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Abstract

This paper investigates the relationship between graph convolution and Mixup techniques.
Graph convolution in a graph neural network involves aggregating features from neighboring
samples to learn representative features for a specific node or sample. On the other hand,
Mixup is a data augmentation technique that generates new examples by averaging features
and one-hot labels from multiple samples. One commonality between these techniques is
their utilization of information from multiple samples to derive feature representation. This
study aims to explore whether a connection exists between the two. Our investigation reveals
that, under two mild modifications, graph convolution can be viewed as a specialized form of
Mixup that is applied during both the training and testing phases. The two modifications
are 1) Homophily Relabel - assigning the target node’s label to all its neighbors, and 2)
Test-Time Mixup - Mixup the feature during the test time. We establish this equivalence
mathematically by demonstrating that graph convolution networks and simplified graph
convolution can be expressed as a form of Mixup. We also empirically verify the equivalence
by training an MLP using the two modifications to achieve comparable performance.

1 Introduction

Graph Neural Networks (GNNs) (Wu et al., 2020; Zhou et al., 2020) have recently been recognized as the
de facto state-of-the-art algorithm for graph learning. The core idea behind GNNs is neighbor aggregation,
which involves combining the features of a node’s neighbors. Specifically, for a target node with feature xi,
one-hot label yi, and neighbor set Ni, the graph convolution operation in GCN is essentially as follows:

(x̃, ỹ) =
(

1
|Ni|

∑
k∈Ni

xk, yi

)
, (1)

In parallel, Mixup (Zhang et al., 2018) is proposed to train deep neural networks effectively, which also
essentially generates a new sample by averaging the features and labels of multiple samples:

(x̃, ỹ) =
(

N∑
i=1

λixi,
N∑

i=1
λiyi

)
, s.t.

N∑
i=1

λi = 1, (2)

where xi/yi are the feature/label of sample i. Mixup typically takes two data samples (N = 2).

Equation (1) and Equation (2) highlight a remarkable similarity between graph convolution and Mixup, i.e.,
the manipulation of data samples through averaging the features. This similarity prompts us to investigate
the relationship between these two techniques as follows:

Is there a connection between graph convolution and Mixup?
∗Corresponds to xhan@case.edu. The code is at https://github.com/ahxt/GraphConv_is_Mixup.
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Figure 1: Graph convolution is Mixup. (a) illustrates the basic idea of Mixup: averaging the features and
one-hot labels of multiple samples ( , , ). (b) shows the graph convolution operation where the feature of
the target node ( ) is the weighted average of the features of all its neighbors. (b) → (c) shows that graph
convolution is Mixup if we assign the label ( ) of the target node ( ) to all of its neighbors ( , ). (d)
shows that Mixup is empirically equivalent to GCN.

In this paper, we answer this question by establishing the connection between graph convolutions and Mixup,
and further understanding the graph neural networks through the lens of Mixup. We show that graph
convolutions are intrinsically equivalent to Mixup by rewriting Equation (1) as follows:

(x̃, ỹ) =
(

1
|Ni|

∑
k∈Ni

xk, yi

)
=
(∑

k∈Ni

1
|Ni|

xk,
∑

k∈Ni

1
|Ni|

yi

)
λi= 1

|Ni|=
(∑

k∈Ni

λixk,
∑

k∈Ni

λiyi

)
,

where xi and yi are the feature and label of the target node ni. This equation states that graph convolution
is equivalent to Mixup if we assign the yi to all the neighbors of node ni in set Ni

To demonstrate the equivalence between graph convolutions and Mixup, we begin by illustrating that a
one-layer graph convolutional network (GCN) (Kipf & Welling, 2016b) can be transformed into an input
Mixup. A two-layer GCN can be expressed as a hybrid of input and manifold Mixup (Verma et al., 2019).
Similarly, simplifing graph convolution (SGC) (Wu et al., 2019) can be reformulated as an input Mixup. We
thus establish the mathematical equivalence between graph convolutions and Mixup, under two mild and
reasonable modifications: 1) assign the target node’s label to neighbors in the training time (referred to as
Homophily Relabel); 2) perform feature mixup in the test time (referred to as Test-Time Mixup).

We further investigate the modifications required for the equivalence between graph convolution and Mixup,
focusing on the effect of Homophily Relabel and Test-Time Mixup. To explore Homophily Relabel, we
demonstrate that training an MLP with Homophily Relabel (called HMLP) is equivalent to training GCN in
terms of prediction accuracy. This finding provides a novel perspective for understanding the relationship
between graph convolution and Mixup and suggests a new direction for designing efficient GNNs. To
investigate Test-Time Mixup, we train GNNs without connection information, perform neighbor aggregation
during inference, and find that this approach can achieve performance comparable to traditional GNNs. This
result reveals that Test-Time Mixup can be a powerful alternative to traditional GNNs in some scenarios, and
suggests that Mixup may have a broader range of applications beyond traditional data augmentation. Our
investigation on Homophily Relabeling and Test-Time Mixup provides valuable insights into the theoretical
properties of GNNs and their potential applications in practice. We highlight our contributions as follows:

• We establish for the first time connection between graph convolution and Mixup, showing that graph
convolutions are mathematically and empirically equivalent to Mixup. This simple yet novel finding
potentially opens the door toward a deeper understanding of GNNs.
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• Given that both graph convolution and Mixup perform a weighted average on the features of samples,
we reveal that graph convolution is conditionally equivalent to Mixup by assigning the label of a target
node to all its neighbors during training time (Homophily Relabel). Also, we also reveal that in the test
time, graph convolution is also Mixup (Test-Time Mixup).

