
Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

LFDe: A Lighter, Faster and More Data-Efficient Pre-training
Framework for Event Extraction

Anonymous Author(s)
Submission Id: 37

ABSTRACT
Pre-training Event Extraction (EE) models on unlabeled data is
an effective strategy that frees researchers from costly and labor-
intensive data annotation. However, existing pre-training method-
ologies necessitate substantial computational resources, requiring
high-performance hardware infrastructure and extensive training
duration. In response to these challenges, this paper proposes a
Lighter, Faster, and more Data-efficient pre-training framework
for the EE task, named LFDe. Distinct from existing methods that
strive to establish a comprehensive representation space during
pre-training, our framework focuses on quickly familiarizing with
the task format from a small amount of automatically constructed
weak-label data. It comprises three stages: weak-label data construc-
tion, pre-training, and fine-tuning. Specifically, during the weak-
label data construction stage, our framework first automatically
designates pseudo triggers and arguments based on the charac-
teristics of events in real datasets to form pre-training samples.
In the processes of pre-training and fine-tuning, the framework
reframes event extraction as the identification of words or phrases
semantically closest to the prompt within the given sentence. This
paper introduces a novel prompt-based sequence labeling model
for EE to accommodate this reframing. By leveraging type-aware
prompt features to augment original text embeddings, it enables
the conventional sequence labeling model to extract events in data-
scarce scenarios. Experiments on real-world datasets show that
compared to similar models, our framework requires fewer pre-
training instances (only about 0.04%), a shorter pre-training period
(about 0.03%), and lower memory requirements (about 57.6%). Si-
multaneously, our framework significantly improves performance
in various data scarcity scenarios.

Relevance Statement: EE aims to automatically extract event
information from Internet text, providing a solid foundation for
downstream tasks such as retrieval and recommendation systems.

CCS CONCEPTS
• Computing methodologies→ Information extraction.

KEYWORDS
Event Extraction, Data-Efficient, Pre-training, Data Generation

1 INTRODUCTION
With the rapid advancement of network technology, there has been
an exponential increase in the volume of digital textual data on
the internet, providing substantial support for the development
of information technology. However, the majority of these data
consist of unstructured text, which is challenging for machines
to understand and utilize. Therefore, researchers usually need to
extract information from these texts first before they can leverage

detonated Triggerdetonated Trigger Attack Event typeAttack Event type Instrument RoleInstrument Rolebomb Argument bomb Argument detonated Trigger Attack Event type Instrument Rolebomb Argument

Event structure Event semantic
representation space

Attack

AttackerInstrument

TargetPlace
attack

detonated

Instrument

bomb

Prompt for
attack events

Prompt for the
role of instrument

… riding a bicycle detonated a 30-
kilo (66-pound) bomb …

Locate the words or phrases that
closely matches the prompt.

Pre-training objectives of traditional methods Pre-training objectives of ours

Earlier Monday , a 19-year-old Palestinian riding a bicycle detonated a 30-kilo (66-

pound) bomb near a military jeep in the Gaza Strip , injuring three soldiers.

AttackThe EE task Attacker

Instrument Target TargetPlace

Figure 1: The illustration of the event extraction task and an
intuitive comparison between the pre-training objectives of
traditional methods and ours.

advanced algorithms and machines to analyze and research the
digital data. Event extraction is a critical and challenging taskwithin
the field of information extraction. It aims to automatically detect
event triggers and extract arguments within unstructured natural
language text. Figure 1 intriguingly illustrates the goals of this task.

Existing EE methods [38, 45, 50] largely depend on manual an-
notations as supervised signals. Nevertheless, annotating data de-
mands considerable manpower, economic investment, and signif-
icant time dedication, escalating the cost of model development.
Large language models with notable comprehension and generation
abilities, such as ChatGPT 1, can accomplish the EE task without
the fine-tuning stage on manual annotations. However, recent re-
searches [10, 48] have revealed much room for improvement in the
performance of large models in this task. Pre-training EE models on
large-scale unlabeled corpora provide an effective strategy to over-
come annotation challenges, as is evidenced by both CLEVE [47]
and UIE [31]. Unfortunately, the pre-training processes of CLEVE
and UIE require high-performance hardware facilities, massive un-
labeled corpora, and lengthy training periods. The pre-training of
CLEVE involved 1.8 million articles and was computed using eight
2080Ti graphics cards, consuming a total of 72.5 hours. For UIE, the
pre-training stage leveraged 8 NVIDIA A100 GPUs to train on 65
million samples with a batch size of 512 over 500,000 steps.

The lengthy training periods of CLEVE and UIE are attributed to
the difficulty in quickly accomplishing their pre-training objectives.
As shown in Figure 1, they are dedicated to modeling two types
of features during their pre-training phases: event structure and

1https://openai.com/chatgpt

Submission ID: 37. 2023-10-13 11:01. Page 1 of 1–11.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

WWW ’24, May 13–17, 2024, Singapore Anon. Submission Id: 37

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

event semantic features. The former describes the components of
an event. For example, the event with the type of “Attack” usu-
ally involves four kinds of event arguments: “Attacker”, “Target”,
“Place”, and “Instrument”. The process of modeling event semantic
features aims to fine-tune the representation space of Pre-trained
Language Models (PLMs), which are used as backbones, to ensure
that triggers or arguments of the same type are closely distributed.
During the pre-training phase, CLEVE and UIE strive to construct
a representation space covering the above-mentioned features. As
a result, this leads to long training periods and high costs.

Although CLEVE and UIE have been successful in pre-training
EE models, another question arises: how to reduce the cost and time
overhead of the pre-training phase. Based on the above analysis,
the answer to the question comes from two aspects: 1) Avoiding
drastically adjusting the representation space of PLMs. 2) Simplify-
ing the objective of the pre-training phase. However, implementing
these strategies invites a couple of notable challenges: 1) The in-
tegration of event schemas into EE models without substantial
adjustments to the representational space. 2) The simplification of
training objectives to expedite the pre-training duration.

In this paper, we propose a lighter, faster and more effective
pre-training framework for EE called LFDe. It addresses the first
challenge above by transforming the task form of EE. Specifically,
the crux of the EE task lies in detecting triggers and event argu-
ments in sentences and then determining event types and argument
roles. Therefore, this framework ingeniously transforms the task
into a new form: locating the words or phrases that are seman-
tically closest to type-aware prompts for specific event types or
argument roles in the given sentences. Consequently, LFDe can
learn event schema from prompts, eliminating the need to model
event structure information from large-scale data. For the second
challenge, instead of constructing a comprehensive event represen-
tation space, the pre-training objective of LFDe is to marginally
adjust the existing representation space of the pre-trained language
model to quickly adapt to new task formats. Our framework con-
sists of three stages: weak label data construction, pre-training,
and fine-tuning. In the first stage, the proposed framework auto-
matically labels pseudo triggers via lexical annotation tools and lo-
cates pseudo arguments throughAbstractMeaning Representation
(AMR) from publicly available unlabeled text. Subsequently, it gen-
erates pseudo-labels for automatically labeled triggers and argu-
ments through internet-based retrieval or Large Language Models
(LLMs). Pre-training and fine-tuning stages are similar: LFDe gen-
erates type-aware prompts for each event type and argument role
through pre-designed templates and works to locate triggers and
arguments under the guidance of the prompts. To accommodate
the novel form of EE introduced in this paper, we also propose a
novel Prompt-based Sequence LabelingModel (P-SLM) to extract
events. It treats locating triggers and arguments as sequence label-
ing and enhances token representations within each sentence using
type-aware prompt features.

In summary, the contributions of this work are as follows:

• We propose a lighter, faster, and more data-efficient pre-
training framework for EE. It utilizes 0.04% of the samples,
0.03% of the training time, and lower graphics card configura-
tions of similar methods yet achieves superior performance.

• A novel prompt-based sequence labeling approach is pro-
posed to adapt to the innovative event extraction task format
brought about by the LFDe framework.
• We explore a novel pre-training objective for EE: subtly fine-
tuning the representation space of PLMs to adapt to the
task format of EE swiftly. It avoids drastically modifying the
semantic representation space, which significantly reduces
the pre-training period.
• This paper introduces an effective method for constructing
weakly labeled data for EE. It yields weak label data that is
effective for pre-training LFDe to familiarize with the EE
task format proposed in this paper.

