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ABSTRACT

Parameter-efficient fine-tuning techniques such as Low-rank Adaptation (LoRA)
enable large language models (LLMs) to adapt to downstream tasks efficiently.
Federated learning (FL) further facilitates this process by enabling collaborative
fine-tuning across distributed clients without sharing private data. However, the
use of two separate low-rank matrices in LoRA for federated fine-tuning intro-
duces two types of challenges. The first challenge arises from the error induced
by separately aggregating those two low-rank matrices. The second challenge oc-
curs even when the product of two low-rank matrices is aggregated. The server
needs to recover factors via matrix decomposition, which is non-unique and can
introduce decomposition drift. To tackle the aforementioned challenges, we pro-
pose FLoRG, a federated fine-tuning framework which employs a single low-rank
matrix for fine-tuning and aggregates its Gram matrix (i.e., the matrix of inner
products of its column vectors), eliminating the aggregation error while also re-
ducing the communication overhead. FLoRG minimizes the decomposition drift
by introducing a Procrustes alignment approach which aligns the decomposed ma-
trix between consecutive fine-tuning rounds for consistent updates. We theoreti-
cally analyze the convergence of FLoRG and prove that adopting the Procrustes
alignment results in a tighter convergence bound. Experimental results across
multiple LLM fine-tuning benchmarks demonstrate that FLoRG outperforms four
state-of-the-art baseline schemes in the downstream task accuracy and can reduce
the communication overhead by up to 82%.

1 INTRODUCTION

Large language models (LLMs) (Zhao et al., 2023; Achiam et al., 2023; Touvron et al., 2023;
Grattafiori et al., 2024) have achieved state-of-the-art performance across a wide range of natu-
ral language processing tasks. However, their massive scale introduces critical challenges in terms
of computation cost, memory consumption, and adaptability to downstream tasks. To address these
concerns, low-rank adaptation (LoRA) (Hu et al., 2022; Hayou et al., 2024; Kopiczko et al., 2024;
Liu et al., 2024) has emerged as an effective approach. In particular, the LoRA module employs
a fine-tuning matrix ∆W with two low-rank matrices B and A into the pretrained model W0 as
W = W0 + ∆W = W0 + BA. Thus, it enables task-specific adaptation while only updat-
ing ∆W. This approach reduces both memory usage and computation overhead compared to full-
model fine-tuning significantly. However, fine-tuning still favors domain-specific data at scale. Such
data is typically distributed across multiple clients and therefore requires collaborative fine-tuning.
To resolve this issue, federated learning (FL) (McMahan et al., 2017; Li et al., 2020) provides a
privacy-preserving framework for collaborative model training, where multiple clients fine-tune a
shared global model without exposing their raw data. Combining LoRA with FL is therefore highly
appealing: clients can collaboratively fine-tune a model by locally performing lightweight training
via LoRA modules and uploading the low-rank updates for global aggregation.

The conventional works (Zhang et al., 2024; Fang et al., 2024; Zhang et al., 2023b; Wu et al., 2024)
propose federated fine-tuning with LoRA which enables each client n to transmit its low rank matri-
ces Bn and An to the central server. Afterwards, the central server aggregates Bn and An separately
and then broadcasts the two aggregated matrices back to each client for performing fine-tuning in
the subsequent rounds. In this case, the updated LoRA module after the model aggregation can be
expressed as ( 1

N

∑
n Bn) × ( 1

N

∑
n An). This approach introduces a challenge: The aggregation
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is fundamentally biased, because the true update should be 1
N

∑
n(BnAn), which is different from

( 1
N

∑
n Bn) × ( 1

N

∑
n An). This mismatch introduces a systematic aggregation error which af-

fects the global model update in every fine-tuning round. As the number of rounds increases, the
aggregation error is stacked, which will degrade the fine-tuning performance.

