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(a) A set of curve segments
that are closed under sym-
metry operations. The yel-
low curve shows the ba-
sic element of the repeating
curve segment for this case.

(b) The curve segments in a
2.5D fundamental domain,
which is rectangular prism.

(c) Voronoi decomposition
of fundamental domain
using curve segments as
Voronoi sites. Yellow tile in
the center is a space filling
tile.

(d) Assembly of space filling
tiles by its replicas. The yel-
low tile is removed to show
the inner structure.

(e) Physical assembly of 3D
printed tiles in a different
configuration, where flexi-
ble dark green piece plays
the role of locking this con-
figuration.

Figure 1: The computational pipeline for the geometric design and fabrication of woven tiles is shown. This particular example
illustrates the tiles generated using the plain weave symmetries filling 2.5D space. The Figure 1c shows the curves in fundamental
domain. The yellow curve shows the basic element of the repeating curve segment. All other curve segments in the fundamental
domain can be obtained by rotating and translating this yellow curve. The Figure 1d shows overall assembly by removing the tile
that corresponds to yellow curve. We obtained the shapes of top surfaces also with Voronoi decomposition.

Abstract

In this paper, we introduce a geometric design and fabrication frame-
work for a family of interlocking space-filling shapes which we call
bi-axial woven tiles. Our framework is based on a unique combina-
tion of (1) Voronoi partitioning of space using curve segments as the
Voronoi sites and (2) the design of these curve segments based on
weave patterns closed under symmetry operations. The underlying
weave geometry provides an interlocking property to the tiles and
the closure property under symmetry operations ensure single tile
can fill space. In order to demonstrate this general framework, we
focus on specific symmetry operations induced by bi-axial weaving
patterns. We specifically showcase the design and fabrication of
woven tiles by using the most common 2-fold fabrics called 2-way
genus-1 fabrics, namely, plain, twill, and satin weaves.
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1 Introduction

1.1 Motivation

Space-filling shapes have applications in a wide range of areas from
chemistry and biology to engineering and architecture [48]. Using
space-filling shapes, we can compose and decompose complicated
shell and volume structures for design and architectural applications.
Space-filling shapes that are also tileable, can be further provide
an economical way for constructing structures because they can be
mass-produced. Despite their practical importance, the variety of
2.5D and 3D space-filling tiles at our disposal are quite limited. The
most commonly known and used space-filling shapes are usually reg-
ular prisms such as rectangular bricks since they are relatively easy
to manufacture and are widely available. However, reliance on regu-
lar prisms, significantly constrains our design space for obtaining
reliable and robust structures [16, 45, 58, 70, 71], particularly when
current additive manufacturing techniques are gradually becoming
more affordable across engineering and construction domains. In
this paper, we introduce a geometric design and fabrication frame-
work for a new class of interlocking space-filling shapes which we
call bi-axial woven tiles.

Systematic design of modular, tileable and, simultaneously inter-
locking building blocks is a challenging task. We find that there is



currently no principled approach that would allow one to generate
such building blocks. To this end, we present a general conceptual
framework that takes as input a set of curves determined through
fabric weave patterns and uses these curves as Voronoi sites to parti-
tion space. This allows one to decompose space into any arbitrary
partition induced by the input curves wherein each partition can be
considered as a tile.

1.2 Inspiration & Rationale

While our framework is general, we specifically chose bi-axial weave
patterns to demonstrate our approach. The inspiration for using bi-
axial weave patterns came from the fact that woven fabrics can form
strong structures from relatively weak threads through interlacing
(or interlocking) [49]. Therefore, woven structures have been known
to have several applications ranging from textiles to composite ma-
terials. Using this as our rationale, we intended to investigate the
possibility of constructing tiled assemblies of interlocking space-
filling shapes that leverage the thread interlacing process from woven
fabrics, specifically 2-fold structures. The advantage of choosing
weave patterns is that they are closed under symmetry operations
thereby allowing us to systematically and intuitively design and
construct an entire family of interlocking space-filling shapes —
bi-axial woven tiles. In addition to providing simple and intuitive
control, woven tiles also relate to the structural characteristics of
woven fabrics, which have been known to have several applications
ranging from textiles to composite materials.

In addition to the potential advantages rooted in mechanical be-
havior, 2-fold fabric structures are particularly useful for our purpose
because of their geometric simplicity and intuitiveness. They pro-
vide a simple approach for designing interlocking space-filling tiles.
A particular subset of 2-fold fabrics, known as 2-way and genus-1,
are particularly useful for simple and intuitive control. They can be
constructed using regular square grid as the guide shape and they
include most popular weaving structures such as plain, twill, and
satin.

1.3 Summary of Approach

Using the properties of 2-fold 2-way genus-1 fabrics, our approach
is to obtain desired curves segments that are closed under symmetry
operations. One simplification of these fabrics is that each curve
segment can be chosen to be planar (see Figure 1a). In addition,
we can define all well-known fabric patterns such as plain, twill
and satin using only three parameters. The fundamental domain of
these symmetry operations is a prism with a square base because
of 2-way and genus-1 property (see Figure 1b). In other words, we
only have to compute Voronoi decomposition of the fundamental
domain. Then, the Voronoi region of the curve segment in the center,
shown as yellow in Figure 1a, is used as the space-filling tile.

We present a simplified method to compute Voronoi decompo-
sition of fundamental domain with these curve segments. We first
sample each curve segment to obtain a piece-wise linear approxima-
tion. We compute 3D Voronoi decomposition for each sample point.
This process gives us a set of convex Voronoi polyhedra for the
same curve segment. The union of these convex polyhedra gives us
desired space filling tile. We identify simple and robust algorithms
to take union of all convex Voronoi polyhedra that comes from the
same piece-wise linear curve segment. We also developed a tile
beautification process inspired by the fact that the points of equal
distance to a planar surface and a line parallel to the surface lie on
a parabolic cylinder. We add two planar surfaces that sandwich the
control curves from top and bottom also as Voronoi sites. Resulting
Voronoi decomposition automatically provides nice boundaries that
consist of parabolic regions. The 2D equivalent of the idea is shown
in Figure 2.