2 RELATEDWORK
Earlier approaches [1, 12, 23, 34, 37] for the EE task manually design
symbolic features based on lexical, syntactic and other rules and
detect events and extract arguments via pattern matching. How-
ever, these patterns present a challenge in terms of generalization
across distinct datasets. As a result, such methods excessively bur-
den the user with complex feature engineering when applied for
varied applications, thus necessitating a high level of expertise. The
evolution of the deep learning technique has offered a promising
solution to this predicament. Approaches based on neural networks
[5, 39, 40, 43] automatically capture distributed features, enhancing
models’ transfer abilities while avoiding tedious feature engineer-
ing. In recent years, the increasing adoption of PLMs [7, 42] in the
field of natural language processing has inspired EE methodologies
to leverage various PLMs as backbones for model construction.

According to the backbone models and how the PLM is used, ex-
isting methods based on PLM can be classified into three categories:
fine-tuning-based, prompt-based, and generative. “Fine-tuning”-
based approaches [3, 9, 21, 25, 26] treat encoder-only PLMs as effi-
cient encoders. They extract triggers and event arguments by feed-
ing embeddings that output from PLMs into downstream networks
designed for the EE task. In this paradigm, different downstream
networks are constructed for various motives, yielding significant
performance in scenarios suffused with data-abundant [50], few-
shot [6] and zero-shot [53]. “Prompt”-based methods [15, 22, 28]
are focused on eliciting potential knowledge of PLMs via insert-
ing additional prompts into inputs. They bridge the gap between
EE and pre-training phases by transforming the former into the
format of pre-training tasks without altering the network struc-
ture. Benefiting from the prompt information and the knowledge
PLMs learned during the pre-training phase, methods based on this
framework could achieve impressive results on extremely scarce
training data [13, 17, 33, 52]. “Generative” approaches [30, 31, 41]
aim to directly output structured event information. They employ
PLMs [20, 42]with encoder-to-decoder architectures to capture and
produce events from texts, achieving commendable success in both
data-scarce and data-abundant scenarios.

In addition to the above technical routes, recent years have seen
the advent of other innovative schemes for the EE task. Unified
information extraction approaches [38, 45] aim to uniformly model
entity, relation, and event information, leveraging the intrinsic de-
pendence among these diverse types of information. UIE [31] and
OneIE [24] stand as exemplary representations of such technical

Submission ID: 37. 2023-10-13 11:01. Page 2 of 1–11.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

LFDe: A Lighter, Faster and More Data-Efficient Pre-training Framework for Event Extraction WWW ’24, May 13–17, 2024, Singapore

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

route. Kan et al. improved the performance of the fine-tuning para-
digm by introducing prompts to input and generating auxiliary out-
puts [18]. This hybrid approach that integrates both fine-tuning and
prompt paradigms demonstrated robust performance across vari-
ous data scenarios. Following the emergence of LLMs, researchers
explored the potential of utilizing them for event extraction [10, 48].
Studies indicate that LLM-based event extraction techniques exhibit
commendable performance in the zero-shot scenario.

Annotating event data is expensive and laborious. Introducing
external knowledge is an effective solution for extracting events
in data-scarce scenarios. Liu et al. extended training datasets with
FrameNet2 [27], while Chen et al. used it and Freebase [2] to au-
tomatically annotate labels for given event types [4]. Based on
WordNet3, Wang et al. proposed a weakly supervised event de-
tection method that automatically labels open domain data and
then denoises the noise by adversarial training [46]. Yu et al. pro-
posed a keyword clustering approach to generate event data for
downstream training automatically [51].

3 BACKGROUND
This paper adopts the definition fromAutomaticContentExtraction4
(ACE) evaluation: an event is a specific occurrence involving cer-
tain participants or states. The process of event extraction typically
involves the following concepts:
• Event type: the category to which an event belongs.
• Event trigger: the word or phrase in the sentence that best
reflects the occurrence of an event. It usually has the gram-
matical properties of a verb or noun.
• Event argument: the participants or attribute values (e.g.
job-title, crime) of an event.
• Argument role: the role that an event argument plays
within the event it participates in.

An event is composed of an event trigger and an uncertain number
of event arguments. With the sentence in Figure 1 as the input, the
aim of event extraction is four-fold:
• Trigger detection: identifying “detonated” as a trigger.
• Event type classification (Event detection): determining
the event type “attack” based on the trigger “detonated”.
• Event argument recognition: identifying “Palestinian”,
“bomb”, “jeep”, “Gaza Strip”, and “soldiers” in the sentence as
arguments of the aforementioned event.
• Role assignment (Argument classification): assigning
roles to the event arguments discovered above.

4 METHOD
4.1 Task Formalization
Given a sentence 𝑆 = {𝑠1, 𝑠2, · · · , 𝑠 |𝑆 | }, where 𝑠𝑖 represents the
𝑖-th token in the sentence, and |𝑆 | is the length of the sentence,
the goal of event extraction is to extract a set of eventsℰ under
the guidance of the event schema 𝒮. The event schema is artifi-
cially defined and outlines all the event types 𝑇 = {𝑡1, 𝑡2, · · · , 𝑡 |𝑇 | }
and the argument roles 𝑅 = {𝑟1, 𝑟2, ..., 𝑟 |𝑅 | } involved in each event

2https://framenet.icsi.berkeley.edu
3https://wordnet.princeton.edu
4http://projects.ldc.upenn.edu/ace/

Parse

Pseudo trigger

Pseudo argument 1

Pseudo argument n
…

Event type

Argument role 1

Argument role n
…

Stage 1: weak-label
data construction

Model for EE

Stage 2:
pre-training

Stage 3:
fine-tuning

…

…

…

…

Weakly
labeled data Pre-train

…

…

Manually
labeled data Fine-tune

…

…

Figure 2: The workflow of our proposed three-stage pre-
training framework for event extraction. In the first stage,
it generates pseudo triggers and pseudo arguments and au-
tomatically annotates pseudo-labels. In stages 2 and 3, the
framework employs weakly labeled and manually labeled
data to train the event extraction model, respectively.

type, where |𝑇 | is the number of event types, 𝑅 is the collection
of argument roles included in the event with the 𝑖-th type, and
|𝑅 | is the length of 𝑅. The event set encompasses multiple com-
ponents: ℰ = {𝐸𝑡11 , 𝐸

𝑡1
2 , · · · , 𝐸

𝑡 𝑗
𝑖
, · · · }, where 𝐸

𝑡 𝑗
𝑖

denotes the 𝑖-th
event of type 𝑡 𝑗 . Each event in the setℰ can be signified as: 𝐸𝑡 𝑗

𝑖
=

{Trig,Arg𝑟11 ,Arg
𝑟1
2 , · · · ,Arg

𝑟𝑙
𝑘
, · · · }, where Trig is the trigger, Arg𝑟𝑙

𝑘
signifies the 𝑘-th argument with the role of 𝑟𝑙 , and every element
in event 𝐸𝑡 𝑗

𝑖
is a subset of the sentence 𝑆 .

4.2 The Pre-training Framework
4.2.1 Overall Design. To avoid significantly altering the represen-
tation space of PLMs, LFDe integrates the event schema as prompts
into the input. This effectively liberates the event extraction model
from structuring event features. Concurrently, this framework sim-
plifies capturing semantic characteristics of events by transforming
the EE task into locating words or phrases that bear the strongest
semantic alignments with the prompts within the given sentences.
Specifically, LFDe generates type-aware (or role-aware) prompts
for the predefined event types in the event schema and the argu-
ment roles involved in each event, forming the prompt sets 𝑃𝑇 and
𝑃𝐴 . Defining 𝑃𝑇 and 𝑃𝐴 more specifically, they can be represented
as {𝑃𝑡1 , 𝑃𝑡2 , · · · , 𝑃𝑡 |𝑇 | } and {𝑃𝑎1 , 𝑃𝑎2 , · · · , 𝑃𝑎 |𝑅 | } where 𝑃𝑡𝑖 refers to
the type-aware prompt concerning the 𝑖-th event type, and 𝑃𝑎𝑖

pertains to the role-aware prompt regarding the 𝑖-th argument role.
By incorporating the above type-aware (or role-aware) prompts
into the original sentences, LFDe generates multiple type-specific
inputs. Finally, the framework proposed in this paper extracts event
triggers and arguments type-by-type from these inputs.

4.2.2 Workflow. As illustrated in Figure 2, the proposed frame-
work trains the event extraction model in three stages. The first
stage involves the process of automatically constructing weak label
data. Specifically, LFDe parses publicly available text using Part-
Of-Speech (POS) tagging and abstract meaning representation, se-
lecting suitable words or phrases to serve as pseudo-triggers or
pseudo-arguments. Subsequently, it employs LLMs to supplement
the pseudo-arguments. Finally, the framework employs database
querying, internet retrieval, and LLM-based question answering
to yield pseudo-labels for the auto-annotated pseudo-triggers and

Submission ID: 37. 2023-10-13 11:01. Page 3 of 1–11.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

WWW ’24, May 13–17, 2024, Singapore Anon. Submission Id: 37

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Pseudo-events

Lionel Messi attended and delivered a speech at the celebration in Argentina.

