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Global Patch-wise Attention is Masterful Facilitator for Masked
Image Modeling

Anonymous Authors

ABSTRACT
Masked image modeling (MIM), as a self-supervised learning para-
digm in computer vision, has gained widespread attention among
researchers. MIM operates by training the model to predict masked
patches of the image. Given the sparse nature of image seman-
tics, it is imperative to devise a masking strategy that steers the
model towards reconstructing high-semantic regions. However,
conventional mask strategies often miss these high-semantic re-
gions or lack alignment with the masks and semantics. To solve
this, we propose the Global Patch-wise Attention (GPA) framework,
a transferable and efficient framework for MIM pre-training. We
observe that the attention between patches can be the metric of
identifying high-semantic regions, which can guide the model to
learn more effective representations. Therefore, we firstly define
the global patch-wise attention via vision transformer blocks. Then
we design the soft-to-hard mask generation to guide the model
gradually focusing on high semantic regions identified by GPA
(GPA as a teacher). Finally, we design an extra task to predict GPA
(GPA as a feature). Experiments conducted under various settings
demonstrate that our proposed GPA framework enables MIM to
learn better representations, which benefit the model across a wide
range of downstream tasks. Furthermore, our GPA framework can
be easily and effectively transferred to various MIM architectures.

CCS CONCEPTS
• Computing methodologies → Computer vision representa-
tions.

KEYWORDS
Self-supervised learning, Visual representation learning

1 INTRODUCTION
In recent years, self-supervised learning [4, 16] has received ex-
tensive attention in the field of computer vision. Its characteristic
lies in the ability to learn meaningful representations without the
need for any annotations. Inspired by the prominent self-supervised
learning method in natural language processing known as Masked
Language Modeling (MLM) [7, 34], Masked Image Modeling (MIM)
[2, 12, 15] has also gradually gained prominence in self-supervised
learning-based computer vision.
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Figure 1: Comparison between previous MIMmask strategies
and our proposed GPA. (a) Mask strategies based on recon-
struction loss. (b) Mask strategies based on attention. Top:
attention between classification and patches. Middle: atten-
tion between single patch and other patches, pth-wise atten.
indicates patch-wise attention. Bottom: Global Patch-wise
Attention. Our proposed mask strategy, which is utilized in
our framework. Firstly, we calculate attention for each patch
pair and then aggregate them along the query dimension to
derive the Global Patch-wise Attention.

MIM operates by training the model to predict masked patches
of the image. The masks act as the teacher , while the model acts
as the student. The teacher guides the student to focus on the
masked patches, in order to instruct and facilitate the student in
understanding the entire image. Currently, the most common mask
strategies are randomly select masked patches (random masking
[15]), or randomly select a set of adjacent patches for masking
(block-wise masking [2]). However, such mask strategies are ev-
idently insufficient. Given the sparsity of semantic information
in images, random masking tends to obscure patches with weak
semantic content, thereby hindering the model’s ability to learn
valuable representations. Consequently, there is a need for improv-
ing the mask strategy, enabling the teacher to selectively teach the
student to focus on high semantic patches. However, designing
an effective mask strategy poses a significant challenge in MIM.
Without supervised information to assist in distinguishing high
semantic patches, the task of learning where to mask relies on the
exploration of self-features within the image.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Figure 2: Visualization of GPA on the ImageNet-1K validation set using the pre-trained ViT-B/16 model from MAE [15]. Each
tuple displays the input image (left), Global Patch-wise Attention (center), and the top 75% hard mask generated by GPA (right),
where red indicates high GPA.

Figure 1 illustrates approaches of improving mask strategies,
which can be divided into two main strategies: Figure 1(a) based
on reconstruction loss [1, 36], where high semantic patches are
believed to be difficult to reconstruct, so patches with large recon-
struction loss are selected. The other strategy, shown at the top of
Figure 1(b), is based on the attention between classification token
and patch tokens (cls-pth atten.) of a pre-trained ViT [3, 19, 23, 28],
as the classification token carries global semantics. By calculating
the attention between classification token and each patch token, it
is possible to locate which patch contains more semantic. However,
for the reconstruction loss based mask strategies, we argue that
there is not a strong correlation between high reconstruction loss
and semantic. As shown in Figure 1(a), patches with high recon-
struction loss are often at patches with rich RGB colors, which may
often correspond to complex background colors in many images.
As for the cls-pth attention based mask strategies, We argue that
in the pre-training process of MIM, the cls-token does not directly
participate in the reconstruction task, which leads to the semantic
information of cls-tokens not being aligned with images. Therefore,
using the cls-token directly might lead to semantic alignment is-
sues with the mask. An alternative approach involves using CLIP,
however, in this method, the cls-token’s alignment with the text
modality during pre-training could introduce modal alignment is-
sues with the mask. Consequently, current attention-based masking
strategies generally face alignment problems.