• Based on Homophily Relabel and Test-Time Mixup, we propose two variants of MLPs based on the
Mixup strategy, namely HMLP and TMLP, that can match the performance of GNNs.

Related Work. Graph neural networks are widely adopted in various graph applications, including social
network analysis (Fan et al., 2019), recommendation (Wei et al., 2022; Deng et al., 2022; Cai et al., 2023;
Tang et al., 2022), knowledge graph (Cao et al., 2023; Zhao et al., 2023), molecular analysis (Sun et al., 2022;
Zhu et al., 2023a; ZHANG et al., 2023; Wang et al., 2023b; Corso et al., 2023; Liao & Smidt, 2023; Xia et al.,
2023; Hladiš et al., 2023), drug discovery (Sun et al., 2022; Zhang et al., 2023c), link prediction (Chamberlain
et al., 2023; Cong et al., 2023) and others (Chen et al., 2023a). Understanding the generalization and working
mechanism of graph neural networks is still in its infancy (Garg et al., 2020; Zhang et al., 2023a; Yang
et al., 2023; Baranwal et al., 2023). The previous work attempts to understand graph neural networks from
different perspectives, such as signal processing (Nt & Maehara, 2019; Bo et al., 2021; Bianchi et al., 2021),
gradient flow (Di Giovanni et al., 2022), dynamic programming(Dudzik & Veličković, 2022), neural tangent
kernels (Yang et al., 2023; Du et al., 2019; Sabanayagam et al., 2022) and influence function (Chen et al.,
2023b). There is also a line of works that analyzes the connection between GNNs and MLPs (Baranwal
et al., 2023; Han et al., 2022b; Yang et al., 2023; Tian et al., 2023), which is similar to the proposed method
in Section 3. In this work, we understand graph neural networks through a fresh perspective, Mixup. We
believe that this work will inspire further research and lead to the development of new techniques to improve
the performance and interpretability of GNNs. In parallel, Mixup (Zhang et al., 2018) and its variants (Verma
et al., 2019; Yun et al., 2019; Kim et al., 2020; 2021) have emerged as a popular data augmentation technique
that improves the generalization performance of deep neural networks. More specifically, deep neural networks
trained with Mixup achieve better generalization (Chun et al., 2020; Zhang et al., 2020; Chidambaram et al.,
2022), calibration (Thulasidasan et al., 2019; Zhang et al., 2022a), adversarial robustness (Pang et al., 2019;
Archambault et al., 2019; Zhang et al., 2020; Lamb et al., 2019), and explain ensemble (Lopez-Paz et al.,
2023). More related work in Appendix A.

The Scope of Our Work. 1 This work not only provides a fresh perspective for comprehending Graph
Convolution through Mixup, but also makes valuable contributions to the practical and theoretical aspects of
graph neural networks, facilitating efficient training and inference for GNNs when dealing with large-scale
graph data. Practical Potentials: Both HMLP and TMLP hold potential value for practical usage. TMLP is
training-efficient, as its backbone and training process are both MLP-based; however, the inference requires
Test-Time Mixup (neighbor aggregation), which can be time-consuming. This limitation also exists in previous
works (Han et al., 2022b; Yang et al., 2023). HMLP, on the other hand, is both training and test efficient, as
both processes are based on MLP. This suggests the potential of HMLP for practical usage on large-scale
graphs. Theoretical Potentials: HMLP, derived from the Mixup, have the theoretical potential to understand
the expressiveness of GNNs from the Mixup perspective. With the connection between Mixup and graph
convolution, HMLP goes beyond traditional methods to understand the learning capability of GNNs.

2 Graph Convolution is Mixup

In this section, we reveal that the graph convolution is essentially equivalent to Mixup. We first present the
notation used in this paper. Then we present the original graph convolution network (GCN) (Kingma & Ba,
2015) and simplifying graph convolutional networks (SGC) (Wu et al., 2019) can be expressed mathematically
as a form of Mixup. Last, we present the main claim, i.e., graph convolution can be viewed as a special form
of Mixup under mild and reasonable modifications.

Notations. We denote a graph as G(V, E), where V is the node set and E is the edge set. The number
of nodes is N = |V| and the number of edges is M = |E|. We denote the node feature matrix as X =
{x1, x2, · · · , xN } ∈ RN×d, where xi is the node feature for node ni and d is the dimension of features. We

1Note that our work only focuses on the node-wise predictions made by GCNs.
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denote the binary adjacency matrix as A ∈ {0, 1}N×N , where Aij = 1 if there is an edge between node ni

and node nj in edge set E , and Aij = 0 otherwise. We denote the neighbor set of node ni as Ni, and its
2-hop neighbor set as N 2

i . For the node classification task, we denote the prediction targets of nodes as
one-hot labels Y ∈ {0, 1}N×(C−1), where C is the number of classes. For graph convolution network, we use
Ã = D−1A as the normalized adjacency matrix2, where D ∈ RN×N is diagonal degree matrix, and Dii is
the degree of node ni. We use ãi ∈ R1×N , i-th row of Ã, as the normalized adjacency vector of node ni.

2.1 Preliminaries

Graph Convolution. Graph Convolution Network (GCN) (Kipf & Welling, 2016a), as the pioneering work
of GNNs, proposes Ŷ = softmax(Ã · σ(Ã · X · W1) · W2), where W1 and W2 are the trainable weights of
the layer one and two, respectively. Simplifying Graph Convolutional Networks (SGC) (Wu et al., 2019) is
proposed as Ŷ = softmax(Ã · Ã · X · W). In this work, we take these two widely used GNNs to show that
graph convolution is essentially Mixup.

