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Abstract

Natural gradients have long been studied in deep reinforcement learning due to their fast
convergence properties and covariant weight updates. However, computing natural gradi-
ents requires inversion of the Fisher Information Matrix (FIM) at each iteration, which
is computationally prohibitive in nature. In this paper, we present an efficient and scal-
able natural policy optimization technique that leverages a rank-1 approximation to full
inverse-FIM. We theoretically show that under certain conditions, a rank-1 approximation
to inverse-FIM converges faster than policy gradients and, under some conditions, enjoys the
same sample complexity as stochastic policy gradient methods. We benchmark our method
on a diverse set of environments and show that it achieves superior performance to standard
actor-critic and trust-region baselines.

1 Introduction

Policy gradient methods (Sutton et al., 1999) have emerged as one of the most prominent candidates for
modern reinforcement learning (RL). Specifically, they have seen widespread adoption in deep RL, where
they incorporate differentiable policy parametrization and function approximators to help policy gradient
methods scale up and learn robust controllers for high-dimensional state spaces (Arulkumaran et al., 2017;
Wang et al., 2022). Despite this, a fundamental limitation of policy gradients is that RL objectives tend
to be highly non-concave in nature. Consequently, algorithms based on standard gradient descent, such as
REINFORCE (Williams, 1992), are prone to getting stuck at sub-optimal local minima when training high-
dimensional policies. This is due to the gradient giving only the direction in which a policy’s parameters
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should be optimized, without indicating the size of the optimization step (Martens, 2020). Step size selection
is, therefore, non-trivial. Small steps lead to stable but slow and sample-inefficient training. On the contrary,
large steps can cause unstable updates. This is particularly dangerous in RL, as unstable policies collect
poor data, making it difficult for the agent to recover and escape local optima (van Heeswijk, 2022).

One approach to reduce this sub-optimality and achieve stable training with large steps is to incorporate the
geometry of the loss manifold into account and thus consider natural gradients (Amari, 1998). Specifically,
when applied to policy gradient RL, where policies are modeled as probability distributions, the Fisher infor-
mation matrix (FIM) is used to precondition the policy gradients, which gives rise to natural policy gradient
(NPG) methods (Kakade, 2001; Bagnell & Schneider, 2003; Peters et al., 2005). NPG algorithms are of
interest because they generally tend to converge faster and have superior performance compared to their
standard policy gradient counterparts (Grondman et al., 2012). More recently, NPGs established the roots
of some of the most popular RL algorithms used in practice, including Trust Region Policy Optimization
(TRPO) (Schulman et al., 2015a), Proximal Policy Optimization (PPO) (Schulman et al., 2017). Further-
more, the study of NPG methods is also motivated by their success in real-world applications (Richter et al.,
2006; Su et al., 2019).

One of the main drawbacks of NPG algorithms is the high cost of computing and inverting the FIM. Storage is
also an important concern, as for a parameterized policy, the FIM is a square matrix with dimensions equal to
the number of parameters. Naturally, this issue becomes especially limiting when policies are parameterized
by deep neural networks. In practice, NPG algorithms usually avoid computing the inverse Fisher directly
and instead rely on approximations. A simple option is to only consider the diagonal elements of the FIM
(Becker & Lecun, 1989; LeCun et al., 2002), leading to efficient inversion and low storage requirements.
A more sophisticated approach is K-FAC (Martens & Grosse, 2015), which uses Kronecker products to
approximate the FIM efficiently. As an alternative to the true FIM, the empirical FIM can be computed
from samples, which is especially convenient when the required underlying probability distributions are
unknown (Schraudolph, 2002). Hessian-free methods give a less direct approach to using the FIM without
ever explicitly computing or storing it (Martens, 2010). As an example, TRPO avoids computing the
FIM, calculating the Fisher-vector product directly instead. Despite the extensive literature on the subject,
choosing the right way of approximating natural gradients is usually not straightforward. This choice often
involves a trade-off between computational efficiency and approximation accuracy.

The goal of this work is to bridge the theoretical convergence properties of NPG with a practical, fast, and
computationally feasible approach to invert FIM for high-dimensional reinforcement learning tasks. In this
work, we use the empirical FIM as an alternative to the FIM and incorporate the Sherman-Morrison formula
for efficient inversions. We propose a rank-1 approximation to avoid explicit matrix operations, keeping the
time complexity at O(d) for a policy parameterized by a vector θ of dimension d, without the need for inner
loops like conjugate gradient, thus balancing computational cost and accuracy of curvature information.

The main contributions are listed below:

1. We provide a fast and efficient way to compute the inverse FIM, which can be computed in O(d)
complexity rather than O(d3) for naive inversion of FIM.

2. We theoretically show that under certain conditions, our NPG approximation using the empiri-
cal FIM and Sherman-Morrison formula enjoys global convergence when using log-linear function
approximators.

3. We also prove that the error induced in the policy update due to this rank-1 approximation is
bounded and reduces with the increase in iterations.

4. We propose a novel policy gradient algorithm using this update: Sherman-Morrison Actor Critic
(SMAC). We show that SMAC achieves faster convergence in diverse OpenAI Gym tasks (classic
control and MuJoCo environments (Todorov et al., 2012)), compared to vanilla policy gradient,
Adam, and trust-region methods that use Conjugate Gradient solvers to approximate the direction
of natural policy gradient.
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2 Related Work

Gradient descent updates all the parameters of a model equally, meaning that weights are considered to be
inside a Euclidean space. However, the loss function of the model actually induces a Riemannian manifold
space. Therefore, the size of a gradient step does not reflect the true scale of change of the model’s loss.
Consequently, standard gradient descent methods are highly sensitive to the choice of step size. To avoid
this issue, Amari first framed gradient-based learning on a Riemannian manifold, introducing the natural
gradient descent algorithm, which uses the update direction F (θ)−1∇J(θ), with the FIM F (θ) and objective
J(θ) (Amari, 1998). Here, the FIM is a covariant measure of the amount of information contained in the
parameters (Amari, 1998). Kakade extended this idea to reinforcement learning and coined the natural policy
gradient (NPG) algorithm (Kakade, 2001). However, the computational cost associated with calculating the
FIM, especially in models with a large number of parameters, can be prohibitively expensive. Therefore,
practical implementations of natural gradients rely on approximations instead. We thus summarize the
related work on these approximations as follows.

Kronecker-factored Approximate Curvature Block-diagonal approximations to the natural gradient,
such as K-FAC (Martens & Grosse, 2015) and subsequent refinements (Zhang et al., 2023; Ren & Goldfarb,
2021; Bahamou et al., 2023; Benzing, 2022), have been widely adopted due to their computational efficiency.
Related variants have also been developed for reinforcement learning (Wu et al., 2017).

Hessian-Free Methods Hessian-free optimization (Martens, 2010), another method for computing natu-
ral gradients, has seen widespread use in reinforcement learning, particularly due to its superior performance
in TRPO (Schulman et al., 2015a). This approach employs the conjugate gradient (CG) method to solve
the associated linear system, thereby avoiding explicitly storing FIM, keeping memory usage comparable to
a single forward–backward pass. However, CG requires several additional forward–backward passes, which
reduces computational efficiency. In addition, due to the limited precision of CG estimation, practitioners
usually perform an extra KL-based line search to adapt the step size (Schulman et al., 2015a).

Empirical Fisher Information The empirical Fisher (EF) estimates the Fisher information matrix by
replacing the exact expectation over gradient outer products with the outer product of the gradients com-
puted from individual samples (Yang et al., 2022). However, the empirical Fisher’s simple estimate has been
frequently criticized for deviating significantly from the true Fisher, and its limitations have been analyzed
in many studies (Martens, 2020; Kunstner et al., 2019). Nevertheless, its very low computational cost has
enabled a broad range of successful applications (Roux et al., 2007; Ren & Goldfarb, 2019; Wu et al., 2024).
Compared with the extensive use of K-FAC and Hessian-free methods in RL, the EF approach remains
under-explored and is seldom applied in this domain.