To alleviate the error induced by model aggregation, some works (Yan et al., 2024; Bai et al., 2024;
Yan et al., 2025) calculate the product of BnAn and perform aggregation at the central server.
Then, the central server performs decomposition to this aggregated matrix to recover two low-rank
matrices for the next fine-tuning round. While this approach avoids the error induced by separately
aggregating matrices Bn and An, it introduces another non-trivial challenge: decomposition is gen-
erally non-unique. In particular, the rank of the LoRA module is typically much smaller than the
dimension of the input or output of the parameter matrix. This rank deficiency can lead to multiple
decompositions. In addition, when the aggregated matrix has eigenvalue multiplicities, many valid
decompositions exist. As a result, choosing different matrix decompositions fundamentally changes
two low-rank matrices. It incurs a drift in the parameter subspace and changes the direction of the
model update for the subsequent fine-tuning round. This drift will stack as the fine-tuning proceeds
and degrade the fine-tuning performance. Furthermore, direct decomposition (e.g., eigendecompo-
sition) may incur rank mismatch since the rank of the aggregated matrix may be different from the
local low-rank matrices.

Based on the aforementioned discussions, we focus on addressing the following question: Is there
a federated fine-tuning approach which eliminates the error induced by separate model aggregation
while minimizing the drift induced by matrix decomposition?

To address this question, we start by rethinking what to aggregate in federated fine-tuning. In partic-
ular, as LoRA involves matrix multiplication, either separate model aggregation or matrix decom-
position is unavoidable. Therefore, one of our key insights is to reparameterize the LoRA module
with a single low-rank matrix. FLoRG aggregates the corresponding Gram matrices to achieve an
unbiased aggregation with a low communication overhead. Furthermore, another insight is to pro-
pose a Procrustes alignment approach to the decomposed matrix to stabilize the fine-tuning while
preserving its Gram matrix, thereby mitigating drift caused by the non-uniqueness of matrix decom-
position.

Designing such a framework is challenging due to the following unexplored questions: (i) How can
we design a low-rank parameterization which adapts to any pretrained matrix shape while support-
ing error-free aggregation? (iii) How to optimize the Procrustes alignment matrix to minimize the
decomposition drift? (ii) How to characterize the overall convergence rate of FLoRG under noncon-
vex losses, and disentangle the impact of Procrustes alignment on the convergence? In this work,
we make the following contributions to address the aforementioned questions:

• We propose FLoRG, which replaces two low-rank matrices in LoRA with a single low-
rank matrix. By leveraging a shared semi-orthogonal basis, FLoRG adapts to parameter
matrices with arbitrary shapes. Each client only updates the single low-rank matrix, and
the server aggregates the corresponding Gram matrix. FLoRG eliminates the aggregation
error by turning the bilinear server-side aggregation into a linear operation. By transmitting
a single matrix instead of two matrices, FLoRG is communication-efficient when compared
with federated LoRA schemes.

• We propose a Procrustes alignment approach after matrix decomposition to preserve the
aggregated Gram matrix while aligning the decomposed matrix across rounds to mitigate
the decomposition drift and address the rank mismatch issue. In particular, we solve an
optimization problem to minimize the inter-round decomposition drift via a Frobenius-
norm objective. The closed-form optimal solution projects the decomposed matrix onto a
target r-rank subspace without changing its Gram matrix.

• We theoretically analyze the convergence rate of our proposed FLoRG in the nonconvex
loss setting. In particular, incorporating our proposed Procrustes alignment zeros out the
Procrustes alignment drift term, thereby resulting in a tighter convergence bound.

• We conduct extensive experiments on GLUE (Wang et al., 2018) with MRPC, QQP, MNLI,
QNLI, WNLI, and RTE datasets. We compare our proposed FLoRG with four state-of-the-
art baseline schemes, including FedIT (Zhang et al., 2024), FeDeRA (Yan et al., 2024),
FFA-LoRA (Sun et al., 2024), and FedSA-LoRA (Guo et al., 2025). Results show that
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Figure 1: System model of our proposed FLoRG.

our proposed FLoRG achieves a higher testing accuracy than the baseline schemes under
different settings and reduces the communication overhead by up to 82%.

2 RELATED WORKS

LoRA: Low-rank adaptation (LoRA) (Zhang et al., 2024) introduces two low-rank matrices to
the pretrained model to perform parameter-efficient fine-tuning. Multiple LoRA variants have been
proposed (Zhang et al., 2023a; Dettmers et al., 2023; Hayou et al., 2024; Kopiczko et al., 2024;
Liu et al., 2024; Zhao et al., 2024; Bensaı̈d et al., 2025). For example, in (Zhang et al., 2023a),
the authors proposed a LoRA framework to adaptively allocate the parameter budget among weight
matrices based on the importance score. In (Zhao et al., 2024), the authors projected the gradient
matrix into a low-rank form to perform efficient fine-tuning. In (Bensaı̈d et al., 2025), the authors
reformulated the low-rank adaptation with a single matrix. While the aforementioned works have
shown an improvement in the performance, they are primarily designed for centralized settings.
Domain-specific data are often possessed by a number of distributed clients, which motivates the
incorporation of FL.