To demonstrate our approach, we have designed many interlock-
ing and space-filling tiles. We call them woven tiles since 2-fold

(a) Voronoi decomposition two en-
closing lines with S shape pieces that
forms a square wave.

(b) Voronoi decomposition two en-
closing lines with S shape pieces that
forms a triangular wave.

Figure 2: A 2D example of beautification of boundaries. Note
that inclusion of two enclosing lines allows to create curved outer
boundaries in Voronoi decomposition. The effect is more visible with
interaction of the sharp corners of triangular wave. In 3D, since we
use a surface and curve, we obtain curved boundaries as ornament.

fabrics refers woven structures. This terminology is also helpful
since we can use weaving terminology to describe the variety of
tiles produced by this approach as plain, twill or satin woven tiles.
Because of their symmetry properties, these tiles can be assembled
in more than a single configuration. Some assembly structures can
even create loops as shown in Figure 1e. For these cases, we have
shown that it is possible to lock the pieces using one flexible piece.

1.4 Our Contributions
Our overarching contribution in this work is a general conceptual
framework for generating space-filling and interlocking tiles based
on the fundamental principles of fabric weave patterns in conjunction
with space decomposition using 3D Voronoi partition. Based on this
framework, we make four specific contributions as listed below:

1. We use our general framework to develop a simple and intuitive
methodology for the design and construct Bi-Axial Woven Tiles,
space-filling tiles derived from the symmetries induced by woven
fabrics The basic idea is to use curves representing 2-way 2-fold
weaving patterns (such as plain, twill, and satin) as Voronoi sites
for decomposing 3-space.

2. We introduce a simple and effective algorithm for approximating
the Voronoi decomposition of space with labelled curve segments
as the Voronoi sites. The algorithm uses a simple process that
first discretizes a curve segment into a sequence of points and
then constructs a Voronoi cell of the curve simply by computing
the union of constitutive Voronoi cells for each point on the curve.
The first advantage of this method is its simplicity — it allows
us to directly use standard Voronoi cell computation for points
for curves. Secondly, it allows for an elegant computation of the
Voronoi cell surface as a triangle mesh using a simple topological
operation — removing the internal polygonal faces of adjacent
constitutive cells of points.

3. We demonstrate several cases of Bi-Axial Woven Tiles and demon-
strate techniques for the fabrication and assembly these tiles. We
show the fabrication these tiles with a variety of materials (plas-
tic, wax, and metal) by using different 3D printing, molding, and
casting techniques. Furthermore, we demonstrate that these tiles
can be assembled more than single configuration. From the same
group, it is even possible to obtain two assemblies with different
chirality (i.e. mirrored versions of each other).

4. Finally, we present a comparative structural evaluation of plain,
twill, and satin tile assemblies. The finite element analyses
(FEA) of these assemblies under under planar and normal loading
conditions reveal that weaving allows distribution of planar and
normal loads across tiles through the contact surfaces, generated
with our methodology. We describe the qualitative relationship
between the symmetries induced by the weave patterns to the
stress distribution in the tiled assemblies.



2 RelatedWork
2.1 Space filling Polyhedra
Space filling polyhedra, which can be used to tessellate (or decom-
pose) a space [37], are defined as a cellular structure whose replicas
together can fill all of space watertight, i.e. without having any voids
between them [48]. While 2D tessellations and 2D space filling
tiles are well-understood [37], problems related to 2.5D and 3D
tessellations and tiles (i.e. shell and volume structures respectively)
are still perceived as difficult. The perception of difficulty of 3D
tessellations probably comes from the belief that tetrahedron can fill
space since 500 BC. In fact, many failed efforts were made to prove
this widespread belief [57].

It is now known that the cube is the only space filling Platonic
solid [25]. This partly explains the widespread use of regular prisms
as space filling tiles. We are indebted to Goldberg, whose exhaustive
cataloguing from 1972 to 1982, helped us to access all known space-
filling polyhedra [26–28]. We now know that there are only eight
space-filling convex polyhedra and only five of them have regular
faces, namely the triangular prism, hexagonal prism, cube, truncated
octahedron [72, 73], and Johnson solid gyrobifastigium [7, 43]. Five
of these eight space filling shapes are "primary" parallelohedra [14],
namely cube, hexagonal prism, rhombic dodecahedron, elongated
dodecahedron, and truncated octahedron. Space filling polyhedra is
still active research area in mathematics [56]. However, as far as we
know there exist no space filling shapes that can also interlock.

2.2 Interlocking Structures
History is rich with examples of puzzle-like interlocking structures,
which is analyzed under the names such as stereotomy [20–22],
nexorades [9, 10, 17] and topological interlocking [11, 18, 19, 68].
One of the most remarkable examples of interlocking structures is
the Abeille flat vault, which is designed by French architect and
engineer Joseph Abeille [23, 62]. Nexorades, which are also called
the Leonardo grids, are types of structures that are constructed using
notched rods that fit into the notches of adjacent rods [54, 59].

2.3 Geometry and Topology of Fabric Weaves
We observe that many interlocked structures can be viewed as knots
and links that are decomposed into curve segments. This view
simplifies the design process since we can build our framework
by borrowing concepts directly mathematics literature. It can also
provide significant intuition for the design since bi-axial textile
weaving structures, which are also called 2-fold 2-way fabrics, also
form knots and links by viewing them as structures embedded on a
toroidal surface [29, 30]. The word 2-way, which is usually called
biaxial, means that the strands run in two directions at right angles
to each other- warp or vertical and weft or horizontal. The word
2-fold means there are never more than two strands crossing each
other [6].