3 Preliminaries

Markov decision process (MDP) We consider an MDP (S,A, P, R, γ) with a continuous or discrete
state space S, action space A, transition kernel P (s′|s, a), bounded reward function r : S × A 7→ [−R, R],
and discount factor γ ∈ (0, 1). We also consider a stochastic policy πθ(a|s) with parameters θ ∈ Rd that
induces a trajectory distribution πθ(τi) over τi = (si

0, ai
0, si

1, ai
1, . . . ).

Performance objective and policy gradient Under the standard actor-critic framework, the RL ob-
jective is given by the expected discounted return of πθ:

J(θ) = Eτ∼πθ

[ ∞∑
t=0

γt r(st, at)
]

. (1)

To maximize Eq. 1, the advantage actor-critic (A2C) (Mnih et al., 2016) algorithm uses an advantage function
A(s, a) = Q(s, a)− V (s), defined through the critic’s state-value and action-value functions

V (s) = Eτ∼πθ
[Gt | st = s] , Q(s, a) = Eτ∼πθ

[Gt | st = s, at = a] ,
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where Gt =
∑∞

l=0 γlr(st+l, at+l). Following the policy gradient theorem, the A2C gradient is then given by

∇θJ(θ) = Eτ∼πθ

[ ∞∑
t=0
∇θ log πθ(at|st) A(st, at)

]
.

Fisher information matrix and Natural Policy Gradient For the exponential-family policy πθ(· | s),
the natural Riemannian metric in parameter space can be expressed in terms of state visitation distribution
induced by the same policy πθ(· | s) as

Fs(θ) = Ea∼πθ(·|s)
[
∇θ log πθ(a|s)∇θ log πθ(a|s)⊤

]
. (2)

The invariant FIM Fρ(θ) can be obtained by averaging over the state visitation distribution leading to the
natural gradient update

θk+1 = θk + ηFρ(θk)−1∇θJ(θk),
Fρ(θk) = Es∼d

πθ
ρ

[Fs(θ)],

where η is the step size and dπθ
ρ represents the state visitation distribution under a policy πθ and initial state

distribution ρ:

dπθ
ρ (s) := (1− γ)Es0∼ρ

∞∑
t=0

γt P(st = s | s0, πθ) + γρ(s).

Empirical Fisher information Replacing the expectation in F (θ) with a sample average over one single
trajectory τ = {(si, ai)}T −1

t=0 gives the empirical Fisher approximation

F̂ (θ) = 1
N

N∑
i=1
∇θ log πθ(ai|si)∇θ log πθ(ai|si)⊤.

Sherman-Morrison formula The Sherman–Morrison formula efficiently computes the inverse of a matrix
after a “rank-1 update” has been applied to it, provided that the inverse of the original matrix was already
known (Sherman & Morrison, 1950). Suppose X ∈ Rn×n is an invertible square matrix and u, v ∈ Rn

are column vectors. Then X + uv⊤ is invertible iff

1 + v⊤X−1u ̸= 0.

In this case, the Sherman-Morrison formula allows the computation of the inverse

(X + uv⊤)−1 = X−1 − X−1uv⊤X−1

1 + v⊤X−1u
. (3)

If X−1 is already known, this matrix inversion formula can bypass computing the inverse (X + uvT )−1

directly, avoiding the cubic scaling with the dimension of X. Instead, the update only requires three vector
operations, which scale linearly with the dimension of X. This update can use the full power of current
GPU hardware platforms, since computing vector operations can be heavily parallelized. At the same time, it
avoids the time-intensive matrix inversion processes. Methods such as Singular Value Decomposition (SVD),
which decomposes a matrix into its singular values and vectors, and LU decomposition, which factors a
matrix into a lower triangular matrix (L) and an upper triangular matrix (U), are much slower than the
simple operations used in our approach.

For the rest of the paper, we abbreviate the actual FIM at θk, F (θk) as F k and the estimate of a batch as
F̂ k for notational convenience.
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Sherman-Morrison for computing the inverse Fisher The Sherman-Morrison formula can be used
to incrementally build the inverse of the EF (F̂ k)−1 at step k by reusing the previous estimate (F̂ k−1)−1

(Singh & Alistarh, 2020):

(F̂ k)−1gk =
[
(F̂ k−1 +∇θ log πθ(a|s)∇θ log πθ(a|s)⊤

]−1
gk

= (F̂ k−1)−1gk − (F̂ k−1)−1∇θ log πθ(a|s)∇θ log πθ(a|s)⊤(F̂ k−1)−1

1 +∇θ log πθ(a|s)⊤(F̂ k−1)−1
∇θ log πθ(a|s)

gk.

Other approaches compute a fresh EF at each iteration (Wu et al., 2024), which is used in the natural
gradient

∆θ = η(λI +∇θ log πθ(a|s)∇θ log πθ(a|s)⊤)−1 log πθ(a|s),

where λ > 0 is a fixed damping coefficient.

4 NPG Approximation

We adopt a matrix-free scheme for approximating the FIM to reduce memory and computational cost. At
each step, we form a local empirical Fisher from the current batch, add a damping term λ, and apply the
Sherman–Morrison formula to compute the inverse–vector product F (θ)−1gk directly, where gk is the policy
gradient. This approach requires O(d) memory.

This formulation captures the local curvature of the loss landscape using only the current gradient direction.
The damping term λ ensures numerical stability and prevents the update direction from being overly sensitive
to individual gradients. Compared to the exact FIM, this method strikes a balance between computational
efficiency and curvature-informed updates.

4.1 Matrix-Free Update

The time and space complexity of explicitly computing and storing the FIM is O(d2). So, maintaining a
previous estimate (F̂ k−1)−1 and applying (F̂ k)−1g can be infeasible for large-scale models. In this work, we
instead use the Sherman–Morrison formula to directly compute the product of the inverse empirical Fisher
and the policy gradient.

We consider a one-sample empirical Fisher with damping, take (sk, ak) ∼ dπ
θk (s)πθk (a | s), that is, one

state-action pair visited when rolling out πθk :

F̂ k = λI + F k(θ) = λI +∇θ log πθk (ak|sk)∇θ log πθk (ak|sk)⊤.

Applying the Sherman–Morrison formula then yields:

(F̂ k)−1 = (λI +∇θ log πθk (ak|sk)∇θ log πθk (ak|sk)⊤)−1

= 1
λ

I − ∇θ log πθk (ak|sk)∇θ log πθk (ak|sk)⊤

λ2 + λ∇θ log πθk (ak|sk)⊤∇θ log πθk (ak|sk)

= 1
λ

I − F k

λ2 + λ Tr(F k) , (4)

Multiplying the inverse Fisher by the gradient gives the natural policy gradient update direction

∆θk = η (F̂ k)−1gk = η

[
1
λ

gk − ∇θ log πθk (ak|sk)∇θ log πθk (ak|sk)⊤gk

λ2 + λ∇θ log πθk (ak|sk)⊤∇θ log πθk (ak|sk)

]
, (5)

where gk = ∇θ log πθk (ak|sk)A(s, a) is the one-sample policy gradient update direction, A(s, a) is the advan-
tage estimate and η is the step size.

This update involves only a matrix-vector operation and a vector outer product, making its time and memory
complexity comparable to that of first-order methods, such as stochastic policy gradient.
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4.2 Convergence Analysis

We take inspiration from the global convergence guarantees provided by Agarwal et al. (2021) and a follow-up
work by Liu et al. (2022), which improved the global convergence results. To prove the global convergence,
we take a standard Lipschitz policy assumption (Assumption 3) and average performance difference bounds
(Lemma 3 from Liu et al. (2022)) and Lemma 2. We provide a theoretical analysis showing that the
Sherman–Morrison rank-1 approximation to the inverse Fisher achieves global convergence. Under strong
convexity assumptions (already taken in Kakade (2001); Peters et al. (2005)) of the FIM, we show that the
average performance between the Sherman-Morrison update and the optimal policy π∗ can be bounded in
terms of the the variance of policy gradient estimator (σ2), discount factor (γ), the error in the Advantage
estimate induced by the neural approximator (εbias) and the Lipschitz constant of the policy gradient (LJ).
We defer the proof to the appendix, and state the final theorem here.
Theorem 1. If we take the stochastic Sherman-Morrison policy update in Equation 4 and take η = 1

4LJ
,

K = O
(

1
(1−γ)2ε2

)
, N = O

(
σ2

ε2

)
, and H = O

(
log( 1

(1−γ)ε )
)

. Then, we have

J(π⋆)− 1
K

K−1∑
k=0

E[J(θk)] ≤
√

εbias

1− γ
+ ε.

