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Abstract

Video-language understanding tasks have historically focused on short video clips,
often struggling with the complexities of long-form video understanding. Recently,
many long video-language understanding approaches have taken advantage of the
reasoning capabilities of Large Language Models (LLMs) to perform long video
question answering, transforming videos into densely sampled frame captions, and
asking LLMs to respond to text queries over captions. However, the frames used for
captioning are often redundant and contain irrelevant information, making dense
sampling inefficient, and ignoring the fact that video question-answering requires
varying levels of granularity, with some video segments being highly relevant to
the question (and hence needing more fine-grained detail) while others being less
relevant. Thus, these LLM-based approaches are prone to missing information
and operate on large numbers of irrelevant captions, lowering both performance
and efficiency. To address these shortcomings, we introduce VideoTree, a query-
adaptive and hierarchical framework for long-video understanding with LLMs.
Specifically, VideoTree dynamically extracts query-related information from the
input video and builds a tree-based video representation for LLM reasoning. First,
VideoTree adaptively selects frames for captioning by clustering frames based on
their visual features and scoring clusters based on their relevance to the query. We
iterate this process until enough query-related keyframes are extracted. Second,
it organizes visual clusters into a query-adaptive and hierarchical tree structure;
the structure of the tree encodes varying levels of granularity, with higher (deeper)
resolution on relevant segments. Finally, VideoTree produces an answer to each
question by traversing the tree’s keyframes and passing their captions to an LLM
answering model, which answers the query. Our experiments show that our training-
free adaptive method improves both reasoning accuracy and efficiency compared
to existing methods: VideoTree achieves a 7.0%, 2.2%, and 2.7% improvement
in accuracy over existing methods on the popular EgoSchema, NExT-QA, and
IntentQA benchmarks, respectively, while reducing inference time by 40%.

1 Introduction

While recent developments in video-language understanding have led to major advances in answering
questions about videos [79, 8, 7, 80, 4, 23], past work has largely focused on short video tasks,
with videos typically ranging from 5 to 15 seconds [17, 70, 74]. Given the surge in accessible
minutes-long video content and the importance of applications like long-form human behavior analysis
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Figure 1: Overview of VideoTree for LLM reasoning on long videos. VideoTree helps to extract
query-related information in long videos in a coarse-to-fine style. We first cluster videos via their
visual embeddings, and then build a tree structure in a query-adaptive manner. Lastly, the LLM takes
selected keyframe captions in the tree to conduct long video reasoning.

and movie analysis, developing models that can reason over and answer questions about long videos is
increasingly crucial. However, most contemporary models [3, 79, 7, 76, 77] developed for short videos
struggle with long-form understanding tasks. Recently, several approaches [83, 66] have emerged that
leverage the long-sequence reasoning capabilities of Large Language Models (LLMs) to tackle the
challenge of long-range modeling in long video-language understanding. Typically, these approaches
leverage vision-language models (VLM) to caption densely sampled frames, thus representing the
video in text format. This text representation is then subsequently fed into an LLM, which reasons
over the video and responds to the provided query. Although this strategy has demonstrated great
potentials on video understanding tasks, it still faces three major limitations that become particularly
relevant when applied to long-form video understanding tasks:

1) Informational Overload: Long videos inherently contain high levels of information redundancy,
and current long video understanding approaches [83, 10] lack a principled method to effectively
address this challenge. A deluge of redundant information can overwhelm the LLM, leading to
mistakes in video reasoning. As shown in Fig. 3, performance on video tasks actually decreases as
the number of frames sampled increases.

2) Lack of Query Adaptability: Existing methods [83, 19] transform video inputs into textual
descriptions without considering the query, resulting in irrelevant information being fed to the LLM.
This is sub-optimal, and makes it harder for the LLM to accurately answer specific queries.

3) Inability to Capture the Coarse-to-Fine Video Structure: Existing approaches [83, 62]
often simplify video content into a list of captions without any structure, failing to account for
the hierarchical nature of video information. Especially in long videos, some video regions are
information-dense – requiring fine-grained temporal understanding – while others are irrelevant to
the query, or information-sparse. Because of this, dense sampling approaches not only suffer from the
information overload problem (2) mentioned above, but also omit key information from the captions.

These limitations underscore the pressing need for a new long video understanding method. Specifically,
the method should be query-adaptive, dynamically selecting parts of the video that are relevant to the
question and ignoring those that are not, and hierarchical, i.e. able to capture different granularities
of information, from coarse summaries to fine-grained actions. In other words, we would like a
method that adaptively identifies key video segments and allocates more computational resources to
these areas. To facilitate this, we represent the video as a tree structure. Specifically, we introduce
VideoTree, an adaptive tree-based method for long-video understanding. VideoTree dynamically
extracts query-related keyframes from the video input in a coarse-to-fine manner and organizes them
within a tree structure, with child nodes representing more fine-grained information. Our sampling is
adaptive, meaning that VideoTree allocates more frames to relevant video regions and fewer samples
to irrelevant ones. VideoTree relies on three crucial steps: adaptive breadth expansion (Fig. 1a),
relevance-guided depth expansion (Fig. 1b), and LLM-based reasoning (Fig. 1c). A more in-depth
look at our method is given in Fig. 2; initially, we extract clusters of query-related keyframes to form
the first level of tree nodes for the video representation (see Figure 2, Step 1). We adaptively increase
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the number of keyframes through an iterative process of visual clustering, keyframe captioning, and
relevance scoring until sufficient query-related information is gathered for LLM reasoning. After
the initial clustering, for each first-level cluster, we extract its keyframe and determine the relevance
of the cluster based on the keyframe’s relevance to the query. We then expand deeper into the most
relevant clusters to extract more detailed information (see Fig. 2, Step 2). For each cluster, we obtain
a single keyframe and pass it to a VLM captioner. Finally, the keyframe captions from our tree
representation are passed to an LLM, which reasons over them to answer the question (see Fig. 2,
Step 3). This addresses the key problems with uniform dense sampling: VideoTree is coarse-to-fine
and conditioned on the query, making it not only more performant but also more computationally
efficient, needing fewer frames to achieve stronger performance than densely-sampled frame baselines.
Crucially, we demonstrate that the tree in VideoTree provides a more relevant set of keyframes,
and hierarchically represents coarse-to-fine information in an adaptive fashion. This significantly
enhances the LLM’s ability to reason effectively over long videos.