Federated Fine-tuning with LoRA: LoRA has been incorporated into FL to enable collaborative
fine-tuning across distributed clients. The conventional federated fine-tuning works (Zhang et al.,
2024; Fang et al., 2024; Zhang et al., 2023b; Wu et al., 2024; Long et al., 2024; Cho et al., 2024;
Byun & Lee, 2025) directly aggregate two low-rank matrices separately to obtain the global model.
Some works (Babakniya et al., 2023; Yan et al., 2024; Bai et al., 2024; Yan et al., 2025) aggregate
the LoRA modules (i.e., the products of two matrices) and then perform matrix decomposition to
recover two low-rank matrices. In addition, the authors in (Wang et al., 2024) proposed a stacking-
based approach to aggregate the low-rank matrices. The authors in (Sun et al., 2024) proposed to
freeze matrix A and only update matrix B. The authors in (Guo et al., 2025) proposed to let the
clients locally update matrix B and only share matrix A for aggregation.

3 METHODOLOGY

3.1 FLORG

In this section, we propose FLoRG, a federated fine-tuning framework. FLoRG employs a single
low-rank matrix and aggregates Gram matrices to eliminate the error induced by the separate aggre-
gation as in conventional LoRA. FLoRG performs Procrustes alignment to the decomposed matrix
to minimize the decomposition drift. A schematic illustration is shown in Fig. 1.

We consider a central server and N clients. Let T = {1, 2, . . . , T} and N = {1, 2, . . . , N} denote
the set of T fine-tuning rounds and the set ofN clients, respectively. At the beginning of the first fine-
tuning round, each client n ∈ N has the same pretrained weight matrix W0 ∈ Rdout×din . Note that
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W0 is kept frozen and will not be updated during fine-tuning. We consider that each client n ∈ N
has a local dataset Dn. Let ξn ∼ Dn denote a mini-batch of training samples. Let Fn(W

t; ξn)
denote the local loss function of client n ∈ N on ξn with model Wt in the t-th fine-tuning round.
We denote the expected loss of client n with model Wt as Fn(W

t) = Eξn∼Dn
[Fn(W

t; ξn)]. Let
∇Fn(W

t; ξn) denote the local stochastic gradient of Wt of client n in the t-th fine-tuning round.
The learning procedure of FLoRG can be summarized as the following steps.

(i) Local Update with Low-rank Gram Matrices: Different from LoRA, FLoRG uses a single
matrix A ∈ Rr×k for fine-tuning, where r ≪ min{din, dout} denotes the rank of A. Let k =
min{din, dout}. Matrices L ∈ Rdout×k and R ∈ Rk×din are initialized and shared across all clients.
Both matrices L and R are semi-orthogonal, i.e., L⊺L = Ik and RR⊺ = Ik. Note that matrices L
and R remain unchanged during fine-tuning. The fine-tuning matrix in the t-th fine-tuning round is
given by

∆Wt = LQtR = L(At)⊺AtR, t ∈ T , (1)

where Qt denotes the square Gram parameter matrix in the t-th fine-tuning round. By leveraging L
and R, FLoRG is compatible with parameter matrices of any dimensions. Thus, the full model can
be expressed as Wt = W0 +∆Wt.

In the t-th fine-tuning round, the central server broadcasts At to all clients. Client n ∈ N updates
At using its local dataset. Let ∇AFn(W

t; ξn) ∈ Rr×k denote the gradient of the low-rank matrix,
which is given by

∇AFn(W
t; ξn) = At

(
Ht

n + (Ht
n)

⊺
)
, n ∈ N , t ∈ T , (2)

where Ht
n = L⊺∇Fn(W

t; ξn)R
⊺. Client n performs stochastic gradient descent to update matrix

At. We define η as the learning rate. Let At+ 1
2

n denote the locally updated low-rank matrix of client
n in the t-th fine-tuning round, which is given by

