
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

BATCHED STOCHASTIC MATCHING BANDITS

Anonymous authors
Paper under double-blind review

ABSTRACT

In this study, we introduce a novel bandit framework for stochastic matching based
on the Multi-nomial Logit (MNL) choice model. In our setting, N agents on one
side are assigned to K arms on the other side, where each arm stochastically se-
lects an agent from its assigned pool according to an unknown preference and
yields a corresponding reward. The objective is to minimize regret by maximiz-
ing the cumulative revenue from successful matches across all agents. This task
requires solving a combinatorial optimization problem based on estimated prefer-
ences, which is NP-hard and leads a naive approach to incur a computational cost
of O(KN ) per round. To address this challenge, we propose batched algorithms
that limit the frequency of matching updates, thereby reducing the amortized com-
putational cost—i.e., the average cost per round—to O(1) while still achieving a
regret bound of Õ(

√
T ).

1 INTRODUCTION

In recent years, the rapid growth of matching markets—such as ride-hailing platforms, online job
boards, and labor marketplaces—has underscored the importance of maximizing revenue from suc-
cessful matches. For example, in ride-hailing services, the platform seeks to match riders (agents)
with drivers (arms) in a way that maximizes total revenue generated from completed rides.

This demand has led to extensive research on online bipartite matching problems (Karp et al., 1990;
Mehta et al., 2007; 2013; Gamlath et al., 2019; Fuchs et al., 2005; Kesselheim et al., 2013), where
two sets of vertices are considered and one side is revealed sequentially. These studies primarily
focus on maximizing the number of matches. However, a significant gap remains between these
theoretical models and practical scenarios for maximizing revenue under latent reward functions.
Specifically, these models generally assume one-to-one assignments under deterministic matching
and focus solely on match count, without incorporating learning mechanisms that adapt to observed
reward feedback or aim to maximize cumulative revenue.

More recently, the concept of matching bandits has emerged to better capture online learning dy-
namics in matching markets (Liu et al., 2020; 2021; Sankararaman et al., 2020; Basu et al., 2021;
Zhang et al., 2022; Kong & Li, 2023). In this framework, agents are assigned to arms in each round,
and arms select one agent to match, generating stochastic reward feedback. The goal is typically to
learn reward distributions to eventually identify stable matchings (McVitie & Wilson, 1971).

Despite introducing online learning, existing matching bandit models rely on structural assumptions
that restrict their practical applicability. Specifically, prior work generally assumes that arms se-
lect agents deterministically according to known or fixed preference orders, resulting in what we
refer to as deterministic matching. However, in many real-world settings—such as ride-hailing ser-
vices—arms often make stochastic choices reflecting unknown or latent preferences. For example,
when a dispatch system offers a driver multiple rider requests, the driver may select among them
probabilistically, reflecting personal preferences, rather than following a fixed or deterministic rule.

In this work, we propose a novel and practical online matching framework, termed stochastic match-
ing bandits (SMB), designed to model such stochastic choice behavior under unknown preferences.
SMB permits multiple agents to be simultaneously assigned to the same arm, with the arm stochas-
tically selecting one agent from the assigned pool. This formulation departs from both traditional
online matching and prior matching bandit frameworks by explicitly modeling probabilistic arm
behavior, thereby addressing a different yet practically motivated objective.
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While our framework captures important aspects of real-world matching systems that are not fully
addressed by prior models, it represents a different modeling perspective rather than a direct re-
placement for existing approaches. Specifically, our work focuses on a practically significant setting
where the goal is to learn to maximize revenue under stochastic arm behavior with unknown pref-
erences. By explicitly modeling stochastic choice dynamics and allowing multiple simultaneous
proposals, our framework expands the scope of matching bandit research toward more realistic and
revenue-driven applications.

However, realizing this goal comes with substantial computational challenges: determining the op-
timal assignment in each round requires solving a combinatorial optimization problem that is NP-
hard, making naive implementations impractical in large-scale systems. This raises the following
fundamental question:

Can we maximize revenue in stochastic matching bandits
while ensuring (amortized) computational efficiency?

To address this challenge, we propose batched algorithms for the SMB framework that strategically
limit the frequency of matching assignment updates. These algorithms achieve no-regret perfor-
mance while substantially reducing the amortized computational cost—that is, the average compu-
tation required per round. Below, we summarize our main contributions.

Summary of Our Contributions.
• We introduce a novel and practical framework of stochastic matching bandits (SMB), which

incorporates the stochastic behavior of arms under latent preferences. However, naive ap-
proaches suffer from significant computational overhead, incurring an amortized cost of
O(KN ) per round, where N agents are matched to K arms.

• Under SMB, we first develop a batched algorithm that balances exploration and exploitation
with limited matching updates. Assuming knowledge of a non-linearity parameter κ, the
algorithm achieves Õ(

√
T ) regret using only minimal matching updates of Θ(log log T )—

and thus O(1) amortized computational cost for a large enough T .
• We further propose our second algorithm to eliminate the requirement of knowing κ, re-

taining the same Õ(
√
T ) regret still with only Θ(log log T ) updates and low amortized

computational cost of O(1).
• Finally, through empirical evaluations, we demonstrate that our algorithms achieve im-

proved or comparable regret while significantly reducing computational cost compared to
existing methods, highlighting their practical effectiveness.