We demonstrate the effectiveness of VideoTree by evaluating it on three standard long video question
answering (LVQA) datasets: EgoSchema [40], which focuses on egocentric long-form video-language
understanding; NExT-QA [73], a widely-used video question answering benchmark featuring videos
that average 44 seconds in length; IntentQA [25], an LVQA dataset focused on reasoning about
people’s intent in long videos. Across these tasks, VideoTree substantially improves accuracy
compared to state-of-the-art LLM-based approaches, achieving an absolute accuracy improvement of
7.0% on EgoSchema benchmark, 2.2% on NExT-QA, and 2.7% on IntentQA. In our analysis, we
show that our method results in the best of both worlds: better performance than strong baselines (e.g.
[83]) and better efficiency. In summary, we present three major contributions:

• We propose VideoTree, an adaptive tree-based representation for LLM reasoning over long-videos,
which intelligently allocates a computational budget by dynamically extracting query-related
keyframes from the video input in a coarse-to-fine manner.

• We show that using VideoTree, we can extract frames that allow the LLM to understand and reason
over the long videos better, resulting in substantial improvements over strong baselines across three
standard long video question-answering datasets (EgoSchema, NExT-QA, and IntentQA).

• In our analysis, we find VideoTree is not only more effective but also more efficient than uniform
sampling baseline, achieving a 5.6% accuracy improvement using only 35% of the frame captions.
Qualitatively, we find that VideoTree selects query-relevant portions of the video to expand into,
while glossing over irrelevant portions.

2 Related Work

Structural Video Representation. Video understanding [33, 59, 27, 15, 34, 6, 75, 31, 37, 68, 36,
57, 55, 71, 48, 58, 51, 45] has shown impressive advancement in both views of comprehension and
efficiency. Recently, several video-language methods [1, 29, 16, 67, 82, 81, 46, 49, 78, 72] have further
introduced a structured understanding of video frames to allow compact and efficient recognition
of scene contexts. For example, HierVL [1] proposes a bottom-up hierarchical video-language
embedding that capture video representations across short and long time periods. Specifically, HierVL
performs contrastive learning between short clips and their captions, then aggregating representations
for long video understanding tasks. VideoReCap [16] introduces a progressive video captioning
approach that generates short clip-level captions and summarizes them into longer segments. These
methods process long videos by progressively building high-level knowledge from local temporal
information, i.e. in a bottom-up fashion that first captures all low-level details and then aggregates.
This results in significant computational and time overhead. In contrast, VideoTree employs a
top-down approach with dynamic depth, enabling efficient and effective long video understanding by
dynamically extracting query-related keyframes for LLM reasoning .

Video Understanding with LLMs. Inspired by the powerful reasoning capabilities of LLMs, recent
works have explored using LLMs to address complex video-related tasks. Since LLMs primarily
process text, various methods [42, 50, 32, 22, 69, 38, 84, 54, 5, 26, 18, 12, 14, 30, 65, 28] have
been developed to efficiently train multimodal projectors to connect the visual encoder and LLMs or
leverage caption-centric information. More specifically related to video reasoning, CREMA [80]
integrates information from various modalities to address video reasoning problems. CREMA
introduces a multimodal Q-former to project different modality features into the LLM embedding
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space, enabling the LLM for the compositional understanding of videos to predict answers. While
CREMA trains their Q-former, other past work [56, 20, 19, 11, 62, 53, 9, 60, 21] has investigated
training-free combinations of captioners and LLMs for video understanding. Specifically, LLoVi [83]
proposes a simple language-guided video understanding method. First, it extracts short-term video
descriptions with a captioning model, and then an LLM summarizes these dense captions and responds
to the given prompt. VideoAgent [62] introduces a multi-round frame search strategy using an LLM.
This approach performs answer prediction and self-reflection based on the captions from previously
collected frames and the input prompt, and explores the next frame until the LLM is satisfied. However,
these methods struggle with high computational and monetary costs during long-video comprehension,
as they require processing various types of input, generating dense captions for video frames or clips,
or frequent LLM calls to perform self-evaluation and iterative frame selection. Instead, we propose to
extract the key information from long videos by building an adaptive tree representation and sparsely
selecting the keyframes for further LLM reasoning.

3 VideoTree: Adaptive Tree-based Representation for Long
Video-Language Understanding with LLMs

We present VideoTree, an efficient and effective long video understanding framework that constructs
a query-aware, query-adaptive hierarchical video representation for LLM reasoning over long videos.
As illustrated in Fig. 2, the VideoTree framework consists of three main steps: adaptive breadth
expansion, relevance-guided depth expansion, and LLM video reasoning.