A
t+ 1

2
n = At − η∇AFn(W

t; ξn), n ∈ N , t ∈ T . (3)

(ii) Model Aggregation: When compared with the conventional federated LoRA schemes, in
which clients must upload both locally-updated low-rank matrices, client n in FLoRG only needs
to transmit At+ 1

2
n to the central server, thereby reducing the per-round uplink communication over-

head by more than a half. After receiving the locally updated parameter matrices from all clients,
the central server performs model aggregation with respect to A

t+ 1
2

n as

Qt+1 =
1

N

∑
n∈N

(
A

t+ 1
2

n

)⊺
A

t+ 1
2

n , t ∈ T , (4)

where Qt+1 ∈ Rk×k is the aggregated Gram matrix at the end of the t-th fine-tuning round. Due

to the Gram matrix design, aggregating
(
A

t+ 1
2

n

)⊺
A

t+ 1
2

n is linear and preserves the positive semi-
definite (PSD) property. Therefore, the central server can obtain the true aggregated matrix. This
removes the bilinear inconsistency induced by aggregating matrices Bn and An separately as in
conventional federated LoRA schemes (i.e., aggregation error). Let r′ denote the rank of Qt+1,
which satisfies

r′ = rank(Q
t+ 1

2
n ) ≤ rank(Qt+1)

(a)

≤ min {k,Nr} . (5)

where inequality (a) follows from the subadditivity property of rank operator.

(iii) Decomposition with Procrustes Alignment: Since Qt+1 is a square PSD Gram matrix, the
central server performs eigendecomposition to Qt+1 as follows:

Qt+1 = (Pt+1)⊺Λt+1Pt+1, t ∈ T , (6)

where Pt+1 ∈ Rr′×k. Λt+1 ∈ Rr′×r′ denotes the eigenvalue matrix of Qt+1. Thus, a canonical
decomposition which satisfies (Ãt+1)⊺Ãt+1 = Qt+1 is

Ãt+1 = (Λt+1)
1
2Pt+1, t ∈ T , (7)
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where Ãt+1 is a valid decomposition of Qt+1. However, directly applying Ãt+1 for the subsequent
fine-tuning round (i.e., At+1 := Ãt+1) may yield sub-optimal performance since the decomposition
yields two challenges: non-unique decomposition and rank mismatch.

First, the above expression of matrix Ãt+1 provides a canonical representation of the decomposition
of Qt+1, which is non-unique. This is because for any matrix with orthogonal columns O ∈ Rr′×r′ ,
we have (OÃt+1)⊺OÃt+1 = Qt+1. Furthermore, although the decomposition guarantees that
(Ãt+1)⊺Ãt+1 preserves the aggregated Gram matrix, there exist many such decompositions due
to the non-uniqueness of decompositions (e.g., Cholesky decomposition or SVD) when the rank
is deficient or the eigenvalues have multiplicities. However, this non-uniqueness affects the future
fine-tuning. From the update rule in eqn. (2), each client performs local fine-tuning in the (t + 1)-
th fine-tuning round using the gradient which depends explicitly on At+1. As a result, different
decompositions of Qt+1 may yield different At+1 which result in divergent gradient paths. These
paths may potentially lead to unstable fine-tuning dynamics across rounds.

Second, as stated in eqn. (5), the rank of the decomposed matrix may be different from that of
the original one (i.e., r′ ̸= r). In such cases, we need to recover a matrix of the target rank r for
consistency across fine-tuning rounds.

The aforementioned challenges motivate reparameterizing matrix Ãt+1 to stabilize the subsequent
fine-tuning process while enforcing the target rank r. To this end, we propose Procrustes alignment
to project Ãt+1 onto the r-rank subspace. Let St ∈ Rr×r′ denote this Procrustes alignment matrix
in the t-th fine-tuning round. The matrix after projection is denoted as StÃt+1. In particular,
Procrustes alignment minimizes the Frobenius norm between the matrix after projection StÃt+1

and At, which minimizes the drift caused by the non-uniqueness of matrix decomposition. We then
formulate the following optimization problem in the t-th fine-tuning round:

P1 : minimize
St

∥∥∥StÃt+1 −At
∥∥∥2
F

(8a)

subject to (St)⊺St = Ir′ , (8b)

where Ir′ ∈ Rr′×r′ denotes the identity matrix. To solve problem P1, we first convert the objective
function (8a) into the following form:∥∥∥StÃt+1 −At