The popularity of 2-fold 2-way fabrics comes from the fact that
the textile weaving structures are usually manufactured using loom
devices by interlacing of two sets of strands, called warp and weft,
at right angles to each other (see Figure 3a). Since the warp and
weft strands are at right angles to each other, they form rows and
columns. We colored warp thread blue and weft threads yellow to
differentiate these two threads as shown in Figure 3c). The names
warp and weft are not arbitrary in practice. In the loom device,
the weft (also called filling) strands are considered the ones that go
under and over warp strands to create a fabric. The basic purpose
of any loom device is to hold the warp strands under tension such
that weft strands can be interwoven. Using this basic framework,
it is possible to manufacture a wide variety of weaving structures
by raising and lowering different warp strands (or in other words by
playing with ups and downs in each row).

There was no formal mathematical foundation behind bi-axial
weaving until Grunbaum and Shephard, who are known by their

(a) Top view of a weave
with uncolored threads.

(b) Same weave with
colored warp and weft
threads.

(c) Matrix view of the
same weave.

Figure 3: The fundamental domain of 2-way 2-fold fabrics is a
rectangle and they can be represented as a simple matrix. The warp
threads are colored blue and weft threads are colored yellow to
differentiate the two threads in the final matrix.

contributions to 2D tiling [36, 38], investigated the mathematical
properties of bi-axial weaving in 1980’s in a series of papers [33–
35, 37]. By viewing weaves as matrices as shown in Figure 3c,
they simplified the problem of classifying and analyzing woven
structures.

Figure 4: Three parameters, a,b and, c, are sufficient to define all of
the important 2-fold, 2-way genus-1 fabrics

Grunbaum and Shephard studied a subset of 2-fold 2-way patterns
that have a transitive symmetry group on the strands of the fabric,
which they called isonemal fabrics [34]. They identified all isonemal
patterns that hang together for periods up to 17 [33, 34]. Roth [55],
Thomas [64–66] and Zelinka [75,76] and Griswold [31,32] theoreti-
cally and practically investigated symmetry and other properties of
isonemal fabrics. The identification of the hanging-together prop-
erty is simpler for a certain type of isonemal fabrics that are called
genus-1 [34]. Genus-1 means that each row with length n is obtained
from the row above it by a shift of c units to the right, for some fixed
value of the parameter c. Genus-1 fabrics includes two special and
well known isonemal fabrics, twills and satins. A twill pattern is
the one each row of a design is obtained from the row above it by a
shift of one square in a fixed direction (either left or right). A satin
pattern is the one in which each row or column has only one blue
square in the fundamental domain given by nxn matrix. To further
simplify the design, we assume that the row with length n consists of
a number of consecutive weft (yellow) threads and b = n−b number
of consecutive warp (blue) threads as shown in Figure 4.

These [a,b,c]-fabrics are guaranteed to hang together if n = a + b
and c’s are relatively prime [35]. The most widely used fabric pat-
tern, plain weaving, is given as [1,1,1]-fabric using [a,b,c] notation.
Twills are given as either [a,b,1] or [a,b,−1]. Satins are described
by b = 1 and c2 = 1mod(a+b) [12]. The genus-1 isonemal fabrics de-
scribed by the [a,b,c] notation not only include well-known patterns
such as plain, twill, and satin but also a wide variety of additional
bi-axial weaving patterns as shown in Figure 5. For instance, for
the [3,3,2] pattern shown in the figure, the notation [a,b,c] can



represent a non-fabric that can fall-apart. Fortunately, as discussed
earlier it is easier to avoid the non-fabrics that can fall-apart unlike
a general isonemal weaving case. We can simply check whether
n = a + b and c’s are relatively prime or if any row or column has
no alternating crossing [35]. In conclusion, the [a,b,c] notation pro-
vides a simple process to design control curves for bi-axial woven
tiles. Figure 5 also demonstrates that among the [a,b,c] patterns,
the pattern is rotation-invariant only for plain, twill, and satin cases.
This is because in plain, twill, and satin cases, warp and weft patterns
are guaranteed to be mirrored versions of each other [37]. Since this
is required to obtain a single tile, we focus on only plain, twill and
satin woven tiles in this paper.

Plain: [1,1,1] Twill: [2,2,1] Twill: [3,2,−1]

Satin: [7,1,3] Unnamed: [6,7,4] Unnamed: [3,3,2]

Figure 5: Examples of isonemal genus-1 patterns that can be rep-
resented by three parameters shown in Figure 4. Unnamed pattern
[6,7,4] hang together, but [3,3,2] falls apart since 3 + 3 and 2 are
not relatively prime.

3 Theoretical Framework

To our knowledge, none of the existing approaches for producing
interlocking structures currently provide space-filling pieces simul-
taneously. For instance, Leonardo grids are simply finite cylinder
shapes that leave most space empty. Our approach in this paper is to
fill (or decompose) the space appropriately using Voronoi decom-
position. It appears that the concept of filling space using Voronoi
decomposition actually came from Delaunay’s original intention for
the use of Delaunay diagrams. He was the first to use symmetry
operations on points and Voronoi diagrams to produce space filling
polyhedra, which he called Stereohedra [15, 56]. Recent work on
Delaunay Lofts extended points to specific types of curves to obtain
more complicated space filling structures [60]. In this paper, we first
observe that any shape (a line, a curve, or even a surface) can be used
as a Voronoi site to fill the space. If our initial configurations of the
shapes are “good” such as being closed under symmetry operations,
we are guaranteed to obtain interesting decomposition of the space
— this is the real premise of this paper.

The essential conceptual contribution of allowing any type of
shapes as Voronoi sites is the extension of potential space filling
shapes from simple polyhedra to almost any shape with curved
edges and curved faces. In fact, allowing curved edges and faces
significantly extends the design space of space-filling polyhedra.
For instance, Escher’s complicated 2D space filling tiles have been
created by using curved edges [41, 51]. Another recently developed
space filling shapes, called Delaunay Lofts [60] extended the design
space by allowing curved edges and curved faces. Allowing any

type of shapes as Voronoi sites not only enables a systematic search
of desired shapes from large number of potential candidates, but also
provides a simple design methodology to construct space filling
structures.