3.1 Adaptive Breadth Expansion

We build the first layer of the tree representation by finding key semantic information within the video.
To extract key information, existing approaches [79, 61] select a fixed number of keyframes as the
video representation. However, as mentioned in Sec. 1, this kind of uniform keyframe selection is
sub-optimal for a general long video-language understanding framework, as it can miss information,
includes redundant frames, and does not intelligently allocate the frame budget according to the video
and query. To this end, we introduce an adaptive breadth expansion method that builds the first level
of the tree representation. This method dynamically finds clusters of frames that are relevant to the
query. Specifically, as shown in the left of Fig. 2 (Step 1), given the video and a query about it, we
build the first level of the tree by iterating three operations: visual clustering, cluster captioning, and
relevance scoring. These operations first group similar frames together, then assign captions to each
cluster and determine how relevant each cluster is to the query. By iterating the process, VideoTree
adaptively allocates more computation to the most relevant regions of the video. In the following, we
motivate and introduce each operation in detail.

Visual Clustering. To reduce frame redundancy, we first propose a visual clustering operation that
groups similar frames together before extracting information from them. Specifically, given a video
sequence V = (F1, F2..., Fn), where Fi is the frame at the time step i and n is the length of the
video, we extract visual features for each frame with the pre-trained visual encoder [52] E, such that
fi = E(Fi), where fi ∈ Rd is the visual representation extracted by the frame Fi. Note that this
visual feature extraction is less expensive than extracting textual features like captions using a VLM
since visual feature extraction does not involve autoregressive decoding, making it about 2 times
faster. These features serve as a compact representation of each frame’s visual content, capturing
diverse semantics of each frame such as scenes and objects. Then we use K-Means clustering [39], to
group frame features into k distinct clusters, which we denote as:

(C1, C2, ...Ck), (c1, c2, ...ck) = K-Means((f1, f2, ..., fn), k) (1)

where, Ci is the ith cluster that groups multiple frames, ci is the centroid vector for the ith cluster and
k is the number of clusters, which can be thought of as the granularity of the tree’s first level. This
clustering process allows us to convert the video input into k clusters of similar frames.

Keyframe Captioning. To convert the cluster’s visual features into textual information that can be
processed by an LLM, we caption a single keyframe from each cluster. Specifically, for the cluster Ci,
we find the keyframe Fi that is closest to the centroid vector ci and consider it as the representative
frame of the ith cluster. We then feed all extracted keyframes into the VLM-based captioner Cap(·)
[85] and obtain a text caption ti = Cap(Fi) for each cluster.
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Figure 2: A detailed view of VideoTree. To construct the tree structure, we begin with Adaptive
Breadth Expansion (Step 1), which dynamically extracts query-related key information by considering
both video and question inputs. Then, starting from the highly relevant root nodes, we explore deeper
into the tree branches with Relevance-guided Depth Expansion (Step 2), re-clustering at each level
to capture finer visual cues. Finally, we gather the selected nodes (keyframes), caption them, and
arrange them in temporal order for LLM reasoning (Step 3).

Relevance Scoring. After obtaining the keyframe captions ti, we use the LLM to decide whether the
extracted key information from each cluster is sufficient for the LLM to answer the given query. To
this end, we feed all cluster captions {ti ∀i ∈ [1, . . . , k]} from the last operation and the video query
Q into the LLM and output a set of relevance scores {ri ∀i ∈ [1, . . . , k]} for each cluster, where ri is
the relevance of the ith cluster. To obtain each ri, we prompt an LLM with the VLM captions and the
query and ask it to assign each caption a relevance score of 1 to max_relevance, with 1 being least
relevant. See Tab. 8 for all prompts.

Then, we set a maximum value for the number of clusters (max_breadth) and a requirement of the
high-relevance cluster number (selected based on validation set) for adaptively extract the keyframe
information within each cluster. If the number of high-relevance clusters is below the requirement,
that indicates the information extracted from the current set of keyframes is insufficient for the LLM
to answer the video query. In that case, we increase the number of clusters k and repeat the clustering,
captioning, and relevance scoring operations. If the number of high-relevance clusters meets the
requirements or the number of clusters reaches max_breadth, we append the extracted clusters with
their keyframes to the first layer of the tree and continue to the next step (see more details in lines
21-26 in Algorithm 1).

3.2 Relevance-Guided Depth Expansion

Existing keyframe selection approaches [79, 61, 62] typically treat the selected frame as an unstructured
list, neglecting potential internal structures within the video information. Specifically, these methods
overlook that certain video regions are information-rich and require detailed sampling, whereas other
areas, irrelevant to the query, may only need coarse or minimal sampling. The uniform or random
sampling approach results in a long, redundant, and disorganized caption list that can confuse the
LLM, ultimately limiting its ability to reason effectively and failing to provide a clear depiction of
the video’s structure. Thus, as shown in Step 2 of Fig. 2, we build a query-adaptive hierarchical
video representation on top of the clusters from the first breadth expansion step. Specifically, we
expand the depth of the tree according to relevance score of each cluster from the first step. The
intuition is that for high-relevance clusters, the LLM requires more detailed, granular information,
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while for low-relevance clusters, more information could actually lead to irrelevant details and could
overwhelm the LLM, leading to incorrect reasoning.

