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ABSTRACT

We refer to the setting where the (partial) derivatives of a neural network’s (NN’s)
predictions with respect to its inputs are used as additional training signal as a
derivative-constrained (DC) NN. This situation is common in physics-informed
settings in the natural sciences. We propose an integrated RELU (IReLU) acti-
vation function to improve training of DC NNs. We also investigate denormal-
ization and label rescaling to help stabilize DC training. We evaluate our meth-
ods on physics-informed settings including quantum chemistry and Scientific Ma-
chine Learning (SciML) tasks. We demonstrate that existing architectures with
IReLU activations combined with denormalization/label rescaling better incorpo-
rate training signal provided by derivative constraints.

1 INTRODUCTION

Deep learning is increasingly being applied to physics-informed settings in the natural sciences. By
physics-informed, we mean any situation where inputs and/or outputs in a dataset involve relation-
ships based on physics (e.g., forces). The field of Scientific Machine Learning (SciML) (Karniadakis
et al., 2021) is emerging to address the issues of applying machine learning (ML) to the physical
sciences (e.g., physics-informed neural networks or PINNs (Raissi et al., 2019)). Domains include
fluid dynamics (Sun et al., 2020; Sun & Wang, 2020), geo-physics (Zhu et al., 2021), fusion (Math-
ews et al., 2020), and materials science (Shukla et al., 2020; Lu et al., 2020). In the realm of
quantum chemistry, there are promising results (Hermann et al., 2022; 2020) that attempt to solve
the electronic-structure problem (i.e., predict energy from structure) or model an atomic system’s
energy surface (Hu et al., 2021; Gasteiger et al., 2021)

In the physics-informed setting, it is common to express constraints on the neural network’s (NN’s)
predictions in terms of the NN’s (partial) derivatives with respect to (w.r.t.) its inputs to express
physical constraints. We call this a derivative-constrained (DC) NN. Thus, training a DC NN ad-
dresses a subset of issues considered in physics-informed settings such as SciML. We emphasize
that most settings do not use derivatives of the model w.r.t. its inputs to supply additional training
signal even though most NN models are optimized with gradient-based methods.

One strategy for incorporating derivative constraints is to add additional terms containing the deriva-
tive constraints to a loss function so that multi-objective optimization can be performed. While it is
possible to construct NNs with high predictive accuracy using this strategy, the resulting models may
not incorporate derivative constraints efficiently. In the physics-informed setting, this translates into
capturing less of the physics. We demonstrate that this occurs in many existing works in quantum
chemistry and SciML where we obtain high predictive accuracy but lower accuracy on derivative
constraints (see experiments, Sec. 5). This presents an opportunity to reevaluate aspects of training
DC NNs and revisit best practices. We make the following contributions.

1. We propose a new activation function called an integrated ReLU (IReLU) obtained by inte-
grating a standard ReLU activation (Agarap, 2018) (Sec. 4.1). We intend IReLU’s as a drop
in replacement for activations in an existing architectures. Our main motivation for doing
so is that training a DC NN involves higher-order derivatives. Consequently, the choice of
activation function will impact the propagation of additional derivative information.

2. We propose denomalizing NNs, i.e., removing all normalization layers, and label rescaling
as a dataset preprocessing method to stabilize training (Sec. 4.2). Our primary motiva-
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tion for doing so is because we hypothesize that DC training of NNs is sensitive to units.
Consequently, unit-insensitive normalization procedures (e.g., batch normalization (Ioffe
& Szegedy, 2015)) that help stabilize training in standard settings may introduce artifacts
in the DC training case.

We benchmark the performance of our proposed methods on a variety of datasets and tasks including
quantum chemistry NNs (Schütt et al., 2017; Xie & Grossman, 2018; Gasteiger et al., 2020b;a; Hu
et al., 2021; Gasteiger et al., 2021) and PINNs (Raissi et al., 2019) (Sec. 5) used in SciML. We
show that IReLUs combined with denormalization/label rescaling improve the learning of gradient
constraints while retaining predictive accuracy.

2 RELATED WORK

There are at least two paths to improving training of DC NNs: (1) improving the loss function and (2)
developing new architectures. In the first direction, loss functions used in training DC models often
involve multiple terms so they are multi-objective optimization (MOO) problems. One solution to
the MOO problem is to weigh each term in the loss function (Sener & Koltun, 2018; van der Meer
et al., 2022; Bischof & Kraus, 2021), potentially in an adaptive manner (Li & Feng, 2022; Fernando
& Tsokos, 2021; Xiang et al., 2022; Chen et al., 2018; Malkiel & Wolf, 2020; Heydari et al., 2019;
Kendall et al., 2018; Lin et al., 2017). This is helpful in the SciML context since the different loss
terms may use different units of measurements, and thus, have imbalanced label magnitudes (Wang
et al., 2021). Weighing loss terms is also common in training quantum chemistry networks. We will
demonstrate in Sec. 3.2 that it is difficult to control to motivate our methods.

In the second direction, we can also develop novel architectures that better incorporate domain
knowledge. Domains such as quantum chemistry have custom designed NN architectures (Schütt
et al., 2017; Xie & Grossman, 2018; Gasteiger et al., 2020b;a; Hu et al., 2021; Gasteiger et al.,
2021; 2022; Schütt et al., 2021; Zitnick et al., 2022; Passaro & Zitnick, 2023; Liao et al., 2023).
The architectural improvements in these works focus on re-arranging interaction patterns (e.g., con-
volution layers), leveraging graph properties of atoms (e.g., molecular bond), and encoding invari-
ances/equivariances. We propose an activation function in Sec. 4.1 which we intend as a drop-in
replacement for activations in existing architectures. Thus, we intend our activation to be applied to
a wide range of architectures.

3 TRAINING WITH DERIVATIVE-CONSTRAINTS

We review an example of training with derivative constraints in the setting of quantum chemistry
(Sec. 3.1). Then, we motivate our proposed methods with an experiment demonstrating the difficulty
of incorporating gradient constraint information with traditional approaches (Sec. 3.2).

