under each testing view, we use it to

16



Table 7: Per-scene SSIM ↑ for the Mip-NeRF360 [26] dataset.
Method bicycle garden stump room counter kitchen bonsai Avg.

3DGS 0.771 0.868 0.775 0.914 0.905 0.922 0.938 0.870
ScaffoldGS* 0.758 0.863 0.766 0.922 0.912 0.926 0.941 0.869
ScaffoldGS w/ N 0.759 0.862 0.767 0.923 0.912 0.927 0.943 0.870
GShader 0.692 0.843 0.702 0.846 0.875 0.897 0.917 0.825
SpecGaussian* 0.753 0.852 0.754 0.918 0.904 0.924 0.943 0.864

Ours 0.757 0.863 0.764 0.922 0.911 0.926 0.943 0.869

Table 8: Per-scene LPIPS ↓ for the Mip-NeRF360 [26] dataset.
Method bicycle garden stump room counter kitchen bonsai Avg.

3DGS 0.205 0.103 0.210 0.220 0.204 0.129 0.205 0.182
ScaffoldGS* 0.232 0.118 0.236 0.213 0.198 0.128 0.204 0.190
ScaffoldGS w/ N 0.236 0.121 0.241 0.213 0.201 0.128 0.206 0.192
GShader 0.278 0.130 0.277 0.305 0.243 0.160 0.242 0.233
SpecGaussian* 0.235 0.131 0.242 0.220 0.211 0.131 0.200 0.196

Ours 0.243 0.120 0.244 0.216 0.202 0.129 0.209 0.194

Table 9: Quantitative comparisons of the rendering quality on the Tanks and Temples dataset [54].
Truck Train

Method PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
3DGS 25.187 0.879 0.148 21.097 0.802 0.218
ScaffoldGS* 25.825 0.881 0.145 22.350 0.820 0.206
ScaffoldGS w/ N 25.738 0.882 0.147 22.214 0.821 0.205
GShader* 23.696 0.843 0.193 18.828 0.727 0.315
SpecGaussian* 26.112 0.885 0.145 22.893 0.825 0.205

Ours 25.858 0.882 0.145 22.580 0.826 0.203

Table 10: Quantitative comparisons of the rendering quality on the Deep Blending dataset [55].
Playroom Dr. Johnson

Method PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
3DGS 30.044 0.906 0.241 28.766 0.899 0.244
ScaffoldGS* 30.655 0.906 0.256 29.624 0.904 0.257
ScaffoldGS w/ N 30.785 0.907 0.263 29.541 0.903 0.263
GShader* 21.007 0.807 0.406 17.312 0.730 0.499
SpecGaussian* 30.589 0.905 0.252 29.639 0.904 0.252

Ours 30.846 0.913 0.260 29.529 0.906 0.257

(a) Ground Truth (b) Rendered (c) Normal

Figure 7: The failure case of our method. Our method performs suboptimally for scenes at a distance.

17



mask out the rendering normal and ground-truth normal by M(N ) and M(NGT ), we then calculate the average
angle between the normals vectors for all valid pixels, i.e., Normal MAE=

∑
i∈M arccos<Mi(N ),Mi(NGT )>∑

i∈M Mi

B Assets License

In Table 11, we list the licenses of all the existing assets including the code and data we have used in this work.

Asset License Link

3D Gaussian Splatting [2] https://github.com/graphdeco-inria/gaussian-splatting/blob/main/LICENSE.md
Scaffold-GS [6] https://github.com/city-super/Scaffold-GS/blob/main/LICENSE.md
GaussianShader [7] https://github.com/Asparagus15/GaussianShader/blob/main/LICENSE.md
SpecGaussian [5] https://github.com/ingra14m/Specular-Gaussians/blob/main/LICENSE
COLMAP [53] https://colmap.github.io/license.html

Synthesic-NeRF [1] https://drive.google.com/drive/folders/128yBriW1IG_3NJ5Rp7APSTZsJqdJdfc1 (CC-BY 3.0)
MipNeRF360 [26] https://jonbarron.info/mipnerf360/
DeepBlending [55] http://visual.cs.ucl.ac.uk/pubs/deepblending/datasets.html
Tank and Tamples [54] https://www.tanksandtemples.org/license/ (CC-BY 4.0)

Table 11: Licenses of existing assets we have used in this work.

18

https://github.com/graphdeco-inria/gaussian-splatting/blob/main/LICENSE.md
https://github.com/city-super/Scaffold-GS/blob/main/LICENSE.md
https://github.com/Asparagus15/GaussianShader/blob/main/LICENSE.md
https://github.com/ingra14m/Specular-Gaussians/blob/main/LICENSE
https://colmap.github.io/license.html
https://drive.google.com/drive/folders/128yBriW1IG_3NJ5Rp7APSTZsJqdJdfc1
https://jonbarron.info/mipnerf360/
http://visual.cs.ucl.ac.uk/pubs/deepblending/datasets.html
https://www.tanksandtemples.org/license


NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction demonstrate the paper’s contribution to the scope of 3D
Gaussian Splatting, considering the issue of appearance-geometry conflict and proposing a solution
for it.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims made in the
paper.