The relevance of a top-level node (cluster) informs how many levels of more granular information we
will extract from it, i.e. how many children/grandchildren the node will have. Since the relevance
score r is one of [1, 2, ...,max_relevance], we expand the tree based on the remaining relevance of
the parent node. Thus, the value of max_relevance is equal to the max depth max_depth of the
tree-based video representation. Specifically, we do not expand nodes with low relevance (ri = 1)
further. For nodes with medium or high relevance (greater than 1), we re-cluster their constituent
frames into w sub-clusters, where w denotes the branch-width of the tree, on the premise that these
more relevant clusters should have more keyframes allocated to them. We then add those sub-clusters
as children in the tree, giving them a relevance that is one less than their parent’s. We recursively
repeat this process until all nodes are leaf nodes with relevance 1 (see lines 2-12 in Algorithm 1). After
the breadth and depth expansion on the tree, we obtain the adaptive hierarchical video representation
for LLM reasoning over the long video.

3.3 LLM Video Reasoning

Finally, in order to use the LLM’s ability on video reasoning, we need to present the LLM with
a text-based video description. To this end, we traverse the nodes of the tree starting at the roots
and expanding to the leaves, extracting keyframes from the tree’s clusters at all levels and passing
them into the VLM captioner to obtain keyframe captions. We then sort these keyframe captions in
temporal order and concatenate them into a textual description of the video. Finally, we pass this
description and the input query to the LLM and output the final answer (see line 38-40 in Algorithm 1)
Our prompt is in Tab. 9.

4 Experimental Setup

Tasks & Datasets. We test our VideoTree framework on three diverse long-form video question-
answering benchmarks: (1) EgoSchema [40], a long-range video question-answering benchmark
consisting of 5K multiple choice question-answer pairs spanning 250 hours of video and covering a
wide range of human activities. Our ablation studies are conducted on the official validation set of
EgoSchema which contains 500 questions (referred to as the EgoSchema Subset). The videos are 180s
long on average. (2) NExT-QA [73], a video question-answering benchmark for causal and temporal
reasoning. It contains 5440 videos with an average length of 44s and approximately 52K questions.
NExT-QA contains 3 different question types: Temporal (Tem.), Causal (Cau.), and Descriptive
(Des.). (3) IntentQA [25] contains 4,303 videos and 16K multiple-choice question-answer pairs
focused on reasoning about people’s intent in the video. We perform a zero-shot evaluation on the
test set containing 2K questions. The videos are more than 44s in average length.

Implementation Details. We adopt GPT-41 [43] as our LLM. Following VideoAgent [62], we
leverage EVACLIP-8B [52] as our visual encoder and CogAgent [13] as the captioner for NExT-QA
benchmark. Following LLoVi [83], we use LaViLa [85] as our captioner for the EgoSchema
benchmark. Similar to [83], we use LLaVA1.6-7B [35] as our captioner for the IntentQA dataset. For
clustering, we use kmeans_pytorch Library 2. The best setting for max_breadth, max_depth, and
branch_width on the EgoSchema validation set is 32, 3, and 4 and for NExT-QA and IntentQA, we
set the hyper-parameter as 8, 3, and 2. We ablate the hyper-parameter choices in detail in Sec. A. We
also provide additional implementation details in Appendix Sec. C, including detailed prompting
information for VideoTree.

Baselines. We compare VideoTree with relevant baselines from previous work, including models
based on video transformers [2, 44, 63, 64], open-source LLMs [79, 47], and those utilizing proprietary
models, including the methods using GPT-3.5 [9], GPT4 [83, 11, 62], PaLM-2 [41] and GPT-4V [20].

Evaluation Metrics. We evaluate VideoTree on all datasets under the multiple-choice QA setting.
We utilize standard accuracy metrics for all experiments.

1version 1106
2https://github.com/subhadarship/kmeans_pytorch
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5 Experiments

5.1 Comparison with State-of-the-art Approaches

Table 1: Comparison with other methods on EgoSchema, NExT-QA, and IntentQA datasets. We
compare our VideoTree framework with three types of existing works, including video transformer
models, open-source LLM-based models, and proprietary LLM-based models.

Model LLM EgoSchema NExT-QA IntentQA
Sub. Full Tem. Cau. Des. Avg. Full

Video Transformer Models
LongViViT [44] - 56.8 33.3 - - - - -
MC-ViT-L [2] - 62.6 44.4 - - - 65.0 -
InternVideo [63] - 32.1 - 43.4 48.0 65.1 49.1 -
InternVideo2 [64] - 41.1 - - - - - -

Based on open-source LLMs
SeViLA [79] FlanT5-3B 25.7 22.7 61.3 61.5 75.6 63.6 60.9
MVU [47] Mistral-13B 60.3 37.6 55.4 48.1 64.1 55.2 -

Based on proprietary LLMs
ProViQ [9] GPT-3.5 57.1 - - - - 64.6 -
LLoVi [83] GPT-4 57.6 50.3 61.0 69.5 75.6 67.7 64.0
VideoAgent [62] GPT-4 60.2 54.1 64.5 72.7 81.1 71.3 -
VideoAgent [11] GPT-4 62.8 - - - - - -
MoReVQA [41] PaLM-2 - 51.7 64.6 70.2 - 69.2 -
IG-VLM [20] GPT-4V 59.8 - 63.6 69.8 74.7 68.6 64.2

VideoTree (Ours) GPT-4 66.2 61.1 67.0 75.2 81.3 73.5 66.9

Tab. 1 shows a comparison of the existing works and VideoTree on three diverse video question-
answering benchmarks, including EgoSchema, NExT-QA, and IntentQA.