Based on this point of view, the key parameters for the classi-
fication of space-filling shapes are essentially the topological and
geometric properties of Voronoi sites and their overall arrangements
that are usually be obtained by symmetry transformations (rota-
tion, translation, and mirror operations). The types of shapes and
transformations uniquely determine the properties of the space de-
composition. Now, based on this view point, let us again look at
Stereohedra and Delaunay lofts.

For Stereohedra, the shapes of Voronoi sites are points, 3D L2
norm is used for distance computation, underlying space is 3D and
any symmetry operation in 3D are allowed [15, 56]. Based on these
properties, we conclude that Stereohedra can theoretically represent
every convex space filling polyhedra in 3D. Since the points are used
as Voronoi sites and L2 norm is used, the faces must be planar and
edges must be straight in the resulting Voronoi decomposition of the
3D space.

For Delaunay lofts, on the other hand, the shapes of Voronoi sites
are curves that are given in the form of x = f (z) and y = g(z), for
every planar layer z = c where c is a real constant, a 2D L2 norm is
used to compute distance, underlying space is 2.5 or 3D and only 17
wallpaper symmetries are allowed in every layer z = c [60]. Based
on these properties, we conclude that Delaunay lofts (1) consists of
a stacked layers of planar convex polygons with straight edges, and
(2) in each layer there can be only one convex polygon. In Delaunay
lofts the number of sides of the stacked convex polygons can change
from one layer to another. In conclusion, the faces of the Delaunay
lofts are ruled surfaces since they consist of sweeping lines. Edges
of the faces can be curved.

For bi-axial woven tiles in this paper, the shapes of Voronoi sites
are curve segments obtained by decomposing planar periodic curves
that are given -essentially1- in the form of z = F(x + n) = F(x) and
z = G(y + n) = G(y), where n = a + b the period of fabric, where
F can be any periodic function as far as it consists of a-length
up regions and b-length down regions as shown in Figure 6. The
function G is just the mirror of F with a-length down regions and b-
length up regions. The curve segments are obtained from these two
periodic functions by just restricting its domain into a region such
as (x0, x0 + kn]. These curve segments are closed under symmetries
of bi-axial weaving patterns, that are given by 900 rotation and
translation operations. 3D L2 norm is used for distance computation.
Underlying space is normally 2.5D, i.e. a planar shell structure [1].

(a) A piece-wise linear periodic
curve.

(b) A derivative continuous peri-
odic curve.

Figure 6: Examples of periodic curves that can be used as Voronoi
sites, i.e. control curves.

Based on these properties, it is clear that the resulting tiles would
usually be genus-0 surfaces with curved faces and edges. Because of
its bi-axial property, the fundamental domain for these tiles would
always be a rectangular prism, an extruded version of the origi-
nal rectangular fundamental domain of corresponding 2-way 2-fold

1We actually use parametric curves. This is only for providing a quick
and simple explanation without a loss of generality



(a) For
[1,1,1].

(b) For [2,2,1] twill weav-
ing.

(c) For [2,2,1] twill weav-
ing.

(d) For
[1,1,1].

(e) For [7,1,3] satin weaving.

Figure 7: The basic degree-1 NURBS curves that are used to con-
struct woven tiles. Each curve is created by changing positions of 11
control points. The figures at the top are actual curves. The figures at
the bottom are points that are created by sampling the initial curves.
These points that approximate the curves are used as Voronoi sites.

fabric [39]. Therefore, the tiles that perfectly decompose this rectan-
gular prism domain will also fill all 3D space.

4 Design and Fabrication Process
Our bi-axial woven tile design process consists of three steps: (1)
Designing curve segments; (2) Designing 3D configuration of the
curves segments to be used as Voronoi sites; and (3) Decomposition
of the space using Voronoi tessellation. For all steps, we have
used the simplest approaches which simplify the design process and
provides robust computation.

4.1 Designing Curve Segments
We designed our control curves by using Non-Uniform Rational
B-Splines (NURBS). We initially allowed the higher degree curves
to allow C1 and C2 continuity, but, quickly realized that piecewise-
linear curves are sufficient to obtain desired results for woven tiles.
Therefore, we designed all curves with degree 1 NURBS. For all
cases, we use the same 11 control points. We simply move the
positions of the control points to obtain the curve segments for
desired weaving pattern as shown in 7. To construct these curves,
in addition to three weaving parameters, i.e. a, b, and c, we provide
one additional control: the angle of connection of two consecutive
tiles. By changing the angle we can obtain Square Waves, which
appears to be binary function such as the ones shown in Figures 7a
and 7b, and Partly Triangular Waves, which appears to be regular
piece-wise linear such as the ones shown Figures 7d, 7c and 7e. The
two consecutive tiles produced by square waves can sit at the top of
each other as shown in Figures 11a and 11b. With partly triangular
tiles, we can adjust this angle as shown in Figures 11d and 11c
and 11e.

4.2 Designing Voronoi Sites
Based on three weaving parameters, i.e. a, b, and c, we have de-
veloped an interface to create 3D curve segments that are closed
under symmetry operations of 2-fold 2-way genus-1 fabrics. The
algorithm consists of three stages be given as follows:

1. Create initial curve segment as x = Fx(t), y = 0 and z = Fz(t) based
on a and b values, and curve type. Without loss of generalization,
assume t ∈ [0,1], z ∈ [0,1], and x ∈ [−n/2,n/2]. Note that n =
a + b = Fx(1)−Fx(0).

2. Create two replicas of the curve and translate them along the x
axis by adding and subtracting its period n = a + b respectively.
This creates three copies of initial curve that follows each other.