POS Tagging Abstract Meaning Representation

attended (v.)

delivered (v.)

Lionel Messi (n.)

speech (n.)

celebration (n.)

Argentina (n.)

delivered Lionel Messi Speaker Argentina

P-trigger P-type

Deliver

P-argument 1 P-role 1 P-argument 2 P-role 2

Location

celebration Celebrate Argentina Place

In the given
sentence, what

role does
"Lionel Messi"

play in the event
triggered by
"delivered"?

Identify other participants
or attribute values beyond

"Lionel Messi" in the
events triggered by

"delivered" and their roles.

\ \

RootRoot

andand

attend-01attend-01 deliver-01deliver-01

celebrate-02celebrate-02speechspeechLionel MessiLionel Messi

ArgentinaArgentina

op1 op2

arg0 arg0 arg1 time

location

Figure 3: The overview of the weak-label data construction
method proposed in this paper.

pseudo-arguments, forming the weak-label dataset. In the second
stage, our framework aims to utilize the automatically annotated
weak-label data to pre-train the EE model. Finally, the framework
fine-tunes the pre-trained model on manually labeled datasets.

4.3 Weak-label Data Construction
As shown in Figure 3, LFDe constructs weak-label data for pre-
training by automatically annotating pseudo-events on unlabeled
texts from public sources. Specifically, the framework collects news
headlines from the Internet, which typically contain events, as the
base corpus. It then utilizes POS tagging to filter pseudo triggers and
leverages AMR to mine pseudo arguments, forming pseudo-events.

4.3.1 Pseudo-triggers Annotation. As reported in previous studies
[5], triggers are typically verbs or nouns. Therefore, LFDe applies
part-of-speech tagging tools to label the tokens in public texts.
Subsequently, it selects pseudo-triggers from the words or phrases
that are tagged as verbs or nouns. The specific process is as follows:

Verbs. Initially, LFDe eliminates non-notional verbs unlikely to
serve as triggers (such as “do”, “can”, “seem”, etc.). Subsequently,
it randomly selects verbs to serve as triggers of pseudo-event. It
should be noted that, within actual datasets, some triggers are
variations of event-type names. For instance, “married” could be the
trigger for a “Life.Marry” event. Consequently, we utilize WordNet
[35] to recover the verb’s original form as the event type it triggered.
In other scenarios, triggers are synonyms of event type names, such
as the trigger “wed” within the “Life.Marry” event. Consequentially,
LFDe selects pseudo-triggers’ close synonyms from the WordNet
at random to designate their types.

Nouns. In this situation, LFDe first discards nouns ending in
specific suffixes (such as “-er/-or/-ist”, “-ty/-ness”, “-ing”), which
commonly denote individuals, attributes, and present participles of
verbs. Subsequently, it retrieves the evolution of each noun in the
sentence from the online etymology dictionary5. If the evolution of
the noun (such as “marriage”) contains at least one verb (“marry”),
then the proposed framework annotates the noun as a pseudo-
trigger and randomly samples a verb as the event type.
5https://www.etymonline.com

Type-aware

prompts

construction

Text

Event
schema

Label sequence

for type |T|
Label sequence

for type 2Label sequence

for type 1

Prompt for

type |T|
Prompt for

type 2Prompt for

type 1

Text

Prompt

 Encoder

Concatenate

Linear layer

CRFMLP

O

O

O

B-ans

Fusing

Prompt feature
capturing unit

Sequence

labeling

Event detection
Triggers &
Event types

Argument
extraction

Arguments
& RolesTextText

Figure 4: The schematic diagram of the prompt-based se-
quence labeling model for EE. It generates type-aware
prompts and sequentially identifies triggers or arguments in
the sentences under the guidance of these prompts.

4.3.2 Pseudo-arguments Annotation. The annotation of pseudo-
arguments is predicated on the existence of pseudo-triggers within
the public text. Given a sentence 𝑆 and the previously labeled
pseudo-trigger Trig𝑝 , LFDe firstly abstracts the sentence to ob-
tain an abstract meaning representation graph 𝐺 that represents
its main semantics. Subsequently, as demonstrated in Figure 3, the
framework locates the node corresponding to the pseudo-trigger
word in𝐺 . It then marks the texts corresponding to the child nodes,
which are connected to the pseudo-trigger node with “argx” edges,
as pseudo-event arguments. Following this, LFDe identifies the role
played by these pseudo-arguments in the pseudo-event through
instruction learning by leveraging LLMs. Furthermore, our frame-
work uses LLMs to supplement pseudo-arguments that are difficult
to detect directly in 𝐺 and assign roles to them. The instructions
used in this subsection are listed in Appendix A.

4.4 The Prompt-based Sequence Labeling Model
As depicted in Figure 4, the EE model proposed in this paper adopts
a two-stage pipeline structure. With this structure, the model first
detects events (identify triggers) and then extracts event arguments.
The neural networks used in these two stages are identical, with
the distinction lying in the prompts. In each stage, following the
overall design presented in subsection 4.2.1, this model generates
a type-aware prompt for every type 𝑡𝑖 in the event schema and
subsequently extracts the triggers (or event arguments) from the
sentence for each event type (or argument role). Specifically, the
proposed EE model treats the extracting triggers (or arguments)
as locating the span in a sentence semantically most relevant to
the type-aware prompt through sequence labeling. The model’s
structure is illustrated at the bottom of Figure 4.

Drawing inspiration from the prompt-based studies [13, 14], we
develop an enhanced type-aware prompt for each type (or role),
incorporating type (or role) description, definition, examples, and
typical triggers (or roles). Appendix A provides a detailed descrip-
tion of the construction of type-aware prompts. Given the sentence
𝑆 and the prompt 𝑃𝑡𝑖 of type 𝑡𝑖 , the P-SLM initially combines them to
form the type-aware input 𝐼𝑡𝑖 = {𝑠1, 𝑠2, · · · , 𝑠 |𝑆 | , 𝑝𝑡𝑖1 , 𝑝

𝑡𝑖
2 , · · · , 𝑝

𝑡𝑖
|𝑃𝑡𝑖 | },

Submission ID: 37. 2023-10-13 11:01. Page 4 of 1–11.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

LFDe: A Lighter, Faster and More Data-Efficient Pre-training Framework for Event Extraction WWW ’24, May 13–17, 2024, Singapore

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

where 𝑝𝑡𝑖
𝑗
represents the 𝑗-th token in the prompt 𝑃𝑡𝑖 , and |𝑃𝑡𝑖 | de-

notes the total token count in 𝑃𝑡𝑖 . It then feeds 𝐼 into a transformer-
based encoder, producing the corresponding input embeddings
𝐸𝑚𝑏𝑡𝑖 = {𝑒𝑡𝑖𝑠1 , · · · , 𝑒

𝑡𝑖
𝑝1 , · · · }, where 𝑒

𝑡𝑖
𝑠𝑖 , 𝑒

𝑡𝑖
𝑝𝑖
∈ Rℎ , and ℎ is the hidden

size. Subsequently, P-SLM obtains the prompt feature relevant to
the type 𝑡𝑖 by applying the prompt feature capturing unit:

𝑓𝑃𝑡 = ReLU(𝑒𝑃𝑡𝑊𝑃 + 𝑏𝑃),
𝑒𝑃𝑡 = [𝑒𝑡𝑖𝑝1 ; · · · ; 𝑒

𝑡𝑖
𝑝 |𝑃𝑡𝑖 |
], (1)

where𝑊𝑃 ∈ R |𝑃
𝑡𝑖 |∗ℎ×ℎ ,𝑏𝑃 ∈ Rℎ , and ReLU(·) indicates theRectified

LinearUint (ReLU) activation [11]. Following this, ourmodelmerges
𝑓𝑃𝑡 with the embeddings of every token in the sentence, formulating
an advanced sentence embedding sequence denoted as 𝐸𝑡

𝑆
:

𝐸𝑡𝑆 = {[𝑠𝑡𝑖1 ; 𝑓𝑃𝑡], [𝑠𝑡𝑖2 ; 𝑓𝑃𝑡], · · · , [𝑠𝑡𝑖|𝑆 | ; 𝑓𝑃𝑡]} (2)

Finally, the model applies theMulti-Layer Perceptron (MLP) and
Conditional Random Field (CRF) algorithms to locate the span in
𝐸𝑆 that is semantically most relevant to the prompt.