EgoSchema. On the long-form video question-answering dataset EgoSchema [40], our VideoTree
framework substantially outperforms the existing GPT-4-based approaches, including LLoVi [83] and
VideoAgent [11, 62]. Specifically, we outperform the state-of-the-art VideoAgent methods [11, 62]
with 3.4% and 7.0% improvements on the subset and full test set, verifying the effectiveness of the
proposed adaptive tree-based representation on long video understanding. Moreover, VideoTree
outperforms the GPT-4V-based method IG-VLM [20], and surpasses strong multimodal LLM without
using an expensive end-to-end multimodal model.

NExT-QA. On the NExT-QA benchmark, VideoTree achieves 73.5% zero-shot accuracy on the
validation set, outperforming existing state-of-the-art method VideoAgent [62] by 2.2% on average
accuracy using the same captioner and LLM. Furthermore, VideoTree again outperforms the
GPT-4V-based method IG-VLM [20]. Notably, NExT-QA contains various video queries, including
temporal modeling (Tem.), causal reasoning (Cas.), and descriptive questions (Des.). We show that
the VideoTree framework surpasses the existing approaches [83, 62] on all query types, indicating
VideoTree improves the LLM reasoning ability on long videos under different scenarios.

IntentQA. On IntentQA, our VideoTree framework achieves 66.9% zero-shot accuracy on the
test set, surpassing the existing approaches with 2.7% improvements. This result shows that
VideoTree improves performance in answering questions about intent, which is challenging since
intent understanding [25] requires the model to understand the various video contexts, including the
immediate communicative context, the shared experience, and the commonsense.

5.2 Analysis

Below, we provide a detailed analysis of our VideoTree framework. All quantitative analyses
are conducted on the validation subset of the EgoSchema dataset. First, we analyze the tradeoff
between efficiency and effectiveness, comparing VideoTree to the LLoVi baseline [83]. Here, we
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show that our method has better efficiency and performance across all settings. We then verify the
effectiveness of the query-adaptive hierarchical video representation by comparing against different
alternative representations. Finally, we visualize the output trees from VideoTree and show the
clusters VideoTree chooses to expand, qualitatively supporting its quantitative gains. We also provide
an extensive ablation study (including hyper-parameter analysis and the design choices of VLM/LLM)
in Appendix Sec. A.

5.2.1 Efficiency-Effectiveness Analysis

In Fig. 3, we plot the Pareto curve between efficiency and performance, i.e. we analyze the
relationship between the efficiency (caption numbers) and effectiveness (EgoSchema performance)
of the VideoTree framework and compare with the baseline approach [83]. Specifically, using the
same captioner and LLM, we compare VideoTree, which features an adaptive tree-based video
representation, against a uniform baseline. Specifically, we use the uniformly-sampled frame caption
list from the LLoVi baseline [83]. Firstly, across all frame settings, VideoTree outperforms LLoVi
by 2.5% on average. This indicates that our framework substantially improves the LLM reasoning
ability over long videos under different frame budgets. Furthermore, we also see that VideoTree
achieves comparable performance with the best baseline (32 frames) using only 15.6 frames on
average, indicating the efficiency of the proposed framework. In other words, VideoTree can do
more with less, needing only half as many frames to achieve comparable performance.

20 40 60 80
Frame Number
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58

60

62

64

66

ES
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LLoVi
Our Method

Figure 3: Analysis of the efficiency and effective-
ness relationship for VideoTree. We compare
our VideoTree framework with LLoVi [83] un-
der different frame number settings.

Table 2: Ablation for the effectiveness of the adap-
tive tree-based representation of the VideoTree
framework. We compare our Adaptive Tree
representation (Ada-Tree) with the uniform sam-
pling baseline (Baseline-64 and Baseline-180)
and the static tree representation (Static Tree)
which builds the tree representation with a fixed
tree breadth and depth.

Representation ES Acc↑ #Frame↓
Baseline-64 62.4 64
Baseline-180 60.6 90
Static Tree 63.8 112.8
Ada-Tree (ours) 66.2 63.2

5.2.2 Effectiveness of the Adaptive Tree Representation

In Tab. 2, we verify the effectiveness of the proposed adaptive tree-based representation on a
long video understanding task, comparing with the uniform sampling baseline [83] and other tree
representations. First, the results show that both tree representations (adaptive tree and static tree)
outperform the uniform sampling baseline, indicating the importance of the hierarchical nature of
the video representation. Furthermore, we compare our adaptive tree representation with a static
tree variant, which is a tree representation obtained using the same visual clustering process as
our adaptive tree-based representation but without any query adaptation. Instead of dynamically
extracting query-related information using a relevance score, the static tree builds always use the
maximum value of the width and depth for all branches, resulting in a full tree. This representation
is hierarchical, but not adaptive. The results show that both tree representations (static/adaptive)
outperform the uniformly sampled caption list, which confirms the importance of having a structural
representation for long video understanding using LLM. We show the adaptive tree representation we
use in VideoTree outperforms the static tree in both efficiency (63.2 frames vs 112.8 frames) and
effectiveness (66.2% vs 63.8%), highlighting the importance of having an efficient and query-related
representation for LLM reasoning over long videos.
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5.2.3 Qualitative Analysis

2 3 211 1 12
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dustbin

#C C removes dish 
washer in the 
fridge

#C C puts the 
chopping board in 
the drawer

#C C closes the 
washing machine

#C C pulls the 
machine

[Question]: What is the overall sequence of tasks c performs in the 
video, and how do they relate to each other?
Option A: C efficiently makes the bed, diligently does the laundry, 
and then goes for a refreshing walk.
Option B: C makes the bed, does the laundry, and watches tv.
Option C: In the morning, c makes the bed, adeptly does the laundry, 
and diligently goes to their work.
Option D: C diligently makes the bed, thoroughly does the laundry, 
and finally goes to rest in bed.
Option E: C makes the bed, does the laundry, and makes a cup of tea.