3. Create two replicas of of these three curves. Translate one of
them using (c,1,0) vector and translate the other (−c,−1,0). This
translation operation must be done in modulo 3n.

• Remark 1: This operation creates a 3n× 2× 1 rectangular
prism domain, which is sufficient to compute tiles. Note that
we assume the height of the curves is 1 unit.

• Remark 2: This rectangular domain is not a fundamental
domain of the curve symmetries. It is only applicable for
genus-1 case.

4. Create perpendicular curve segments.

5. Remark 3: Perpendicular curve segments are guaranteed to be
the same for plain, twill and satin. Therefore, we only focus on
thise to obtain single tile.

In practice we create these curves in a larger rectangular domain as
shown in Figures 8, 9, and 10 to see the structure of the curves
better. These rectangular domains must be larger than the 3n×
2× 1 domain we described earlier to guarantee we obtain at least
one tile that can fill the space. In other words, at least one curve
must be covered with its neighboring curves to guarantee that the
Voronoi region that corresponds that particular curve segment fill
the space. In Figures 8, 9, and 10, which shows two plain, two twill
and one satin cases, the center curve is colored yellow. We have
implemented this interface by using SideFX’s Houdini, which is a
robust 3D software that provides a node-based system for fast and
easy interface development.

4.3 Decomposition of the Space

Accurate decomposition of a given space using curves as Voronoi
sites can be quite complicated. We, therefore, have developed a
simple method that provides us reasonably good approximation of
decomposition. Our method consist of four stages:

1. Sample the original curve segments by obtaining the same num-
ber of points for each curve segment.

2. For beautification step, create and sample two sandwiching (or
bounding) planes. If not, skip this step. All the examples in this
section are created using beautification step.

3. Label points as follows:

• The points that are originated from central yellow curve
are labeled using one label, say 0.

• All other points are labeled using another label, say, 1.

• Remark 1: If the beautification step is used, the points
coming from the sandwiching planes are also labeled 1.

4. Decompose the space using 3D Voronoi of these points, which
gives us a set of labeled Voronoi regions, which are convex
polyhedra that are labeled either 0 or 1.

5. Take union of all Voronoi regions labeled 0 to obtain desired
space filling tile. Union operation consists of only face removal
operations as follows:

• Remove the shared faces of two consecutive convex poly-
hedra coming from two consecutive sample points on the
curve.

• Remark 2: These faces will always have the same vertex
positions with opposing order.



(a) Basic curve segment
in 3D for [1,1,1] plain
weaving.

(b) Overall configura-
tion for decomposition
of rectangular prism
domain.

(c) Union of surround-
ing curves provides
mold structure.

Figure 8: An example for designing control curves for [1,1,1] plain
woven tiles.

(a) Basic curve segment
in 3D for [2,2,1] twill
woven tiles.

(b) Overall configura-
tion for decomposition
of rectangular prism
domain.

(c) Union of surround-
ing curves provides
mold structure.

Figure 9: An example for designing control curves for [2,2,1] twill
woven tiles.

(a) Basic curve segment in 3D for
[7,1,3] satin woven tiles.

(b) Union of surrounding curves pro-
vides mold structure.

(c) Overall configuration for decom-
position of rectangular prism do-
main.

(d) Close up of overall configuration.

Figure 10: An example for designing control curves for [7,1,3] satin
woven tiles.

(a) [1,1,1]
tile.

(b) A twill, [2,2,1], woven
tile.

(c) Another twill, [2,2,1],
tile.

(d) [1,1,1]
tile.

(e) A satin, [7,1,3], woven tile.

Figure 11: Examples of plain, twill and satin woven tiles using the
basic degree-1 NURBS curves shown in Figure 7.

(a) An assembly of twill, [2,2,1],
tiles from Figure 11c.

(b) An assembly of satin, [7,1,3],
woven tiles from Figure 11e.

Figure 12: Examples of assemblies that show only the tiles cut to
stay in rectangular domain.

• Remark 3: If underlying mesh data structure provides con-
sistent information, this operation is guaranteed to provide
a 2-manifold mesh. Even if the underlying data structure
does not provide consistent information, the operation cre-
ates a disconnected set of polygons that can still be 3D
printed using an STL file.

• Remark 4: If the beautification step is skipped, i.e. two
sandwiching planes are not used, take an intersection with
bounding rectangular prism.

6. Optional Step: Take union of Voronoi regions with label 1 to
obtain a hollow space that correspond to the mold that can be
used to mass produce space filling tiles. Note that we need to
take again an intersection with bounding rectangular prism if the
beautification step is skipped.

We have implemented this stage in both in Matlab and Houdini. For
3D Voronoi decomposition of points, we used build in functions
available in Matlab and Houdini.

(a) [1,1,1] tile from
Figure 11a.

(b) [1,1,1] tile from
Figure 11d.

(c) A twill, [2,2,1],
woven tile from Fig-
ure 11b..

Figure 13: Examples of assemblies with uncut tiles .



(a) Casting aluminum tiles as a group. (b) Wax and aluminum tiles as-
sembled together.

Figure 14: Examples of casting aluminum using lost wax method.

(a) Individual plain tiles. (b) Plain tile pairs. (c) Complete assembly.

Figure 15: Assembly of plain woven tiles. One of the black pieces
is a flexible silicone piece and is needed to successfully assemble
plain tiles.

4.4 Fabrication
All examples in this section are created using beautification step. We
have printed the tiles shown in Figures 11d, 11c and 11e using both
standard resin and elastic resin. For the purpose of investigation
of various material properties and potential manufacturing options
we made rubber molds of the tiles shown Figures 11d, and 11c for
casting silicon rubber and wax versions. The wax tiles were used
to cast aluminum tiles via the lost wax casting process as shown in
Figure 14a. Also shown in Figure 14b is the assembly of wax and
aluminum tiles.