3.1 EXAMPLE: POTENTIAL ENERGY SURFACE MODELING

We use potential energy surface (PES) modeling from quantum chemistry as a concrete example
to introduce DC training. A PES U : R3A → R gives the energy of a system with A atoms
as a function of its atomic coordinates.1 A PES U(x) and its force field F(x) can be evaluated
by quantum mechanical simulation software such as Gaussian (Frisch et al., 2016) given the 3D
Cartesian coordinates x of the A atoms, i.e., its structure. The force field is the negative gradient of
the PES and can be used to simulate the dynamics of the A atoms. In particular, when F(x) = 0,
there are no forces acting on x which means that the configuration of x is stable.

Conservation of energy is expressed with the following derivative constraint

−∇xU(x) = F(x) (1)

that relates the gradient of the PES with the negative force. This connects simulation of a system
with its changes in energy. As a result, this means that we can find stable configurations of atomistic

1We are ignoring symmetries. Technically, U : R3A−5 → R for general atomistic systems and U :
R3A−6 → R when it is planar.
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(a) Training loss for α = 1 and varying β. (b) Energy loss (kcal/mol) and force loss
(kcal/(molÅ)) for different β.

Figure 1: Comparing relative difficulty of learning energy (prediction) versus force (derivative con-
straint) with SchNet (Schütt et al., 2017) on Asprin molecule in MD17 dataset by varying β in loss
function (Eq. 2).

systems in nature by finding local minima on the system’s PES, since F(x) = −∇xU(x) = 0.
Consequently, we can study molecules and materials in silico if we can model a PES efficiently and
accurately enough.

We can construct a surrogate model of a system’s PES by fitting a NN fθ with parameters θ to a
dataset D = {(xi, Ei, F i)i : 1 ≤ i ≤ N} where xi are atomic coordinates, Ei is an energy, and F i

are forces – the negative gradient of the energy w.r.t. xi. This dataset can be created from quantum
mechanical simulation software. A surrogate model can be used to accelerate the computation of a
PES since quantum mechanical simulation software can be compute-intensive to run. To train a NN
on this dataset, we can use the following multi-objective loss function

Loss(fθ,D) =

N∑
i=1

α∥fθ(xi)− Ei∥2 + β∥−∇xfθ(x
i)− F i∥2 . (2)

The terms α and β are hyper-parameters that weigh the contributions of the first term involving fθ’s
predictions and the second term involving fθ’s gradients. Training fθ with a gradient-based method
will thus involve second-order derivatives. The second term enforces the conservation of energy
since it constrains the force prediction of the model to be the observed force. Thus, conservation of
energy is violated when training signal from derivative constraints is not efficiently incorporated.

More generally, we can have arbitrary derivatives, constraints, and datasets involving additional su-
pervised signal that contains these constraints for different situations (e.g., thermodynamics, fluid
flow). These constraints can come from the underlying partial differential equation (PDE) that de-
scribes the natural process. As before, we can add these constraints to a loss term and optimize as
before. We refer the reader to the SciML literature (Raissi et al., 2019; Karniadakis et al., 2021;
Meng et al., 2022) for more examples.

3.2 MOTIVATION

We hypothesize that one fundamental challenge with training a DC model fθ is that it is more diffi-
cult to incorporate derivative constraint information in the loss term compared to model prediction
information in the loss term. As a quick test of our hypothesis and motivation for our methods, we
report the following experiment in the setting of quantum chemistry.

Experiment We train a selected NN designed for quantum chemistry on a training set consisting
of {(xi, Ei, F i)i : 1 ≤ i ≤ N} tuples for varying β values while holding α = 1 constant to
compare the relative difficulty of predicting the energy versus predicting the force (i.e., involving
the gradient). As a reminder, the terms α and β control the relative importance of each term in the
loss function in Eq. 2. Thus, whether α > β or α < β can be used as a proxy to determine which
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term in the loss is more difficult to learn. In particular, we consider learning of the derivative signal
to be more difficult if β > α gives lower force loss on the test set compared to energy loss on the
test set on a relative basis. We use the relative basis since energies and forces are given in related
units, kcal

mol versus kcal
mol Å respectively, and so direct comparison is not possible.

Details In this experiment, we choose a classic NN, Schnet (Schütt et al., 2017). The implementa-
tion and hyper-parameters of SchNet are taken from the Open Catalyst Project (OCP) (Chanussot*
et al., 2021), a joint effort to between computer scientists and chemistry/material scientists to solve
the PES modeling problem. We select the MD17 (Chmiela et al., 2017) dataset which contains
(x,Ei, F i)i tuples for 8 different small molecules. As terminology, each xi is also called a confor-
mation. We train Schnet on 50, 000 conformations of the Asprin molecule for 50 epochs.2 Instead
of normalizing the data before training, we train the networks directly on xi so that a surrogate
PES can directly predict energies and forces with the same units. The mean energy of Asprin in
our training set −406, 737.28 kcal

mol and the variance is 35.36 kcal2

mol2 . The mean force is 423.87 kcal
mol Å

and the variance 779.99 kcal2

mol2 Å2 . Thus, the absolute value of the mean energy is roughly 3 orders
of magnitude larger than the mean force. We will comment more on this in Sec. 4.2. We use
β = {0.01, 0.1, 1, 10, 30, 50, 100, 200}.

Results We report training loss curves in Fig. 2a and test loss for various β values in Fig. 2b. We
observe that the energy loss divided by 1000 (since the energies are roughly 3 orders of magnitude
larger) is typically much lower than the force loss. This gives evidence that it is more difficult to
incorporate derivative constraint information in the loss term compared to model prediction infor-
mation in the loss term. Moreover, it is not easy to improve the relative difference, even for large
values of β which may make the energy loss worse. Finally, we observe that the training losses for
each choice of β converges to roughly the same level so that there is a trade-off between learning
energies and learning forces.

4 METHODS

In this section, we propose two ideas to be used in conjunction to improve learning of derivative
constraints. First, we propose a new activation function called an integrated ReLU (IReLU) activa-
tion function (Sec. 4.1). Second, we introduce denormalization and label rescaling to help stabilize
training of DC NNs with IReLU activations (Sec. 4.2).

4.1 INTEGRATED RELU ACTIVATION

The simple observation that we make concerning training a DC NN is that it involves higher-order
derivatives. Consequently, higher-order derivatives of activation functions will also be used during
the training process. This motivates us to revisit the choice of activation function for DC train-
ing since ordinary activation functions have been designed in the setting where only the first-order
derivative is used.