4.5 Pre-training and Fine-tuning
In the pre-training phase, LFDe utilizes the weak label data gener-
ated in section 4.3 as the training set, while the fine-tuning phase
employs manually annotated data to refine the model. The opti-
mization objectives for both the pre-training and fine-tuning stages
are identical, striving to minimize the negative log-likelihood loss:

L = −
|𝐷 |∑︁
𝑗=1

|𝑇 |∑︁
𝑖=1

log(
Socre𝑖Real (𝑆

𝑗)
Socre𝑖Total (𝑆

𝑗)
), (3)

where |𝐷 | indicates the size of the (pre-) training set. “Score(𝑆 𝑗)”
denotes the intrinsic score assigned by the CRF algorithm to a
specific label sequence of the 𝑗-th sentencewithin the (pre-) training
set. The ground truth for the 𝑖-th type is indicated by Socre𝑖Real (·),
and Socre𝑖Total (·) signifies the cumulative score of all possible label
sequences for the 𝑗-th data on the 𝑖-th type.

The weak-label data distribution differs significantly from the
manually annotated data used in the fine-tuning stage. To allevi-
ate the problem of potentially catastrophic forgetting caused by
migration between two datasets, we strive to improve the model’s
generalization during the pre-training stage. We use Sharpness-
AwareMinimization (SAM) [19] in the pre-training stage, which
seeks the minimum in the flat loss hyperplane and can effectively
improve the generalization ability of the model.

5 EXPERIMENT
5.1 Experimental Settings
5.1.1 Implementation Details. News headlines utilized in this study
are sourced from the “Global Database of Events, Language, and
Tone (GDELT)” project6. Leveraging this resource, our framework
autonomously generates 30,000 weak-label instances, of which
1,000 are used for evaluation during the pre-training stage while
the remainder is used for pre-training.We utilize NLTK7 to annotate
part-of-speech tags and employ the same approach as CLEVE [49]
6https://www.gdeltproject.org/
7https://www.nltk.org/

Table 1: Hyperparameters for the pre-training stage.

Hyperparameter Backbone Value

Learning rate base & large 1e-5
Dropout base & large 0.5
Step base & large 1000

Batch size base 64
large 32

Table 2: Hyperparameters for the fine-tuning stage.

Hyperparameter Scenario Value

Learning rate All 1e-5
Dropout All 0.5
Epoch All 30

Batch size

Data-abundant 32
Low-resource (1%, 2%, 3%) 8
Low-resource (5%, 10%, 20%) 16
Low-resource (30%, 50%) 32
Zero-shot 32

to obtain AMR graphs. During the fine-tuning phase, performance
is assessed based on the highest-scoring checkpoint on the devel-
opment set. Across both the pre-training and fine-tuning stages,
the training of LFDe is conducted on a single NVIDIA RTX A6000
GPU with 48G of video memory, employing RoBERTa-large [29] as
the fundamental structure. The version of ChatGPT employed in
this paper is “GPT-3.5-Turbo-16k-0613”. The optimal parameters for
LFDe during the pre-training and fine-tuning stages, determined
through comprehensive grid searching with the F1 score as the
pivotal criteria, are illustrated respectively in Table 1 and Table 2.

5.1.2 Datasets and Evaluation. Following previous studies [13, 24,
38], we conducted experiments on two datasets: ACE-2005 [8]
and ERE [44]. The former, ACE-2005, is the most widely used EE
dataset featuring 33 types, whereas ERE is a more expansive dataset,
encompassing 38 types. Notably, two variants of ACE2005 have
emerged in recent years, namely ACE-05E and ACE-05E+ [24]. The
former filters out events with triggers composed of multiple tokens,
while the latter does not. We evaluate our framework on the more
comprehensive version ACE-05E+. For both above datasets, we
employ the data pre-processing procedure and data splits provided
by previous studies [13, 24]. For the sake of fairness, we follow the
data settings most commonly used in the event extraction field in
recent years [13, 24]. Specifically, for the data-abundant scenario,
we employ the same data split as that utilized in baseline approaches.
In the low-resource regime, we form the training set using 1%, 2%,
3%, 5%, 10%, 20%, 30% and 50% of training samples identical to
DEGREE [13] while maintaining the validation and test sets from
the data-abundant scenario. In the zero-shot learning situation, we
follow the method outlined in previous research [32], training our
model on the ten most frequently occurring types in the ACE-2005
dataset and subsequently evaluating it on the remaining types.

We apply the same evaluation metrics as prior works [13, 14]. A
trigger is accurately predicted if its type and span match the actual

Submission ID: 37. 2023-10-13 11:01. Page 5 of 1–11.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

WWW ’24, May 13–17, 2024, Singapore Anon. Submission Id: 37

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Table 3: F1 scores in low-resource regime on ACE-2005 and ERE.

Event Detection / Trigger Classification F1-Score (%)

Model ACE-2005 ERE
1% 2% 3% 5% 10% 20% 30% 50% 1% 2% 3% 5% 10% 20% 30% 50%

EEQA† 18.9 29.4 47.4 52.6 54.2 61.0 63.4 66.1 - - - - - - - -
OneIE 39.0 41.1† 52.5 60.6 58.1 66.5 66.4 69.1† 11.0 30.4† 36.9 46.7 48.8 51.8 53.5 54.1†

Text2Event 15.7 32.3† 38.4 43.9 46.3 56.5 62.0 66.2† 6.3 16.7† 25.6 33.5 42.4 46.7 50.1 52.9†

CLEVE† 32.4 36.7 43.8 46.0 53.2 58.2 62.1 65.3 - - - - - - - -
UIE† 39.6 48.4 52.8 57.0 61.6 65.6 65.5 66.7 - - - - - - - -
DEGREE 49.5 54.5† 63.5 62.3 68.5 67.6 66.9 67.8† 27.9 39.3† 45.5 47.0 53.0 51.9 53.5 53.9†
LFDe 54.4 59.2 57.7 63.4 65.4 68.2 68.8 70.1 35.9 42.5 46.6 49.7 53.8 52.7 54.3 54.7
-w/o pre-training 38.2 45.4 53.5 61.3 65.2 64.5 66.1 69.7 17.9 28.8 40.6 47.1 50.1 51.3 51.7 52.9

Argument Extraction / Argument Classification F1-Score (%)

Model ACE-2005 ERE
1% 2% 3% 5% 10% 20% 30% 50% 1% 2% 3% 5% 10% 20% 30% 50%

EEQA† 5.2 9.1 13.4 22.6 26.2 39.7 46.7 50.6 - - - - - - - -
OneIE 10.4 15.3† 20.6 29.7 35.5 46.7 48.0 52.2† 2.6 16.5† 20.3 29.7 35.1 40.7 43.0 45.4†

Text2Event 5.7 8.9† 16.5 21.3 26.4 35.2 42.1 42.9† 2.3 9.7† 15.2 23.6 28.7 35.7 38.7 44.8†

CLEVE† 12.8 15.1 21.7 25.2 31.3 37.9 42.1 46.8 - - - - - - - -
UIE† 16.9 18.1 25.9 27.9 35.0 41.5 43.6 47.7 - - - - - - - -
DEGREE 18.7 25.8† 34.0 35.7 43.6 48.9 51.2 51.1† 14.5 23.2† 28.9 33.4 41.7 42.9 45.5 47.4†

AMPERE† 21.4 28.6 33.7 37.2 43.8 48.2 51.4 52.4 16.1 24.8 30.4 34.1 40.5 42.2 46.2 47.7
LFDe 27.4 31.7 34.3 38.4 44.8 49.6 51.9 53.6 17.3 26.3 32.4 35.4 42.1 44.0 45.6 48.3
-w/o pre-training 10.6 17.4 26.8 28.4 38.2 46.9 49.9 50.8 11.6 19.3 25.3 29.7 34.2 36.5 43.5 45.4

value. An argument is correct when its event type, the trigger span,
and the role match the gold one.

5.1.3 Baselines. We select seven advanced approaches that en-
compass four common techniques for EE using PLM, serving as
baselines in the low-resource and data-abundant scenarios:

• EEQA [9] is a “fine-tuning”-based method, re-formulating
the EE task as question answering.
• OneIE [24] also employs the fine-tuning paradigm. It uni-
formly models entities, relations, and events and benefits
from their inter-dependencies.
• Text2Event [30] is representative of generative EE methods,
which directly produce structured events.
• CLEVE [47] is a pre-training-based EE methodology lever-
aging contrastive learning techniques to learn semantic and
structural information about events from unsupervised data.
• UIE [31] is a pre-training-based, unified framework that
learns various extraction tasks from unsupervised data and
directly yields structural information.
• DEGREE [13] is a method based on the “prompt” paradigm,
which transforms EE into the pre-training task of the PLM.
This paper selects the DEGREE with a joint structure as
the baseline, as it generally performs better in data-scare
scenarios compared to its pipeline-structured version.
• AMPERE [14] is a prompt-based model that incorporates
AMR in prompts. As AMPERE is a data-efficient model de-
signed exclusively for argument extraction, we employed
LFDe as the event detection method for this baseline.