How can we find a self-feature that is strongly associated with
high semantic patches and aligned with the image to guide the
model in learning where to mask? In response to this challenge, we
propose the Global Patch-wise Attention pre-training framework
(GPA) with a novel and natural mask strategy based on patch-wise
attention as shown in the bottom of Figure 1(b). Inspired by at-
tention’s original definition, our strategy demonstrates a strong
correlation with high semantic patches, aligning them with image
features through attention computations between patches. Specif-
ically, in the attention mechanism [35], the product of patch 𝐴’s
𝑘𝑒𝑦 and patch 𝐵’s 𝑞𝑢𝑒𝑟𝑦 quantifies how much patch 𝐵 attends to
patch 𝐴. Consequently, the sum of products between the 𝑘𝑒𝑦 of
patch 𝐴 and the 𝑞𝑢𝑒𝑟𝑦 of all other patches can be considered as the
degree to which patch 𝐴 needs to be attended to in comprehend-
ing the entire image. We term this cumulative attention measure
as Global Patch-wise Attention (GPA) for patch 𝐴. During the
reconstruction process, patch tokens interact and gradually syn-
chronize, aligning their learned features. This alignment allows
the Global Patch-wise Attention (GPA) we formulated to target
patches with significant semantic content accurately. According to
our framework, patches that exhibit higher GPA are given priority
for masking, highlighting their crucial semantic importance.

Consistently masking patches with high GPA could hinder the
model’s ability to learn environmental context. To address this, we
introduce a soft-to-hard mask generation approach. Contrasting
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with the easy-to-hard strategy [36] that progressively presents more
difficult challenges to the model, our method transitions from a soft
ordering (sampling) to a hard ordering (sorting) of masks, thereby
progressively directing the model’s focus towards critical entities.

Previous studies have identified various features, like HOG [39]
and reconstruction loss [36], as effective targets for reconstruction.
The sensitivity of our proposed GPA to semantics suggests that
employing GPA as a reconstruction feature could offer a direct
signal for the model to discern the semantic density of patches.
Consequently, we introduce a new task for MIM, termed Masked
Attention Modeling (MAM), that utilizes GPA for reconstruction.
Empirical evidence indicates that MAM facilitates the model in
acquiring more effective representations.

Our contributions are following:

• We propose a patch-wise attention-based mask strategy
that can indicate high semantic patches to mask and can
easily transfer to any Transformer-based MIM.

• We design the MAM task to explore the potential of em-
ploying GPA as a feature, demonstrating its effectiveness in
enhancing the model’s performance across various metrics.

• We conduct extensive experiments across multiple bench-
marks to confirm the effectiveness of our GPA framework,
and our transfer experiments on various MIM frameworks
demonstrate the universality of our masking strategy.

2 RELATEDWORK
Self-supervised learning. Self-supervised learning, eliminating
the need for annotated data, fosters the development of universal
and meaningful representations by harnessing supervisory infor-
mation inherent in the data itself. This paradigm has achieved
remarkable success across various domains [7, 31, 34]. In the field
of Computer Vision, self-supervised learning [8, 13, 22, 33, 47] pri-
marily encompasses two main directions: Masked Image Modeling
[2, 15] and Contrastive Learning [14, 16, 38, 45]. Masked ImageMod-
eling involves training a model to predict the original signals in
intentionally obscured regions of an image, thereby aiding in learn-
ing rich representations by reconstructing these masked patches.
Contrastive learning employs instance discrimination [41] tasks to
bring positive samples closer in the feature space while pushing
negative samples farther apart [4].
Masked image modeling. Inspired by the success of Masked
Language Modeling [7], Masked Image Modeling, The mirrored
approach of MLM in computer vision, has received widespread
attention [9, 21, 32, 39, 43, 46]. There are currently two paradigms:
continuous [15] and discrete [2]. The continuous paradigm maps
images to a continuous embedding space, while the discrete para-
digm questions the suitability of continuous space for image recon-
struction. Therefore, these methods map patch tokens to a discrete
embedding space (codebook) using similarity calculations. Both
paradigms train a Vision Transformer [10, 30] to predict predefined
image features (such as RGB [15], HOG [39]) from their respective
spaces.
Mask strategies. Language exhibits a remarkably high level of
semantic density, which means that in masked language model-
ing, random masking is highly likely to cover tokens with high
semantic significance [7]. In contrast, the semantic distribution in