We use a simple idea to construct an activation for DC NN training: use an integrated form of an
ordinary activation function such as a ReLU when we are performing DC training of NNs. The
intuition for doing so is the following: if we only fit derivative constraints, then we should use a
ordinary activation (e.g., ReLU) after we have taken the derivative of the original activation in the
model. We will discuss this intuition more in Appx. A. Define the integrated ReLU (IReLU) to be
the activation

IReLU(x) =

∫ x

0

ReLU(y)dy = max(0, 0.5 ∗ x2) . (3)

We focus on the IReLU activation in this work since the ReLU is a popular activation. Naturally,
the idea of an IReLU can be applied to other activations (Maas et al., 2013; Clevert et al., 2015;
Ramachandran et al., 2017; Hendrycks & Gimpel, 2016) as well.

2We have also trained Schnet for 300 epochs, but have observed fast convergence.
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4.2 DE-NORMALIZATION AND LABEL RESCALING

Conventional wisdom is that normalization techniques such as batch normalization may help ac-
celerate the training of NNs as well as improve the stability of training. Notably, centering and
rescaling the internal values in a NN might be crucial when using IReLU’s since these activations
produce higher responses compared to traditional activations. Dataset normalization is also common
practice to ensure that input features are set on equal footing. Intuitively, normalization techniques
remove the units of the features and dataset.

We hypothesize that DC NNs are more sensitive to units compared to typical training without deriva-
tive constraints because of the linearity of derivatives, i.e., ∇f(cx) = c∇f(x). We can interpret the
constant c as determining the units of x, which also determines the units of the derivative c∇f(x).
In particular, this constant c will appear in the loss term in while training a DC NN and so the loss
function is sensitive to the choice of units on the inputs x. We emphasize that a typical setting does
not have derivatives of the NN w.r.t. its inputs x, and so these units will not appear in the loss. If our
hypothesis holds, then we will need to develop alternative approaches to stabilizing training than the
typical unit-insensitive approaches.

Towards this end, we propose two techniques. First, we propose denormalization, i.e., the removal
of all normalization techniques in a NN architecture. Second, we propose a simple label rescaling
procedure where we scale the labels in a dataset D = (xi, ℓi1, . . . ℓ

i
n)i by a suitable constant C

defined as

C = max
ℓij

{C : 0 ≤
ℓij
C

≤ 1, C is power of 10 } . (4)

In the PES modeling example, this means we use the same constant C for both energy and force la-
bels. Intuitively, what label rescaling does is set the units of the model’s predictions and derivatives.
The loss function in the PES modeling example becomes∑

i

α∥fθ(xi)− Ei

C
∥2 + β∥−∇xfθ(x

i)− F i

C
∥2 (5)

with label rescaling. Thus, label rescaling plays a similar role to α and β in setting units, the
difference being that the units are set on the model as opposed to the loss. We emphasize that in
label rescaling, we do not normalize the dataset inputs.

5 EXPERIMENTS

We benchmark the performance of our proposed methods on a variety of architectures, datasets, and
tasks including quantum chemistry NNs (Sec. 5.1) and PINNs (Sec. 5.2) used in SciML.

5.1 QUANTUM CHEMISTRY

We separate our experiments in quantum chemistry by dataset since different atomistic systems can
have different properties. We use the MD17 dataset (Sec. 5.1.1), which has small organic molecules,
and OC22 (Chanussot* et al., 2021) (Sec. 5.1.2), which contains large atomistic systems and metals.

5.1.1 EXPERIMENTS ON MD17

Our first experiment tests the efficacy of our methods across different architectures for task of po-
tential energy surface modeling. We select SchNet (Schütt et al., 2017), CGCNN Xie & Grossman
(2018), ForceNet Hu et al. (2021), DimeNet++Gasteiger et al. (2020b), and GemNet Gasteiger et al.
(2021). SchNet and CGCNN are based on a convolutional NN architectures. ForceNet, DimeNet++,
and GemNet are based on graph NNs.

We select the MD17 dataset. For each molecule in MD17, we randomly select 50000, 6250, and
6250 conformations from the dataset as training set, validation set and testing set. The molecules
include Asprine (Asp.), Benzene (Ben.), Ethanol (Eth.), Malonaldehyde (Mal.), Naphthalene (Nap.),
Salicylic acid (Sal.), Toulene (Tol.), and Uracil (Ura.). We present more details in Appx. B.
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Model Asp. Ben. Eth. Mal. Nap. Sal. Tol. Ura.
SchNet 53.00 125.43 5.97 37.54 197.06 65.46 129.80 54.88

1.21 0.39 0.68 1.00 0.72 1.02 0.67 0.86
SchNet* 28.31 0.56 13.39 11.27 5.53 27.57 0.34 20.36

1.67 0.36 1.53 1.67 1.01 1.12 1.04 1.23
CGCNN 239.07 98.86 38.36 104.45 130.98 197.09 124.29 133.51

14.20 6.11 8.25 14.27 8.46 8.50 9.73 9.08
CGCNN* 137.12 16.63 4.63 30.56 66.68 78.29 36.73 81.02

7.13 0.61 2.96 4.99 2.38 4.77 2.91 4.93
DimeNet++ 47.43 133.70 236.94 856.01 1096.34 580.41 301.06 669.06

13.82 12.45 6.41 8.87 7.82 10.41 8.64 6.15
DimeNet++* 2.59 1.68 0.58 20.30 5.18 3.65 0.77 5.96

2.52 0.25 0.29 0.78 0.70 1.79 0.46 0.71
ForceNet 755.49 239.53 1048.44 874.22 1677.71 165.17 369.33 1964.51

21.95 117.79 17.61 31.52 18.16 22.36 18.33 46.47
ForceNet* 13.80 19.09 3.18 4.52 5.98 41.43 5.63 14.54

0.89 0.33 1.15 1.36 0.35 0.34 0.50 0.26
GemNet 2201.94 352.19 470.32 5.23 564.06 1238.93 193.50 228.10

0.34 0.22 0.28 0.27 0.17 0.30 0.12 0.20
GemNet* 13.16 6.31 7.10 15.36 5.87 5.67 8.13 21.98

0.93 1.27 0.27 0.70 0.47 0.73 0.47 7.07

Table 1: Comparison of model performance trained with original settings and our proposed methods
(*). Mean energy loss (kcal/mol) on the upper row and mean force loss (kcal/mol/Å) on the bottom
row of the eight molecules in MD17 trained on state-of-the-art models.