In total, stochastic PG samples Õ
(

σ2

(1−γ)2ε4

)
trajectories, where εbias is the approximation error from the

advantage function, and ε is an arbitrary precision level and Õ hides all the logarithmic factors.

Our proof relies on the fact that performance bound given by Lemma 3 (Liu et al., 2022) and we prove that
this result holds with a sample complexity of KN = O( σ2

(1−γ)2ε4 ), where N is the number of trajectories
per update and K is the number of updates. This shows that to get an ε accurate policy, one needs O( 1

ε2 )
samples, and when the horizon H and number of samples N are large enough, then σ can be reduced
to arbitrary precision. We would like to point out that the non-degeneracy of FIM [Assumption 2] and
compatible function approximator [Assumption 4] are standard assumptions in stationary convergence of
PG adapted by Agarwal et al. (2021) and can be realized by gaussian and softmax parametrized policies
(See Section B.2 of Liu et al. (2022) and Section 8 of Ding et al. (2022) for further discussion). For compatible
function approximation the value of εbias can be arbitrarily small for neural approximators (Wang et al.,
2019) and is exactly zero for softmax parametrized policies (Ding et al., 2022). Detailed derivations can be
found in Appendix 2.

Note that, the obtained bound stems from average regret to the global optimum and recently Yuan et al.
(2022) have obtained Õ(ε−3) bound on the condition when the approximator error is negligible, or εbias = 0,
but with a finite εbias the authors have recovered a bound of Õ(ε−4), similar to ours.

4.3 A Toy Problem

x = 0 x = 1

a = 0; r = +1 a = 0; r = +2

a = 1; r = 0

a = 1; r = 0

Figure 1: An example two-state MDP where each state x has two control actions, one which self-transition
with reward +1 or +2) and another control that transitions the initial state to the other state with zero
reward).

We adopt a classical reinforcement–learning MDP problem, been used by Kakade (2001) & Bagnell &
Schneider (2003) with two states x ∈ {0, 1} and two discrete actions a ∈ {0, 1}. The policy is parameterized
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by a vector θ = [θ0, θ1]⊤, where each component governs an independent Bernoulli distribution over actions.
Let the probability of taking action a = 0 in state x be

πθ(a = 0 | x = 0) = 1
1 + eλpθ0

, (6)

πθ(a = 0 | x = 1) = 1
1 + eθ1

(7)

where λp scales the first policy parameter and is used to test scaling invariance. Assume that the agent
starts at state x = 0, then the objective function of the the MDP can be expressed as

J(θ) = πθ(a = 0 | x = 0) + 2(1− πθ(a = 0 | x = 0)) πθ(a = 0 | x = 1). (8)

Note that, for a converged policy the agent shall transit to state x = 1 and remain there and the final return
shall be +2 which is the the action of self transitioning at state x = 1. So we start from writing the analytic
policy gradient vector,

∇θJ(θ) =
[
−λp π0(1− π0)(1− 2π1)

−2(1− π0)π1(1− π1)

]
. (9)

and the FIM can be calculated as:

F (θ) =
[

λ2
p π0(1− π0) 0

0 π1(1− π1)

]
. (10)

Then NPG update direction can be evaluated as

θ̇NPG = F (θ)−1∇θJ(θ) =

−(1− 2π1)
λp

−2(1− π0)

 . (11)

This direction eliminates the dependence on the arbitrary scaling λp, making it invariant under smooth
reparameterizations of θ as shown by Bagnell & Schneider (2003).

Now the SM update direction in this setting can be evaluated as

θ̇SM = 1
λ

(
I − F (θ)

λ + Tr(F (θ))

)
∇θJ(θ) (12)

=


1
λ

(−λp π0(1− π0)(1− 2π1))−
λ3

p π2
0(1− π0)2(1− 2π1)

λ2 + λ
[
λ2

p π0(1− π0) + π1(1− π1)
]

1
λ

(−2(1− π0)π1(1− π1))− 2 π2
1(1− π1)2(1− π0)

λ2 + λ
[
λ2

p π0(1− π0) + π1(1− π1)
]
 (13)

where λ is the damping factor. This type of approximation although looks highly nonlinear but we can
carefully tune λ and make the update less sensitive to λp.

As shown in Fig.2, the plot in the left panel update the trajectories in the log-odds space for all damping
settings λp ∈ {0.75, 1.0, 2.0}, Compared with the PG updates, the SM updates follow a direction much closer
to that of NPG and maintain a step size more consistent. And PG updates deviate significantly as λ changes,
showing its sensitivity to parameter scaling. The plot in the right panel shows the returns over iterations,
where SM update achieves faster and more stable improvement than PG and approaches the same final
performance as NPG. Therefore, the SM update preserves the geometric characteristics of the NPG while
being more computational efficient in high-dimensional cases.
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Figure 2: Results on toy MDP problem: Left side plot represents the log-odds plot for state x = 0 in x-axis
and state x = 1 in y-axis and the right side plot shows the returns over iteration for PG, NPG and SM
updates for different λp ∈ {0.75, 1.0, 2.0} coefficient in policy parametrization. Note that, the least intense
lines represent PG direction, medium is NPG and maximum deep lines represent SM update direction.

4.4 SM-ActorCritic

We plug our approximation into a standard A2C algorithm. Let πθ be the policy (actor) and Vϕ the value
network (critic), with parameters θ and ϕ, respectively. At each iteration, we collect T transition tuples and
compute the generalized advantage estimator (Schulman et al., 2015b, GAE) with a fixed λGAE∈ [0, 1]:

δt = rt + γ Vϕ(st+1)− Vϕ(st), (14)

At =
T −1−t∑

l=0
(γλGAE) l δt+l. (15)

The critic is then trained by minimizing the mean squared error over the batch:

Lcritic(ϕ) = 1
T

T −1∑
t=0

(
Rt − Vϕ(st)

)2
,

using the Adam optimizer with a learning rate of α, where Rt = At +Vϕ(st) is the Monte-Carlo return target.
The actor is updated by a single natural policy gradient step obtained from the matrix-free Fisher inverse.
Since our method is based on Sherman-Morrison formula, we call the resulting algorithm Sherman-Morrison
Actor-Critic (SMAC), which is detailed in Algorithm 1.

5 Experimental Setup

To evaluate the performance of our proposed approach, SMAC, we provide experiments in several environ-
ments and compare against four baselines. We begin with three simple control environments, before moving
on to six MuJoCo tasks (Todorov et al., 2012). For all experiments, we used the Gymnasium framework
(Towers et al., 2024).

We implement SMAC on top of the A2C algorithm. In all environments, we evaluate SMAC against three
baselines. To measure the benefits of using our NPG approximator, we consider an algorithm that is similar
to SMAC in all aspects, except that it uses first-order updates instead of natural gradients. This is equivalent
to A2C with a simple stochastic gradient descent (SGD) optimizer, which we denote as AC-SGD. To ensure
a fair comparison to vanilla A2C, we also compare against the AC-Adam baseline, where A2C is trained

8
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Algorithm 1 SM-ActorCritic
1: input: steps per update T , step size η, damping λ
2: initialise θ, ϕ
3: for iteration k = 0, 1, . . . do
4: rollout T steps, store (sk, ak, rk)
5: compute advantages Ak with GAE
6: for all samples k do
7: gk ← ∇θlog πθ(a |s)A(s, a)
8: θk+1 ← θk + η F̂ k

−1
gk with equation 5

9: end for
10: update critic: ϕk+1 ← ϕk − α∇ϕ

∑
t(Rk

t − Vϕ(st))2

11: end for

using the more complex Adam optimizer. We also test SMAC against other NPG approximators. The AC-
CG baseline uses the conjugate gradient algorithm to directly compute the NPG during the A2C update,
without ever computing or storing the Fisher information matrix itself, similarly to TRPO (Schulman et al.,
2015a). Finally, the second NPG approximator uses the Kronecker-factored approximate curvature (Martens
& Grosse, 2015, KFAC). Our implementation, AC-KFAC, follows the application of KFAC to actor-critic
algorithms as proposed by Wu et al. (2017), but omits the trust region.