∥∥∥2
F
= Tr

(
(At)⊺At

)
+Tr

(
(Ãt+1)⊺(St)⊺StÃt+1

)
− 2Tr

(
At(Ãt+1)⊺(St)⊺

)
=

∥∥At
∥∥2
F
+
∥∥∥Ãt+1

∥∥∥2
F
− 2Tr

(
At(Ãt+1)⊺(St)⊺

)
. (9)

Since ∥At∥2F and ∥Ãt+1∥2F have been determined after matrix decomposition at the end of the t-th
fine-tuning round, problem P1 is equivalent to the following problem:

P2 : maximize
St

Tr
(
At(Ãt+1)⊺(St)⊺

)
(10a)

subject to constraint (8b).

Then, we present the following theorem to obtain the optimal solution to problems P2 and P1, with
the proof provided in Appendix A.1.

Theorem 1. (Optimal Procrustes Alignment Matrix) We denote the SVD of At(Ãt+1)⊺ as
At(Ãt+1)⊺ = Ut+1Σt+1(Vt+1)⊺, where Ut+1 ∈ Rr×r′ and Vt+1 ∈ Rr′×r′ have orthogonal
columns. Let Σt+1 = diag(σt+1

1 , σt+1
2 , . . . , σt+1

r′ ) ∈ Rr′×r′ denote the diagonal matrix of eigen-
values of At(Ãt+1)⊺. The optimal solution St,⋆ to problems P2 and P1 satisfies

St,⋆ = Ut+1(Vt+1)⊺. (11)

The main benefits of our proposed Procrustes alignment are two-fold. First, it resolves the issue due
to non-unique decomposition. In particular, the Procrustes alignment approach selects, among all
valid decompositions of Qt+1, the one which is nearest to that in the last fine-tuning round (i.e., At)
in Frobenius norm. Thus, it stabilizes the gradients in the subsequent fine-tuning rounds. Second, it
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addresses the rank mismatch issue of the decomposed matrix by using a semi-orthogonal Procrustes
alignment matrix to project Ãt+1 with rank r′ onto the target r-rank subspace.

After the central server has determined matrix St,⋆, it calculates the low-rank matrix for the (t+1)-
th training round as At+1 = St,⋆Ãt+1. Thus, the full model in the (t+1)-th round can be obtained
as

Wt+1 = W0 + L(At+1)⊺At+1R. (12)
Then, the central server broadcasts the matrix At+1 to all clients on the downlink. Note that the
proposed FLoRG can effectively reduce the per-round communication overhead by more than half
when compared with traditional federated LoRA schemes. The workflow of our proposed FLoRG
is presented in Appendix A.2.

3.2 THEORETICAL ANALYSIS

In this section, we analyze the convergence rate of our proposed FLoRG. Without loss of generality,
we consider nonconvex loss functions in our analysis. We first present the following assumptions
which are widely used in the literature (e.g., (Li et al., 2020; Wang et al., 2020; Guo et al., 2025)).

Assumption 1. (L-Smoothness (Li et al., 2020; Wang et al., 2020)) The loss function of each client
n is continuously differentiable and L-smooth. That is, for arbitrary two matrices Wt and Wt+1,
we have fn(Wt+1) ≤ fn(W

t)+⟨∇fn(Wt),Wt+1−Wt⟩F + L
2 ∥W

t+1−Wt∥2F , t ∈ T , n ∈ N .

Assumption 2. (Bounded Gradient (Li et al., 2020; Wang et al., 2020)) The local stochastic gradient
of A is upper-bounded, i.e., Eξn∼Dn

[
∥∇AFn(W

t; ξn)∥2F
]
≤ ψ, t ∈ T , n ∈ N .

Assumption 3. (Bounded Parameter Space (Guo et al., 2025)) The Frobenius norm of model pa-
rameter matrices At and Ãt are upper-bounded by two positive constantsCA and C̃A, respectively,
i.e., ∥At∥F ≤ CA, ∥Ãt∥F ≤ C̃A, t ∈ T , t ∈ T .
In addition, we present two lemmas to facilitate our convergence analysis, with the proof provided
in Appendices A.3 and A.4, respectively.