Baseline models are trained with the same training configuration and model hyperparameters given
by OCP (Chanussot* et al., 2021). We note that Schnet was originally benchmarked on MD17
whereas the other NNs have been tested on other datasets. We train for 50 epochs on the MD17
dataset. Given the fast convergence of the training loss in MD17 (Fig. 2a), we consider 50 epochs is
sufficient for models to fully learn the energy and forces. We use a batch size of 20 as recommended
in the literature (Chanussot* et al., 2021). We use the Adam optimizer with a learning rate of 0.0001.

Tab. 1 compares the performance between models trained with original settings and models trained
with our proposed methods. We denormalize all networks with normalization layers. For architec-
tures which consist of multiple interaction-output blocks (e.g., DimeNet++ and GemNet), we were
only able to replace activation layers in output blocks with IReLU as training with all activations
replaced proved to be unstable. For label rescaling, we use the constant C = 1000000 since the en-
ergies in MD17 are on the order of 400000. The results of our proposed methods are noted with * in
the table. To investigate the individual contribution of IReLU, denormalization, and label rescaling,
we also conduct ablation studies (Appx. C). We also experiment on different dataset sizes (Appx. D).

For each architecture, we report the energy loss (upper row) and the force loss (bottom row) sepa-
rately. We use the units of the original dataset, kcal

mol for energy and kcal

molÅ
for the force respectively. In

general, our methods improve upon force loss across most molecules and most architectures. In par-
ticular, there is significant improvement in learning forces for CGCNN, DimeNet++ and ForceNet.
We observe cases where our method performs worse on forces (e.g., SchNet and GemNet) but pro-
vides competitive performance. Perhaps surprisingly, our methods also improve the energy loss (38
out of 40 cases). We might reason that better incorporating force information would lead to im-
proved learning of the physics. Nevertheless, it would be an interesting direction of future work to
study this in more detail.

5.1.2 EXPERIMENTS ON OC22 DATASET

To validate our methods on more datasets, we also compare the performance with and without our
proposed methods on OC22 (Chanussot* et al., 2021). OC22 contains 62331 relaxations of ox-
ides calculated at the DFT level. It contains a wide range of crystal structures (e.g., monoclinic,
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Model Energy MAE Loss (eV) Force MAE Loss (eV/Å)
SchNet 6.94 0.10
SchNet* 22.4621 0.12
CGCNN 233.90 0.32
CGCNN* 71.33 0.08
DimeNet++ 5.10 0.09
DimeNet++* 0.57 0.01
ForceNet 4.48 0.33
ForceNet* 5.90 0.10

Table 2: Comparison of performance on OC22 with original settings and our proposed methods.

tetragonal) that contain heavier elements (e.g., metalloids, transition metals). Compared to MD17,
OC22 consists of various large structure/metals (more than 100 atoms) mixed together in the train-
ing, validation, and testing set. In this dataset, the absolute value of the mean energy is only 1 order
of magnitude larger than the mean force (compared to 3 in MD17). We randomly select 200000
molecules in OC22 training split as our training set and 25000 molecules in OC22 validation (out of
domain) split as our testing set.

Baseline models are trained with the same training configuration and model hyperparameters given
by OCP (Chanussot* et al., 2021). We train all models for 50 epochs. We use a batch size of 20 as
recommended in the literature (Chanussot* et al., 2021) for SchNet and CGCNN. Due to hardware
memory limitations we tested DimeNet++ and ForceNet with a batch size 10. We were not able
to test GemNet due to hardware limitations. We use the Adam optimizer with a learning rate of
0.00001 for ForceNet and 0.0001 for others.

Tab. 2 shows that our methods produce better force predictions for CGCNN, DimeNet++, and
ForceNet. In those models where we improved force losses, CGCNN and DimeNet++ also improve
energy losses. It would be interesting to investigate why SchNet with our methods performs worse
on OC22. As a reminder, both SchNet and CGCNN are based on convolutional architectures, and
CGCNN’s performance is improved with our method. We emphasize again that we do not modify
the given architectures beyond replacing the activation functions (when appropriate).

5.2 PHYSICS-INFORMED NEURAL NETWORKS

To validate the generalization ability of our proposed methods in other domains aside from quantum
chemistry, we also experiment on physics-informed neural networks (PINNs) (Raissi et al., 2019;
Karniadakis et al., 2021; Wu et al., 2018). PINNs are a general family of models that use a NN
to predict the solution of a partial differential equation (PDE). The solution of a PDE is a latent
function ψ(x, t) that describe physical measurements (e.g., temperature and velocity) as a function
of spatial coordinates x and time t. PINNs enforce physical constraints on the solution ψ(x, t) by
enforcing that the solution satisfies the governing PDE in the loss function.

In general the loss function for a PINNs takes the form below
L(ψ,D) = Lf (ψ,Df ) + LICBC (ψ,DIC ,DBC) (6)

where ψ is a learned PDE solution (e.g., a NN) and D = (Df ,DIC ,DBC) is a dataset consisting of
several components containing additional constraints. The first term

Lf (ψ,Df ) =
1

|Df |
∑

(x,t,y)∈Df

F
(
∂ψ(x, t)

∂x
,
∂ψ(x, t)

∂t
,
∂2ψ(x, t)

∂x2
,
∂2ψ(x, t)

∂x∂t
, . . . ,y

)
(7)

gives the predicted solution’s loss evaluated on a spatial-temporal grid (x, t) ∈ Df using a function
F . The loss is a function of additional derivatives of the predicted solution ψ w.r.t. its inputs
according to the governing PDE. Thus, the loss function for a PINN may contain many higher-order
derivatives.