Mixup. The Mixup technique, introduced by Zhang et al. (2018), is a simple yet effective data augmentation
method to improve the generalization of deep learning models. The basic idea behind Mixup is to blend the
features and one-hot labels of a random pair of samples to generate synthetic samples. The mathematical
expression of the two-sample Mixup is as follows:

(x̃, ỹ) = (λxi + (1 − λ)xj , λyi + (1 − λ)yj) = (λ1xi + λ2xj , λ1yi + λ2yj), (3)

where λi + λj = 1. Based on the two-sample Mixup, the multiple-sample Mixup is presented in Equation (2).
The mathematical expression presented above demonstrates that Mixup computes a weighted average of the
features from multiple original samples to generate synthetic samples.

2.2 Connecting Graph Convolution and Mixup

We demonstrate that graph convolution, using GCN and SGC as examples, is conditionally Mixup. To do
this, we mathematically reformulate the expressions of GCN and SGC to a Mixup form, thereby illustrating
that graph convolutions are indeed Mixup.

One-layer GCN is Mixup We begin our analysis by examining a simple graph convolution neural
network (Kipf & Welling, 2016a) with one layer, referred to as the one-layer GCN. We demonstrate that the
one-layer GCN can be mathematically understood as an implementation of the input Mixup technique. The
expression of the one-layer GCN is given by: Ŷ = softmax(Ã · X · W) where W ∈ RD×C is the trainable
weight matrix. Let us focus on a single node ni in the graph. The predicted one-hot label for this node is
given by ŷi = softmax(ãi · X · W), where ãi ∈ R1×N , i-th row of Ã, is the normalized adjacency vector of
node ni. Ni is the neighbors set of node ni. We make the following observations:

• ãi · X results in a weighted sum of the features of the neighbors of node ni, which is the multiple-sample
Mixup. Explicitly, we can rewrite ãi · X to x̃ = 1

|N i|
∑

k∈Ni
xk.

• If we assign node ni’s label to all its neighbors, the label yi of node ni can be interpreted as a weighted
average of the labels of its neighboring nodes, which is equivalent to performing Mixup on the labels.
Thus we have ỹ = yi = 1

|Ni|
∑

k∈Ni
yk.

From the previous observations, we can see that one-layer GCN synthesizes a new Mixup sample for node ni

by mixing up its neighbors’ features and one-hot labels, which is defined as follows:

(x̃, ỹ) =
(

1
|Ni|

∑
k∈Ni

xk, 1
|Ni|

∑
k∈Ni

yk

)
. (4)

Therefore, we conclude that a one-layer GCN is a Mixup machine, which essentially synthesizes a new sample
by averaging its neighbors’ features and one-hot labels.

2Our following analysis can be easily generalized to other normalization methods, such as D− 1
2 AD− 1

2 .

4



Published in Transactions on Machine Learning Research (09/2024)

Two-layer GCN is Mixup We extend our analysis to consider a two-layer GCN. The expression for
two-layer GCN is given by Ŷ = softmax(Ã · σ(Ã · X · W1) · W2), Let us focus on node ni in the graph.
For the first layer of the two-layer GCN, we have hi = Relu(ãi · X · W1) ∈ R1×d, where ãi ∈ R1×N is the
normalized adjacency vector of node ni. The first layer is the same as the one-layer GCN as discussed above,
which can be regarded as a multiple-sample input Mixup.

For the second layer of the two-layer GCN, we have ŷi = Softmax(ãiHW2) ∈ R1×C , H ∈ RN×d is the hidden
representation of all nodes obtained from the first layer, and W2 ∈ Rd×C is the weight matrix. The predicted
one-hot label for node ni, ŷi, is obtained through a softmax activation function. The 2-nd layer can be
regarded as multiple-sample manifold Mixup (Verma et al., 2019) in the following:

• ãi · H is the multiple-sample Mixup of the hidden representation of the neighbors of node ni. We rewrite
the ãi · H to x̃ = ãi · H = 1

|Ni|
∑

k∈Ni
hk.

Therefore, we conclude that a multi-layer GCN is a hybrid of input Mixup (first layer) and manifold Mixup
(second layer).

SGC is Mixup The 2-layer SGC architecture is represented by the following expression, Ŷ = softmax(Ã ·
Ã · X · W). Similar to one-layer GCN, for the node ni in a 2-layer SGC, we have

ŷi = softmax(ã2
i · X · W), L = Cross-Entropy(ŷi, yi), (5)

where ã2
i ∈ R1×N is the adjacency vector within 2-hop neighbors of node ni. The 2-hop neighbor set of node

ni is represented by N 2
i , Hereby we have

• ã2
i · X is the multiple Mixup of the features of the neighbors of node ni. We rewrite the ãi · X to

x̃ = ã2
i · X = 1

|N 2
i

|
∑

k ∈ N 2
i xk.

From the above, we have a Mixup of samples for node ni is

(x̃, ỹ) =

 1
|N 2

i |
∑

k∈N 2
i

xk, 1
|N 2

i |
∑

k∈N 2
i

yk

 . (6)

Thus we conclude that an SGC is an input Mixup machine.