The symbol “†” indicates the results obtained by rerunning publicly
available codes. Since most of the above baseline methods confront
difficulties in extracting events with types that have never been
seen, we also select “Transfer” [16], “ILP” [53], and “TE/QA” [32]
as baselines in the zero-shot scenario. These methods aim to de-
velop EE models with transfer ability, performing well on newly
emerging event types. Additionally, we introduce an event extrac-
tion methodology based on ChatGPT, named “ChatGPT-EE”, as a
strong baseline for LFDe in the zero-shot scenario. The details of
“ChatGPT-EE” are elaborated in Appendix C. LFDe-base refers to
the use of “RoBERTa-base” as the backbone.

5.2 Main Results
5.2.1 Low-resource. Table 3 shows the F1 scores of the LFDe and
baseline methods with different proportions of training instances
on ACE-2005 and ERE. “-w/o pre-training” denotes directly training
the P-SLM introduced in subsection 4.4 on the manually labeled
datasets without the pre-training phase. The best scores are marked
in bold, and the second-highest scores are underlined. It can be
observed that our LFDe achieves the highest F1 scores across most
data configurations for both event detection and argument extrac-
tion. In the remaining three cases, it demonstrates a commendably
comparative performance. In particular, compared with the cur-
rent state-of-the-art data-efficient methods DEGREE and AMPERE,
which take a larger PLM “BART-large” as their backbones, our
method has a significant improvement in most settings on both
ACE-2005 and ERE. In contrast to UIE and CLEVE, which are also
trained on unlabeled data, LFDe substantially improved F1 scores

Submission ID: 37. 2023-10-13 11:01. Page 6 of 1–11.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

LFDe: A Lighter, Faster and More Data-Efficient Pre-training Framework for Event Extraction WWW ’24, May 13–17, 2024, Singapore

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 4: Results (%) on ACE-2005 in the zero-shot scenario.

Model Trigger Argument
P R F1 P R F1

Transfer 75.5 36.3 49.1 16.1 15.6 15.8
ILP 54.1 53.1 53.6 4.6 10.0 6.3
TE/QA - - 41.7 - - 16.8
ChatGPT-EE† 70.7 41.7 52.5 14.4 14.3 14.3
DEGREE† 52.4 53.7 53.1 45.1 15.3 22.8
LFDe 57.7 60.1 58.8 27.2 32.2 29.6
-w/o pre-training 54.2 56.8 55.5 21.1 27.4 23.8
LFDe-base 49.2 53.7 51.3 22.1 24.6 23.2

in all data settings. It shows that the introduced lighter pre-training
framework is more data-efficient than conventional pre-training
methodologies. The above observations demonstrate the effective-
ness of the LFDe proposed in this paper.

We can draw three important conclusions by comparing “-w/o
pre-training” with the other results. 1) The performance degrades
noticeably without the pre-training phase, especially in settings
with extreme data sparsity. It indicates that pre-training on a small
amount of weakly labeled data to familiarize the model with the
task format can effectively enhance its performance when manual
annotations are sparse. 2) “-w/o pre-training” significantly outper-
forms OneIE and EEQA in the case of relatively sparse training
data and performs close to them in the situation of more data. The
comparisons suggest that the P-SLM enhanced with type-aware
prompts is more competent in handling scenarios with sparse data.
3) The substantial outperformance of “-w/o pre-training” relative to
Text2Event shows the advantages of the P-SLM over the traditional
“generative” paradigm in low-resource settings.

5.2.2 Zero-shot. Since the zero-shot setting in the DEGREE pa-
per is different from the one followed in this paper, the results
of DEGREE in this experiment are obtained by rerunning their
code. As shown in Table 4, LFDe significantly outperforms the
strongest baseline method by 5.2% in event detection and 6.8% in ar-
gument extraction. Compared to the ChatGPT-EE, which is highly
anticipated in the zero-shot setting, LFDe also achieves remarkable
advancements in the classification performance of triggers and ar-
guments. These improvements demonstrate the effectiveness of our
framework in the zero-shot scenario. In addition, without the pre-
training phase, our model also remarkably outperforms all baseline
methods. This suggests that the prompt-based sequence labeling
EE model proposed in this paper has a solid ability to transfer to
new event types. The introduction of the pre-training phase causes
a noticeable increase in the F1 score, underscoring the advantage
of adapting the task format on unlabeled data for effective trigger
and argument extraction in the zero-shot scenario.

5.2.3 Data-abundant. Although LFDe is designed for data-scarce
scenarios, we conduct the experiment in the data-abundant scenario
for controlled comparisons. Table 5 shows the results evaluated on
the complete ACE-2005 and ERE. In terms of event detection, LFDe
outperforms most baseline methods on two datasets, achieving the

Table 5: F1 scores (%) in the data-abundant scenario.

Model ACE-2005 ERE
Trigger Argument Trigger Argument

EEQA† 70.9 52.4 - -
OneIE 72.8 54.8 57.0 46.5
Text2Event 71.8 54.9 59.4 48.3
CLEVE† 71.2 54.5 - -
UIE† 71.4 55.2 - -
DEGREE 70.9 56.3 57.1 49.6
AMPERE - 55.1 - 50.7
LFDe 71.8 55.1 58.0 51.4
-w/o pre-training 69.8 53.2 57.8 48.6

second-highest F1 scores. As for argument extraction, our frame-
work ranks third in F1 values on ACE-2005, while it takes the top
position on ERE. Compared to other pre-training-based methods,
our framework demonstrates competitive performance on ACE2005.
It achieves the highest score in event detection and only lags slightly
behind UIE in argument extraction. In comparison with the current
state-of-the-art data-efficient methods, DEGREE and AMPERE, our
framework outperforms in most cases. Generally, the method pro-
posed in this paper achieves competitive results, demonstrating the
effectiveness of LFDe in the data-abundant scenario.

Compared to the data-scarce scenarios, LFDe fails to achieve sig-
nificant performance gains on ACE-2005 under the fully supervised
setting. We attribute this critical factor: OneIE and UIE benefit bet-
ter from the inherent dependencies between entities, relationships
and events in sufficient training data. The comparison with “-w/o
pre-training” illustrates that adapting the form of the EE task dur-
ing the pre-training process can still help improve the performance
of the P-SLM in the data-abundant scenario.

UIE CLEVE LFDe
0

2000

4000

6000

N
um

be
r o

f p
re

-tr
ai

ni
ng

 sa
m

pl
es

 (1
0K

)

6500

1800

3180

UIE CLEVE LFDe
0

200

400

600

Pr
e-

tra
in

in
g

st
ep

s (
K

)

500.0

97.8

1.0
82.5

UIE CLEVE LFDe
0

200

400

600

Pr
e-

tra
in

in
g

tim
e

(h
ou

r)

559.7

200.8

0.2
UIE CLEVE LFDe

0

5

10

15

20

25

R
eq

ui
re

d
G

PU
 m

em
or

y
(G

B
)

20.3

11.9 11.7

Figure 5: Statistical analysis of overheads on various items
during the pre-training phase.

5.2.4 Analysis of Pre-training Overheads. Figure 5 displays the pre-
training overheads of LFDe compared with two other pre-training-
based EE methods. Within this visual, signifies the conservative
value of CLEVE on the corresponding statistical item, while de-
notes its estimated value. Appendix D details the statistical method-
ologies employed within each item. The figure decisively underlines
that our framework considerably minimizes pre-training overheads
compared to both UIE and CLEVE. The observed advantages in the
count of pre-training samples, steps involved in the pre-training
phase, and reduced time expenditure illustrate that LFDe is a faster

Submission ID: 37. 2023-10-13 11:01. Page 7 of 1–11.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

WWW ’24, May 13–17, 2024, Singapore Anon. Submission Id: 37

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

pre-training framework for EE. Further, the advantage associated
with GPU memory consumption suggests that our framework is
lighter than existing approaches.

1 2 3 5 10 20 30 50
Event detection

40

50

60

70

LFDe
-w/o pre-training
mixed training
random tokens

1 2 3 5 10 20 30 50
Argument extraction

10

20

30

40

50

LFDe
-w/o pre-training
mixed training
random tokens

Figure 6: Trends in results under different training strategies.