images is considerably sparse and often concentrated on specific
entities. Therefore, the design of mask strategies becomes crucial
in the context of images. Currently, mask strategies can be broadly
categorized into three main types. (1) Random [2, 15, 24]. MAE
[15] initiates MIM with a high mask ratio by randomly masking im-
age patches, while BEIT [2] employs block-wise masking inspired
by n-gram masking in MLM. UM-MAE [24] masks one patch in
each 2×2 local window, enabling pyramid-based ViTs (e.g., PVT
[37], CoaT [44], and Swin [29, 30]) to take the random sequence
of partial vision tokens as input. (2) Reconstruct Loss. AdaMAE
[1] operates under the assumption that high-semantic patches are
challenging to reconstruct, thus masking patches with high recon-
struction loss to facilitate model learning of these semantically
rich areas. HPM [36] aims to provide the model with challenging
tasks, specifically targeting the patches that are difficult for the
model to reconstruct and design a "easy-to-hard" mask generation.
(3) Class-to-patch attention. These methods consider the class
token to carry summarizing semantics. SemMAE [23], AutoMAE
[3], AttMask [19] and AMT [28] utilize the attention between the
class token and different patch tokens. SemMAE [23] leverages this
attention mechanism to pinpoint specific semantic patches, pro-
gressively masking these areas from partial to complete coverage,
while also training an additional StyleGAN [20]-based decoder dis-
tilled by iBOT [49]. AutoMAE and AttMask generate an attention
map based on this similarity to derive the mask strategy. MILAN
[18] employs knowledge distillation by leveraging the fact that the
class token of the CLIP image encoder, which is trained with a
large amount of textual modality data during pre-training, contains
global semantic information. It identifies high-semantic patches
and applies masking by calculating the similarity between the CLIP
image encoder and the patch encoder.

3 METHOD
In this section, we initially explore preliminaries and the back-
ground on vision transformers in Section 3.1. Subsequently, we
delve into the computation of Global Patch-wise Attention
(GPA) in Section 3.2, discussing its application as a teacher to
guide mask strategy formulation for enhancing model learning. In
Section 3.3, we examine how GPA serves as a feature, assisting the
model in its learning process. Lastly, in Section 3.4, we investigate
the impact of different heads on masking through an attention se-
lection module. Figure 3 presents an overview of our proposed GPA
framework.

3.1 Preliminaries
3.1.1 Masked Autoencoder. Given an input image 𝑋 ∈ R𝐻×𝑊 ×𝐶 ,
where 𝐻 and𝑊 are the height and width and 𝐶 is the number of
channels. The first step is patchify, where the image is divided into
𝑛 patches, each of size 𝑃 , where 𝑛 = 𝐻𝑊 /𝑃2 and the patches 𝑋𝑝𝑖 ∈
R𝑃×𝑃×𝐶 , 𝑖 = 1, 2, ..., 𝑛. Each patch is flattened and projected to an
embedding vector 𝑧𝑖 ∈ R𝐷 , following the practice of transformer-
based model, a learnable embedding 𝑧 [𝑐𝑙𝑠 ] ∈ R𝐷 representing the
classification token is prepended to the beginning of the entire
vector:

𝑍 = (𝑧 [𝑐𝑙𝑠 ] ; 𝑧1; ...; 𝑧𝑛) ∈ R(𝑛+1)𝐷 . (1)
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Figure 3: Illustration of our proposed GPA pre-training framework. During pre-training, each image is firstly fed into teacher
model to generate a soft-to-hard binary mask on current epoch. Subsequently, the visible patches are input into the student
model, which reconstructs the RGB feature and the Global Patch-wise Attention feature.

Subsequently, these patch embeddings are either retained ormasked
according to a mask vector 𝑀 = 0, 1𝑛 , where 0 signifies masking
and 1 signifies retention, and the embedding of the image after
patchify and masked goes to:

𝑍 = 𝑀 ⊙ 𝑍 + (1 −𝑀) ⊙ 𝑍 [𝑚𝑎𝑠𝑘 ] , (2)

where 𝑍 [𝑚𝑎𝑠𝑘 ] is a learnable embedding [15] of all masked token.
Ultimately, the masked autoencoder is trained to extract meaningful
representations by reconstructing these masked patches:

𝐿𝑅𝐺𝐵 =

𝑛∑︁
𝑖=1

(1 −𝑀𝑖 ) ∗M(F (𝑍𝑖 ), 𝑍𝑖 ), (3)

where F (·) and M(·, ·) represent model and its loss function, (1 −
𝑀) represents that only the masked tokens require loss compu-
tation, indicating that the model learns representations by recon-
structing the masked patches.

Extensive previous experiments [1, 36] support our assertion
that mask strategy plays a pivotal role in representation learning.
As previously mentioned, we aim to identify a mask strategy that
possesses a strong semantic correlation and alignment with the
image.