2.3 Graph Convolution is (Conditionally) Mixup

It is straightforward to derive the Mixup form of 1-layer, 2-layer GCN, and SGC as discussed above. This
leads to the conclusion that 1-layer, 2-layer GCN, and SGC can all be reformulated in the form of Mixup.
This establishes a mathematical connection between graph neural networks and the Mixup method. Building
on these findings, in this section, we introduce our main contribution as follows:

Main Results
Graph convolution is Train- and Test-Time Mixup, under two mild and reasonable modifications:
Homophily Relabel and Test-time Mixup.

The two primary differences between GNNs and Mixup are as follows:

• Homophily Relabel At training time, if we assign the label of the target node to all its neighbors, the
Graph Neural Network can be naturally rewritten as a form of Mixup.

• Test-Time Mixup At test time, the GNNs perform feature mixing on the nodes and then use the mixed
feature for the inference.

Both of the above modifications are mild and reasonable and have practical implications for GNN design
and analysis. The Homophily Relabel operation can be understood as imposing the same label on the target
node and all its neighbors, which corresponds to the homophily assumption for graph neural networks. The
homophily assumption posits that nodes with similar features should have the same label, which is a common

5



Published in Transactions on Machine Learning Research (09/2024)

assumption in many real-world graph applications. On the other hand, Test-time Mixup can be understood
as Mixup at the test time by mixing the features from neighbors for prediction. We examine the above
differences in depth in Section 3 and Section 4.

2.4 Discussion

Comparison to Other Work. Hereby, we compare our work and previous work. Yang et al. (2023); Han
et al. (2022b) propose to train an MLP and transfer the converged weight from MLP to GNN, which can
achieve comparable performance to GCN. In this work, these two methods are all included in part of our
work, Test-Time Mixup. Different from previous work, we provide a fresh understanding of this phenomena
by connecting graph convolution to Mixup and also derive a TMLP Appendix C.2 to implement Test-Time
Mixup. Baranwal et al. (2022) understand the effect of graph convolution by providing a rigorous theoretical
analysis based on a synthetic graph. Different from this work, our work understands graph convolution with
a well-studied technique, Mixup.

Table 1: The running time of one epoch compari-
son of original MLP vs. GNN.

MLP GNN
Running time 1.8396±0.0264 174.1459±7.0611

Why MLP is more efficient to GNN: GNN is Ŷ =
softmax(Ã · X · W), where A is a large sparse matrix,
resulting in significant computation time. This is well
studied in previous work Zhang et al. (2021); Yang et al.
(2023). We also conducted experiments to measure the
actual runtime of MLP and GNN. The results demonstrate the efficiency of MLP compared to GNN. With
mixup, the number of data points will double. The running time of MLP will at most double, resulting in a
running time ratio of MLP to GNN = (1.8396 * 2) : 174.1459 = 1 : 47.

3 Is Homophily Relabel Equivalent to GCNs Training ?

In this section, we conduct experiments to examine the Homophily Relabel proposed in Section 2.3. The
empirical evidence substantiates our claims, emphasizing the significant effect of Homophily Relabel on GNNs.
This understanding can facilitate the design of an MLP equivalent that competes with the performance of
GNNs. Note that we explore the transductive setting in our experiments.

3.1 Homophily Relabel Yields a Training-Equivalent MLP to GCN

x0 x1

xi

y0 = [1, 0] y1 = [0, 1]

Figure 2: The example
graphs. xi is the target
node, The loss of xi that
connected two nodes with
different labels.

We utilize the simple example graph to demonstrate the calculation of the
loss function in a GCN in the transductive setting. The example graph, in
Figure 2, comprises three nodes. The blue and red nodes belong to the training
set, while the gray node belongs to the test set. In the transductive scenario,
the loss function is computed for the entire graph during the training phase,
incorporating both the training and test nodes. In our simple example graph,
the loss function will be calculated on the blue and red nodes with their actual
labels. Notably, the prediction for the gray node, despite it being part of the
test set, will also contribute to the overall loss calculation in the transductive
setting. For node ni, the prediction (p0, p1), the loss of the example graph will
be as follows

LG = cross-entropy(Y, Ŷ) = cross-entropy(y0, ŷ0) + cross-entropy(y1, ŷ1)
= −y00 log(p0) − y01 log(p1)−y10 log(p0) − y11 log(p1)
= −1 ∗ log(p0) − 0 ∗ log(p1)−0 ∗ log(p0) − 1 ∗ log(p1)
= −1 ∗ log(p0)−1 ∗ log(p1) = −2 ∗ (0.5 ∗ log(p0)+0.5 ∗ log(p1)).

(7)

where y00/y01 is the 0th/1st elements in the one-hot label y0 for node n0. The above analysis shows that the
actual training label for target node ni is (0.5, 0.5). From the Mixup perspective, in an ideally well-trained
model utilizing a two-sample Mixup, as shown in previous work (Guo et al., 2019; Pang et al., 2019), the
following approximation will hold f(λkx+(1−λk)xk) ≈ λkf(x)+(1−λk)f(xk). Intuitively, this approximation
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holds because the model is trained with mixup examples (xnew, ynew) = (λxi + (1 − λ)xj , λyi + (1 − λ)yj).
The linear correlation between xnew and ynew leads to a model that can be approximated by a linear function.
If we regard the neighbor aggregation as Mixup, we can easily derive that

ŷ0 = f

(
x0 + xi

2

)
= 1

2 (f(x0) + f(xi)) , ŷ1 = f

(
x1 + xi

2

)
= 1

2 (f(x1) + f(xi)) . (8)