SMAC and all the baselines we compare against compute advantages using the GAE. This is because GAE
handles the bias-variance trade-off better than the simpler advantage estimator used by A2C, and has been
shown to be effective in high-dimensional continuous control (Schulman et al., 2015b).

For each of the five algorithms in each environment, we train five models using different random seeds. The
results reported throughout training are averaged over these seeds, with standard deviations included. We
evaluate agent performance using (undiscounted) returns, averaged across episodes. Besides the maximum
average returns achieved, we are also interested in convergence speed.

Furthermore, we also track the average log-probabilities of the actions taken. We treat these as a measure
of the agents’ confidence in their actions. We therefore expect a well-performing policy to become more
deterministic, achieving both higher log-probabilities and higher returns. On the contrary, we can also
diagnose overconfident policies, where an increase in log-probabilities does not correlate to an increase in
returns. The agent may therefore prematurely converge to an overly deterministic sub-optimal policy, which
is likely to hinder exploration and thus future improvements. We report the log-probabilities measured in
the supplementary material.

In all environments, episodes have a horizon of 1000 timesteps. To increase the readability of the plots,
we group timesteps into 100 bins with no overlap and report the average of each bin. We apply additional
smoothing by computing an exponentially weighted mean over the bins, with a smoothing factor of 0.1. The
average performances and standard deviations we report are then computed from these binned and smoothed
results. However, for the sake of completeness, we also plot the raw, unbinned, and unsmoothed results in
the supplementary material.

5.1 Practical Method

The matrix-free updates operate on a single trajectory sample. Although the per-step cost is only O(d),
when applying this per-sample scheme to a full batch of size b, the update must be executed b times, so the
effective time complexity for the batch becomes O(bd), so the computational cost can be high to update a
whole batch.
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AC-SGD AC-Adam AC-CG AC-KFAC SMAC (Ours)
Acrobot −86.2± 4.7 −88.4± 5.7 −93.3± 11.6 −170.7± 16.5 −94.1± 17.0
Cartpole 962.3± 38.5 989.5± 14.1 977.9± 34.4 331.4± 142.3 973.4± 49.5

Pendulum −2116± 678 −5731± 272 −190± 23 −1161± 15 −2226± 1138
Half Cheetah −1672± 10.6 −646± 9.7 1766± 864 513± 50.3 2936± 946

Hopper 180.5± 9.1 303.8± 23.9 172.7± 10.9 305.0± 33.6 331.2± 20.9
Swimmer 12.4± 3.0 17.3± 0.9 23.8± 1.7 24.2± 2.5 28.5± 1.4

Walker 213.4± 36.9 79.3± 58.7 229.8± 38.3 83.7± 72.9 204.1± 58.0
Humanoid 4539± 171 3105± 345 3175± 1445 260.8± 11.15 4625± 274

Pusher −433.6± 41.6 −568.3± 16.4 −441.0± 35.6 −1086.3± 16.2 −408.2± 31.5

Table 1: Average returns per episode, measured at the end of training, for each task in both classic control
and MuJoCo environments. All results are averaged over 5 seeds (± standard deviations).

Figure 3: Effect of Batch Size.

To investigate this trade-off, we evaluate an alternative that uses the average gradient of log-probability over
all sampled state–action transitions in the batch:

ℓ̄ = 1
B

B∑
i=1
∇θ log πθ(ai | si).

Where B denotes the total number of state-action pairs collected in the batch. The regularized empirical
Fisher then becomes

F̃ = λI + ℓ̄k (ℓ̄k)⊤,

This is a rank-one moment approximation that assumes vectors in batch have small angular variance. The
bias can be written explicitly:

E[F̃ − F̂ ] = 1
B

Cov(ℓ) ⪰ 0

so F̃ underestimates F̂ by a positive semidefinite term that shrinks as gradients concentrate or as B grows.

and the update direction of SMAC is given by

θk+1 = θk − η

[
1
λ

gk − ℓ̄k (ℓ̄k)⊤gk

λ2 + λ(ℓ̄k)⊤ℓ̄k

]
.

Results Fig. 3 compares the single-sample and batch-mean variants on Mujoco HalfCheetah and Hopper.
Using B = 1000 reduces the overall optimization time by roughly 80% while achieving returns that remain
close to the single-sample baseline and clearly outperform the standard A2C optimized with SGD. Therefore,
to further balance computational resources and performance, we implement the version with a batch size of
1000 in all subsequent experiments.
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5.2 Effect of damping coefficient λ

We use the EF F̂ k = λI + ℓk(ℓk)⊤ with λ > 0. After applying the Sherman-Morrison formula, its inverse
has the closed form

(λI + ℓk(ℓk)⊤)−1 = 1
λ

(I − ℓk(ℓk)⊤

λ + (ℓk)⊤ℓk
).

It scales directions unevenly, components perpendicular to ℓ are reduced by a factor 1
λ , while the component

along ℓ is reduced by 1
λ+(ℓk)⊤ℓk .

Figure 4: Effect of different λ

Results. We evaluate SMAC on three Mujoco tasks, compare three damping coeffcient value λ ∈
{0.1, 1, 10}. Overall, the results agree with our analysis: too large λ slows learning, too small λ can make the
update noisy, and a moderate λ gives the best stability–speed tradeoff on average. The choices in practice
are more complex, for example, the choice of λ is coupled with the learning rate because both scale the step,
so a balance is needed. A feasible path is to use a small damping coefficient to keep the EF term close to its
undamped form, and then apply a normalization so the update magnitude is preserved.

5.3 Effect of previous estimate EF

Figure 5: Previous EF used vs. Ours

Using the previous EF not only increases the memory and time complexity to O(d2), but introduces a lag
bias: after each update the policy and state distribution change, so the old EF reflects the old distribution
and can mis-scale directions when curvature changes quickly. In this experiments we used a mixed estimator
F k = βF k−1 + (1 − β)ℓk(ℓk)⊤ with a fixed β = 0.5 to limit reliance on the old EF. Results show that on
Swimmer it gives faster early improvement but remains less stable, while on Hopper and Walker it learns
more slowly with larger variance. Therefore, if the KL change is strictly constrained, using the previous
estimate EF is still feasible, and the choice of β should depend on the rate of policy change.
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Figure 6: Results on three classic control tasks. We report the average return per episode. All results are
first grouped into bins and smoothed, and then

averaged over 5 random seeds, with shaded areas showing standard deviation.

6 Results

We provide the final performance achieved by training each of the five algorithms on each of the nine
tasks. The results in Table 1 show that our method, SMAC, can achieve competitive results in two of the
three simple control tasks. More importantly, the benefits of SMAC appear to increase in more complex
environments, such as MuJoCo, where SMAC outperforms the other baselines in terms of final returns in all
but one task. A more in-depth analysis of these results, with a special focus on convergence rate, is given in
this section.

6.1 Classic Control

In the classic control environment, our method, SMAC, reaches a high initial average return faster than the
baselines on two of the tasks, as shown in Fig. 6 (see Fig. 8 for raw results). This, however, comes at the
cost of additional variance across seeds. The overall performance of SMAC is also competitive in those two
tasks.

In Acrobot, SMAC only requires 40000 timesteps to pass the average return threshold of −400. This is faster
than AC-Adam, AC-SGD, AC-CG, and AC-KFAC, which require 70%, 35%, 50%, and 235% more timesteps,
respectively. This accelerated learning is, however, followed by unstable training until approximately 125000
timesteps. Despite this, SMAC stabilizes and converges, reaching a final performance of −94.1± 6.3, which
is similar to three of the baselines, and higher than AC-KFAC.

A similar behavior can be observed in Cartpole. SMAC agents achieve 75% of the maximum return possible in
87000 timesteps, slightly faster than AC-CG, which needs approximately 10% more timesteps. AC-Adam and
AC-SGD are even slower, requiring 28% and 62% more timesteps, respectively, to reach the same threshold.
At the same time, the average performance of AC-KFAC never improves above 40% of the optimal policy’s
return. SMAC becomes more unstable after this initial period, but stabilizes and reaches a competitive
performance of 973.4± 29.8 by the end of training.