3.1.2 Multi-Head Self-Attention (MSA).. Given an input embedding
𝑌 ∈ R(𝑛+1)𝐷 , a MSA [35] layer uses three linear layers to project 𝑌
to its query𝑄ℎ , key 𝐾ℎ and value𝑉ℎ embedding, where ℎ = 1, ..., 𝐻
and H is the number of heads, 𝑄ℎ, 𝐾ℎ,𝑉ℎ ∈ R(𝑛+1)

𝐷
𝐻 , in a MSA

layer, the attention received by the i-th patch from the j-th patch is
denoted as:

𝐴𝑡𝑡
𝑖 𝑗

ℎ
=
𝑄𝑖
ℎ
𝐾
𝑗

ℎ√︁
𝐷/𝐻

. (4)

3.2 Global Patch-wise Attention as a Teacher
Ideally, one might assume that semantic information is randomly
distributed across an image, making a random mask strategy seem
effective. Yet, in practice, the distribution of semantic content is far
from random. For downstream tasks in image understanding, such
as image classification and semantic segmentation, the required
semantics are typically concentrated on specific entities, and a ran-
dom mask strategy fails to capture this distribution effectively. To
address the disparity in semantic perception between pre-training
on a large amount of unlabeled data and finetuning on downstream
tasks, we propose a "masked by global patch-wise attention" strat-
egy. Our idea is that these semantically significant entities are the
areas we naturally focus on when viewing an image. Hence, by
incorporating attention mechanisms into the mask strategy, we can
naturally capture the distribution of image semantics.

3.2.1 Global Patch-wise Attention. To begin, we define the Global
Patch-wise Attention that the m-th patch receives within the
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entire image in a MSA layer:

𝐺𝑃𝐴𝑚
ℎ

=

𝑛∑︁
𝑖=1,𝑖≠𝑚

𝐴𝑡𝑡𝑚𝑖
ℎ
, (5)

where 𝐺𝑃𝐴𝑚
ℎ

represents the Global Patch-wise Attention received
by m-th patch in h-th MSA layer. The sum of patch-level attention
over the entire image, denoted as

∑𝑖 𝐴𝑡𝑡𝑚𝑖 , implies the importance
of attending to the m-th patch when comprehending the image.

Utilizing GPA, we can target high semantic patches for masking
by applying the 𝑎𝑟𝑔𝑠𝑜𝑟𝑡 (·) operation on𝐺𝑃𝐴ℎ in descending order,
pinpointing patches with rich semantics, as shown in Figure 2, the
GPAmap can precisely indicate high-semantic patches. As a teacher,
masking should not entirely obscure high-semantic patches initially
but should progressively reveal what the model needs to learn.
This approach mirrors the process of human learning, which often
starts with simpler tasks before progressing to more complex ones.
Masking entities from the start prevents the model from learning
the associated information across different semantic patches, which
is equally crucial for accurate downstream tasks.

3.2.2 Soft-to-hard Mask Generation. Given the potential issue of
masking high semantic patches prematurely, which could hinder the
model’s learning, how can we develop a mask generation strategy
that aligns with the gradual learning curve? To address this, we
propose a Soft-to-Hard mask generation approach. The 𝑎𝑟𝑔𝑠𝑜𝑟𝑡
operation masks high semantic patches absolutely, we regard it
as a "hard" strategy, to employ a "soft" strategy, we sample each
patchwith a probability distribution defined byGPA. As the training
epochs increase, we gradually increase the proportion of hardmasks
while decreasing the proportion of soft masks.

The number of soft and hard mask patches is denoted as:

𝛼𝑠𝑡 = 𝛼𝑠0 +
𝑡

𝑇
· (𝛼𝑠𝑇 − 𝛼𝑠0),

𝛼ℎ𝑡 = 𝛼ℎ0 + 𝑡

𝑇
· (𝛼ℎ𝑇 − 𝛼ℎ0 ),

𝛼𝑟𝑡 = 1 − (𝛼𝑠𝑡 + 𝛼ℎ𝑡 )

(6)

For each epoch 𝑡 = 1, ...,𝑇 , the training progress is 𝑡/𝑇 . Here, 𝛼𝑠0
and 𝛼𝑠

𝑇
denote the initial and final soft mask ratios, respectively,

which decrease gradually from 𝛼𝑠0 to 𝛼
𝑠
𝑇
. Conversely, the hard mask

ratio incrementally rises from 𝛼ℎ0 to 𝛼ℎ
𝑇
. This dynamic adjustment

from soft to hard masks enables the model to progressively focus
on learning from more semantically significant regions.