5 Physical Assembly
The geometry and topology of weaves has a rich research history
with several open questions relating to the ability of the weaves to
hold together. The works by Grunbaum et al. [37] assume that the
threads being woven are infinitely long. This, obviously is not the
case with woven tiles, making it more difficult to completely and
formally characterize the assembly of woven tiled. Therefore, our
first evaluative step was to physically assemble common weaving
patterns (plain, twill, and satin), with the goal to explore how the
symmetries induced by these patterns affect the method of creating
assemblies of the respective tiles. We are particularly interested
in two aspects of woven tile assembly: (a) locking ability which
maps to the holding-together property of the weaves and (b) chiral
configurations of woven tile assemblies.

5.1 Locking Ability of Woven Tiles
The topology of a weaving pattern directly affects the locking ability
of its corresponding woven tile. For instance, plain weave tiling
results in self-locking configurations (Figure 15) identical to a plain

(a) Individual
twill tiles.

(b) Twill pairs. (c) Twill assem-
bly.

(d) Twill assembly with
one repetition.

Figure 16: Assembly of twill woven tiles.

(a) Individual
satin tiles.

(b) Lower assem-
bly of satin tiles.

(c) Complete
satin assembly
(view 1).

(d) Complete
satin assembly
(view 2).

Figure 17: Assembly of satin woven tiles.

woven fabric. Therefore, if zero tolerance is assumed, plain wo-
ven tiles cannot theoretically be assembled together with tiles con-
structed out of rigid materials such as PLA or Aluminium. In the
2× 2 plain woven tile assembly shown in Figure 15a , one of the
two black tiles (also the dark green tile in Figure 1e) is a compliant
tile made of silicone, constructed through casting. This assembly is
structurally stable and the geometry of the elements itself holds the
structure together. Specifically, both the assembly and disassembly
of the plain woven tiling is possible only through the application of
force. In addition to introducing a flexible element, we also experi-
mented with all four pieces cast in wax as well as Aluminium. In
this case, the shrinkage in the individual pieces allowed for the tiling
to be assembled (Figure 14b).

In case of twill weaves, we do not encounter the locking problem.
As seen in Figure 16, the twill assembly can be simply created by an
alternating placement of tiles along each of the axis (the white and
blue tiles represent each axis). Therefore, neither the assembly nor
disassembly require any application of force and we did not need any
flexible pieces for twill (Figure 16c). There are two observations we
make here. First, in the plain woven tiling, exactly half of each tile
is above one adjacent tile and the other half is underneath a second
adjacent tile. Second, in case of twill assembly, the unit tiles do share
this alternate above-underneath relationship with their neighbors.
However, note that if two twill woven tiles are combined to create
a double-length tile (Figure 16d), we obtain the above-underneath
relationship that will likely produce a perfectly interlocking tiling
(thereby needing flexible tiles akin to the plain-woven case).

In case of satin weaves (Figure 17), we come to similar conclu-
sions — there is a minimal number of repetitions of each tile to
ensure a tightly packed interlocked assembly. While we can say for
certain that the number of repetitions must be higher than twill, we
currently do not claim what the number of repetitions should be.
We believe that much work needs to be done in order to develop a
formal theory for locking ability of woven tiles.



(a) Chiral pairs of plain
woven tiles cannot be as-
sembled.

(b) Pairs belonging to the
same chiral group can
be assembled.

(c) Plain woven assem-
bly of two chiral groups.

Figure 18: An example of chirality in plain woven tile assemblies.

SatinTwill

008 15 23 30 38 46 53 61 69
(MPa)

005 10 14 19 24 29 34 38 43
(MPa)

Plain

007 14 21 28 35 41 48 55 62
(MPa)

Figure 19: Von-Mises stress distribution on single woven tiles

5.2 Chirality
A chiral object is one that is non-superposable on its mirror image.
Chirality is a fundamental to several natural phenomena and engi-
neering applications. Our first example that explores chirality is
the plain-woven assembly wherein we observed that assembling the
same plain-woven tiles in mirrored configurations leads to chital
assemblies (Figure 18). Penne’s work on planar layouts [50] pro-
vides a formal explanation to this propery by connecting projective
geometry and topology.

6 Structural Evaluation
Multiple uses of our methodology can be noted by using tiles as
structural building blocks. For example, we can assemble tiles of
plain weave to use them as a reinforced slab blocks. This is because,
the nature of contacts between the tiles allow the forces/stresses to be
distributed from one tile to other very easily. To explore this aspect
better, we performed simulations of the individual shape separately
and the response of the shape in the assembly. For our evaluation,
we considered three commonly known plain, twill, and satin weaves
and analyzed their response to basic mechanical loading conditions.
The main motivation is to observe key relationships between the
symmetries induced by these well-known weave patterns and the
corresponding mechanical behavior.

6.1 Evaluation Methodology
FEA is considered as one of the most powerful tools for studying
the mechanical properties of textile composites owing to the fact
that the interactions between the unit cells are complex in nature
[61] in addition to experimental methods [44]. Based on this,
present FEA analysis with two objectives. First, we are interested in
understanding the effect of contact between the interlocked woven

Plain Twill Satin
Minimum Stress (Pa) 2099 4.76e-9 1212
Average Stress (MPa) .93 .59 .97

Maximum Stress (MPa) 12.11 48.41 19.64
Minimum Displacement (m) 0.00 0.00 0.00
Average Displacement (m) 2.91e-6 1.97e-5 8.36e-6

Maximum Displacement (m) 1.22e-5 1.97e-6 4.13e-5

Table 1: Minimum, maximum and average stresses and displace-
ments for woven tile assemblies under normal loading.

tiles. Second, we wanted to observe the stress distributions for an
individual woven tile and patterns that emerge as an effect of the
weaving pattern.