In contrast, in the last environment, Pendulum, our method fails to outperform AC-CG in terms of con-
vergence speed and overall performance. AC-CG requires only 1.5 million timesteps to match the final
performance of SMAC, indicating that our proposed approximation of the FIM can struggle to improve
learning in some environments. Moreover, SMAC is also outperformed by AC-KFAC, which quickly finds
a good policy but then stops learning. However, SMAC still achieves a final return of −2226 ± 859, out-
performing AC-Adam and matching AC-SGD, with the former also displaying much slower and unstable
learning.

As proposed in Sec. 5, the validity of our results is also confirmed by the action log-probabilities recorded
(Fig. 10). In Acrobot and Cartpole, the two tasks in which SMAC performs competitively, the log-probabilities
converge faster than those of the baseline methods. Together with the increase in performance achieved by
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Figure 7: Results on six MuJoCo tasks. We report the average return per episode. All results are first
grouped into bins and smoothed, and then

averaged over 5 random seeds, with shaded areas showing standard deviation.

SMAC in these tasks, this may indicate that our agents can rapidly become confident in their policies when
taking actions that yield increasingly higher returns. At the same time, in Pendulum, the log-probabilities
of SMAC match those of AC-SGD and are bounded above by AC-CG. This could indicate that our method
becomes overconfident in its actions too early, finally leading to a sub-optimal policy.

6.2 MuJoCo

In the more complex MuJoCo environment, we have found that throughout training, our method, SMAC,
consistently outperforms or matches the baseline algorithms in terms of performance in 5 out of 6 tasks, as
shown in Fig. 7 (see Fig. 9 for raw results). In the sixth task, SMAC still achieves comparable results.

SMAC shows improvements over existing methods in Half Cheetah, where it achieves an average return of
2936 ± 946, surpassing the next-best algorithm, AC-CG, by over 1100 points. While it learns more slowly
for the first 2 million timesteps, SMAC ultimately matches the final performance of AC-CG after only 3.4
million timesteps, which represents just 68% of the training budget. It then continues to improve, while
AC-CG plateaus. This superior performance comes at the cost of lower stability, with both SMAC and
AC-CG being much more unstable than AC-KFAC, and the simpler AC-Adam and AC-SGD.

Similar trends can be observed in Hopper, where SMAC achieves the final performance of AC-Adam using
almost three times fewer timesteps. Our method achieves a final average return of 331.2±29.7, outperforming
the second-best performances of AC-Adam and AC-KFAC by approximately 30 points. The stability of
SMAC appears to be comparable to that of AC-Adam, higher than that of AC-KFAC, but lower than that
of the other two baselines.

Likewise, in Swimer, SMAC consistently outperforms the second-best baselines, with a final average return
of 28.5 ± 0.8, which is approximately 5 points higher than those of AC-CG and AC-KFAC. Moreover, it
learns the fastest, matching the peak performance of AC-CG almost twice as fast. The stability of SMAC is
also greater than that of AC-SGD, AC-CG, and AC-KFAC, and competitive with that of AC-Adam.
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In Walker, our method learns faster than the baselines in the first 60% of the timesteps. While its final
performance of 204.1 ± 87.9 is lower than those of AC-CG and AC-SGD, which achieve 229.8 ± 23.9 and
213.4 ± 42.9, respectively, SMAC reaches the threshold of 115 (half of the final return of AC-CG) in only
410000 timesteps, while AC-CG itself needs 39% more. Additionally, our approach outperforms AC-Adam
and AC-KFAC in both average return and stability.

For the Humanoid environment, SMAC achieves the top final performance of 4625 ± 277 average return,
followed closely by AC-SGD with 4539 ± 110. It greatly outperforms AC-Adam and AC-CG in terms of
both final returns and final stability, with only AC-SGD and AC-KFAC being more stable. However, the
performance of AC-KFAC is much lower than that of any of the other algorithms. While AC-SGD is slightly
faster than our method, SMAC still learns much faster than AC-Adam and AC-CG, matching their final
performance after using just 59% of the total allocated training budget.

In Pusher, the performance of SMAC closely follows that of AC-SGD, slightly outperforming the latter with
a final average return of −408.2± 32.2. Our method is also more sample efficient, passing the −441 return
threshold (final performance of AC-CG) 21% faster than AC-CG and 9% faster than AC-SGD. While all
agents stabilize by the end of training, only AC-Adam and AC-KFAC end up being more stable than SMAC,
with AC-SGD having the highest standard deviation.

Finally, we turn our attention to the average log-probabilities of the actions taken during training (Fig. 11),
as proposed in Sec. 5. The increase in log-probabilities shown by SMAC is stable and correlates with the
increase in average returns given in Fig. 7. This may indicate that the policy quickly becomes confident
in the actions it chooses, without becoming overconfident. Note that the log-probabilities of our method
converge the fastest in 2 out of 6 tasks. While the log-probabilities of AC-CG converge first in Humanoid
and Pusher, this does not lead to better performance. On the contrary, in the former task, AC-CG agents
become overconfident in their sub-optimal actions. While in Half Cheetah the log-probabilities of AC-CG
converge first, SMAC ultimately achieves a higher confidence in its actions, which matches its superior final
performance. A similar trend appears in Walker, with AC-KFAC converging the fastest, but to a sub-optimal
policy. The slow convergence of the other two agents’ log-probabilities in most tasks may indicate uncertainty
in their actions, even when their performance matches that of SMAC.

7 Conclusion

In this work, we introduced a simple yet effective rank-1 approximation to the Natural Policy Gradient in
the Actor-Critic framework. By using a regularized Empirical Fisher matrix and the Sherman–Morrison
formula, we enable scalable and efficient natural policy gradient updates with only O(d) complexity. We
theoretically prove the convergence properties of this approximation and integrate it into the standard Actor-
Critic algorithm to demonstrate its practical utility. Experimental results on classic control and MuJoCo
tasks show that our method achieves both fast and stable convergence in most environments, outperforms
methods such as Advantage Actor-Critic and conjugate gradient in TRPO in several environments, offering
a promising alternative for efficient NPG approximations.

Broader Impact

Reinforcement learning is now used in many domains, from fine-tuning language models to controlling systems
such as power grids or data centres, and this broad use can bring both benefits and risks. It can improve
efficiency, safety, and energy use, but it can also amplify existing biases or support decision systems that
have harmful social or economic effects. Our work focuses only on the optimisation aspect: we study how
to solve a given policy optimisation problem faster, so that a fixed objective is reached in fewer gradient
steps. If the training data for language models or the environment model for control tasks reflects real-world
dynamics and values accurately, a more efficient optimiser can produce better policies with less computation
and a smaller training carbon footprint. At the same time, any negative societal impact would mainly arise
from biased, incomplete, or misaligned data, objectives, and reward designs, rather than from the particular
optimization method used.
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A Appendix

A.1 Notations.

Let γ ∈ (0, 1) be the discount, r : S × A → [−R, R] is the reward function, and H ∈ N ∪ {∞} the horizon.
Define the truncated objective

JH(θ) = Eτ∼πθ

[H−1∑
t=0

γt r(st, at)
]
, J(θ) = J∞(θ). (16)

For each trajectory τH = (s0, a0, . . . , sH−1, aH−1) sampled under πθ, let g(τH | θ) denote a single-trajectory
unbiased estimator of the truncated policy gradient:

E
[
g(τH | θ)

]
= ∇JH(θ). (17)

g(τH | θ) =
H−1∑
t=0

γt Gt∇θ log πθ(at | st) (18)

A.2 Assumptions

Assumption 1. Let g(τH |θ) be an unbiased single-trajectory estimator of ∇JH(θ) Assume there exists σ > 0
such that for all θ,

E
[∥∥g(τH | θ)− E

[
g(τH | θ)

]∥∥2] ≤ σ2,

Assumption 2. The Fisher Information matrix induced by the policy πθ is Positive Definite and satisfies

F (θ) = Es∼d
πθ
ρ

Ea∼πθ

[
∇θ log πθ · ∇θ log πT

θ

]
⋟ µF I (19)

Assumption 3. The policy gradient estimates are bounded by a constant G ≥ 0 and the change in policy
gradient at different timestep are bounded by the change in policy parametrization weights. So,

∥∇θ log πθ∥ ≤ G (20)
∥∇θ log πθ1 −∇θ log πθ2∥ ≤M ∥θ1 − θ2∥ (21)

Assumption 4. Transferrable Compatible Function Approximator: When we approximate the Ad-
vantage function using the policy πθ it induces a transfer error defined as ϵbias which is zero for softmax
parametrization and is very small for dense neural policy class.