The second term

LICBC (ψ,DIC ,DBC) =
1

|DIC |
∑

(x,i)∈DIC

I(ψ(x, 0), i) + 1

|DBC |
∑

(x,t,b)∈DBC

B(ψ(x, t),b) (8)
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Method MSE L†
f LIC LBC

Tanh + BN 1.70 8e-16 5e-5 3e-5
IReLU + BN 2.42 9e-12 8e-6 2e-6
Tanh (original) 1.59 1e-5 3e-6 6e-6
IReLU (ours) 0.99 <e-45 0.08 <e-45

Table 3: MSE and loss terms of the Advection equation. Lf is the loss of the PDE which governs the
Advection equation, LIC is the loss on the initial conditions, and LBC is the loss on the boundary
conditions.

enforces constraints on the PDE solution given by initial conditions (DIC) and boundary conditions
(DBC). I and B are the respective loss functions for the initial conditions and boundary conditions.
These conditions further constrain the solution of a PDE. There can be multiple IC and BC loss
terms, Moreover, the IC and BC loss terms (not shown) can also involve higher-order derivatives in
certain PINNs.

For our experiments with PINNs, we adapt baseline architectures, datasets and training config-
urations from PDEBench (Takamoto et al., 2022a;b). PDEBench provides implementations and
benchmarks of SciML models including PINNs for learning (1) the Advection equation (Sec. 5.2.1),
(2) the compressible fluid dynamic equation (Sec. 5.2.2), and (3) the diffusion-reaction equation
(Sec. 5.2.3). In the baseline architecture, all PINNs use the same MLP (multi-layer perceptron) ar-
chitecture with 6 hidden layers of 40 neurons in each to simulate their latent function ψ. The MLP
uses Tanh activation function for every hidden layer. We use the same library DeepXDE (Lu et al.,
2021) to construct and train the backbone MLP.

For all PDES, we compare training a PINN to learn the PDE with activations replaced with IReLU
activations. We did not find a need for label rescaling. For comparison, we also add in batch normal-
ization (BN) to study its impact. Following PINN convention, we measure the model performance
by using the mean square error (MSE) of the PINN’s latent function prediction (i.e., ψ(x, t)). Thus,
the loss terms which involve higher-order derivatives are taken purely as constraints. Loss terms
labeled with † are the terms which involve derivatives of the model w.r.t its inputs. To give more
fine-grained information about how our methods impact each component of the loss term, we pro-
vide the MSE value of each loss term evaluated in the last epoch of training along side the predictive
MSE evaluated in testing set.

5.2.1 ADVECTION EQUATION

The Advection equation has a simple PDE that involves first-order partial derivatives of the model
w.r.t. its input in Lf , one initial condition in LICBC , and one boundary condition in LICBC . Thus,
this task tests our method’s performance on loss functions in DC training with 3 terms. The full
loss function associated with the Advection equation is presented in the Appx. E.1. Both standard
training and training with our methods use 15000 epochs on the 1D Advection dataset with the
Adam optimizer and an initial learning rate of 0.001 following PDEBench.

Tab. 3 presents the predictive loss evaluated on the test set and the training loss of each term in the
loss function evaluated in the last epoch of training since these terms act as constraints. The model
trained with our method achieves the best predictive loss (Lf ) on the test set. We also improve two
of the training loss terms. It is also interesting to observe that adding batch normalization (BN)
decreases performance.

5.2.2 COMPRESSIBLE FLUID DYNAMICS EQUATION

The compressible fluid dynamics (CFD) equation contains 6 total initial and boundary conditions in
LICBC . Like the Advection equation, it also involves first-order derivatives of the model w.r.t. its
input in Lf . Thus, this task tests our method’s ability to handle many terms in the loss function. The
full loss function associated with the CFD equation is presented in the Appx. E.2. Both standard
training and training with our methods use 15000 epochs on the 1D CFD dataset from PDEBench
with the Adam optimizer and an initial learning rate of 0.001 following PDE bench.
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Method MSE L†
f LICp LICd

LICv LBCp LBCd
LBCv

Tanh + BN 1.11 271.94 2910.32 11.37 0.25 0.15 0.15 0.15
IReLU + BN 1.66 2e+7 4656.73 32.97 0.87 1.96 1.96 1.96
Tanh (original) 0.87 7.96 4694.60 16.01 0.27 0.11 0.11 0.11
IReLU (ours) 0.40 0.11 88.78 0.21 0.17 1e-6 1e-6 1e-6

Table 4: MSE and loss terms of the CFD equation. Lf is the loss of the PDE which governs the
CFD equation. LICp

, LICd
, and ICv are the loss on the initial conditions corresponding to pressure,

density, and velocity respectively. LBCp
, LBCd

, and LBCv
are the loss on the boundary conditions

corresponding to pressure, density, and velocity respectively.

Method MSE L†
f LICu LICv L†

BC LBCu LBCv

Tanh + BN 4.94 0.46 1.18 1.06 2e-15 0.08 0.008
IReLU + BN 8.03 7e+4 0.98 1.00 2e-10 4.44 4.34
Tanh (original) 1.35 2e-4 0.97 0.99 1e-4 1e-4 3e-5
IReLu (ours) 1.13 1e-4 0.98 1.00 3e-14 0.004 3e-4

Table 5: MSE and loss terms of DR equation. Lf is the loss of the PDE which governs the DR
equation. LICu

and LICv
are the loss on the initial conditions corresponding to the activator and the

inhibitor respectively. LBC , LBCu , and LBCv give the loss on the boundary conditions correspond-
ing to the derivative of the boundary conditions, the activator, and the inhibitor respectively.

Tab. 4 presents the predictive loss Lf evaluated on the test set. We also include the training loss
of each term in LICBC evaluated in the last epoch of training. The model trained with IReLU and
denormalization performs the best on all training terms. Our methods perform exceptionally well
on the term involving derivatives (Lf loss). As before, we also observe that adding BN decreases
performance.

5.2.3 DIFFUSION REACTION EQUATION

The diffusion-reaction (DR) equation involves the most complex PDE in terms of derivative con-
straints. The loss on the PDE solution’s prediction contains second-order derivatives, which means
that third-order derivative information is used during NN training. Additionally, there are bound-
ary conditions that utilize gradient information to describe the solution’s boundary state at each
given time step. Thus, this task tests our method’s ability to cope with higher-order derivatives and
derivative constraints in multiple terms. The full loss function associated with the diffusion reaction
equation is presented in the Appx. E.3. For the DR equation, both standard training and training
with our methods use 100 epochs on the 2D DR dataset (1000 samples) from PDEBench with the
Adam optimizer and an initial learning rate of 0.001.