5.3 Ablation Study
5.3.1 The Effect of Pre-training. Figure 6 visualizes the perfor-
mances achieved by applying different training strategies on ACE-
2005 in low-data settings. The horizontal axis represents the percent-
age of training data utilized, while the vertical axis measures the F1
scores. “Random tokens” denotes replacing public news headlines
with random text strings. These strings comprise random words or
phrases derived from the news domain, containing at least one ver-
bal or nominal word (or phrase) serving as a trigger or an argument.
“Mixed training” indicates mixing weak-label samples with manu-
ally labeled data as the training set. The performance comparison
between LFDe, “- w/o pre-training” and “mixed training” reveals the
potential advantage of pre-training EE models using automatically
generated weakly labeled data, as it significantly enhances P-SLM’s
performance. Furthermore, the comparison involving “random to-
kens”, “- w/o pre-training” and “mixed training” demonstrates that
despite the absence of semantic knowledge within the pre-training
corpus, providing a platform for the EEmodel to acquaint itself with
the downstream task format can augment the model’s performance
in scenarios where data is extremely scarce.

Table 6: Results (%) on ACE-2005 without finetuning.

Model Trigger Argument
P R F1 P R F1

CLEVE 0.8 6.1 1.4 0.4 0.7 0.5
UIE 0.3 3.4 0.5 0.0 0.4 0.0
EEQA (1%) 34.0 13.1 18.9 11.4 3.4 5.2
Text2Event (1%) - - 15.7 - - 5.7
ChatGPT-EE 53.7 24.8 34.0 15.1 9.2 11.5
LFDe 31.4 38.9 34.7 8.2 6.2 7.0
- random tokens 33.8 16.7 22.3 2.4 0.8 1.2

5.3.2 The Effect of Pre-learning Task Formats. To visualize the ben-
efits of pre-learning task formats, we directly evaluate our model
on the test set used in the low-resource scenario after pre-training
and present the results in Table 6. EEQA(1%) and Text2Event(1%)
denote fine-tuning EEQA and Text2Event on 1% of the training

data. Without fine-tuning, LFDe achieves remarkable F1 scores of
34.7% and 7.0% in event detection and argument extraction, respec-
tively. In addition, it significantly outperforms Text2Event(1%) and
EEQA(1%) when pre-training P-SLM with samples consisting of
random words. With affordable pre-training, our approach even
surpasses ChatGPT-EE in event detection. The above observations
demonstrate that pre-learning the task format can effectively con-
tribute to the EE task. Comparisons with UIE and CLEVE show
that the EE framework proposed in this paper is more data-efficient.
LFDe’s substantial improvement over “random tokens” implies that
enhancing the quality of the weak label data can notably bolster
the task format knowledge obtained during the pre-training phase.

Table 7: F1 scores (%) on ACE-2005 with different prompts.

Model 1% 3% 5% 20% 50%
Trigger

LFDe 54.4 57.7 63.4 67.3 70.1
- w/o type description 54.5 55.3 60.8 66.4 67.3
- w/o definition 53.9 54.6 59.1 67.6 66.7
- w/o examples 54.1 55.9 60.8 65.6 67.8
- w/o typical triggers 50.3 53.4 56.6 64.9 67.6

Argument
LFDe 27.4 34.3 38.4 49.6 51.9
- w/o role description 26.1 32.9 36.4 48.8 50.7
- w/o definition 26.2 33.5 37.3 48.2 51.5
- w/o examples 25.8 31.2 35.1 47.5 50.4
- w/o typical arguments 26.1 32.5 35.7 47.5 50.3

5.3.3 The Effect of Prompts’ Components. We study the effects of
the four components of type-aware prompts by individually re-
moving each of them. It can be observed that the removal of each
prompt component causes performance degradation in almost ev-
ery low-resource setting. In event detection, "typical triggers" exert
the most significant influence on performance. Meanwhile, the "ex-
amples" part, besides the "typical arguments", also substantially
impacts the model’s performance in argument extraction. These
observations reciprocally corroborate with the In-context learning
theory [36]. Leveraging this theory, we derive the following conclu-
sions: 1) Listing typical words in prompts aids the model in locating
similar triggers or arguments. 2) Examples of argument extraction
can provide additional knowledge to help the model clarify the
relationship between event elements and event types.

6 CONCLUSION
We propose a lighter, faster, and more data-efficient pre-training
framework and a prompt-based sequence labeling model for event
extraction in data-scarce scenarios. The framework formalizes both
event detection and argument extraction as locating spans in sen-
tences under the guidance of prompts and familiarizes EE models
with the above task formats using public unlabeled corpora. Our
framework proposed in this paper first pre-learnings the task for-
mat on automatically generated weak-label data and then fine-tunes
the pre-trained model on manually labeled datasets. Experiments
on real-world data demonstrate the effectiveness of our framework.

Submission ID: 37. 2023-10-13 11:01. Page 8 of 1–11.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

LFDe: A Lighter, Faster and More Data-Efficient Pre-training Framework for Event Extraction WWW ’24, May 13–17, 2024, Singapore

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] David Ahn. 2006. The stages of event extraction. In Proceedings of the Workshop

on Annotating and Reasoning about Time and Events. 1–8.
[2] Kurt D. Bollacker, Colin Evans, Praveen K. Paritosh, Tim Sturge, and Jamie Taylor.

2008. Freebase: a collaboratively created graph database for structuring human
knowledge. In Proceedings of SIGMOD. 1247–1250.

[3] Yunmo Chen, Tongfei Chen, Seth Ebner, Aaron Steven White, and Benjamin Van
Durme. 2020. Reading theManual: Event Extraction as Definition Comprehension.
In Proceedings of the Workshop on Structured Prediction for NLP@EMNLP. 74–83.

[4] Yubo Chen, Shulin Liu, Xiang Zhang, Kang Liu, and Jun Zhao. 2017. Automatically
Labeled Data Generation for Large Scale Event Extraction. In Proceedings of ACL.
409–419.

[5] Yubo Chen, Liheng Xu, Kang Liu, Daojian Zeng, and Jun Zhao. 2015. Event Extrac-
tion via Dynamic Multi-Pooling Convolutional Neural Networks. In Proceedings
of ACL/IJCNLP. 167–176.

[6] Xin Cong, Shiyao Cui, Bowen Yu, Tingwen Liu, Yubin Wang, and Bin Wang. 2021.
Few-Shot Event Detection with Prototypical Amortized Conditional Random
Field. In Proceedings of Findings of ACL/IJCNLP. 28–40.

[7] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
Proceedings of NAACL. 4171–4186.

[8] George R. Doddington, Alexis Mitchell, Mark A. Przybocki, Lance A. Ramshaw,
Stephanie M. Strassel, and Ralph M. Weischedel. 2004. The Automatic Content
Extraction (ACE) Program - Tasks, Data, and Evaluation. In Proceedings of LREC.
1–4.

[9] Xinya Du and Claire Cardie. 2020. Event Extraction by Answering (Almost)
Natural Questions. In Proceedings of EMNLP. 671–683.

[10] Jun Gao, Huan Zhao, Changlong Yu, and Ruifeng Xu. 2023. Exploring the Feasi-
bility of ChatGPT for Event Extraction. CoRR abs/2303.03836 (2023).

[11] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. 2011. Deep Sparse Rectifier
Neural Networks. In Proceedings of AISTATS (JMLR Proceedings, Vol. 15). 315–323.

[12] Yu Hong, Jianfeng Zhang, Bin Ma, Jian-Min Yao, Guodong Zhou, and Qiaom-
ing Zhu. 2011. Using Cross-Entity Inference to Improve Event Extraction. In
Proceedings of ACL. 1127–1136.

[13] I-Hung Hsu, Kuan-Hao Huang, Elizabeth Boschee, Scott Miller, Prem Natarajan,
Kai-Wei Chang, and Nanyun Peng. 2022. DEGREE: A Data-Efficient Generation-
Based Event Extraction Model. In Proceedings of NAACL. 1890–1908.

[14] I-Hung Hsu, Zhiyu Xie, Kuan-Hao Huang, Prem Natarajan, and Nanyun Peng.
2023. AMPERE: AMR-Aware Prefix for Generation-Based Event Argument
Extraction Model. In Proceedings of ACL. 10976–10993.

[15] Kuan-Hao Huang, I-Hung Hsu, Prem Natarajan, Kai-Wei Chang, and Nanyun
Peng. 2022. Multilingual Generative Language Models for Zero-Shot Cross-
Lingual Event Argument Extraction. In Proceedings of ACL. 4633–4646.

[16] Lifu Huang, Heng Ji, Kyunghyun Cho, Ido Dagan, Sebastian Riedel, and Clare R.
Voss. 2018. Zero-Shot Transfer Learning for Event Extraction. In Proceedings of
ACL. 2160–2170.

[17] Zhigang Kan, Linhui Feng, Zhangyue Yin, Linbo Qiao, Xipeng Qiu, and Dong-
sheng Li. 2023. A Composable Generative Framework Based on Prompt Learning
for Various Information Extraction Tasks. IEEE Trans. Big Data 9, 4 (2023),
1238–1251.