Lν⋆(wθ
⋆; θ) = E(s,a)∼ν⋆

[(
Aπθ (s, a)− (1− γ)(wθ

⋆)⊤∇θ log πθ(a|s)
)2
]
≤ εbias (22)

where ν⋆(s, a) = dπ⋆

ρ (s) · π⋆(s, a) is the state-action distribution induced by an optimal policy π⋆ and wθ
⋆ =

argminw Lν
πθ
ρ

(w; θ) is obtained via the full natural policy gradient direction at the parametrization θ.

Remark 1. Regarding F (θ), we know from Assumptions 1 and 2 that

µF Id ≼ F (θ) ≼ G2Id for any θ ∈ Rd.

Remark 2. Now we can get an upper bound to the second term of Equation 4 using Remark 1 as:∥∥∥∥∥ F̂ k

λ2 + λTr(F̂ k)

∥∥∥∥∥ ≤ G2

λ2 + λµF
.

19



Published in Transactions on Machine Learning Research (02/2026)

Remark 3. Assumption 1 treats σ2 as a constant upper bound on the variance of the truncated policy
gradient estimator, although in general Var(g(τH | θ)) may depend on the horizon H. More precisely, for
each finite H we write

Var
(
g(τH | θ)

)
= σ2

H .

For likelihood–ratio estimators such as REINFORCE, existing analyses show that σ2
H can grow with H, but

remains finite under smooth Gaussian policies with bounded rewards and features (Zhao et al., 2012; Pirotta
et al., 2013; Baxter & Bartlett, 2001). In our proof we use a finite truncated horizon and define

σ2 := sup
1≤H≤Hmax

σ2
H <∞.

This form of bounded–variance assumption is standard in recent convergence analyses of policy gradient
methods (Liu et al., 2022; Xu et al., 2020; 2019).

A.3 Helper Lemmas

We will establish some helper lemma to prove the global convergence of Sherman-Morrison policy update.

Lemma 1. (Liu et al., 2022) In the stochastic PG update, we have

1
K

K−1∑
k=0

E[∥∇JH(θk)∥2] ≤
JH⋆−JH (θ0)

K + ( η
2 + LJη2) σ2

N
η
2 − LJη2 (23)

In total, stochastic PG samples O
(

σ2

(1−γ)2ε2

)
trajectories.

Lemma 2. (Liu et al., 2022) Let J(θ), JH(θ) are LJ -smooth, where LJ = MR
(1−γ)2 + 2G2R

(1−γ)3 and

∥∇JH(θ)−∇J(θ)∥ ≤ GR

(
H + 1
1− γ

+ γ

(1− γ)2

)
γH

Lemma 3. (Liu et al., 2022) Let wk
⋆ = F −1(θk)∇J(θk) be the exact NPG update direction at θk. Then, we

have

J(π⋆)− 1
K

K−1∑
k=0

J(θk) ≤
√

εbias

1− γ
+ 1

ηK
Es∼dπ⋆

ρ
[KL (π⋆(·|s)||πθ0(·|s))]

+ G

K

K−1∑
k=0
∥wk −wk

⋆∥+ Mη

2K

K−1∑
k=0
∥wk∥2.

(24)

A.4 Global Convergence of SM Update

Let us take wk as the update direction of Sherman-Morrison. To this end, we need to upper bound
1
K

∑K−1
k=0 ∥wk − wk

⋆∥, 1
K

∑K−1
k=0 ∥wk∥2, and 1

KEs∼dπ⋆
ρ

[KL (π⋆(·|s)||πθ0(·|s))], where wk
⋆ = F −1(θk)∇J(θk)

is the exact NPG update direction at θk.

• Bounding 1
K

∑K−1
k=0 ∥wk −wk

⋆∥.
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We know from Jensen’s inequality that
(
E[∥wj+1

t −wj+1
t,⋆ ∥]

)2
≤ E[∥wj+1

t −wj+1
t,⋆ ∥2] so,

(
1
K

K−1∑
k=0

E[∥wk −wk
⋆∥]
)2

≤ 1
K

K−1∑
k=0

(
E[∥wk −wk

⋆∥]
)2

≤ 1
K

K−1∑
k=0

E[∥wk −wk
⋆∥2]

≤ 2
K

K−1∑
k=0

E[∥wk −∇J(θk)∥2] + 2
K

K−1∑
k=0

E[∥∇J(θk)−wk
⋆∥2]

(25)

Let

gk = 1
N

N∑
i=1

g(τH
i |θk),

be the PG direction and

wk = 1
λ

gk − F̂ k

λ2 + λTr(F̂ k)
gk

be the weight update from the Sherman-Morrison update then we have from Lemma 2 and Remark
2 and Assumption 3 that

1
K

K−1∑
k=0

E[∥wk −∇J(θk)∥2]

= 1
K

K−1∑
k=0

E

∥∥∥∥∥ 1
λ

gk − F̂ k

λ2 + λTr(F̂ k)
gk −∇J(θk)

∥∥∥∥∥
2


= 1
K

K−1∑
k=0

E

[∥∥∥∥∥ 1
λ

(gk −∇JH(θk))− F̂ k

λ2 + λTr(F̂ k)
(gk −∇JH(θk))− (∇J(θk)−∇JH(θk))

+ 1
λ
∇JH(θk)− F̂ k

λ2 + λTr(F̂ k)
∇JH(θk)−∇JH(θk)

∥∥∥∥∥
2


≤ 4σ2

N

(
1
λ2 + G2

λ2 + λµF

)
+ 4G2R2

(
H + 1
1− γ

+ γ

(1− γ)2

)2
γ2H

+ 4
(

1 + 1
λ2 + G2

λ2 + λµF

)
1
K

K−1∑
k=0

E[∥∇JH(θk)∥2]

(26)

Furthermore, Assumption 2 tells us that

E[∥∇J(θk)−wk
⋆∥2]

= E[∥∇J(θk)− F −1(θk)∇J(θk)∥2]

≤
(

1 + 1
µF

)2
E[∥∇J(θk)∥2]

≤
(

1 + 1
µF

)2
(

2E[∥∇JH(θk)∥2] + 2G2R2
(

H + 1
1− γ

+ γ

(1− γ)2

)2
γ2H

)
.

(27)
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Combining equation 26 and equation 27 with equation 25 gives

1
K

K−1∑
k=0

E[∥wk −wk
⋆∥]

≤

(
4σ2

N

(
1
λ2 + G2

λ2 + λµF

)
+ 4G2R2

(
H + 1
1− γ

+ γ

(1− γ)2

)2
γ2H

(
1 +

(
1 + 1

µF

)2
)

+ 4
(

1 +
(

1 + 1
µF

)2
+ 1

λ2 + G2

λ2 + λµF

)
1
K

K−1∑
k=0

E[∥∇JH(θk)∥2]
)0.5

(28)

And recall from equation 23 that

1
K

K−1∑
k=0

E[∥∇JH(θk)∥2] ≤
JH,⋆−JH (θ0)

K + ( η
2 + LJη2) σ2

N
η
2 − LJη2 .

Let us take η = 1
4LJ

. Then we get

1
K

K−1∑
k=0

E[∥∇JH(θk)∥2] ≤ 16LJ(JH,⋆ − JH(θ0))
K

+ 3σ2

N

In addition, let H, N , and K satisfy

1
3( ε

3G
)2 ≥ 4G2R2

(
H + 1
1− γ

+ γ

(1− γ)2

)2
γ2H

(
1 +

(
1 + 1

µF

)2
)2

N ≥
4σ2

(
3 + 4

λ2 + 4G2

λ2+λµF
+ 3

(
1 + 1

µF

)2
)

1
3
(

ε
3G

)2 ,

K ≥
64LJ(JH,⋆ − JH(θ0))

((
1 + 1

µF

)2
+ 1 + 1

λ2 + G2

λ2+λµF

)
1
3
(

ε
3G

)2 .