Scores

Figure 4: Qualitative examples of VideoTree keyframes and captions selection. Red options are
answered wrongly with uniformly sampled 32 frames. Green options are answered correctly with
VideoTree. Best viewed in color. We include additional visualization in Appendix Sec. D.

In Figure 4, we visualize qualitative results from VideoTree. Specifically, we show the keyframes and
their captions extracted by our adaptive tree representation given a video query. This example is drawn
from EgoSchema, and shows the query format, which consists of a query and multiple-choice answers.
With the proposed VideoTree strategy, we can split a complex multi-scene video (e.g.cleaning house
across rooms) into several key scenes via visual clustering and determine the most query-relevant
scene via the relevance score. We then can obtain more fine-grained visual cues by descending into
each relevant cluster (Levels 2 and 3 in Figure 4). For example “C opens a washing machine” is
deemed highly relevant to the question, which asks about the sequence of events. At the same time,
frames like “C moves around” are deemed irrelevant to the query and not expanded. In the end,
VideoTree shows a dynamic ability to select relevant segments and can answer the given question
correctly with only 50% of the baseline’s 32 input captions. The baseline (fixed uniformly sampling)
fails to correctly answer the question, sampling a large number of redundant and irrelevant frames.
We also provide additional qualitative results in Appendix Sec. D.

6 Conclusion

After noting three key problems with dense sampling, we proposed VideoTree, an adaptive and
hierarchical strategy for sampling frames, captioning them, and reasoning with an LLM to answer
questions about long videos. VideoTree resulted in substantial performance increases on three popular
datasets (EgoSchema, NExT-QA, and IntentQA), while also improving efficiency by captioning fewer
frames than uniform sampling. We analyzed the role of the adaptive cluster selection we implement in
VideoTree, finding that it is crucial to strong performance. In our qualitative analysis, we showed that
given a complex multi-scene video and its query, our VideoTree framework is capable of extracting
key scenes and zooming into more detailed information that is highly related to the query.
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Limitations and Broader Impact

Limitations. Like all LLM-based video-reasoning systems (including dense sampling) our method
is limited by the ability of the captioner to accurately capture the contents of sampled frames. However,
our method’s modular nature means that as captioners improve, we can easily include them into the
VideoTree framework; similarly, we can use increasingly strong LLMs as the reasoning backbone of
VideoTree. While VideoTree is training-free, it includes a small number of hyperparameters. In
Sec. A, we ablate these hyperparameters, showing that VideoTree outperforms the uniform-sampling
baseline regardless of the choice of max depth and branch width. Thus, while better hyperparameters
can benefit the method, even with suboptimal settings VideoTree outperforms the uniform baseline.

Broader Impact. Our results indicate that we can have the best of both worlds: improved accuracy
and improved efficiency. Given the importance of long video reasoning tasks, improving accuracy
has obvious broader implications for building more usable video reasoning systems, which could
contribute to a wide variety of positive applications. Efficiency improvements also contribute to the
applicability of long video systems, as reducing latency and computational cost can speed up adoption.
Furthermore, since both VLM captioners and LLM reasoners generally improve with increased scale,
reducing the number of calls to them will become increasingly important; we expect the efficiency
benefits coming from our method to play an even larger role in the future. Our work does not have
any particularly relevant potential for negative applications or misuse beyond the standard caveats that
apply to all machine learning systems.
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Appendix

In this Appendix, we present the following:

• Additional ablation study for our VideoTree framework (Sec. A).
• The detailed algorithm for VideoTree (Sec. B).
• Additional implementation details (Sec. C).
• Additional qualitative analysis (Sec. D).
• License information (Sec. E).

A Additional Ablation Study

In this section, we report additional ablation studies for our VideoTree framework. First, we ablate
the effect of the different tree settings for VideoTree. Then, we analyze the effect of different
VLM/LLM designs for VideoTree.

Hyperparameter Analysis. In Tab. 3, we study the effect of the max depth of the tree-based
representation for the VideoTree. The results show that as depth increases, the performance increases,
showcasing the importance of depth expansion. The max performance is reached when the max
depth is set to 3, VideoTree obtains the best performance. However, having a larger depth hurts
VideoTree’s performance; note that all settings still outperform uniform sampling.

Table 3: The effect of different settings for
max depth of VideoTree. We show that
when the max depth is set to 3, VideoTree
obtains the best performance on the subset of
the EgoSchema dataset. We also show that
decreasing the max depth can make the model
more efficient while retaining strong perfor-
mance, outperforming all existing approaches.

Max Depth ES Acc↑ #Frame↓
1 63.4 32
2 64.6 46.5
3 66.2 63.2
4 62.6 89.1
Uniform Baseline 61.2 180

Table 4: The effect of different settings for
branch width of VideoTree. The results
show that when the branch width is set to 4,
VideoTree achieves the best performance on
the EgoSchema subset. Reducing the branch
width can make the model more efficient while
retaining performance, outperforming all ex-
isting approaches.

Branch Width ES Acc↑ #Frame↓
2 64.4 43.5
3 65.0 54.6
4 66.2 63.2
5 64.2 72.5
Uniform Baseline 61.2 180

Next, in Tab. 4, we study the effect of the branch width of the tree-based representation for the
VideoTree. The best performance is obtained when the branch width is set to 4. As with depth,
excessive branch width reduces the VideoTree performance due to the information overwhelming
to the LLM; however, even with the worst branch width setting, VideoTree still outperforms the
baseline.