• The abstract and/or introduction should clearly state the claims made, including the contributions
made in the paper and important assumptions and limitations. A No or NA answer to this
question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals are not
attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: This paper discusses the limitations in the Discussion Section 5.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that the paper
has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to violations of

these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide
closed captions for online lectures because it fails to handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address problems
of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms that
preserve the integrity of the community. Reviewers will be specifically instructed to not penalize
honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and a complete
(and correct) proof?

Answer: [Yes]

Justification: In the theory derivation in Sec. 3.2, we point out the assumption of Lambertian surface
for proposed components.

Guidelines:

• The answer NA means that the paper does not include theoretical results.

19



• All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they appear in

the supplemental material, the authors are encouraged to provide a short proof sketch to provide
intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main experimental
results of the paper to the extent that it affects the main claims and/or conclusions of the paper
(regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The information to reproduce the main experimental results is provided in Sec. 4 and
appendix, including network configuration, and hyper-parameters for training.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well by the

reviewers: Making the paper reproducible is important, regardless of whether the code and data
are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken to make
their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might suffice,
or if the contribution is a specific model and empirical evaluation, it may be necessary to either
make it possible for others to replicate the model with the same dataset, or provide access to
the model. In general. releasing code and data is often one good way to accomplish this, but
reproducibility can also be provided via detailed instructions for how to replicate the results,
access to a hosted model (e.g., in the case of a large language model), releasing of a model
checkpoint, or other means that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe the

architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should either be

a way to access this model for reproducing the results or a way to reproduce the model (e.g.,
with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [No]

Justification: The details for implementation are provided in the appendix and we will release our code
upon publication.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless
this is central to the contribution (e.g., for a new open-source benchmark).

20

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).

• Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: The training and testing details are elaborated in the appendix and Sec. 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail that is

necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate informa-
tion about the statistical significance of the experiments?

Answer: [No]

Justification: We report the per-scene results in the appendix, which can be used to calculate statistical
significance.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main claims
of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of the

mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report

a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is
not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: We provide the related information in the experiments and appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.

21

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud
provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual experimental
runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute than the
experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it into
the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code
of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research is carefully conducted with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a deviation

from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration due

to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative societal impacts
of the work performed?

Answer: [Yes]

Justification: The discussion about potential negative social impacts is mentioned in Sec. 5.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact or

why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,

disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to particular
applications, let alone deployments. However, if there is a direct path to any negative applications,
the authors should point it out. For example, it is legitimate to point out that an improvement in
the quality of generative models could be used to generate deepfakes for disinformation. On the
other hand, it is not needed to point out that a generic algorithm for optimizing neural networks
could enable people to train models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitor-
ing misuse, mechanisms to monitor how a system learns from feedback over time, improving the
efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or
scraped datasets)?

Answer: [NA]

Justification: This paper aims to support novel view synthesis and geometric reconstruction, which
poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with necessary

safeguards to allow for controlled use of the model, for example by requiring that users adhere to
usage guidelines or restrictions to access the model or implementing safety filters.

22

https://neurips.cc/public/EthicsGuidelines


• Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: We include the assets used in our paper (code and dataset) in Sec. B.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service of

that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package should

be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation provided
alongside the assets?

Answer: [NA]

Justification: This paper does not release new assets during the time of submission.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset is
used.

• At submission time, remember to anonymize your assets (if applicable). You can either create an
anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper include
the full text of instructions given to participants and screenshots, if applicable, as well as details about
compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Including this information in the supplemental material is fine, but if the main contribution of the
paper involves human subjects, then as much detail as possible should be included in the main
paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human Subjects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an
equivalent approval/review based on the requirements of your country or institution) were obtained?

23

paperswithcode.com/datasets


Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent) may be
required for any human subjects research. If you obtained IRB approval, you should clearly state
this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

• For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.

24


	Introduction
	Related Works
	Method
	Preliminary
	Normal-Involved Shading Strategy
	Modeling Locally Shared Integrated Directional Illumination Vectors
	Training Details

	Experiments
	Results
	Ablation studies
	Geometric reconstruction comparisons
	Comparisons with NeRF-based methods

	Discussions
	Appendix
	Modeling the specular component using Integrated Directional Encodings (IDE)
	Implementation details
	More results
	Metric definition.

	Assets License