From the above two equations, we can see that f(xi) are trained with the labels of all its neighbors x0 and
x1. Thus in the next, we propose explicitly training the nodes in the test set with the label of their neighbors
if they are in the training set. In our example graph, we explicitly train the gray node with label (0.5, 0.5)

HMLP Based on the above analysis, we proposed Homophily Relabel MLP (HMLP), which achieves the
comparable performance of GCN via training an MLP as a backbone with Homophily Relabel. In detail, the
proposed method HMLP has two major steps: 1) relabel all the nodes in the graph with the mixed label
Ŷ = A · Y. 2) train an MLP on all the nodes with Ŷ on relabeled graph, only using node features. We
illustrate our proposed HMLP with the example graph in Figure 2. 1) we relabel all the nodes using Homophily
Relabel, the node with new label will be (x0, (1, 0)), (x1, (0, 1)), (xi, (0.5, 0.5)) 2) then train the HMLP with
these data samples. The test sample will be (xi, ?) during the test time.

3.2 Can HMLP Achieve Comparable Performance to GCN?

Table 2: Performance comparison of GCN and
HMLP.

Datasets MLP GCN HMLP
Cora 73.57±0.98 88.04±1.26 86.42±1.78

CiteSeer 71.90±1.69 75.69±1.36 75.94±1.54

PubMed 86.90±0.74 87.94±0.64 88.34±0.48

Average 77.45 83.89 83.57

To verify the proposed HMLP can achieve comparable per-
formance to the original GCN, we train the one-layer GCN
(GCN-1), two-layer GCN (GCN-2), SGC, and HMLP on
the training set and report the test accuracy based on the
highest accuracy achieved on the validation set. We exper-
imented with different data splits of train/validation/test
(the training data ratio span from 10% − 90%), and we
also conducted experiments with the public split on Cora,
CiteSeer, and PubMed datasets. We present the results in
Table 2 and Figure 4. We also present the training and test curves of the MLP. GCN and HMLP in Figure 3.

Figure 3: The training and test curves of GCN
and HMLP.

From the results in Table 2 and Figure 4, ➊ HMLP
achieves comparable performance to GCN when
the ratio of training to test data is large. For the
Figure 4, the performance of HMLP is significantly better
than MLP, and on par with GCN, especially when the
training data ratio is large. The results also show that
when the training data ratio is small, HMLP performs
worse than GCN. The training and test curves show that
HMLP achieve the similar test curves (red and green lines
in the right subfigure) even though the training curve are
not the same. This may be because the labels of nodes
are changed.

4 How Does Test-time Mixup Affect GCN Inference?

In this section, we aim to investigate how Test-time Mixup affects the GCN inference process. We conduct an
empirical study to understand the functionality of Test-time Mixup (neighbor aggregation during the test
time). To this end, we propose an MLP involving Test-time Mixup only (TMLP).

TMLP The proposed method TMLP follows the steps: 1) we train an MLP using only the node features of the
training set. 2) we employ the well-trained MLP for inference with neighbor aggregation during testing. This
paradigm has also been investigated in previous works (Han et al., 2022b; Yang et al., 2023). We call this
method TMLP. We illustrate the TMLP with the example graph in Figure 2. Specifically, we train the model

7



Published in Transactions on Machine Learning Research (09/2024)

Figure 4: The performance comparison of the GCN, MLP and HMLP (Ours). The x-axis represents the ratio
of training data, and the y-axis represents the accuracy of classification. The results show that our proposed
method (HMLP) achieves comparable performance to GCN. Note that the architecture of our method in
train and test time are both MLP. More experimental results on other datasets and GNNs are presented in
Appendix C.1.

using the following training examples, (x0, (1, 0)), (x1, (0, 1)). Note that the backbone of TMLP is an MLP. In
the following, we explore the performance of TMLP.

4.1 How Does TMLP Perform Compared to GCN?

In the section, we conducted experiments to verify the effect of Test-Time Mixup. In the experiments, during
the training, we only use the node feature to train an MLP, and then during the test time, we use the
well-trained MLP with the neighbor aggregation to perform the inference. We present the results of varying
training data ratio in Figure 6, and we also present the accuracy in Table 3 when the training data ratio is
0.6. Additionally, we compare the learned representation of GNNs and TMLP using t-SNE Van der Maaten &
Hinton (2008). From these results, we make the following observations:

Table 3: Performance comparison of GCN and
HMLP.

Datasets MLP GCN TMLP
Cora 73.57±0.98 88.04±1.26 88.26±1.60

CiteSeer 71.90±1.69 75.69±1.36 76.35±1.13

PubMed 86.90±0.74 87.94±0.64 87.58±0.44

Average 77.45 83.89 84.06

From these results, we make the following observations: ➋
TMLP almost achieves comparable performance to
GNNs. In the Figure 6, the performance of TMLP is signif-
icantly better than MLP and on par with GCN, especially
when the training data ratio is large. In some datasets (i.e.,
Cora, FullCoraML), the performance of TMLP is slightly
worse than GCN but still significantly better than MLP.
It is worth noting that our proposed TMLP is only trained
with the node features, ignoring the connection informa-
tion. Table 3 show the average accuracy (84.06) of TMLP is comparable to that of GCN (83.89).

Test-Time Mixup

Figure 5: Visualization of node representations
learned by MLP and TMLP. Node representations
from the same class, after Test-Time Mixup, be-
come clustered together.

