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Abstract

The spatial context of cells, comprising environmental signals and cell-cell interac-
tions, shapes cell states and contributes to global tissue function. From immune
responses to stem cell differentiation [1, 2, 3], to fully understand a biological
process, it is imperative we study cells in their spatial context. Although spatial
transcriptomic (ST) technologies such as MERFISH or seqFISH [4, 5] measure
location and gene expressions at the resolution of individual cells, there is a lack
of specialized methods to reason about the cellular microenvironments from these
data sets. We present SPOT (Spatial Optimal Transport) which harnesses OT [6] to
investigate cellular environments from ST, enabling quantitative analysis of niches
from which we can cluster and visualize cells based not on their phenotype, but
their neighborhoods. We apply SPOT on mouse primary motor cortex assayed
with MERFISH [7] and seqFISH data of organogenesis [8] and find canonical
niches which capture cortical layers within the cortex and polarization along the
anterior-posterior axis.

1 Introduction

Cells exist and function not in a vacuum, but in complex microenvironments where they interact
with other cells and orchestrate tissue function. This intercellular cross-talk can be observed in the
lymph nodes, where various immune cell types localize into niches to mount innate and adaptive
immune responses against pathogens [9, 10]. In cancer biology, interactions in the tumor immune
microenvironment inhibit immune function and promote tumor growth, and are the targets for
immunotherapies such as immune-checkpoint blockade [11, 12]. Given their importance, there
is growing interest in understanding cellular environments and the role they play in disease and
therapeutic responsiveness.

Despite recent advances in ST technologies which provide the opportunity to characterize cellular
environments and study cells in their spatial context, there is still a lack of dedicated computational
methods for spatial data. Current approaches are usually grounded on cell typing [13], which is itself
a non-trivial task for high dimensional spatial data [14]. Cell typing also introduces bias through
errors and choice of cell typing resolution, as the model has no knowledge which cell types are
related, and buries any continuous signals in the data.

In this paper, we propose SPOT, a method to unravel the environments present in a ST data set, which
relies on raw expression profiles, not hampered by cell typing and suited to reveal continuous trends
in spatial data. Using Optimal Transport (OT), we derive a principled distance metric which can
quantitatively compare niches. We harness SPOT to develop a k-means clustering algorithm which
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Figure 1: A) Representing cellular environments. A query point (blue star) is placed in coordinate
space. A cell x gene environment matrix is assembled containing the gene expression vectors of the
nearest cells. B) Optimal Transport to quantify niche differences. Given the set of gene expression
vectors in two environments (red and blue), we define the distance between them as the OT divergence
between the sets of expression vectors. Intuitively, OT finds a soft mapping between points as to best
match their sets, shown as dark arrows, and the OT divergence is how good that best matching is.
By constructing the SPOT cell by cell distance matrix, we can use algorithms like UMAP (C) and
phenograph (D) to understand niches, where two cells are clustered together not if their expressions
are similar, but rather if their environments are.

learns a set of canonicals which are representative of distinct environments found in the data set and
to visualize environments with an OT UMAP [15], where two cells are close together if their niches
are alike, not their expressions.

Applied to MERFISH of primary motor cortex, SPOT learned canonicals representing niches found in
distinct cortex layers and revealed heterogeneity within cells of the same cell type in an environment,
potentially indicating rare or transient cell states. Further applied on a seqFISH assay of a developing
embryo, SPOT was able to reveal trends of gene expression along the anterior-posterior axis.

2 Methods

2.1 Representing cellular environments

To represent cellular environment in ST data, we consider a sample of m cells with spatial coordinates
(x1, y1), . . . , (xm, ym) and gene expression vectors g1, . . . , gm. For each cell, we identify the k cells
closest to it in situ and use their expression to construct a k × l environment matrix Ei =

[
{gj | j ∈

kNN(i)}
]
, containing the length-l gene expressions of the k cells nearest to it (Figure 1), resulting

in a set of environment matrices E1, . . . , En, representing the immediate niche of each cell. As

2



environment matrices do not rely on any parameters other than the choice of number of nearest
neighbors, and do not use cell typing or artificially averaging the expression across cells in a niche,
we see these matrices as the most straightforward and unbiased representation of cellular niches.