In Tab. 5, we study the effect of the max breadth of the adaptive tree-based representation. The
results indicate that even with a smaller max tree breadth, VideoTree achieves good performance
while using much fewer frames. Increasing the breadth generally increases performance, with the
best performance when the max breadth is set to 32. However, having an excessive max breadth
leads to worse results, suggesting that incorporating too much information in the adaptive tree-based
representation limits the LLM reasoning ability. This links back to the intuition of having an efficient
representation for the LLM reasoning over long videos.

VLM/LLM Choice. We ablate the design choice of captioner and LLM for the VideoTree framework
in Tab. 6. The results show that with a better captioner and LLM, VideoTree can achieve better
performance on long video understanding tasks, indicating the potential VideoTree to improve
as its modules become more advanced. Notably, our GPT-3.5 variant substantially outperforms
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Table 5: The effect of different settings for the
max breadth of the first level of the tree. Re-
sults show that when the max breadth is set to
32, VideoTree obtains the best performance.
Reducing the max breadth can improve effi-
ciency while retaining performance.

Max Breadth ES Acc #Frame
8 62.0 36.9
16 64.4 49.0
32 66.2 63.2
64 62.4 94.6

Table 6: The effect of different design choices
of the captioner and LLM for VideoTree on
EgoSchema subset. The results show that
with better LLM and a suitable captioner, our
VideoTree framework can boost the long
video reasoning ability of the LLM.

Captioner LLM ES Acc
BLIP-2 [24] GPT-3.5 50.8
LaViLA [85] GPT-3.5 57.6
BLIP-2 [24] GPT-4 58.8
LaViLA [85] GPT-4 66.2

existing methods with the same LLM (VideoAgent [62] 48.8%, LLoVi [83] 51.8%), achieving 57.6%
accuracy on EgoSchema subset.

Error Bar Analysis. We provide the error bar analysis for our main results in Tab. 7.

Table 7: Comparison with other methods on EgoSchema, NExT-QA, and IntentQA datasets with
error bar analysis.

Model LLM NExT-QA EgoSchema IntentQA
Tem. Cau. Des. Avg. Sub. Full Full

Video Transformer Models
LongViViT [44] - - - - - 56.8 33.3 -
MC-ViT-L [2] - - - - 65.0 62.6 44.4 -
InternVideo [63] - 43.4 48.0 65.1 49.1 32.1 - -
InternVideo2 [64] - - - - - 41.1 - -

Based on open-source LLMs
SeViLA [79] FlanT5-3B 61.3 61.5 75.6 63.6 25.7 22.7 60.9
MVU [47] Mistral-13B 55.4 48.1 64.1 55.2 60.3 37.6 -

Based on proprietary LLMs
ProViQ [9] GPT-3.5 - - - 64.6 57.1 - -
LLoVi [83] GPT-4 61.0 69.5 75.6 67.7 57.6 50.3 64.0
VideoAgent [62] GPT-4 64.5 72.7 81.1 71.3 60.2 54.1 -
VideoAgent [11] GPT-4 - - - - 62.8 - -
MoReVQA [41] PaLM-2 64.6 70.2 - 69.2 - 51.7 -
IG-VLM [20] GPT-4V 63.6 69.8 74.7 68.6 59.8 - 64.2

VideoTree (Ours) GPT-4 67.0 (±0.5) 75.2 (±0.4) 81.3 (±0.8) 73.5 (±0.4) 66.2 (±1.2) 61.1 66.9(±0.6)

B Detailed Algorithm

In Algorithm 1, we present the algorithm behind VideoTree.

C Additional Implementation Details

Prompt Details. We provide detailed prompts for the relevance scoring prompt in Tab. 8 and LLM
reasoning prompt in Tab. 9 on the EgoSchema benchmark.

Experiments Compute Resources. All experiments are conducted on 4 (or less) NVIDIA-A6000
GPU and Azure Cloud APIs (for OpenAI models). The minimal GPU memory requirement is 24GB.
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Algorithm 1 VideoTree
Require:

V : Video frames from 1 to T
Q: Video query
k_init: Initial number of clusters
relevance_threshold: Minimum relevance score for significant clusters
min_relevance: Minimum number of relevant clusters required
max_k: Maximum number of clusters allowed
w: Branch width of the tree structure

1:
2: function ClusterAndAdd(parent, relevance)
3: if relevance ≤ 1 then
4: return // max depth reached
5: end if
6: subcluster, subassignment ← VideoClustering(parent.frames,w) // cluster the parent

node frames into two clusters
7: for j ∈ {1, . . . , |subcluster|} do
8: cluster ← subcluster[j]
9: added_node ← tree.add_node(parent.name, cluster, relevance) // add a node with

parent, node content, and relevance
10: ClusterAndAdd(added_node, relevance− 1) // recursively repeat for each child node
11: end for
12: end function
13: function VideoTree(V, k_init, relevance_threshold,min_relevance,max_k)
14: tree← Tree()
15: tree.add_node("root",∅,−1) // start with root node
16: k ← k_init
17: clustering, assignment← VideoClustering(V, k) // initial clustering into k clusters
18: relevance← RelevanceScore(clustering)
19: n_relevant← |{x ∀x ∈ relevance : x > relevance_threshold}| // get number of clusters