Based on the node representation, ➌ Test-Time Mixup
make the node representation more discriminative
than MLP. The visualization clearly illustrates that the
node representations within the same class, as learned
by TMLP, are clustered together. This clustering pattern
demonstrates the advanced predictive power of TMLP, as
it appears to have a keen ability to distinguish similar
group classes effectively. Consequently, this capacity al-
lows TMLP to deliver superior classification performance.
The node representation clearly shows what TMLP does
from the representation perspective.

4.2 How Does Test-time Mixup Benefit GCN? Investigating Decision Boundary

In this section, we evaluate the effect of Test-Time Mixup on the decision boundary change from MLP to
TMLP. To do so, we compare the distance between node features and the decision boundary of MLP before
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Figure 6: The performance comparison of the GCNs, MLP and TMLP (Ours). GCN-1 is a one-layer GCN,
and GCN-2 is a two-layer GCN. The results show that TMLP achieves a comparable performance to GCN
and SGC. Note that the architecture is essentially MLP in training time and GCN in the test time. More
results on other datasets and GNNs are presented in Appendix C.2.

Figure 7: Decision Boundary of MLP and TMLP. TMLP can cause node features to move away from the
learned boundary, as shown with . More experimental details are in Appendix C.3

and after applying Test-Time Mixup. After training a model with training-time data mixup, we evaluate its
decision boundary, which separates different classes in the feature space. We then apply test-time mixup
techniques to node features and reassess the decision boundary. Our findings indicate that ➍ Test-Time
Mixup can cause node features to move away from the learned boundary, enhancing model
robustness to unseen data. However, it’s crucial to strike a balance between Test-Time Mixup and model
performance, as overdoing Mixup may reduce accuracy.

5 Unifying HMLP and TMLP: Verifying the Main Results

In this section, we unify HMLP and TMLP into a single MLP, which integrates both Homophily Relabel and
Test-time Mixup. They are supposed to be equivalent to graph convolution. To unify these two MLPs, we 1)
relabel all the nodes in the graph with the mixed label Ŷ = A · Y. 2) train an MLP on all the nodes with Ŷ
on relabeled graph, only using node features. 3) employ the well-trained MLP for inference with neighbor
aggregation during testing. To test the efficacy of this combined approach, we perform experiments comparing
the performance of the unified MLP with that of individual HMLP and TMLP, as well as other GCN. The
experimental setup remains consistent with the previous setting with HMLP and TMLP. We present the results
in Figure 8. ➎ Unifying HMLP and TMLP can achieve comparable performance to original GNNs.

9



Published in Transactions on Machine Learning Research (09/2024)

Figure 8: Unifying HMLP and TMLP. these methods together achieve performance comparable to GNNs
(excluding the PubMed dataset, as the MLPs also exhibit better performance than GNNs.).

6 Discussion and Future Work

In this paper, we reveal the relation between graph neural networks and Mixup that graph neural networks
are essentially Mixup, in the sense that they can be seen as a continuous interpolation between nodes in the
graph. This equivalence allows for a new interpretation of GNNs as a form of regularization, and provides a
new perspective on the design of GNNs.

• Efficient Alternative Training and Inference Method for GNNs on Large Graph Data.
HMLP presents an efficient solution for both training and testing on large-scale graphs, as it completely
eliminates the need for connection information during both stages. TMLP, though also MLP-based,
emphasizes training efficiency. The improved training efficiency of TMLP can still be advantageous for
reducing the training cost on large graph.

• Opening a New Door for Understanding Graph Convolution. The introduction of mixup, a
simple node-level operation, offers a novel perspective on graph convolution by representing it in a
mixup form. Traditional graph convolution employs the adjacency matrix of the entire graph, a concept
that can be complex to comprehend or articulate. By approaching the understanding of graph neural
networks from the entire graph level, we can demystify these complexities. This presents an essential
avenue for exploration in future work related to our paper.

Future Work. Based on the above practical and theoretical potentials of the proposed methods in this
paper. Here are some potential future works: 1) improve HMLP to make it more practical for large-scale
graphs and the performance when the training data ratio is small. 2) The well-studied Mixup strategy would
be helpful for understanding the expressiveness of graph neural networks.
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A Related Works

In this appendix, we discuss more related work to our paper.

A.1 Graph Neural Networks

Starting from graph convolutional network (Kipf & Welling, 2016a), graph neural networks have been applied
to various graph learning tasks and show great power for graph learning tasks. Despite the practical power of
graph neural network, understanding the generalization and working mechanism of the graph neural networks
are still in its infancy (Garg et al., 2020; Zhang et al., 2023a; Yang et al., 2023; Baranwal et al., 2023).
The previous works try to understand graph neural networks from different perspectives, such as signal
processing (Nt & Maehara, 2019; Bo et al., 2021; Bianchi et al., 2021), gradient flow (Di Giovanni et al.,
2022), dynamic programming(Dudzik & Veličković, 2022), neural tangent kernels (Yang et al., 2023; Du et al.,
2019; Sabanayagam et al., 2022) and influence function (Chen et al., 2023b). There is also a line of works try
to understand graph neural networks by analyzing the connection between GNNs and MLPs (Baranwal et al.,
2023; Han et al., 2022b; Yang et al., 2023; Tian et al., 2023).