Given the environment matrices, the goal of SPOT is to describe a principled way to compare them to
one another, defining a distance metric from which we can visualize environments with algorithms
like UMAP, tSNE, or Force Directed Layout [15, 16, 17], uncover continuous trends using diffusion
components [18], and cluster environments into significant groups, while discovering significant
environment as cluster centers.

2.2 Optimal Transport Between Environments

Once we have assembled cellular environments, a natural question to ask is which environments
are similar or different from each other. While the method above provides an intuitive approach for
representing environments, it introduces challenges when comparing environments. Consider an
environment E′ that is simply a permutation of the rows of another environment E, and while E′ and
E are identical, as there is no true order to cells within a niche, their euclidean distance ∥E −E′∥F
will be greater than 0. Clearly, the euclidean distance does not meaningfully capture differences
between niches.

This question of similarity is at the core of clustering methods such as k-means clustering and
graph-based Louvain clustering or visualization algorithms like UMAP, which use a distance metric
to map together data points which are similar to each other. In order to faithfully cluster together
environments which are phenotypically similar, we need a permutation-invariant distance metric,
that is, a metric which assigns small distances between environments with similar gene expressions
regardless of how cells are ordered in their underlying representations. We can do this by first
matching cells in niches (i.e. rows in environment matrices), and then quantifying how good that
matching is. This is equivalent to finding the optimal permutation of niche matrices w.r.t to the
Frobenius norm, and is known as the linear sum assignment [19] cost:

dist(Ei, Ej) = min
P

∥Ei − PEj∥F s.t. P is a permutation matrix

As permutation are a closed set (i.e. a series of permutations is itself a permutation) any permutation
of Ei or Ej will be absorbed into the optimization variable, and the calculated distance will remain
the same, thus being a permutation-invariant distance between niches. Desirably, if two environments
can be perfectly mapped to one another, their distance will be 0. While linear sum assignment can be
solved with the Hungarian Algorithm, due to the hard assignment, this metric is not differentiable
w.r.t to the niche matrices Ei or Ej , which prevents optimizing on niches according to it. The
Hungarian Algorithm is also to computationally intensive which prohibits its use to calculate the
pairwise distance for large spatial data sets.

Instead, we can consider finding a soft matching between cells in niches, where cells are not matched
one-to-one, but rather are partially assigned to each other. This translates to changing the constraint
in the equation above from P being a permutation matrix to P being doubly stochastic, which has
non-negative values and both rows and columns sum to unit. The non-negativity stems from our
desire for assignment, and the constraint on rows summing to unit refers that each cell from matrix
Ei has to be completely assigned to cells in matrix Ej and vice-versa for the columns.

dist(Ei, Ej) = min
P

∥Ei − PEj∥F s.t. P is doubly stochastic

This optimization problem is identical to finding the Optimal Transport between the set of points in
Ei to the set of points in Ej , and we call using it to derive distances between niches Spatial Optimal
Transport (SPOT). Unlike the Hungarian problem which is not differentiable and rather slow, OT
can be efficiently solved using Sinkhorn Iterations [20] and the solution is fully differentiable w.r.t
to Ei and Ej (Figure 1). Using OT, we can efficiently calculate the pairwise distances between the
environment matrices of all the cells in a data set, which can be used as a direct input the phenograph,
UMAP and diffusion components algorithms (Figure 1), leveraging a plethora of analysis tools to
understand cellular environments.
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Figure 2: MERFISH data from mouse primary motor cortex (left) shows distinct cellular environ-
ments in each layer of the cortex. Environments were clustered using our method to learn canonical
environments which have diverse cell type compositions (middle) and are representative of environ-
ments in distinct layers of the cortex.