over threshold
20: // breadth-wise expansion
21: while n_relevant < min_relevance & k ≤ max_k do
22: k ← k ∗ 2 // double the number of clusters until we have enough over the threshold
23: clustering, assignment← VideoClustering(V, k)
24: relevance← RelevanceScore(clustering)
25: n_relevant← |{x ∀x ∈ relevance : x > relevance_threshold}|
26: end while
27: for i ∈ {1, . . . , |clustering|} do
28: cluster, rval← clustering[i], relevance[i]
29: tree.add_node("root", cluster, rval) // add each cluster as a node with root as its parent
30: end for
31: // iterate over top-level clusters and descend depth-wise
32: for node in tree.nodes() do
33: if node.rval ≤ 1 then
34: continue
35: end if
36: ClusterAndAdd(node, node.relevance) // descend into each node
37: end for
38: frames_to_caption← tree.get_all_nodes()
39: captions← GetCaptions(frames_to_caption)
40: pred_answer ← LLMReasoning(captions, query)
41: return pred_answer
42: end function
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Table 8: VideoTree with relevance scoring prompt on EgoSchema.

User
You are presented with a textual description of a first view video clip, it consists of about
caption_number frame captions sparsely sampled from the video (#C means the first
person view, and #O indicates another). The ultimate goal is to answer a question related to
this video, choosing the correct option out of five possible answers.
It is crucial that you imagine the visual scene as vividly as possible to enhance the accuracy of
your response. After selecting your answer, rate your confidence level in this choice on a scale
from 1 to 100, where 1 indicates low confidence and 100 signifies high confidence. Please
provide a concise one-sentence explanation for your chosen answer. If you are uncertain
about the correct option, select the one that seems closest to being correct. Meanwhile,
could you provide a relevance score for each frame caption to evaluate their relevance with
the query-answering process. The score is between 1,2,3, where 1 indicates low relevance
and 3 signifies high relevance. Please return the relevance score in the format of a list of
caption_number scores.
Examples: Examples
Description: Captions
Question: Question
Options: A: Option-A. B: Option-B. C: Option-C. D: Option-D. E: Option-E.
The prediction, explanation, confidence and frame relevance are (please response in the
format of ’prediction:, explanation:, confidence:, frame relevance:’)

Assistant
prediction, explanation, confidence, frame relevance

D Additional Qualitative Analysis

In Fig. 5 we show another visualization from VideoTree. Here, VideoTree localizes a single key
activity (embroidering a cloth) taking place in the video and dynamically expands its constituent
frames to answer the question correctly using a minimal number of frames.

E License

We will make our code and models publicly accessible. We use standard licenses from the community
and provide the following links to the licenses for the datasets, codes, and models that we used in this
paper.

LLoVi: MIT

LifelongMemory: MIT

NExT-QA: MIT

IntentQA: IntentQA

EgoSchema: Ego4D license

Kmeans-pytorch: MIT

PyTorch: BSD-style

Huggingface Transformers: Apache
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https://github.com/CeeZh/LLoVi/blob/main/LICENSE
https://github.com/Agentic-Learning-AI-Lab/lifelong-memory/blob/main/LICENSE
https://github.com/doc-doc/NExT-QA/blob/main/LICENSE
https://github.com/JoseponLee/IntentQA?tab=readme-ov-file
https://ego4ddataset.com/ego4d-license/
https://github.com/subhadarship/kmeans_pytorch/blob/master/LICENSE
https://github.com/pytorch/pytorch/blob/master/LICENSE
https://github.com/huggingface/transformers/blob/master/LICENSE


Table 9: VideoTree with LLM reasoning prompt on EgoSchema.

User
You are presented with a textual description of a first view video clip, it consists of frame
captions sparsely sampled from the video (#C means the first person view, and #O indicates
another). The ultimate goal is to answer a question related to this video, choosing the correct
option out of five possible answers.
It is crucial that you imagine the visual scene as vividly as possible to enhance the accuracy of
your response. After selecting your answer, rate your confidence level in this choice on a scale
from 1 to 100, where 1 indicates low confidence and 100 signifies high confidence. Please
provide a concise one-sentence explanation for your chosen answer. If you are uncertain
about the correct option, select the one that seems closest to being correct.
Examples: Examples
Description: Captions
Question: Question
Options: A: Option-A. B: Option-B. C: Option-C. D: Option-D. E: Option-E.
The prediction, explanation, and confidence is (please response in the format of ’prediction:,
explanation: ,confidence:’)

Assistant
prediction, explanation, confidence

Torchvision: BSD 3-Clause

SKLearn: BSD 3-Clause
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1

#C C crochets 
the garment

#C C Adjusts a 
piece of knitted 
fabric on a lap

#C C folds the 
fabric

#C C picks up 
the scissors 
from the table

#C C picks a 
needle from the 
fabric

1 1 1 1 1 31

#C C removes 
the crochet hook 
from the fabric

#C C aligns the 
fabric

#C C lifts the 
cloth

#C C lifts the 
cloth

#C C picks the 
cloth

#C C lifts the 
cloth

#C C lifts the 
cloth

#C C lifts the 
cloth

#C C stretches 
the crochet fabric

[Question]: What was the primary activity taking place in the 
video, and how did it lead to secondary activities related to it?

A: Currently, c is skillfully knitting a beautiful cloth by hand.
B: Currently, person c is diligently sewing a piece of cloth.
C: C is embroidering a cloth.
D: C is crocheting a cloth.
E: Currently, c is skillfully weaving a beautiful cloth fabric.

Scores

Figure 5: Qualitative examples of VideoTree keyframes and captions selection. Red options
are answered wrongly with uniformly sampled frames. Green options are answered correctly by
VideoTree. Best viewed in color.
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