In our work, we understand graph neural networks through a fresh perspective, Mixup. We believe this work
will inspire further research and lead to the development of new techniques for improving the performance
and interpretability of GNNs.
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A.2 Mixup and Its Variants

Mixup (Zhang et al., 2018) and its variants (Verma et al., 2019; Yun et al., 2019; Kim et al., 2020; 2021)
are important data augmentation methods that are effective in improving the generalization performance of
deep neural networks. Mixup is used to understand or improve many machine learning techniques. More
specifically, deep neural networks trained with Mixup achieve better generalization (Chun et al., 2020; Zhang
et al., 2020; Chidambaram et al., 2022), calibration (Thulasidasan et al., 2019; Zhang et al., 2022a), and
adversarial robustness (Pang et al., 2019; Archambault et al., 2019; Zhang et al., 2020; Lamb et al., 2019).
As a studies data augmentation method, Mixup can be understood as a regularization term to improve the
effectiveness and robustness of neural network (Pang et al., 2019; Archambault et al., 2019; Zhang et al.,
2020; Lamb et al., 2019). Mixup are also used to explain some other techniques, such as ensmeble (Lopez-Paz
et al., 2023). Additionally, Mixup technique is also used to augment graph data for better performance of
GNNs Han et al. (2022a); Wang et al. (2021).

In this work, we use Mixup to explain and understand the graph neural network, and based on the Mixup,
we propose two kinds of MLP that achieve almost equivalent performance to graph neural networks. Also,
our work is different form the works that chance the GNN training with Mixup, while we connect the graph
convolution and Mixup.

A.3 Efficient Graph Neural Networks

Although the graph neural networks are powerful for graph learning tasks, they suffer slow computational
problems since they involve either sparse matrix multiplication or neighbors fetching during the inference,
resulting in active research on the efficiency of graph neural networks. The recent advances in efficient graph
neural networks are as follows. Efficient graph neural network (Wang et al., 2023a; Shi et al., 2023; Hui et al.,
2023; Zhang et al., 2023b; Zhu et al., 2023b) includes the sampling-based method (Hamilton et al., 2017;
Chiang et al., 2019; Zeng et al., 2019), quantization (Liu et al., 2022), knowledge distillation (Zhang et al.,
2021; Tian et al., 2023), and graph sparsification (Cai et al., 2020). There is a line of work to try to use MLP
to accelerate the GNN training and inference (Zhang et al., 2022b; Wu et al., 2019; Frasca et al., 2020; Sun
et al., 2021; Huang et al., 2020; Hu et al., 2021). Simplifying graph convolutional (SGC) (Wu et al., 2019)
“simplifying” graph convolutional network by decoupling the neighbor aggregation and feature transformation,
the following work such as You et al. (2020) employ the similar basic idea. Zhang et al. (2021) leverage
knowledge distillation to transfer the knowledge from GNN to MLP. Han et al. (2022b) and Yang et al. (2023)
transfer the weight from MLP to GNN. These kinds of methods use MLP for efficient graph neural networks.

Our proposed methods HMLP and TMLP are efficient for training and/or inference, which can be categorized
as an efficient graph neural network. Besides, our proposed method provides a new perspective to understand
graph neural networks.

B Connection between Mixup and More Graph Convolutions

B.1 Discussion on More Graph Convolutions

We examine the connection between complex graph convolutions used in various graph neural networks and
Mixup. We aim to approximately rewrite complex graph convolutions (like those in graph attention networks)
into Mixup forms. We present a general Mixup form of graph convolution for node ni in the graph as follows

(x̃, ỹ) =

∑
j∈N i

λjHj ,
∑

j∈N i

λjyi

 . (9)

Equation (9) shows that graph neural networks architectures vary depending on: 1) how to select neighbors
set (Ni), 2) how to select aggregation coefficient (λj), and 3) what is mixed up (Hj). For example, if we
set N = N 2

i , λ = 1
|N 2

i
| , the above equation will be SGC. However, there are a lot of advanced graph neural

networks, such as GAT (Veličković et al., 2018)) (attention-based GNN), and PPNP (Gasteiger et al., 2018)
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Table 4: Examples of the relation between graph convolutions to Mixup at k-layer.
(Ni) (λj) (Hj)

GCN Ni ai Hk

SGC N k
i ak

i X
GAT Ni Attention Score Hk

PPNP Ni ai Logit

(MLP as the backbone). Table 4 shows the relationship between those graph convolutions to Mixup. To
include residual connections in some graph convolutions (Chen et al., 2020; Xu et al., 2018), we can expand
the neighbors set Ni of node ni to include its node representation of the previous time step.

B.2 Experiments on APPNP

APPNP essentially performs the neighbor aggregation in the last layer. Thus, TMLP and HMLP, according
to APPNP, are equivalent to GCN. We report the performance in the table below. The results show that
TMLP and HMLP achieve better performance than APPNP.

Table 5: Performance Metrics of Different Methods
MLP PPNP TMLP HMLP

73.57 83.80 88.26 86.42

B.3 GNN with trainable mixing parameter λ

In this experiment, we adopted a method similar to GAT to examine the performance of our proposed method,
with the mixing parameter λ being learned during the training process. The Softmax (Li et al., 2020) is a
learnable aggregation operator that normalizes the features of neighbors based on a learnable temperature
term. We report the performance in the table below. The results show that the TMLP performed worse than
the MLP. This indicates that the learnable mixing parameter λ does not work well for our proposed method

Table 6: Performance Metrics of Different Methods
MLP GAT-alike TMLP

73.57 88.42 65.62

C Additional Experiments

This appendix presents more experiment results on HMLP and TMLP, including 1) comparison experiments of
MLP, GCN, and HMLP/TMLP; 2) more experimental results on decision boundary.

C.1 More Experiments for HMLP

We present further experiments comparing MLP, GCN, and HMLP. These experiments complement those
discussed in Figure 4. We expand on that work by evaluating these methods with more GNN architectures.
The results are presented in Figure 9.