2.3 Finding Canonical Niches in Spatial Data

As SPOT works on direct environment matrices, and is fully differentiable w.r.t to them, we can use
it to optimize a k-means algorithm which not only clusters cellular niches based on their similarity,
but also provides their "canonicals". Given a number of environment types k′ and n environments
E1, . . . , En, we want to learn k′ canonicals C1, . . . , Ck′ which are representative of the environments.
We propose a modified k-means algorithm for this task, designed to minimize the OT distance between
environments and canonicals.

Algorithm 1 Clustering environments with an optimal transport distance metric
Input k′, E1, . . . , En

Initialize C1, . . . , Ck′ ∼ N(0, 1)

while
k′∑
i=1

∥Ci∥2 not converged do

for i = 1, . . . , n do
yi = argmin

j∈{1,...,k′}
dist(Ei, Cj) ▷ Assign environments to closest canonical

end for
for j = 1, . . . , k′ do

Cj = Cj − α∇Cj

[ ∑
i∈{yi=j}

dist(Ei, Cj)
]

▷ Update canonicals to minimize Sinkhorn distances
end for

end while

Canonicals C1, . . . , Ck′ are randomly initialized. At each iteration, we assign each environment
to its closest canonical based on Sinkhorn distances. Then, we perform a gradient descent step to
update each canonical to minimize the sum of Sinkhorn distances between itself and the environments
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which have been assigned to it. α is the learning rate for the gradient descent and the gradient
∇Cj

[ ∑
i∈{yi=j}

dist(Ei, Cj)
]

can be computed through automatic differentiation [21]. We run these

steps until C1, . . . , Ck′ have converged into representative canonical environments.

Figure 3: Gene expressions of cells in two of the learned canonicals, showing only the 50 out of 255
most variable genes for brevity. Variations within a common cell type in each canonical suggests that
a cell-type only based analysis of microenvironments is insufficient and highlight the granularity of
the description of environments achieved with SPOT.

3 Results

We apply our methods to analyze cellular environments in mouse primary motor cortex assayed
by MERFISH [22]. The cortex is a highly organized structure with several neuronal cell types that
localize into distinct layers. Using the SPOT distance matrix, we calculate a UMAP embedding to
the cellular niches, and use our k-means algorithm to determine niche clusters and their canonicals.
We find that the resulting canonical environments correspond to distinct layers of the cortex (Figure
2), and have a diverse composition of cell types, even having several variable expression profiles
within cell types (Figure 3).

We further applied SPOT on seqISH assay for organogenesis, specifically on the cells which we
labeled as "Spinal cord", due to their spatial trajectory along the anterior-posterior axis (Figure 4).
With SPOT, we were able to draw the niche FDL, where two cells are embedded close together if
their environments are similar, regardless of their own expression. The main axis of the FDL, along
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Figure 4: SPOT on Spinal Cord cells from seqFISH of mice organogenesis. From the SPOT calculated
niche distance matrix on the spinal cord labeled cells, we were able to both computed a Force Directed
Layout, were two cells are close together if their niches are similar, rather than expression profiles,
and Diffusion Components, to highlight continuous trends. The first diffusion components along with
primary axis along the FDL revealed the well characterized anterior-posterior specification within the
embryo, demonstrating the ability of SPOT to group together niches with a similar composition.

with the primary SPOT based diffusion components, mapped to that anterior-posterior axis, validating
that SPOT can uncover continuous trends in spatial data.

4 Discussion

We have presented a framework to reason about cellular environments in spatial transcriptomic data.
SPOT comes with methods to represent environments, measure their similarity based on Optimal
Transport, and visualize environments and cluster them into canonicals representative of environments
"types" within a data set. SPOT delineates itself from other methods for spatial analyses at it relies on
raw expression, and does not need for cell typing, while still being computational efficient and robust.
We envision SPOT being used to find complete representations of spatial data, extending models such
as scVI [23] to not just reconstruct expression, but also spatial context, utilizing the differentiability
and flexibility of SPOT.
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