[18] Zhigang Kan, Yanqi Shi, Zhangyue Yin, Liwen Peng, Linbo Qiao, Xipeng Qiu,
and Dongsheng Li. 2023. An anchor-guided sequence labeling model for event
detection in both data-abundant and data-scarce scenarios. Information Sciences
649 (2023), 119652.

[19] Jungmin Kwon, Jeongseop Kim, Hyunseo Park, and In Kwon Choi. 2021. ASAM:
Adaptive Sharpness-Aware Minimization for Scale-Invariant Learning of Deep
Neural Networks. In Proceedings of ICML, Vol. 139. 5905–5914.

[20] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman
Mohamed, Omer Levy, Veselin Stoyanov, and Luke Zettlemoyer. 2020. BART:
Denoising Sequence-to-Sequence Pre-training for Natural Language Generation,
Translation, and Comprehension. In Proceedings of ACL. 7871–7880.

[21] Fayuan Li, Weihua Peng, Yuguang Chen, Quan Wang, Lu Pan, Yajuan Lyu, and
Yong Zhu. 2020. Event Extraction as Multi-turn Question Answering. In Proceed-
ings of EMNLP. 829–838.

[22] Sha Li, Heng Ji, and Jiawei Han. 2021. Document-Level Event Argument Extrac-
tion by Conditional Generation. In Proceedings of NAACL. 894–908.

[23] Shasha Liao and Ralph Grishman. 2010. Filtered Ranking for Bootstrapping in
Event Extraction. In Proceedings of COLING. 680–688.

[24] Ying Lin, Heng Ji, Fei Huang, and Lingfei Wu. 2020. A Joint Neural Model for
Information Extraction with Global Features. In Proceedings of ACL. 7999–8009.

[25] Jian Liu, Yubo Chen, Kang Liu, Wei Bi, and Xiaojiang Liu. 2020. Event Extraction
as Machine Reading Comprehension. In Proceedings of EMNLP. 1641–1651.

[26] Jian Liu, Yufeng Chen, and Jinan Xu. 2022. Saliency as Evidence: Event Detection
with Trigger Saliency Attribution. In Proceedings of ACL. 4573–4585.

[27] Shulin Liu, Yubo Chen, Shizhu He, Kang Liu, and Jun Zhao. 2016. Leveraging
FrameNet to Improve Automatic Event Detection. In Proceedings of ACL. 2134—-
2143.

[28] Xiao Liu, Heyan Huang, Ge Shi, and Bo Wang. 2022. Dynamic Prefix-Tuning for
Generative Template-based Event Extraction. In Proceedings of ACL. 5216–5228.

[29] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer
Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. RoBERTa: A
Robustly Optimized BERT Pretraining Approach. CoRR abs/1907.11692 (2019).

[30] Yaojie Lu, Hongyu Lin, Jin Xu, Xianpei Han, Jialong Tang, Annan Li, Le Sun, Meng
Liao, and Shaoyi Chen. 2021. Text2Event: Controllable Sequence-to-Structure
Generation for End-to-end Event Extraction. In Proceedings of ACL. 2795–2806.

[31] Yaojie Lu, Qing Liu, Dai Dai, Xinyan Xiao, Hongyu Lin, Xianpei Han, Le Sun,
and Hua Wu. 2022. Unified Structure Generation for Universal Information
Extraction. In Proceedings of ACL. 5755–5772.

[32] Qing Lyu, Hongming Zhang, Elior Sulem, and Dan Roth. 2021. Zero-shot Event
Extraction via Transfer Learning: Challenges and Insights. In Proceedings of
ACL/IJCNLP (Volume 2: Short Papers). 322–332.

[33] Yubo Ma, Zehao Wang, Yixin Cao, Mukai Li, Meiqi Chen, Kun Wang, and Jing
Shao. 2022. Prompt for Extraction? PAIE: Prompting Argument Interaction for
Event Argument Extraction. In Proceedings of ACL. 6759–6774.

[34] David McClosky, Mihai Surdeanu, and Christopher D. Manning. 2011. Event
Extraction as Dependency Parsing for BioNLP 2011. In Proceedings of BioNLP
Shared Task 2011 Workshop. 41–45.

[35] George A.Miller. 1995. Wordnet: a lexical database for english. InCommunications
of the Acm, Vol. 38(11). 39–41.

[36] Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh
Hajishirzi, and Luke Zettlemoyer. 2022. Rethinking the Role of Demonstrations:
What Makes In-Context Learning Work?. In Proceedings of EMNLP. 11048–11064.

[37] Makoto Miwa, Paul Thompson, Ioannis Korkontzelos, and Sophia Ananiadou.
2014. Comparable Study of Event Extraction in Newswire and Biomedical Do-
mains. In Proceedings of ICCL. 2270–2279.

[38] Minh Van Nguyen, Viet Dac Lai, and Thien Huu Nguyen. 2021. Cross-Task In-
stance Representation Interactions and Label Dependencies for Joint Information
Extraction with Graph Convolutional Networks. In Proceedings of NAACL. 27–38.

[39] Thien Huu Nguyen, Kyunghyun Cho, and Ralph Grishman. 2016. Joint Event
Extraction via Recurrent Neural Networks. In Proceedings of NAACL. 300–309.

[40] Thien Huu Nguyen and Ralph Grishman. 2015. Event Detection and Domain
Adaptation with Convolutional Neural Networks. In Proceedings of ACL. 365–371.

[41] Giovanni Paolini, Ben Athiwaratkun, Jason Krone, Jie Ma, Alessandro Achille,
Rishita Anubhai, Cícero Nogueira dos Santos, Bing Xiang, and Stefano Soatto.
2021. Structured Prediction as Translation between Augmented Natural Lan-
guages. In Proceedings of ICLR. 1–26.

[42] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
Limits of Transfer Learning with a Unified Text-to-Text Transformer. J. Mach.
Learn. Res. 21 (2020), 1–67.

[43] Lei Sha, Feng Qian, Baobao Chang, and Zhifang Sui. 2018. Jointly Extracting
Event Triggers and Arguments by Dependency-Bridge RNN and Tensor-Based
Argument Interaction. In Proceedings of AAAI. 5916–5923.

[44] Zhiyi Song, Ann Bies, Stephanie M. Strassel, Tom Riese, Justin Mott, Joe Ellis,
Jonathan Wright, Seth Kulick, Neville Ryant, and Xiaoyi Ma. 2015. From Light to
Rich ERE: Annotation of Entities, Relations, and Events. In Proceedings of the The
3rd Workshop on EVENTS. 89–98.

[45] David Wadden, Ulme Wennberg, Yi Luan, and Hannaneh Hajishirzi. 2019. Entity,
Relation, and Event Extraction with Contextualized Span Representations. In
Proceedings of EMNLP. 5783–5788.

[46] XiaozhiWang, XuHan, Zhiyuan Liu,Maosong Sun, and Peng Li. 2019. Adversarial
Training for Weakly Supervised Event Detection. In Proceedings of NAACL. 998–
1008.

[47] Ziqi Wang, Xiaozhi Wang, Xu Han, Yankai Lin, Lei Hou, Zhiyuan Liu, Peng
Li, Juanzi Li, and Jie Zhou. 2021. CLEVE: Contrastive Pre-training for Event
Extraction. In Proceedings of ACL/IJCNLP. 6283–6297.

[48] Xiang Wei, Xingyu Cui, Ning Cheng, Xiaobin Wang, Xin Zhang, Shen Huang,
Pengjun Xie, Jinan Xu, Yufeng Chen, Meishan Zhang, Yong Jiang, and Wenjuan
Han. 2023. Zero-Shot Information Extraction via Chatting with ChatGPT. CoRR
abs/2302.10205 (2023).

[49] Dongqin Xu, Junhui Li, Muhua Zhu, Min Zhang, and Guodong Zhou. 2020.
Improving AMR Parsing with Sequence-to-Sequence Pre-training. In Proceedings
of EMNLP. 2501–2511.

[50] Sen Yang, Dawei Feng, Linbo Qiao, Zhigang Kan, and Dongsheng Li. 2019. Ex-
ploring Pre-trained Language Models for Event Extraction and Generation. In
Proceedings of ACL. 5284–5294.

[51] Pengfei Yu, Zixuan Zhang, Clare Voss, Jonathan May, and Heng Ji. 2022. Building
an event extractor with only a few examples. In Proceedings of the Third Workshop
on Deep Learning for Low-Resource Natural Language Processing. 102–109.

[52] Zhenrui Yue, Huimin Zeng, Mengfei Lan, Heng Ji, and Dong Wang. 2023. Zero-
and Few-Shot Event Detection via Prompt-Based Meta Learning. In Proceedings
of ACL. 7928–7943.