The results on more GNN architectures indicate that our proposed HMLP method not only outperforms
traditional MLP, but also attains a performance that is largely on par with GNNs in the majority of instances.
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Figure 9: The performance comparison of the GCN, MLP and HMLP (Ours) with GNN architectures. The
x-axis represents the ratio of training data, and the y-axis represents the classification accuracy. The results
show that our proposed method (HMLP) achieves comparable performance to GCN.
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C.2 More Experiments for TMLP

We present further experiments comparing MLP, GCN, and TMLP. These experiments complement those
discussed in Figure 6. We expand on that work by evaluating these methods with more GNN architectures.
The results are presented in Figure 10.

With the evaluation of an expanded selection of GNN architectures, the results reveal that our proposed
method TMLP typically achieves performance comparable to traditional GNNs in most situations.

Figure 10: The performance comparison of the GCNs, MLP and TMLP (Ours). GCN-1 is a one-layer GCN,
and GCN-2 is a two-layer GCN. The results show that TMLP achieves a comparable performance to GCN
and SGC. Note that the architecture is essentially MLP in training time and GCN in the test time.

C.3 More Experiments on Decision Boundary

We provide additional experimental results pertaining to the decision boundary of TMLP. Our findings indicate
that TMLP tends to shift the node features in the test set away from the pre-learned decision boundary by
TMLP.

C.4 More Experiments on Deeper GCNs

We conducted additional experiments on multi-layer graph neural network (SGC) on the Cora dataset. We
use the 20%\40%\40% for train\val\test data split. The test accuracy was determined based on the results
from the validation dataset. The test accuracy is reported in the following table. We observe from the results
that our proposed HMLP+TMLP method achieves performance comparable to that of SGC when multiple
graph convolutions are utilized.
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Figure 11: Decision Boundary of MLP and TMLP. TMLP can cause node features to move away from the
learned boundary.

Table 7: Performance comparison of GNNs and our proposed method with different layers.
1-layer 2-layer 3-layer 4-layer

MLP 69.11 68.95 68.39 69.22
SGC 82.38 84.50 84.23 83.95
HMLP 78.56 80.41 80.96 81.15
TMLP 82.10 83.76 83.49 83.67
HMLP +TMLP 83.12 83.95 84.87 84.41
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Figure 12: The additional experimental result on unifying HMLP and TMLP. These methods together achieve
performance comparable to GNNs on these additional datasets. The additional results show that graph
convolution is a mixup under our proposed modifications.

C.5 Experiments on More Datasets

We conducted additional experiments on more datasets, including FullCora, FullSiteSeer, FullDBLP, and the
results are presented in Figure 12. The additional results provide more evidence that graph convolution is a
mixup under our proposed modifications.

D Experiment Setting

In this appendix, we present the running environment for our experiment and the experimental setup for all
the experiments.
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D.1 Running Environments

We run all the experiments on NVIDIA RTX A100 on AWS. The code is based on PyTorch 3 and
torch_geometric 4. The datasets used in this paper are built-in datasets in torch_geometric, which will be
automatically downloaded via the torch_geometric API.

D.2 Experiment Setup for Figure 4

We provide details of the experimental setup associated with Figure 4. The primary objective of this
experiment was to compare the performance of our proposed HMLP model with that of the GCN model.
We utilized diverse datasets to facilitate a comprehensive evaluation. We set the learning rate to 0.1 for
all methods and datasets, and each was trained for 400 epochs.Moreover, we did not use weight decay for
model training. The test accuracy reported is based on the best results from the validation set. The node
classification accuracy served as the evaluation metric for this experiment.

D.3 Experiment Setup for Figure 6

We provide details of the experimental setup associated with Figure 6. We set the learning rate to 0.1 for all
methods, and each was trained for 400 epochs. Additionally, weight decay was not utilized in this process.
The test accuracy reported is based on the best results from the validation set. The node classification
accuracy served as the evaluation metric for this experiment.

D.4 Experiment Setup for Figure 8

We provide details of the experimental setup associated with Figure 8. We set the learning rate to 0.1 for all
methods, and each was trained for 400 epochs. Additionally, weight decay was not utilized in this process.
The test accuracy reported is based on the best results from the validation set. The node classification
accuracy served as the evaluation metric for this experiment.

E Datasets

In this experiment, we use widely adopted node classification benchmarks involving different types of networks:
three citation networks (Cora, CiteSeer and PubMed). The datasets used in this experiment are widely
adopted node classification benchmarks. These networks are often used as standard evaluation benchmarks
in the field of graph learning.

• Cora: is a widely used benchmark data for graph learning, which is a citation network, where each
node represents a research paper, and edges denote the citation relation. Node features are extracted
from the abstract of the paper.

• CiteSeer is another citation network used frequently in GNN literature. It follows a similar structure
to the Cora dataset, where each node represents a scientific document, and the edges are citation
information between them. The node features are derived from the text of the documents.

• PubMed: PubMed is a citation network composed of scientific papers related to biomedicine. As
with the other datasets, nodes represent documents, and edges indicate citation relationships. Node
features correspond to term frequency-inverse document frequency (TF-IDF) representations of the
documents.

• FullCoraML is a subset of the full Cora dataset. It retains the same structure as the Cora dataset
but is restricted to documents and citations within the field of machine learning. The node features
are the bag-of-words representation for the papers.

3https://pytorch.org/
4https://pyg.org/
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