(29)

Then, we have

G

K

K−1∑
k=0

E[∥wk −wk
⋆∥] ≤

ε

3 . (30)

• Bounding 1
K

∑K−1
k=0 ∥wk∥2.
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We have from equation 26 and equation 23 that

1
K

K−1∑
k=0

E∥wk∥2

= 1
K

K−1∑
k=0

E

∥∥∥∥∥ 1
λ

gk − F̂ k

λ2 + λTr(F̂ k)
gk

∥∥∥∥∥
2


= 1
K

K−1∑
k=0

E

[∥∥∥∥∥ 1
λ

(gk −∇JH(θk))− F̂ k

λ2 + λTr(F̂ k)
(gk −∇JH(θk)) + 1

λ
∇JH(θk)

− F̂ k

λ2 + λTr(F̂ k)
∇JH(θk)

∥∥∥∥∥
2


≤ 2σ2

N

(
1
λ2 + G2

λ2 + λµF

)
+ 2

(
1
λ2 + G2

λ2 + λµF

)
1
K

K−1∑
k=0

E[∥∇JH(θk)∥2]

≤ 16σ2

N

(
1
λ2 + G2

λ2 + λµF

)
+ 32LJJH⋆ − JH(θ0)

K

(
1
λ2 + G2

λ2 + λµF

)
.

Where to get to the last inequality we have taken η = 1
4LJ

and applied Lemma 1.

N ≥
16ησ2

(
1

λ2 + G2

λ2+λµF

)
ε
6

,

K ≥
32LJη(JH,⋆ − JH(θ0))

(
1

λ2 + G2

λ2+λµF

)
ε
6

,

(31)

we arrive at

η

K

K−1∑
k=0

E[∥wk∥2] ≤ ε

3 . (32)

• Bounding 1
KEs∼dπ⋆

ρ
[KL (π⋆(·|s)||πθ0(·|s))].

By taking

K ≥
3Es∼dπ⋆

ρ
[KL (π⋆(·|s)||πθ0(·|s))]

ηε
(33)

we have
1

ηK
Es∼dπ⋆

ρ
[KL (π⋆(·|s)||πθ0(·|s))] ≤ ε

3 , (34)

From equation 29

(
H + 1
1− γ

+ γ

(1− γ)2

)2
γ2H ≤ C0 ε2, (35)

for some constant C0 > 0 that does not depend on H or ε.

For all H ≥ 0
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H + 1
1− γ

+ γ

(1− γ)2 ≤
H + 1
1− γ

+ 1
(1− γ)2 ≤

C1(H + 1)
(1− γ)2 ,

for a constant C1 ≥ 1 that depends only on γ. Substituting this into Equation 35 gives

(H + 1)2γ2H ≤ C2(1− γ)4 ε2, (36)

for constant C2 > 0 independent of H and ε.

Since the prefactor grows polynomially in H while γ2H decays geometrically,

γ2H ≤ c1 ε2,

for some constant c1 > 0 independent of H. Taking logarithm on both side yields

H = O
(
log
(
(1− γ)−1ε−1)) . (37)

The lower bounds on N in equation 29 and equation 31 have the form

N ≥ c2σ2
(

1 + (1 + 1
µF

)2 + 1
λ2 + G2

λ2+λµF

)
ε−2,

for a constant c2 that absorbs numerical factors. Since the expression in parentheses is independent of ε, we
have

N = O
(

σ2

ε2

)
. (38)

The lower bounds on K collected from equation 29, equation 31, and equation 33 can be written as

K ≥ c3

(
LJ(JH,⋆ − JH(θ0)) + Es∼dπ⋆

ρ
[KL (π⋆(·|s)||πθ0(·|s))]

)
ε−2,

for a constant c3 depending only on (1− γ)−1 and the model parameters. Since both terms in parentheses
scale as O((1− γ)−2). We have

K = O
(

1
(1− γ)2ε2

)
. (39)

In summary, we require N , K and H to satisfy equation 29, equation 31, and equation 33, which leads to

N = O
(

σ2

ε2

)
, K = O

(
1

(1− γ)2ε2

)
, H = O

(
log((1− γ)−1ε−1)

)
.

By combining equation 30, equation 32, equation 34 and equation 24, we can conclude that

J(π⋆)− 1
K

K−1∑
k=0

J(θk) ≤
√

εbias

1− γ
+ ε.

In total, stochastic Sherman-Morrison Policy gradient requires to sample KN = O
(

σ2

(1−γ)2ε4

)
trajectories.
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A.5 Detailed Derivation of the Toy Problem

The policy is parameterized by a vector θ = [θ0, θ1]⊤, with independent Bernoulli distribution:

πθ(a = 0 | x = 0) = 1
1 + eλpθ0

, (40)

πθ(a = 0 | x = 1) = 1
1 + eθ1

, (41)

where λp scales the first policy parameter and is used to test scaling invariance. If we assume that the agent
starts at the state x = 0 then the objective (expected return) in this simplified setting is

J(θ) = πθ(a = 0 | x = 0) + 2(1− πθ(a = 0 | x = 0)) πθ(a = 0 | x = 1). (42)

The policy gradient theorem states:

∇θJ(θ) = Ex,a[∇θ log πθ(a|x) Q(x, a)] . (43)

For the Bernoulli parameterization and noting that the policy function resembles sigmoid activation function
the derivative of the log–policy can be simplified as

∇θ log πθ(a|x) =



−λp(1− π0) if x = 0, a = 0

λpπ0 if x = 0, a = 1

−(1− π1) if x = 1, a = 0

π1 if x = 1, a = 1

(44)

where π0 = πθ(a = 0 | x = 0) and π1 = πθ(a = 0 | x = 1). Using the rewards in the environment, one can
derive the analytic policy gradient vector

∇θJ(θ) =
[
−λp π0(1− π0)(1− 2π1)

−2(1− π0)π1(1− π1)

]
. (45)

The geometry of the policy manifold is captured by the FIM and as the states are independent of each other
we can write the per state FIM as,

Fii = Ea∼π(·|x=i)
[
∇θi

log πθ(a|x = i)∇θi
log πθ(a|x = i)⊤

]
(46)

So For State (x = 0): The Score functions for a ∈ {0, 1} can be expressed as:

∂

∂θ0
log πθ(a = 0 | x = 0) = −λp(1− π0), ∂

∂θ0
log πθ(a = 1 | x = 0) = λpπ0 (47)
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Hence,

F00 = π0[−λp(1− π0)]2 + (1− π0)[λpπ0]2 (48)
= λ2

p

[
π0(1− π0)2 + (1− π0)π2

0
]

(49)
= λ2

pπ0(1− π0)[(1− π0) + π0] (50)
= λ2

pπ0(1− π0). (51)

Similarly for state (x = 1): The Score functions for a ∈ {0, 1} ca be expressed as:

∂

∂θ1
log πθ(a = 0 | x = 1) = −(1− π1), ∂

∂θ1
log πθ(a = 1 | x = 1) = π1 (52)

Hence,

F11 = π1[−(1− π1)]2 + (1− π1)[π1]2 (53)
= π1(1− π1)2 + (1− π1)π2

1 (54)
= π1(1− π1)[(1− π1) + π1] (55)

= π1(1− π1) (56)

Owing to independence between states, F (θ) is diagonal:

F (θ) =
[

λ2
p π0(1− π0) 0

0 π1(1− π1)

]
. (57)

Then the NPG update direction is obtained by preconditioning the gradient with the inverse Fisher matrix,

θ̇NPG = F (θ)−1∇θJ(θ) =

−(1− 2π1)
λp

−2(1− π0)

 . (58)

To reduce computation while preserving approximate invariance, the SM approach uses a low–rank inverse
metric F̃ −1 defined in terms of damping factor λ and exact FIM F (θ) capturing dominant curvature direction,

F̃ −1 = 1
λ

(
I − F (θ)

λ + Tr(F (θ))

)
(59)

(60)

Hence the resulting SM update direction can be written as:
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θ̇SM = F̃ −1∇θJ(θ) (61)

= 1
λ

(
I − F (θ)

λ + Tr(F (θ))

)
∇θJ(θ) (62)

= 1
λ

(
∇θJ(θ)− F (θ)∇θJ(θ)

λ + Tr(F (θ))

)
(63)

=


1
λ

(−λp π0(1− π0)(1− 2π1))−
λ3

p π2
0(1− π0)2(1− 2π1)

λ2 + λ
[
λ2

p π0(1− π0) + π1(1− π1)
]

1
λ

(−2(1− π0)π1(1− π1))− 2 π2
1(1− π1)2(1− π0)

λ2 + λ
[
λ2

p π0(1− π0) + π1(1− π1)
]
 (64)

A.6 Additional Results

Figure 8: Raw results on three classic control tasks. These correspond to the results reported in Fig. 6, but
without binning or smoothing.