Tab. 5 presents the MSE loss on the testing set and training loss of each term in LICBC in the
last epoch of training. The models with IReLU and denormalization have the best predictive loss,
which involves second-order derivative information. Additionally, we also achieve competitive per-
formance on the boundary conditions that involve derivatives. This experiment demonstrates that
our proposed methods has ability to fit gradients of NN that have order more than two. Note that the
IReLU has a vanishing third-order derivative so other integrated activations may perform better.

6 CONCLUSION

In this paper, we introduce IReLU activations, denormalization, and label rescaling to improve DC
training of NNs. We demonstrate that these methods improve the performance across a range of
tasks and architectures in the setting of training with derivative constraints. It would be interesting to
further investigate the applicability of these methods to more domains. It would also be an interesting
direction of future work to investigate novel regularization techniques that work in this setting.
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A WHY INTEGRATED RELU?

We give intuition for the IReLU activation by walking through the difference between training with-
out derivative-constraints and with derivative constraints. In the following, let σ be an activation
function and f(x, θ) be a NN layer that takes an input x with parameters θ.

Update without derivative constraints During backpropagation, the parameters θ will be up-
dated using the partial derivative w.r.t. θ as

∂

∂θ
(σ(f(x, θ))) = σ′(f(x, θ))

∂f(x, θ)

∂θ
. (9)

Update with derivative constraints When we are training with derivative constraints encoded in
the loss function, we additionally need to take derivatives of the model w.r.t. its inputs. Conse-
quently, during backpropagation, the parameters θ will be updated using an additional term

∂2

∂x∂θ
(σ(f(x, θ))) = σ′′(f(x, θ))

∂f(x, θ)

∂x

∂f(x, θ)

∂θ
+ σ′(f(x, θ))

∂2f(x, θ)

∂x∂θ
(10)

when the first-order derivative of the model w.r.t. its inputs is used. For an activation σ = ReLU,
we note that ReLU′′(x) = 0 so that the first term vanishes, leaving us with

∂2

∂x∂θ
(ReLU(f(x, θ))) = ReLU′(f(x, θ))

∂2f(x, θ)

∂x∂θ
. (11)

Consequently, a standard activation function such as ReLU loses training signal in the DC setting.

In a multi-objective loss function where prediction errors and derivative constraints also introduce
error, the total update has contributions from both updates. For example, the loss function in Equa-
tion 2 in the setting of quantum chemistry contains both energy and force terms, so the total update
is given as

∂

∂θ
(σ(f(x, θ))) +

∂2

∂x∂θ
(σ(f(x, θ))) =(

σ′(f(x, θ)) + σ′′(f(x, θ))
∂f(x, θ)

∂x

)
∂f(x, θ)

∂θ
+ σ′(f(x, θ))

∂2f(x, θ)

∂x∂θ
(12)

where we have regrouped the terms for comparison with the original activation. Under the assump-
tion that ∂2f(x,θ)

∂x∂θ ≈ ∂f(x,θ)
∂x

∂f(x,θ)
∂θ , we see that the total update is(

σ′(f(x, θ)) + (σ′(f(x, θ)) + σ′′(f(x, θ)))
∂f(x, θ)

∂x

)
∂f(x, θ)

∂θ
. (13)

The relative ratio of the updates given by standard training versus DC training is thus

1/

(
2 +

σ′′(f(x, θ))

σ′(f(x, θ))

∂f(x, θ)

∂x

)
. (14)

We note that the importance of the contribution of the derivative ∂f(x,θ)
x is given by the ratio of

σ′′ compared to σ′. Thus, we can specifically control the contribution of derivative constraints by
adjusting the activation.

B MD17 MOLECULE DETAILS

In Tab. 6, we provide the details of the 8 molecules in MD17. MD17 is a collection of conformations
of small molecules consisting of Carbon (C), Hydrogen (H), Nitrogen (N), and Oxygen (O) atoms.

C ABLATION STUDIES

In this section, we show the results of ablation studies on IReLU activations, denormalization, and
label rescaling with the same methodology mentioned in Sec. 5.1.
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Abbreviation Molecule Formula Num Atoms Num Conformations
Asp. Aspirin C9H8O4 21 211762
Ben. Benzene C6H6 12 627983
Eth. Ethanol C2H6O 9 555092
Mal. Malonaldehyde C3H4O2 9 993237
Nap. Naphthalene C10H8 18 326250
Sal. Salicylic acid C7H6O3 16 320231
Tol. Toluene C6H5CH3 15 442790
Ura. Uracil C4H4N2O2 12 133770

Table 6: Details of molecules in MD17

Model Asp. Ben. Eth. Mal. Nap. Sal. Tol. Ura.
SchNet 53.00 125.43 5.97 37.54 197.06 65.46 129.80 54.88

1.21 0.39 0.68 1.00 0.72 1.02 0.67 0.86
SchNet* 12.35 2.38 0.84 1.25 1.97 8.22 1.88 2.47

13.39 0.34 1.43 1.69 2.12 6.14 1.72 1.85
CGCNN 239.07 98.86 38.36 104.45 130.98 197.09 124.29 133.51

14.20 6.11 8.25 14.27 8.46 8.50 9.70 9.08
CGCNN* 97.41 12.75 39.28 93.49 113.61 109.16 30.70 65.45

26.90 37.05 12.45 20.87 14.94 35.32 15.54 18.55
DimeNet++ 47.43 133.70 236.94 856.01 1096.34 580.41 301.06 669.06

13.82 12.45 6.41 8.87 7.82 10.41 8.64 6.15
DimeNet++* 298.71 48.13 39.76 90.78 109.36 127.91 74.38 119.00

26.75 4.50 4.69 11.52 13.40 20.14 12.56 21.87
ForceNet 755.49 239.53 1048.44 874.22 1677.71 165.17 369.33 1964.51

21.95 117.79 17.61 31.52 18.16 22.36 18.33 46.47
ForceNet* 4e+5 955.28 593.23 1085.65 940.71 783.66 1181.15 2129.21

32.34 10.34 74.83 654.96 24.30 1963.86 154.05 1617.17
GemNet 2201.94 352.19 470.32 5.23 564.06 1238.93 193.50 228.10

0.34 0.22 0.28 0.27 0.17 0.30 0.12 0.20
GemNet* 44.31 NaN 13.06 NaN NaN NaN 10.26 115.43

1.81 NaN 0.88 NaN NaN NaN 0.18 1.57

Table 7: Comparison of model performance trained with original activation and with Integrate
ReLU. Mean energy loss (kcal/mol) on the upper row and mean force loss (kcal/mol/Å) on the
bottom row of the eight molecules in MD17 trained on state-of-the-art models. The models are
trained on single molecule training set in MD17 and tested on their corresponding testing set.