We used the ANSYS Workbench 2019 R1 and conducted static
structural analysis for all simulations. We specifically explored two
loading conditions: planar (tensile load applied on the plane of the
tiled assembly) and normal (compressive load applied normal to
the plane of the tiled assembly). For simplicity, we assume unit
forces (1 N) and moments (1 N-m) across all simulations. All the
dimensions were chosen in accordance with the 3D printed shapes.
For the analysis, we first imported a given woven tile as a solid
body in SolidWorks 2019 and created assemblies of these tiles.
Here, the size of the assembly was an important factor for a fair
comparison. We used the satin weaves as the benchmark since it
required the largest number of tiles. Based on this, we created an
8×8 assembly for plain, twill, and satin woven tile assemblies. For
materials considerations, we used the material properties of PLA
(Polylactic acid). Specifically, we set the density to 1250kg/m3,
Young’s modulus to 3.45 ∗109 Pa and the Poisson’s Ratio to 0.39.
We further assume all the contact regions to be friction-less. For
each loading condition, Von-Mises stress and the total deformations
were evaluated.

6.2 Tensile Loading on Single Tiles

We begin with a simple test of tensile loading of individual unit tiles
for plain, twill, and satin cases (Figure 19). The first key observation
for the same 1N load is that the twill woven tile admits the minimum
value of the maximum stress (43 MPa) as compared to the plain and
satin tiles (69 MPa and 62 MPa respectively). What is commonly
evident across all cases is that the maximum stresses are located at
the saddle points of the tiles. Also note that these are the critical
points where any two tiles come in contact for a given assembly
causing a high stress region. Therefore, the individual stress contours
(Figure 19) help us identify the critical high stress regions through
which load is internally transferred from part to part in a woven
assembly. Furthermore, since the critical stresses are transferred
through two doubly-curved surfaces in contact, the stress can be
propagated in multiple directions.

6.3 Common Behavioral Characteristics Across Weaves

The deformation of the weave assembly behaves similar to a solid
block of material for both planar and normal loading conditions.
This is expected since the tiles are space filling and interlocking.
The stress characteristics of the shapes, however, was found to have
a deeper relationship with the the geometry of the weave pattern
(Figure 21 and 20). Below, we make observations regarding these
distributions for normal and planar loading conditions.

6.4 Assembly Under Normal Loading

Threads of plain, twill and satin were created by joining individual
tiles. These threads were assembled to form an 8× 8 assembly
(Figure 20). The faces on the perimeter were fixed and a unit normal
force was applied perpendicular to the plane of the assembly in the
central region.



SatinTwill

0 0.8   1   2   3    4    5    6   7   12

(MPa)

Plain

0 .5 .9 1 1.8 2.3 2.7 3.2 3.6 48  
(MPa)

0 1    2   3    4   5    8  10  15 19
(MPa)

Figure 20: Von-Mises stress distributions and deformation of 8x8 assemblies of plain (left), twill (middle) and satin symmetries under normal
loading. The assemblies are based on threads constructed out of multiple tiles. A uniform unit normal force was applied in the central region of
the assembly indicated by the direction of arrow. The faces in the region indicated by the ground symbol were assigned as fixed supports.



We observe that the woven nature of the tiles allows the deforma-
tion caused by the central load to be distributed uniformly around
the axis of application in the assembly. Given that the deformation
of the assembly is similar to a solid block, the contacts between the
treads along the two axes transfer the incoming forces and stresses
to the adjacent tiles. The distribution for each assembly respects
the geometry of the weave pattern. For example, in the plain woven
case (Figure 20 left panel), the stress starts as maximum at the center
tiles and assumes a radial checkerboard pattern as it shifts toward
the periphery. For instance, for plain woven assembly, we observe a
transition from a concentrated stress distribution to a radial checker-
board pattern reminiscent of the original plain woven symmetries
(Figure 5 top-left image). Interestingly, in twill we notice that stress
propagates in a spiral-like manner (Figure 20 middle panel) from
the central region.

From a cursory numerical comparison (Table 1), there are two
interesting observations to be made. First, the twill assembly has the
lowest average stress (0.59 MPa) while the plain and satin assemblies
exhibit comparable average stresses . This is supported in textile
engineering literature [63]. However, what is interesting that twill
simultaneously exhibits the largest range of stress (0−48 MPa) when
compared to plain (0−12 MPa) and satin cases. This implies that
while twill may be better suitable for load-sensitive applications,
plain and satin assemblies may be better candidates for scenarios
that need durability.

6.5 Assembly Under Planar Loading

In case of planar loading, we applied tensile load on threads in one
axial direction and observed the effect the orthogonal threads. We
notice that the average and maximum stress values were lower in
the assembly compared to individual simulations for all weaving
patterns. This means that the assembly allows for an efficient stress
distribution.

Similar to stress patterns in normal loading, the planar simulations
show a pronounced stress arrangement. While the plane of maximum
stress distribution is orthogonal to the load direction in plain woven
tiles, we note that in case of twill it is aligned approximately perpen-
dicular to the weave direction as also noted by previous works [8,42].
The plan of maximum stress is in fact orthogonal to the diagonal
lines produced on the face if the assembly is developed into a twill
fabric. In the contrary, no apparent stress patterns can be noticed in
satin assembly. We also note a significantly high value of maximum
stress in satin compared to twill and plain (Table 2). This also agrees
with the fact that in clothing satin, being a long yarn floats makes
it unstable [63] and needs a much densely woven fabric to counter
this.

The twill assemblies again exhibit the lowest average Von Mises
stress levels (0.42 MPa) as compared to plain (0.57 MPa) and satin
(3 MPa). This is aligned with current literature on weave mechanics
wherein plain and twill weaves display superior resistance to tensile
loading in comparison to satin weaves because of lower frequency
of alternation between the two axes [63]. Similar to nomal loading,
twill also exhibits maximum range of stress values (0− 23 MPa)
when compared to plain (0−10 MPa) and satin (0−793 MPa) tile as-
semblies. Here, once again, satin clearly demonstrates significantly
high maximum stress when compared to plain and twill as is evident
from the topology of the satin weave.