Lemma 1. We denote Ht = 1
N

∑
n∈N Ht

n = 1
N

∑
n∈N L⊺Gt

nR
⊺. Let λmin(X) denote the

smallest positive eigenvalue of matrix X. For any matrices At and Ht, we have〈
Ht, (At)⊤At

(
Ht + (Ht)⊤

)
+
(
Ht + (Ht)⊤

)
(At)⊤At

〉
F
≥ 4λmin

(
(At)⊤At

) ∥∥∥Ht
∥∥∥2
F
, t ∈ T .

(13)

Lemma 2. Let St denote an arbitrary Procrustes alignment matrix in the t-th fine-tuning round. We

define ∆t+1
proc =

∥∥∥StÃt+1 −At
∥∥∥2
F
−

∥∥∥St,⋆Ãt+1 −At
∥∥∥2
F

≥ 0. The difference of two Procrustes
alignment matrices is bounded, i.e.,∥∥St − St,⋆

∥∥2
F
≤

∆t+1
proc

λmin

(
Ãt+1(At)⊺

) , t ∈ T . (14)

Now, we present the convergence rate of our proposed FLoRG in the following theorem, with the
proof provided in Appendix A.5.

Theorem 2. (Convergence Rate of FLoRG) We denote the optimal model as W⋆. Under Assump-
tions 1 − 3 and Lemmas 1 − 2, if the learning rate satisfies η < 8mint∈T {λmin ((A

t)⊺At)} − 1,
then the convergence rate of our proposed FLoRG is bounded by

1

T

∑
t∈T

∥∥∇f(Wt)
∥∥2
F
≤ f(W1)− f(W⋆)

TΩ︸ ︷︷ ︸
Initial optimality gap

+
η2ψ2

2Ω
+

3Lη2ψ
(
η2ψ + 2C2

A

)
2Ω︸ ︷︷ ︸

Residual bias term

+
1

TΩ

∑
t∈T

2ηψC̃2
A∆t

proc

Nλmin

(
Ãt(At−1)⊺

)
︸ ︷︷ ︸

Procrustes alignment drift term

, (15)
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where Ω = 4ηmint∈T {λmin ((A
t)⊺At)} − η2

2 − η
2 .

Based on the theoretical analysis, we can observe that the convergence rate of our proposed FLoRG
depends on three terms. The first term is the initial optimality gap, which diminishes as the num-
ber of fine-tuning rounds T increases. The second term is the non-diminishing residual bias term.
The third term is the Procrustes alignment drift term, which captures the impact of the Procrustes
alignment on the convergence rate. When the Procrustes alignment is applied, ∆t

proc becomes zero.
Hence, the third term becomes zero, under which we can achieve a tighter bound and improve the
convergence rate.

4 EXPERIMENTAL RESULTS

4.1 EXPERIMENT SETUP

Base Models, Datasets, and Baseline Schemes: We choose OPT-125M (Zhang et al., 2022) and
RoBERTa-large (Liu et al., 2019) as two base models with different scales. In particular, OPT-
125M and RoBERTa-large have 125M and 355M parameters. We choose GLUE (Wang et al.,
2018) as a benchmark with MRPC, QQP, MNLI, QNLI, WNLI, and RTE datasets. We compare the
performance of our proposed FLoRG with the following baseline schemes:

• FedIT (Zhang et al., 2024): Each client transmits the locally updated LoRA matrices B
and A to the central server. The central server aggregates B and A separately.

• FeDeRA (Yan et al., 2024): Each client transmits locally updated LoRA matrices B and
A to the central server. The central server aggregates BA and performs SVD to obtain the
updated matrices B and A.

• FFA-LoRA (Sun et al., 2024) Each client freezes matrix A and only updates matrix B.
The central server performs aggregation on matrix B.

• FedSA-LoRA (Guo et al., 2025): Each client locally updates matrices B and A but only
shares matrix A for aggregation.

Implementation Details: To present the learning performance, we show the average testing ac-
curacy of all clients. To characterize the incurred communication overhead, we present the total
number of parameters transmitted between all clients and the central server. To model the data
heterogeneity across clients’ local datasets, we use the Dirichlet distribution Dir(ρ) to create non-
independent and identically distributed (non-iid) data partitioning. In particular, ρ > 0 controls the
degree of non-iidness across clients’ local datasets. A lower value of ρ indicates a higher degree of
data heterogeneity. In the ablation studies, we choose RoBERTa-large as the base model. Unless
stated otherwise, we set η = 5e-5, ρ = 0.5, N = 20, and r = 4.