3.3 Global Patch-wise Attention as a Feature
To leverage GPA as a feature, we introduce the MAM task for the
decoder, which aims to predict GPA. This task employs the Mean
Squared Error (MSE) as its loss function. Here, the decoder strives
to align its attention predictions with the GPA, guiding the model
to better grasp the underlying semantics of the image.

𝐿𝐺𝑃𝐴 =

𝑛∑︁
𝑖=1

(1 −𝑀𝑖 ) ∗ (F ′ (𝑍𝑖 ) −𝐺𝑃𝐴𝑖 )2, (7)

where F ′ (·) represents encoder and attention decoder, GPA is
a ground-truth for attention prediction. The RGB and attention
decoder work in an alternating way, and encourage the encoder to
learn better representations.

𝐿𝑜𝑠𝑠 = 𝐿𝑅𝐺𝐵 + 𝐿𝐺𝑃𝐴 (8)

3.4 Attention Selection
It is evident that randomly choosing a single head may not encom-
pass global semantic. To solve this problem, we design a Few-shot
Attention Selection module to select the head that encapsulates
global semantic, as shown in Figure 4.

In most computer vision tasks, it is essential for the model to
attend to the specific patches in visual information that contain
entities, which aligns closely with our concept of masked by GPA.
Hence, we can enhance the masking of high-information patches
by providing the model with few downstream task samples before
pre-training. This augmentation facilitates the mask by attention
approach in effectively capturing the high-information patches,
which can improve our mask strategy. To achieve this, We randomly
select a subset (𝑋𝑅

1 , 𝑦
𝑅
1 ; ...;𝑋

𝑅
𝑛′ , 𝑦

𝑅
𝑛′ ) of𝑛′ samples from the ImageNet

classification task, which 𝑋𝑅 serves as a subset of the pre-training
data 𝑋 and 𝑦𝑅 represents the labels for classification.

Firstly, for each 𝑋𝑅
𝑖
, We manually annotate the corresponding

patches in the image based on its label 𝑦𝑅
𝑖
. We consider the anno-

tated patches of all images 𝑀𝑔𝑡 as the ground truth for the mask
strategy. Then For each head in each ViT block, we generate its mask
strategy𝑀ℎ by 𝑎𝑟𝑔𝑠𝑜𝑟𝑡 (𝐺𝑃𝐴). Finally, we evaluate the mask strat-
egy of each head using𝑚 = 𝑅𝑒𝑐𝑎𝑙𝑙 (𝑀𝑔𝑡 , 𝑀ℎ) and utilize 𝑎𝑟𝑔𝑚𝑎𝑥 (𝑚)
to select the best-performing head. This selected head serves as the
guiding teacher for the model’s learning process.

4 EXPERIMENTS
Setups. In the experiment setups, all tests are executed on 2 ×
NVIDIA GeForce RTX 3090s, using the Vision Transformer as the
backbone and pre-training on the ImageNet-1K dataset for 200
epochs. The optimization is done using AdamW with an initial
learning rate of 1.5e-4 and a batch size of 4096. Input images are
resized to 224×224 and segmented into 16×16 patches, following
the methodology of MAE. Our implementation is based on MAE
[15].
ImageNet classification. For ImageNet classification, we assess
our GPA through end-to-end fine-tuning across 100 epochs, utiliz-
ing AdamW for optimization with a learning rate of 5e-4, a batch
size of 1024, a layer decay of 0.8, and a cosine schedule for learning
rate decay, aiming to improve Top-1 accuracy on the validation
set. We report Top-1 accuracy on the validation set. COCO object
detection and instance segmentation. In COCO object detection
and instance segmentation [27], we apply Mask R-CNN [17] with
FPN [26] on the COCO dataset, conducting end-to-end fine-tuning
over a 1× schedule (12 epochs) at a 1024×1024 resolution. The per-
formance is measured using 𝐴𝑃𝑏𝑜𝑥 and 𝐴𝑃𝑚𝑎𝑠𝑘 metrics, based on
the ViTDet [25] framework and detectron2 [40].
ADE20k semantic segmentation. We experiment on ADE20K
[48] using UperNet [42], and perform end-to-end fine-tuning with
80k iterations for ablations and 160k iterations for comparisons.
The resolution is 512 × 512. We take mIoU [11] as the evaluation
metric. Our implementation is based on mmsegmentation [6].
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4.1 Ablation Study
We study different mask strategies and structures in this section, by
default, the overall masking ratio is 𝛼 = 0.75, for mask generation,
𝛼𝑠0 = 0.5, 𝛼𝑠

𝑇
= 0.0 for soft masking, and 𝛼ℎ0 = 0.0, 𝛼ℎ

𝑇
= 0.5 for hard

masking, the definition of different 𝛼 can be found in Equation 6,
and for the default structure in mask ablations, we only use RGB
features, this allows us to eliminate the influence of GPA as a feature
on the model, thereby directly verifying the effectiveness of GPA as
a teacher. Default settings of our framework are marked in grey .