Figure 9: Results on six MuJoCo tasks. These correspond to the results reported in Fig. 7, but without
binning or smoothing.
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Figure 10: Average log-probabilities of the actions taken on three classic control tasks. All results are
averaged over 5 random seeds, with shaded areas showing standard deviation.

Figure 11: Average log-probabilities of the actions taken on six MuJoCo tasks. All results are averaged over
5 random seeds, with shaded areas showing standard deviation.

A.7 Hyper-parameters

We consider the following hyper-parameters:

• η (actor) : step size for the policy-network update.

• α (critic) : learning rate for the value network, optimized with Adam.

• T : number of environment steps collected before each parameter update.

• γ : reward discount factor.

• λGAE : trace-decay parameter used by Generalized Advantage Estimation when computing the ad-
vantage values At.

• λ : damping factor used in the matrix-free Sherman-Morrison approximation of the empirical Fisher.

We tune five of these on each environment. We omit tuning T , as preliminary runs have shown that
performance is not highly correlated with its value. We select values for α (critic) from the interval [1×
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Algorithm η (actor) λ

SMAC
[
5×10−5, 5×10−1] {10−4, 10−3, 10−2, 10−1, 1}

AC-Adam
[
5×10−6, 1×10−2] -

AC-SGD
[
5×10−5, 5×10−1] -

AC-CG
[
5×10−3, 9×10−1] -

AC-KFAC
[
1×10−5, 1×10−3] -

Table 2: Hyper-parameter values evaluated during tuning. Additionally, for each algorithm, we select values
for α (critic) from [1×10−5, 5×10−3], for γ from {0.9, 0.95, 0.99}, and for λGAE from {0.8, 0.85, 0.9, 0.95, 0.99}.
See Table 5 for additional details on tuning hyperparameters specific to AC-KFAC.

Environment Algorithm η (actor) α (critic) T γ λGAE λ

Acrobot

SMAC 5×10−2 1×10−3 1000 0.99 0.9 0.1
AC–Adam 6×10−4 1×10−3 1000 0.99 0.9 -
AC–SGD 2×10−1 1×10−3 1000 0.99 0.9 -
AC–CG 6×10−1 1×10−3 1000 0.99 0.9 -

AC-KFAC 1×10−2 1×10−3 1000 0.99 0.9 -

Cartpole

SMAC 5×10−3 1×10−3 1000 0.99 0.9 0.1
AC–Adam 7×10−5 1×10−3 1000 0.99 0.9 -
AC–SGD 7×10−3 1×10−3 1000 0.99 0.9 -
AC–CG 8×10−2 1×10−3 1000 0.99 0.9 -

AC-KFAC 1×10−3 1×10−3 1000 0.99 0.9 -

Pendulum

SMAC 6×10−3 1×10−3 1000 0.99 0.9 0.1
AC–Adam 7×10−4 1×10−3 1000 0.99 0.9 -
AC–SGD 5×10−2 1×10−3 1000 0.99 0.9 -
AC–CG 3×10−2 1×10−3 1000 0.99 0.9 -

AC-KFAC

Table 3: Training hyper-parameters for the classic control environments.

10−5, 5×10−3], for γ from the set {0.9, 0.95, 0.99}, and for λGAE from the set {0.8, 0.85, 0.9, 0.95, 0.99}. For
the rest of the hyper-parameters, we select values according to Tables 2 and 5. The goal is to find hyper-
parameter configurations that maximize the return averaged over the last 100 epochs, for each environment
and algorithm.

We find that learning rates have the highest impact on performance. On the contrary, γ = 0.99 and λGAE =
0.9 perform well in all environments. For each environment and algorithm, we select the hyper-parameter
configuration that performs best, and then use it to generate the results in Sec. 6. These configurations are
shown in Tables 3 and 4 (and Table 5 for AC-KFAC). For hyper-parameters specific to AC-KFAC, we found
a damping of 1 × 10−3, factor decay of 0.99, KL clipping value of 1 × 10−3, and an update frequency of 1
iteration to perform well in all environments except the ones specified in Table 5.
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Environment Algorithm η (actor) α (critic) T γ λGAE λ

Half Cheetah

SMAC 8×10−4 6×10−4 1000 0.99 0.9 0.01
AC–Adam 5×10−3 6×10−4 1000 0.99 0.9 -
AC–SGD 1×10−1 9×10−4 1000 0.99 0.9 -
AC–CG 9×10−1 8×10−4 1000 0.99 0.9 -

AC-KFAC 1×10−3 1×10−3 1000 0.99 0.9 -

Hopper

SMAC 1×10−2 1×10−4 1000 0.99 0.9 1.0
AC–Adam 1×10−4 1×10−4 1000 0.99 0.9 -
AC–SGD 1×10−3 1×10−4 1000 0.99 0.9 -
AC–CG 1×10−2 1×10−4 1000 0.99 0.9 -

AC-KFAC

Swimmer

SMAC 3×10−2 1×10−4 1000 0.99 0.9 1.0
AC–Adam 1×10−4 1×10−4 1000 0.99 0.9 -
AC–SGD 1×10−3 1×10−4 1000 0.99 0.9 -
AC–CG 1×10−2 1×10−4 1000 0.99 0.9 -

AC-KFAC 1×10−2 1×10−4 1000 0.99 0.9 -

Walker

SMAC 3×10−2 1×10−5 1000 0.99 0.9 1.0
AC–Adam 1×10−5 1×10−5 1000 0.99 0.9 -
AC–SGD 1×10−4 1×10−5 1000 0.99 0.9 -
AC–CG 1×10−2 1×10−5 1000 0.99 0.9 -

AC-KFAC 1×10−3 1×10−4 1000 0.99 0.9 -

Humanoid

SMAC 1×10−4 1×10−3 1000 0.99 0.9 0.01
AC–Adam 3×10−4 1×10−3 1000 0.99 0.9 -
AC–SGD 1×10−3 1×10−3 1000 0.99 0.9 -
AC–CG 9×10−1 1×10−3 1000 0.99 0.9 -

AC-KFAC

Pusher

SMAC 1.5×10−3 1×10−3 1000 0.99 0.9 0.01
AC–Adam 2.5×10−3 1×10−3 1000 0.99 0.9 -
AC–SGD 1×10−1 1×10−3 1000 0.99 0.9 -
AC–CG 9×10−1 1×10−3 1000 0.99 0.9 -

AC-KFAC 1×10−2 1×10−3 1000 0.99 0.9 -

Table 4: Training hyper-parameters for the MuJoCo environments.
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Hyper-parameter Tuning values Environment Final value

Damping
[
5×10−5, 5×10−2] Pendulum 1 × 10−2

Humanoid 1.5 × 10−2

Decay factor {0.85, 0.9, 0.95, 0.99, 1.0} Pendulum 0.85
Humanoid 0.9

KL clip
[
5×10−5, 3×10−2] Pendulum 2.5 × 10−2

Humanoid 4 × 10−3

Update frequency {1, 2, 4, 8, 16, 32, 64} Pendulum 16
Humanoid 64

Table 5: Hyper-parameter values evaluated when tuning AC-KFAC on each environment. We include the
values we select for the Pendulum and Humanoid environments. All other environments use 1 × 10−3

damping, 0.99 factor decay, 1× 10−3 KL clip, and 1 update frequency. These tuning values and final values
complement Tables 2, 3, and 4.
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