C.1 ABLATION STUDY: INTEGRATED RELU

In Sec. 5.1.1, we show that our methods generally reduce both energy and force error. To investigate
the respective contribution of the IReLU activation, we conduct an ablation experiment on IReLU.
In Tab. 7, we compare between the state-of-the-art models performance trained with their original
activation function and trained with IReLU (marked with *). SchNet uses Shifted-Softplus, CGCNN
uses Softplus, and DimeNet++, ForceNet, and GemNet uses SiLU in their original architectures.

Tab. 7 shows that applying IReLU activations exclusively to the models does not consistently im-
prove energy loss or force loss. Due to the squaring operation (Eq. 3) in an IReLU activation, values
in features may diverge, resulting in numeric instability in the training phase. GemNet is an example
that suffers from such exploding features. We report NaN when this happens in our experiments.

To show that IReLU activations still benefits model performance (with an appropriate regularization
technique) in the results of Sec. 1, we also conduct this ablation experiment when denormalization
and label rescaling are applied. We present results in Tab. 8. In this table, we show that IReLU
largely helps reducing energy losses and also reduce force losses in most cases.
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Model Asp. Ben. Eth. Mal. Nap. Sal. Tol. Ura.
SchNet 610.62 5e+4 205.45 77.42 8218.45 1378.72 2e+4 76.96

9.57 0.90 6.35 4.87 0.81 9.25 3.23 4.42
SchNet* 28.31 0.56 13.39 11.27 5.53 27.57 0.34 20.36

1.67 0.36 1.53 1.67 1.01 1.12 1.04 1.23
CGCNN 816.04 1000.86 496.82 217.76 870.55 147.07 1903.14 456.21

1.27 0.35 0.61 0.73 0.80 1.01 0.84 1.12
CGCNN* 137.12 16.63 4.63 30.56 66.68 78.29 36.73 81.02

7.13 0.61 2.96 4.99 2.38 4.77 2.91 4.93
DimeNet++ 237.34 235.38 70.11 417.45 101.76 157.36 295.44 240.70

0.75 1.34 0.24 0.32 0.53 0.58 0.76 0.42
DimeNet++* 2.59 1.68 0.58 20.30 5.18 3.65 0.77 5.96

2.52 0.25 0.29 0.78 0.70 1.79 0.46 0.71
ForceNet 882.29 625.52 233.99 100.58 727.00 673.01 289.86 1366.66

1.37 0.77 0.68 1.59 0.94 0.95 1.02 0.82
ForceNet* 13.80 19.09 3.18 4.52 5.98 41.43 5.63 14.54

0.89 0.33 1.15 1.36 0.35 0.34 0.50 0.26
GemNet 220.03 718.87 153.32 329.15 681.90 1926.48 117.86 555.19

6.57 0.71 0.38 1.90 0.50 4.22 0.64 2.69
GemNet* 13.16 6.31 7.10 15.36 5.87 5.67 8.13 21.98

0.93 1.27 0.27 0.70 0.47 0.73 0.47 7.07

Table 8: Comparison of model performance trained with original activation and with Integrate ReLU
when denormalization and label rescaling are used. Mean energy loss (kcal/mol) on the upper row
and mean force loss (kcal/mol/Å) on the bottom row of the eight molecules in MD17 trained on
state-of-the-art models. The models are trained on single molecule training set in MD17 and tested
on their corresponding testing set.

Model Asp. Ben. Eth. Mal. Nap. Sal. Tol. Ura.
CGCNN 239.07 98.86 38.36 104.45 130.98 197.09 124.29 133.51

14.20 6.11 8.25 14.27 8.46 8.50 9.70 9.08
CGCNN* 816.04 1000.86 496.82 217.76 870.55 147.07 1903.14 456.21

1.27 0.35 0.61 0.73 0.80 1.01 0.84 1.12
ForceNet 755.49 239.53 1048.44 874.22 1677.71 165.17 369.33 1964.51

21.95 117.79 17.61 31.52 18.16 22.36 18.33 46.47
ForceNet* 882.29 625.52 233.99 100.58 727.00 673.01 289.86 1366.66

1.37 0.77 0.68 1.59 0.94 0.95 1.02 0.82

Table 9: Comparison of model performance trained with and without denormalization and label
rescaling. Mean energy loss (kcal/mol) on the upper row and mean force loss (kcal/mol/Å) on the
bottom row of the eight molecules in MD17 trained on CGCNN and ForceNet. The models are
trained on single molecule training set in MD17 and tested on their corresponding testing set.

C.2 ABLATION STUDY: DENORMALIZATION AND LABEL RESCALING

We also evaluate the contribution of denormalization and rescaling. In Tab. 9, we show the compar-
ison of performance between original models and denormalized models. We choose CGCNN and
ForceNet to experiment on since they originally contain normalization layers in their respective ar-
chitectures. For the denormalized models, we also apply label rescaling with constant C = 1000000
to stabilize the training phase. We use * to indicate the denormalized models trained with rescaled
labels in the table.

From Tab. 9, we can see that the improved models consistently reduce force errors by a large amount.
Meanwhile, energy losses show close preference for original models. Overall, denormalization and
label rescaling significantly improves force losses at the cost of producing higher energy losses. We
can improve this with the IReLU activation as we demonstrated in Tab. 1.
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(a) Energy test loss for different training set
sizes.

(b) Force test loss for different training set
sizes.

Figure 2: Test losses of our methods as a function of dataset size. We do not have enough Asprin or
Uracil conformations to test at larger dataset sizes.