Table 1: Ablation study on different roles of GPA. We study
GPA as a teacher and as a feature. All cases are pre-trained
200 epochs on ImageNet with ViT-B.

Model as teacher as feature finetune acc (%)

MAE - - 82.23

GPA ✓ - 82.73 (+0.50)
✓ ✓ 83.22 (+0.99)

4.1.1 Global Patch-wise Attention in various roles. To substantiate
the capabilities of GPA in both the teacher and feature, we con-
ducted a study involving different roles. When GPA employed as
a teacher, we ranked GPA for each patch and utilized parameters
from the default setting to generate soft-to-hard masks. When GPA
utilized as a feature, we augmented the model to incorporate GPA
as a reconstructive feature.

As illustrated in Table 1, our GPA framework significantly en-
hances the model’s performance. Specifically, when GPA serves
both as a teacher and a feature, the fine-tuning Top-1 accuracy
reaches 83.22%, outperforming the baseline by +0.99%. When GPA
is solely employed as a teacher, the accuracy is 82.73%, which is a
0.50% improvement over MAE, which proves that GPA is master-
ful facilitator for masked autoencoders.

Table 2: Ablation study on downstream tasks. We study GPA
on different datasets and tasks. All cases are pre-trained 200
epochs on ImageNet with ViT-B.

Model as
teac

as
feat

COCO ADE20k
𝐴𝑃𝑏𝑜𝑥 𝐴𝑃𝑚𝑎𝑠𝑘 mIoU

MAE - - 33.0 29.8 40.5

GPA ✓ - 33.3(+0.3) 30.1(+0.3) 41.6(+1.1)
✓ ✓ 34.5(+1.5) 31.1(+1.3) 44.3(+3.8)

In downstream tasks, as shown in Table 2, the GPA-enhanced
model exhibits significant improvements: +1.5 in 𝐴𝑃𝑏𝑜𝑥 and +1.3
in 𝐴𝑃𝑚𝑎𝑠𝑘 on COCO, and +3.8 in mIoU on ADE20k compared to
the baseline. This improvement is notable even when GPA is only
used as a teacher, demonstrating its robust transferability across
various tasks and datasets.

Notably, only taking GPA as teacher outperforms MAE by +0.3
𝐴𝑃𝑏𝑜𝑥 and +0.3 𝐴𝑃𝑚𝑎𝑠𝑘 on COCO, and +1.1 mIoU on ADE20k,
which demonstrates the strong transfer ability of GPA across dif-
ferent datasets.

4.1.2 Soft-to-hardMasking. To prove soft-to-hard mask generation
does bring better performance, we study various masking genera-
tions in Table 3 and Table 4. We gradually adjusted the "hardness"
("softness") of the mask by tuning parameters 𝛼ℎ0 and 𝛼ℎ

𝑇
(𝛼𝑠0 and

𝛼𝑠
𝑇
). For instance, in the experiments represented by 𝛼𝑠0 = 0.5 and

𝛼𝑠
𝑇

= 0 in Table 3, masks are "softer" compared to experiments
with 𝛼𝑠0 = 1 and 𝛼𝑠

𝑇
= 1. We observe that a harder mask generation

prompt the model to focus solely on a small region, while a softer
mask generation approaches random masking.

Table 3: Ablation study on soft masking. We study the effect
of different 𝛼𝑠0 and 𝛼

𝑠
𝑇
.

hardness 𝛼 𝛼𝑠0 𝛼𝑠
𝑇

finetune(%)

random 0.75 0 0 82.69
↓ 0.75 0.5 0 82.73 (+0.04)
↓ 0.75 1 0 82.69 (-)

soft 0.75 1 1 82.70 (+0.01)

random 0.5 0 0 82.50
↓ 0.5 0.5 0 82.54 (+0.04)

soft 0.5 1 1 82.53 (+0.03)

random 0.9 0 0 82.41
↓ 0.9 0.5 0 82.51 (+0.10)

soft 0.9 1 1 82.37 (-0.04)

Table 3 demonstrates the impact of soft masks on the model.
Overall, soft masks offer a modest gain for the model, with improve-
ments in top-1 fine-tuning accuracy not exceeding 0.1%. Among
these, the group with 𝛼𝑠0 = 0.5 and 𝛼𝑠

𝑇
= 0 consistently performs

the best across different mask ratios.