4.2 TESTING ACCURACY

In this section, we compare the testing accuracy of different schemes under different base models
and datasets. Due to the space limit, we present the results under MNLI, QNLI, WNLI, and RTE
datasets. Results in Table 1 show that our proposed FLoRG outperforms the baseline schemes
under those four datasets. In particular, on OPT-125M, FLoRG improves the testing accuracy over
the strongest baseline by 2.77 on MNLI, 0.86 on QNLI, 2.66 on WNLI, and 1.52 on RTE. On
RoBERTa-large, the margins are 0.49 on MNLI, 0.75 on QNLI, 2.73 on WNLI, and 1.31 on RTE.
Additional experimental results are presented in Appendix A.6. These results validate the superiority
of FLoRG.

4.3 COMPARISON OF THE COMMUNICATION OVERHEAD

In this section, we compare the communication overhead incurred under different baseline schemes.
We use the QNLI dataset to conduct the experiments. Results in Table 2 show that to achieve the
target test accuracy, our proposed FLoRG uses a much lower total number of transmitted model pa-
rameters when compared with the baselines. On OPT-125M and RoBERTa-large, FLoRG achieves
up to 78% and 82% reduction in the number of transmitted parameters, respectively. This demon-
strates that FLoRG can significantly reduce the communication overhead.
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Table 1: Comparison of the testing accuracy across different baseline schemes.

Base Model Dataset FLoRG FedIT FeDeRA FFA-LoRA FedSA-LoRA

OPT-125M

MNLI 87.20 79.19 80.99 83.67 84.43

QNLI 89.69 84.35 86.55 87.80 88.83

WNLI 65.41 58.30 59.11 62.75 62.60

RTE 68.77 61.26 64.32 65.89 67.25

RoBERTa-large

MNLI 91.39 84.76 88.20 89.12 90.90

QNLI 92.44 87.63 89.91 90.82 91.69

WNLI 66.34 59.19 61.97 63.55 63.61

RTE 71.41 64.11 66.97 68.62 70.10

Table 2: Comparison of the total number of transmitted parameters (in millions) to achieve the target accuracy.
Symbol “−” means that the target accuracy cannot be achieved.

Base Model Target Acc. FLoRG FedIT FeDeRA FFA-LoRA FedSA-LoRA

OPT-125M 80.00 4.1M 18.9M 12.3M 7.9M 10.5M

85.00 5.3M − 21.1M 13.7M 18.1M

RoBERTa-large 80.00 4.3M 23.4M 15.1M 9.7M 12.9M

85.00 7.2M 40.6M 25.8M 16.7M 22.1M

4.4 ABLATION STUDIES

Impact of the Procrustes alignment In this subsection, we study the impact of our proposed Pro-
crustes alignment on the learning performance. Results in Table 3 show that by applying Procrustes
alignment, our proposed FLoRG yields a consistent improvement in terms of the testing accuracy.
On OPT-125M, Procrustes alignment provides an improvement of 3.40 on MRPC, 2.86 on QQP,
6.27 on MNLI, 2.97 on QNLI, 5.60 on WNLI, and 4.45 on RTE, respectively. On RoBERTa-large,
Procrustes alignment provides an improvement of 3.37 on MRPC, 2.84 on QQP, 2.46 on MNLI, 3.86
on QNLI, 4.34 on WNLI, and 4.31 on RTE, respectively, whereas FLoRG without Procrustes align-
ment can only achieve a comparable testing accuracy to FeDeRA, as shown in Table 1. It showcases
the importance of our proposed Procrustes alignment to improve the fine-tuning performance.

Table 3: Comparison of the testing accuracy of FLoRG with and without Procrustes alignment.