[53] Hongming Zhang, Haoyu Wang, and Dan Roth. 2021. Zero-shot Label-
Aware Event Trigger and Argument Classification. In Proceedings of Findings of
ACL/IJCNLP. 1331–1340.

Submission ID: 37. 2023-10-13 11:01. Page 9 of 1–11.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

WWW ’24, May 13–17, 2024, Singapore Anon. Submission Id: 37

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

A INSTRUCTIONS USED IN SUBSECTION 4.3.2

Table 8: Instructions for pseudo-arguments annotation.

Purpose Instruction

Roles labeling

Given the sentence “[sentence]”, what
role does “[pseudo argument]” play in
the “[event type]” event triggered by
“[pseudo trigger]”?

pseudo-arguments
supplementing

Given the sentence “[sentence]”, are there
any other participants in the event of type
“[event type]”, triggered by “[pseudo
trigger]”, other than “[pseudo argument
1]”, “[pseudo argument 2]”, ..., and
“[pseudo argument 𝑚]”? If so, output
them sequentially in the format “Partic-
ipant Role: Participant”. If not, please out-
put “No”. Output the answer directly with-
out any explanations. “[Examples]”.

The instruction templates used in subsection 4.3.2 are presented
in Table 8. In practical application, our framework replaces the bold
text in the templates with actual contents such as news headlines,
pseudo-triggers, event types, and pseudo-arguments. “[Examples]”
consists of several input-output pairs, in which the input includes
a given news headline, event type, trigger, and partial event ar-
guments. On the other hand, the output is the "participant role:
participant" pair that needs to be completed in this step.

B TYPE-AWARE PROMPTS CONSTRUCTION

Table 9: Components of type-aware prompts.

Stage Component Content

Trigger

Type
description

The sentence “[sentence]” con-
tains an event about “[event
type]”.

Definition This type of event is defined as
“[type definition]”.

Examples The following is an example of this
event: “[trigger examples]”.

Typical
triggers

Typical triggers for this type of
event are: “[typical triggers]”.

Argument

Role
description

In the sentence “[sentence]”, an
event of type “[event type]” is trig-
gered by “[trigger]”, encompass-
ing the argument of “[argument
role]”.

Definition A “[argument role]” argument is
defined as “[role definition]”.

Examples The following is an example of this
argument role: “[role examples]”.

Typical
arguments

Typical arguments for this role are:
“[typical arguments]”.

The type-aware prompts comprise four elements: type descrip-
tion, definition, examples, and typical words. Table 9 illustrates the
templates for these four components during the trigger extraction
and argument extraction stages. Any bold text within the table
should be replaced with real values during practical implementa-
tion. “[type definition]” and “[role definition]” are type (or role)
definitions from the ACE2005 English corpus annotation guidelines.
“[trigger examples]” and “[role examples]” represent the exam-
ples provided in the guidelines. We continue to use typical triggers
used in the DEGREE research as “[typical triggers]”. We meticu-
lously selected multiple typical event arguments for each role from
the ACE2005 training set severing as “[typical arguments]”.

C THE CHATGPT-BASED APPROACH FOR
EVENT EXTRACTION

Algorithm 1 Pipeline-based Event Extraction
Input: Sentence 𝑆 , Prompt library P
Output: Structural events E
1: Initiate E ← ∅
2: Get the trigger prompt 𝑃trig from P
3: 𝑅𝑒𝑞 ← 𝑃trig
4: Get response 𝑅𝑒𝑠𝑝 of request 𝑅𝑒𝑞 from ChatGPT
5: Parse triggers 𝑇𝑟𝑖𝑔𝑠 from 𝑅𝑒𝑠𝑝

6: for 𝑡𝑟𝑖𝑔 in 𝑇𝑟𝑖𝑔𝑠 do
7: Parse the event type 𝑡 of 𝑡𝑟𝑖𝑔 from 𝑅𝑒𝑠𝑝

8: Retrieve the prompt 𝑝t from P of event type 𝑡
9: 𝑅𝑒𝑞 ← 𝑅𝑒𝑞

⊕
𝑅𝑒𝑠𝑝

⊕
𝑝t

10: Get response 𝑅𝑒𝑠𝑝 of request 𝑅𝑒𝑞 from LLMs
11: Parse arguments 𝐴𝑟𝑔𝑠 from 𝑅𝑒𝑠𝑝

12: Append (𝑡𝑟𝑖𝑔, 𝐴𝑟𝑔𝑠) to E
13: end for

Our ChatGPT-based EE method employs a pipeline structure,
which detects events first and then extracts event arguments based
on the predicted triggers and event types. Theworkflow of ChatGPT-
EE is shown in Algorithm 1. We employ the In-context learning
technique to guide ChatGPT in producing dictionary-format re-
sults of the event detection phase and argument extraction phase,
facilitating the data post-processing program to parse event infor-
mation from the response of ChatGPT. The instruction for event
detection is “Extract event triggers with the type [event type] from
the sentence [sentence]. Use the following format to output all the
event information in the text sequentially: TRIG:{‘event type’: ‘trig-
ger’}. If the sentence does not contain any events, just output “No
event”. Output the answer directly without any explanation.”. The
instruction used in the argument extraction stage is “Given sentence
[sentence], it encompasses an event of type [event type], which is
triggered by [trigger]. This type of event comprises three argument
roles: [argument role 1], [argument role 2], Use the following
format to output all the argument in the text sequentially: ARG:{‘role
1’: [‘argument 1_1’, ‘argument 1_2’, ...], ‘role 2’: [‘argument 2_1’,
‘argument 2_2’, ...], ...}. If the event does not contain any argument,
just output “No argument”. Output the answer directly without any
explanation.”

Submission ID: 37. 2023-10-13 11:01. Page 10 of 1–11.

Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

LFDe: A Lighter, Faster and More Data-Efficient Pre-training Framework for Event Extraction WWW ’24, May 13–17, 2024, Singapore

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

D STATISTICAL ANALYSIS OF PRE-TRAINING
OVERHEADS

D.1 Number of Pre-training Samples
We obtained the quantity of pre-training samples from the original
paper of UIE [31]. The original CLEVE paper [47] mentioned that
they utilized 1,800,000 articles from The New York Times serving
as the training corpus. Assuming that each article in this corpus
contains an average of 1 sentence, we can consider 1,800,000 as a
conservative value of pre-training samples for CLEVE.We randomly
sampled ten articles from this corpus, yielding an average sentence
count of 10.4. Thus, we can hypothesize that the NYT corpus’s
sentence count is approximately 18,000,000, which we take as the
estimated value.

D.2 Pre-training Steps
The values for the pre-training steps of UIE are drawn from its
paper. In the case of CLEVE, the pre-training steps comprise two
parts: event semantic pre-training and event structure pre-training.
The original paper for CLEVE reported the number of training steps
in the event structure pre-training phase as 82,500, but the number
of steps in event semantic pre-training was not reported. We took

82,500 as a conservative value and roughly estimated the number
of training steps for event structure pre-training to be 15,300, based
on the ratio of training time costs between the event semantic pre-
training stage and the event structure pre-training stage. Although
there are inevitable errors between the estimated and actual values,
this provides us with a reference value.

D.3 Pre-training Time
We independently trained the UIE and CLEVE models for 1000
steps on an A6000 graphics card using recommended parameter
settings and recorded the time expenditure of the above process.
Subsequently, we estimated their time costs according to the pre-
training steps mentioned in their papers.

D.4 Required GPU Memory
We standardized the input size for UIE, CLEVE, and LFDe by uti-
lizing the same batch size and maximum input length and trained
them on a single A6000 graphics card. During training, we record
the peak of GPU memory utilization for comparison.

Received 20 February 2007; revised 12 March 2009; accepted 5 June 2009

Submission ID: 37. 2023-10-13 11:01. Page 11 of 1–11.

	Abstract
	1 Introduction
	2 Related work
	3 Background
	4 Method
	4.1 Task Formalization
	4.2 The Pre-training Framework
	4.3 Weak-label Data Construction
	4.4 The Prompt-based Sequence Labeling Model
	4.5 Pre-training and Fine-tuning

	5 Experiment
	5.1 Experimental Settings
	5.2 Main Results
	5.3 Ablation Study

	6 Conclusion
	References
	A Instructions Used in Subsection 4.3.2
	B Type-aware Prompts Construction
	C The ChatGPT-based approach for Event Extraction
	D Statistical Analysis of Pre-training Overheads
	D.1 Number of Pre-training Samples
	D.2 Pre-training Steps
	D.3 Pre-training Time
	D.4 Required GPU Memory