Table 4: Ablation study on hard masking. We study the effect
of different 𝛼ℎ0 and 𝛼ℎ

𝑇
.

hardness 𝛼 𝛼ℎ0 𝛼ℎ
𝑇

finetune(%)

soft 0.75 0 0 82.25
↓ 0.75 0 0.5 82.73 (+0.48)
↓ 0.75 0 1 82.71 (+0.46)

hard 0.75 1 1 82.27 (+0.02)

soft 0.5 0 0 82.22
↓ 0.5 0 0.5 82.54 (+0.32)

hard 0.5 0 1 82.37 (+0.15)

soft 0.9 0 0 82.20
↓ 0.9 0 0.5 82.51 (+0.31)

hard 0.9 0 1 81.82 (-0.38)

Table 4 presents the influence of hard masks on the model. Com-
pared with soft masks, hard masks play a pivotal role in model
performance. Inferior hard mask strategies can even result in detri-
mental effects on the model’s learning. Across all mask ratios, the
group with 𝛼ℎ0 = 0 and 𝛼ℎ

𝑇
= 0.5 consistently outperforms others.

It is noteworthy that when 𝛼ℎ0 = 1 and 𝛼ℎ
𝑇
= 1, all masks are hard

masks. Under this setting, if the mask ratio 𝛼 is sufficiently large, the
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Figure 4: GPA recall on different blocks.

model is virtually unable to perceive any entities, necessitating that
it learns the image semantics from an abundance of meaningless
environmental information. Consequently, as 𝛼 increases to 0.9, an
excessive hard mask can paradoxically have a detrimental impact
on the model’s performance.

In conclusion, we find that enhancing the hardness of the mask-
ing approach does not uniformly result in improved performance.
Maintaining an element of randomness in the masking process
generally produces more favorable results. Increasing mask rigid-
ity suggests that the model predominantly perceives background
elements, and as illustrated in Figure 2, this can challenge even
humans in reconstructing masked entities solely from background
details.

Table 5: Ablation study on attention selection. We study the
effect of different method, first/last represents the first/last
head of a ViT, b0h0 means the #0 head of #0 block in Figure
4, -1 means the sum of all heads.

method first last all 1 shot 10 shots 50 shots

head b0h0 b11h11 b11h-1 b10h10 b9h11 b9h11
acc(%) 82.31 82.70 82.34 82.68 82.73 82.73

4.1.3 Attention Selection. In addition, for the few-shot attention
selectionmodule, we explored variousmethods for choosing teacher
heads in Table 5.

It is evident that optimal head selection (b9h11) can be achieved
with just a small number of images (10 shots). Furthermore, a
high finetuning accuracy (82.70%) can be attained without the need
for any shots by selecting only the last head (b11h11).

4.2 Comparison with Previous Methods
Image Classification. We compare our proposed GPA with a
wide range of mask strategies using top-1 fine-tuning accuracy on

ImageNet-1K in Table 6 and linear probing in Table 7. Where se-
lectedmethods can be summarized into three streams: (1) masked by
random [2, 15, 24]. (2) masked by reconstruct loss [36]. (3) masked
by cls-pth attention [3, 18, 23, 28]. All methods are evaluated under
the same backbone (ViT-B/16).

Table 6: Comparison with state-of-the-art mask strategies on
ImageNet-1K, all methods are evaluated by finetuning. The
best results are shown in boldface.

method epochs finetune(%)

masked by random
MAE [15] 200 82.2
UM-MAE [24] 200 82.8
BEiT [2] 800 83.2

masked by recon. loss
HPM [36] 200 83.0

masked by cls-pth atten.
AMT [28] 400 82.8
SemMAE [23] 800 83.3
AutoMAE [3] 800 83.3
MILAN[18] 400 83.3

masked by patch-wise atten.
GPA [Ours] 200 83.2
GPA [Ours] 300 83.4

It is notable that our model achieved Top-1 accuracies of 83.2%
and 83.4% on ImageNet after just 200 and 300 epochs of pre-training,
respectively. This performance surpasses that of competing models
that require more pre-training epochs, thereby underscoring the
efficiency and effectiveness of our GPA framework.

Table 7: Comparision with SOTAs on linear probing.