Base Model FLoRG MRPC QQP MNLI QNLI WNLI RTE

OPT-125M w/ Procrustes alignment 86.54 88.71 87.20 89.69 65.41 68.77
w/o Procrustes alignment 83.14 85.85 80.93 86.72 59.81 64.32

RoBERTa-large w/ Procrustes alignment 89.87 91.27 91.39 92.48 66.41 71.40
w/o Procrustes alignment 86.50 88.43 88.93 88.62 62.07 67.09

Impact of the Rank In this subsection, we vary r to demonstrate the impact of rank on the fine-
tuning performance. In particular, we conduct experiments under r = 2, 4, 8, respectively. We
present the results under the WNLI and RTE datasets. Results in Table 4 show that our proposed
FLoRG outperforms the baseline schemes under different rank settings, demonstrating the robust-
ness of our proposed FLoRG under various ranks. Additional experimental results can be found in
Appendix A.6.

Robustness to the Data Heterogeneity In this subsection, we study the impact of the degree
of data heterogeneity across clients’ local datasets on the fine-tuning performance. We present
the results under the WNLI and RTE datasets. It can be observed in Table 5 that under different
degrees of data heterogeneity, our proposed FLoRG outperforms the baseline schemes. In addition,
as the degree of data heterogeneity increases (i.e., ρ decreases), the improvement over the baseline

8
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Table 4: Comparison of the testing accuracy under different ranks.

Rank Dataset FLoRG FedIT FeDeRA FFA-LoRA FedSA-LoRA

r = 2
WNLI 60.55 55.57 56.30 57.50 59.14

RTE 65.82 58.41 61.19 62.88 64.30

r = 4
WNLI 66.34 59.19 61.97 63.55 63.61

RTE 71.41 64.11 66.97 68.62 70.10

r = 8
WNLI 68.83 61.70 63.52 65.10 66.47

RTE 72.10 64.78 66.99 68.02 70.61

Table 5: Comparison of the testing accuracy under different degrees of data heterogeneity.

Non-IIDness Dataset FLoRG FedIT FeDeRA FFA-LoRA FedSA-LoRA

ρ = 0.1
WNLI 60.12 53.07 54.21 56.14 57.74

RTE 65.30 55.60 59.19 61.20 60.75

ρ = 0.5
WNLI 66.34 59.19 61.97 63.55 63.61

RTE 71.41 64.11 66.97 68.62 70.10

ρ = 1
WNLI 67.83 61.70 63.52 64.33 65.61

RTE 72.21 66.90 68.71 70.40 71.78

schemes also increases, showcasing the robustness and superiority of our proposed FLoRG under
heterogeneous data settings. Additional experimental results are presented in Appendix A.6.

Matrix Initialization for Matrices L and R In this subsection, we show the impact of the initial-
ization of matrices L and R on the learning performance. In particular, we compare our proposed
semi-orthogonal initialization with Kaiming initialization (He et al., 2015) and SVD initialization
(Boutsidis & Gallopoulos, 2007). Results in Table 6 show that the semi-orthogonal approach out-
performs the other two approaches in most cases, demonstrating the effectiveness of our proposed
initialization approach for matrices L and R.

Table 6: Comparison of the testing accuracy under different initialization schemes.

Base Model Initialization MRPC QQP MNLI QNLI WNLI RTE

OPT-125M
Semi-orthogonal 86.54 88.71 87.20 89.69 65.41 68.77

Kaiming 84.35 88.90 85.23 87.73 62.29 69.31
SVD 86.41 87.69 83.19 88.74 64.37 67.69

RoBERTa-large
Semi-orthogonal 89.87 91.27 91.39 92.48 66.41 71.40

Kaiming 87.68 92.34 89.11 91.57 64.19 70.32

SVD 88.70 90.37 91.49 91.45 65.08 71.40

5 CONCLUSION

In this work, we proposed FLoRG, a federated fine-tuning framework with low-rank Gram matrices.
In particular, FLoRG features a single low-rank matrix instead of two low-rank matrices as in the
conventional LoRA module. By transmitting this matrix and aggregating the corresponding Gram
matrix, FLoRG eliminates the error induced by separately aggregating two matrices and signifi-
cantly reduces the per-round communication overhead. Moreover, we proposed a Procrustes-fixing
approach to reparameterize the decomposed low-rank matrix after model aggregation. We theoreti-
cally analyzed the convergence rate of our proposed FLoRG framework and characterized the impact
of our proposed Procrustes alignment on the convergence. Experimental results show that our pro-
posed FLoRG framework achieves a higher testing accuracy and can reduce the communication
overhead by up to 82% when compared with four baseline schemes.
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