7 Discussion

The work presented in this paper provides (1) many new directions
that need to be explored further; and (2) many interesting questions
that need to investigated further. In the rest of this section, we
discuss some of the future directions to explore and some of the
questions to investigate.

Plain Twill Satin
Minimum Stress (Pa) 308 2.92e-7 2.31e-5
Average Stress (MPa) .57 .4217 3.08

Maximum Stress (MPa) 10.43 23.32 793.80
Minimum Displacement (m) 0.00 0.00 0.00
Average Displacement (m) 1.54e-6 9.27e-6 2.27e-6

Maximum Displacement (m) 4.14e-6 7.91e-6 1.50e-5

Table 2: Minimum, maximum and average stresses and displace-
ments for woven tile assemblies under planar loading

7.1 Generalization based on Knots and Links

2-fold fabric structures are much richer than just 2-way genus-1
fabrics. Their real power can be best understood with extended graph
rotation systems (EGRS) that was introduced in early 2010’s [5,
6]. EGRS allows us to use orientable 2-manifold meshes as guide
shapes to represent knots and links. The guide shapes help us to
classify the fabrics. For instance, the guide shapes for 2-fold 2-way
fabrics are regular grids embedded on genus-1 surfaces. For 2-fold
3-way fabrics, we need regular hexagonal or regular triangular grid
embedded on genus-1 surfaces [6]. This is useful since some of the
Leonardo grid designs are based on also 3-way woven patterns [54].
Using regular maps [13, 67], it is also possible to obtain hyperbolic
tiling. Using the regular maps that correspond to hyperbolic tiles as
guide shapes, 2-fold k-way genus-n fabrics can be obtained. From
these fabrics, one can also obtain space filling shapes. For practical
applications, there is a need for a significant amount theoretical
work.

7.2 Locking

The key open question that we hope to answer in our future work is
a formally supported computational methodology for determining
minimum tile repetition to generate pure interlocking of woven tiles.
Here, Dawson’s work on the enumeration of weave families can
provide an important starting point as a means to develop such a
method based on sound mathematical principles. We see that the
locking ability of woven tiles is related to three interlinked concepts
in geometry and topology literature, namely, liftability [53], oriented
matroids [77], and planar layouts of lines in 3-space [50]. To simply
determine repetitions for locking is only the first step. Once we
obtain a locking configuration, the second challenge is to determine
the minimum number of flexible/compliant elements to make the
assembly possible. We only showed this example for the plain woven
tiles (Figure 1e). To the best of our knowledge, a general strategy
for this problem is currently unavailable.

7.3 Chirality

As we have seen in our results, chirality is a key aspect of further
investigation in this research. A recent work discovered how to
produce handedness in auxetic unit cells that shear as they expand
by changing the symmetries and alignments of repeating unit cells
[46]. Using the symmetry and alignment rules we can potentially
expand our woven tiles to develop a new class of rigid and com-
pliant structures [40, 52, 74]. Recent works on knot periodicity in
reticular chemistry [47] and tri-axial weaves (also known as mad
weaves) [24] are fundamental examples of how the geometry and
physics of chirality are connected. Thus, identifying any fundamen-
tal multi-physical behavior of the assemblies shown in this work
and beyond would allow us to construct assemblies with several
practical applications such as mechanically augmented structures
in mechanical, architectural, aerospace [2, 3], and materials [69]
engineering. The main gap that must first be filled, however, is a
complete characterization of chirality of woven tiles including and
beyond plain, twill, and satin varieties.
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Figure 21: Von-Mises stress distributions and deformation of 8x8 assemblies of plain (left), twill (middle) and satin symmetries under planar
loading. The assemblies are based on threads constructed out of multiple tiles.



7.4 Structural Behavior & Topology

We observed correlation between the weave topology and the struc-
tural behavior of woven tile assemblies. However, our analysis
and observations are currently qualitative. Therefore, a formal and
constitutive methodology for connecting the topology and structural
properties is an important future direction that needs attention. As an
important example, determining the relationship between direction
of stress distributions to the weave parameters (the numbers a, b,
and c in Figure 4) will allow for systematic design of woven tiles for
specific applications.

8 Conclusion & Future Directions

In this paper, we have developed a methodology to design inter-
locking space-filling tiles that we call bi-axial woven tiles that are
generated using the topology of bi-axial woven fabrics. To this
end, we developed a method to create desired input curves segments
using the properties of 2-fold 2-way genus-1 fabrics. We further
developed a simple method to compute Voronoi decomposition of
the curve segments. We demonstrated our general methodology
by designing, fabricating, assembling, and mechanically analyzing
woven tile assemblies. We 3D-printed some of these tiles and physi-
cally observed their mathematical and physical properties. We also
developed molds to directly cast these shapes with a wider range
of materials such as silicone and aluminium. While our physical
evaluation of the individual and assembled properties of these tiles
aligns with the current literature on woven fabrics, we show some
interesting additional properties that were not previously apparent.
Furthermore, our results suggest that interlocking these tiles have
potential to replace existing extrusion based building blocks (such
as bricks) which do not provide interlocking capability.

We want to point out that 2-fold fabrics are not really a final fron-
tier. It is also possible to represent k-fold fabrics using 3-manifold
meshes as guide shapes [4]. The extension to k-fold fabrics requires
even more theoretical foundations, but it demonstrates the potential.
A significant advantage of using guide shapes is that the topological
properties of the knotted structures do not change with any geomet-
ric perturbation of the guide shapes. In conclusion, even though we
chose our proof of concept tiles from 2-fold 2-way types, the ideas
in this paper can be extended into more general types of fabrics with
the maturation of theoretical work in regular maps and 3-manifold
meshes.
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