MAE [15] HPM [36] CAE [5] GPA

Acc(%) 50.8 54.9 64.1 64.9

In linear probing tasks, our method utilizes the representations
derived from self-supervised learning without tweaking any pre-
trained parameters. The outcomes, as showcased in Table 7, reveal
that our framework’s representations not only achieve optimal
effectiveness but also outperform the SOTA masking strategies
by a significant margin of up to 10.0%. This underscores the GPA
framework’s robust capability in modeling visual features.
Semantic Segmentation. We experiment our GPA framework on
ADE20k using UperNet for 160k iterations in Table 8. Our model is
pre-trained 800 epochs on ImageNet-1k with ViT-B/16, consistent
with other models. From the table, the GPA framework significantly
improves performance over supervised pre-training by +1.2 mIoU.
More importantly, GPA outperforms self-supervised methods under
all settings.
Efficiency of GPA. From an efficiency perspective, GPA demon-
strates an exemplary balance between computational demand and
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Table 8: Comparison with state-of-the-art mask strategies
on ADE20k semantic segmentation using UperNet, The best
results are shown in boldface.

method mIoU

MoCo v3 [ICCV’21] 47.3
BEiT [ICLR’22] 47.1
MAE [CVPR’22] 48.1
SemMAE [NIPS’22] 46.3
HPM [CVPR’23] 48.5

GPA [Ours] 48.9

performance enhancement. With a FLOPs ratio of 1.1×, GPA ex-
hibits a marginal computational overhead compared to MAE (1.0×),
and notably, it maintains a considerable efficiency advantage over
HPM (1.5×). This indicates that GPA’s superior performance is not
at the expense of significant computational resource increment,
showcasing its proficiency in leveraging computational resources
effectively. Furthermore, the learning parameter footprint of GPA

Table 9: Comparison of Efficiency on different framework.

method fine-tune(%) lin. prob.(%) FLOPs learn. para.

MAE [15] 82.2 50.8 1.0× 1.0×
HPM [36] 83.0 54.9 1.3× 1.2×
GPA 83.2 64.9 1.1× 1.0×

is aligned with MAE at 1.0×, underscoring GPA’s ability to op-
timize performance without escalating the model complexity. In
contrast, HPM’s learning parameter size stands at 1.2×. Thus, GPA
underscores its architectural efficiency, optimizing performance
within the confines of constrained computational and parameter
resources, which is a crucial consideration in model scalability and
deployment.
Qualitative results. We provide qualitative results on COCO [27]
validation set in Figure 5, we pre-train the model for 200 epochs on
ImageNet-1k, which means the model has never seen this datasets.
We found that the model is still able to effectively identify high-
semantic regions that contribute to downstream tasks.

4.3 Applying our mask strategy to other
architectures

To further elucidate the adaptability and the performance-enhancing
capability of our mask strategy across various MIM architectures,
we integrated our masking approach, which does not introduce ad-
ditional learnable parameters, into different models. Remarkably, as
delineated in Table 10, our mask strategy, when applied to MAE-B
and ConvMAE-S, both of which were pre-trained for 200 epochs
and fine-tuned for 100 epochs, yielded significant improvements.
Specifically, the application of the GPA mask strategy on MAE-B
resulted in an increment of 0.5% in the ImageNet Top-1 accuracy,
demonstrating a subtle yet positive enhancement. More notably, the
implementation on ConvMAE-S led to a substantial enhancement
of 2.4% in the same metric.

Figure 5: Visualization on COCO validation set. For each
tuple, we show the image (left) and GPA (right).

Furthermore, when extending our mask strategy to other mod-
els like CAE-S and iBOT-B, which were pre-trained for a shorter
duration of 50/100 epochs, we observed consistent improvements
in performance. Both models exhibited an increase of 1.1% in K-NN
accuracy post the integration of our masking approach.

Table 10: Comparison of applying GPA as a teacher to other
models before and after.We apply ourmask strategy onMAE,
ConvMAE, CAE and iBOT. ★: Evaluate on K-NN accuarcy.

method epochs Baseline GPA as teacher

MAE-B [15] 200 82.2% 82.7% (+0.5%)
ConvMAE-S [12] 200 80.0% 82.4% (+2.4%)
CAE-S★ [5] 50 37.4% 38.5% (+1.1%)
iBOT-B★ [49] 100 47.3% 48.4% (+1.1%)

These findings underscore the generalizability and effectiveness
of our mask strategy in boosting the performance of various MIM
architectures, suggesting its potential as a versatile and potent tool
in enhancing model accuracy without complicating the learning
parameter landscape.

5 CONCLUSION AND DISCUSSION
In this paper, we aim at identifying an feature for recognizing high-
semantic regions and improving mask strategy in masked image
modeling. To this end, we design a highly intuitive and simple
method for computing semantic density and utilize it to propose
a novel GPA framework, which is global and aligned. The mask
strategy in GPA framework can be applied to any ViT-based masked
image modeling approach and consistently improves performance.
We validated the effectiveness of our method on different architec-
tures and downstream tasks.

Although the GPA framework does not introduce additional
learnable parameters, it integrates a teacher ViT, which leads to in-
creased memory and computational requirements. Future research
could focus on devising a framework that achieves similar objec-
tives without the necessity for an additional ViT.
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