D SCALING ON DATA

One nice property of NNs that has been demonstrated empirically is that their performance improves
with increasing data. Because we change a fundamental part of a NN architecture, namely the
activation function, we test that this scaling property still holds. We train SchNet with IReLU
activations and label rescaling (C = 1000000) on {50000, 100000, 150000, 200000} datapoints
from the MD17 dataset.3. Fig. 2 reports that we can reduce both energy loss and force loss as we
increase the dataset size.

E LOSS FUNCTIONS OF PINNS

In this section, we explain the PINNs and their respective loss function used during training in
Sec. 5.2.

E.1 ADVECTION EQUATION

The Advection equation is a PDE that describes the motion of fluid in a given velocity vector field.
With a solenoidal velocity vector field, we have:

ψt + u · ∇ψ = 0 (15)

where in the 1D case, u · ∇ψ = uxψx. In this dataset, initial conditions ψ(x, 0) are set as a super-
position of two sinusoidal waves which coordinates are picked randomly and boundary conditions
are periodic. Therefore, we use the following loss function derived from these constraints in our
experiment:

L (ψ;D) =
1

|Df |
∑
x∈Df

∥ψt(x) + βψx(x)∥22+
1

|Dic|
∑

x,y∈Dic

∥ψ(x)− y∥22+
1

|Dbc|
∑

x,y∈Dbc

∥ψ(x)− y∥22

(16)
where training set D = Df +Dic +Dbc. We use β = 0.1 in our experiments.

E.2 COMPRESSIBLE FLUID DYNAMIC EQUATION

The compressible fluid dynamic (CFD) equation (i.e., compressible Navier-Stokes equation), are
PDEs that express momentum balance an conservation of mass for Newtonian fluids. The CFD

3Limited by the amount of conformations provided in MD17, the Aspirin trajectory does not have enough
sample to test 150000 and 200000 points. The Uracil trajectory does not have enough samples to test on 200000
points.
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equation relates pressure, temperature and density.

ρt +∇ · (ρv) = 0 (17)

ρ (vt + v · ∇v) = −∇p+ η∆v + (ζ + η/3)∇(∇ · v) (18)[
ϵ+

ρv2

2

]
t

+∇ ·
[(
ϵ+ p+

ρv2

2

)
v − v · σ′

]
= 0 (19)

where ρ is the density, v is the velocity, p is the pressure, ϵ = 1.5 ∗ p, σ is the viscous stress tensor,
η is the shear viscosity and ζ is the bulk viscosity. In this dataset, initial conditions ψ(x, 0) are set
as a super-position of four sinusoidal waves which coordinates are picked randomly and boundary
conditions are outgoing, which allows waves and fluid to escape from the computational domain.
Therefore, we use the following loss function derived from these constraints in our experiment:

L (ψ;D) =
1

|Df |
∑
x∈Df

∥f1(x) + f2(x) + f3(x)∥22 +

1

|Dicd |
∑

x,y∈Dicd

∥d(x)− y∥22 +
1

|Dicv |
∑

x,y∈Dicv

∥v(x)− y∥22 +
1∣∣Dicp

∣∣ ∑
x,y∈Dicp

∥p(x)− y∥22 +

1

|Dbcd |
∑

x,y∈Dbcd

∥d(x)− y∥22 +
1

|Dbcv |
∑

x,y∈Dbcv

∥v(x)− y∥22 +
1∣∣Dbcp

∣∣ ∑
x,y∈Dbcp

∥p(x)− y∥22

(20)

We use η = 10−8 and ζ = 10−8.

f1(x) = ρt(x) + (ρv)x(x) (21)

f2(x) = ρ(x) ∗ (vt(x) + v(x) ∗ vx(x))− px(x) (22)

f3(x) = [p/(γ − 1) + 0.5 ∗ h ∗ u2]t(x) + [u ∗ (p/(γ − 1) + 0.5 ∗ h ∗ u2) + p)]x(x) (23)

where training set D = Df+Dicd+Dicv+Dicp+Dbcd+Dbcv+Dbcp and γ = 5/3. Dbcd ,Dbcv ,Dbcp
are point sets of periodic boundary conditions.

E.3 DIFFUSION REACTION EQUATION

The diffusion-reaction (DR) equation describes how concentration of a chemical spreads over time
and space trough chemical reactions. In the two component case, with two latent functions u =
ψ(x, y, t) and v = ϕ(x, y, t) and Fitzhugh-Nagumo reaction equation, we have

ψt = Du ∗ ψxx +Du ∗ ψyy + ψ + ψ3 − k − ϕ (24)

and

ϕt = Dv ∗ ϕxxv +Dv ∗ ϕyy + ψ − ϕ (25)

where Du is the activator diffusion coefficient and Dv is the inhibitor diffusion coefficient. In this
dataset, the initial conditions ψ(x, y, 0) and ϕ(x, y, 0) are normal distributions N (0, 1) boundary
conditions are Du ∗ ψx = 0, Dv ∗ ϕx = 0, Du ∗ ψy = 0, and Dv ∗ ϕy = 0. Therefore, we use the

17



Under review as a conference paper at ICLR 2024

following loss function derived from these constraints in our experiment:

L (ψ;D) =
1

|Df |
∑
x∈Df

∥f1(x) + f2(x)∥22 +

1

|Dicu |
∑

x,y∈Dicu

∥u(x)− y∥22 +
1

|Dicv |
∑

x,y∈Dicv

∥v(x)− y∥22 +

1

|Dbc|
∑

x∈Dbc

∥ux(x) + vx(x) + uy(x) + uy(x)∥22 +

1

|Dbcu |
∑

x,y∈Dbcu

∥u(x)− y∥22 +
1

|Dbcv |
∑

x,y∈Dbcv

∥v(x)− y∥22

(26)

f1(x) = ut(x)−Du ∗ uxx(x)−Du ∗ uyy(x)− u(x) + u(x)3 + k + v(x) (27)

f2(x) = vt(x)−Dv ∗ vxx(x)−Dv ∗ vyy(x)− u(x) + v(x) (28)

where k = 0.005, Du is the diffusion coefficient for activator and Dv is the diffusion coefficient for
inhibitor.
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