2 RELATED WORK

Matching Bandits. We review the literature on matching bandits, which studies regret minimiza-
tion in matching markets. This line of work was initiated by Liu et al. (2020) and extended by
Sankararaman et al. (2020); Liu et al. (2021); Basu et al. (2021); Zhang et al. (2022); Kong & Li
(2023), focusing on finding optimal stable matchings through stochastic reward feedback. However,
these studies are largely limited to the standard multi-armed bandit setting, without considering
feature-based preferences or structural generalizations. Moreover, they universally assume that the
number of agents does not exceed the number of arms (N ≤ K).

Our proposed Stochastic Matching Bandits (SMB) framework departs from this literature in several
key ways. First, while prior work assumes that arms select agents deterministically based on known
preferences, SMB models arms as making stochastic choices based on unknown, latent preferences
that must be learned over time. This shifts the objective from identifying a stable matching to
maximizing cumulative reward through adaptive learning. Second, SMB captures richer preference
structures by modeling utilities as functions of agent-side features. Third, it removes structural
restrictions on the market size, allowing both N ≤ K and N ≥ K scenarios. While SMB represents,
in principle, a distinct modeling perspective, these advances make SMB applicable to a broader
range of real-world systems, such as ride-hailing and online marketplaces, where preferences are
stochastic, feature-driven, and market sizes vary across applications.

MNL-Bandits. In our study, we adopt the Multi-nomial Logit (MNL) model for arms’ choice
preferences in matching bandits. As the first MNL bandit method, Agrawal et al. (2017a) proposed
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Figure 1: Illustration of our stochastic matching process with 4 agents (N = 4) and 3 arms (K = 3).

an epoch-based algorithm, followed by subsequent contributions from Agrawal et al. (2017b); Chen
et al. (2023); Oh & Iyengar (2019; 2021); Lee & Oh (2024). However, unlike selecting an assortment
at each time step, our novel framework for the stochastic matching market mandates choosing at
most K distinct assortments to assign agents to each arm. Consequently, handling K-multiple
MNLs simultaneously results in exponential computational complexity. More recently, Kim & Oh
(2024) studied MNL-based preferences in matching bandits; however, their focus was on system
stability under binary (0/1) rewards, rather than revenue maximization. Additionally, their work
did not address the computational intractability of exact combinatorial optimization in this context.

Batch learning in Bandits. Batch learning in bandit problems has been explored in the context
of multi-armed bandits (MAB) (Perchet et al., 2015; Gao et al., 2019) and later extended to (gener-
alized) linear bandit models (Ruan et al., 2021; Hanna et al., 2023; Han et al., 2020; Ren & Zhou,
2024; Sawarni et al., 2024; Ren et al., 2024). Also, a concurrent work of Midigeshi et al. (2025)
study the multinomial logistic model with batched updates, but their setting is fundamentally dif-
ferent from other relevant works in the MNL bandit literature (Oh & Iyengar, 2019; 2021; Agrawal
et al., 2017a;b). In their framework, the agent selects a single item (i.e., one arm), so that the learner
does not selects a combinatorial set of arms.

To the best of our knowledge, batch-limited updates have not yet been explored in the context of
matching bandits with a combinatorial set of arms.

3 PROBLEM STATEMENT

We study stochastic matching bandits (SMB) with N agents and K arms. For better intuition,
the overall setup is illustrated in Figure 1. The detailed formulation is as follows: For each agent
n ∈ [N ], feature information is known as xn ∈ Rd, and each arm k ∈ [K] is characterized by latent
vector θk ∈ Rd. We define the set of features as X = [x1, . . . , xN ] ∈ Rd×N and the rank of X as
rank(X) = r(≤ d). At each time t ∈ [T ], every agent n may be assigned to an arm kn,t ∈ [K].
Let assortment Sk,t = {n ∈ [N ] : kn,t = k}, which is the set of agents that are assigned to an arm
k at time t. Then given an assortment to each arm k at time t, Sk,t, each arm k randomly accepts
an agent n ∈ Sk,t and receives reward rn,k ∈ [0, 1] according to the arm’s preference specified as
follows. The probability for arm k to accept agent n ∈ Sk,t follows Multi-nomial Logit (MNL)
model (Agrawal et al., 2017a;b; Oh & Iyengar, 2019; 2021; Chen et al., 2023) given by

p(n|Sk,t, θk) =
exp(x⊤

n θk)

1 +
∑

m∈Sk,t
exp(x⊤

mθk)
.

We denote x⊤
n θk as the latent preference utility of arm k for agent n. Following prior work on MNL

bandits (Oh & Iyengar, 2019; 2021; Agrawal et al., 2019), we consider that the candidate set size is
bounded by |Sk,t| ≤ L for all arms k and rounds t, and that the reward rn,k is known to the arms
in advance. This reflects practical constraints in real-world platforms such as ride-hailing, where
only a limited number of riders can be suggested to a driver—due to screen limitations or cognitive
load—and the reward (e.g., fare or price) is known prior to each assignment.

However, the expected rewards remain unknown, as they depend jointly on both the latent preference
utilities and the associated rewards. At each time step t, the agents receive stochastic feedback
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based on the assortments Sk,tk ∈ [K]. Specifically, for each agent n ∈ Sk, t and arm k ∈ [K],
the feedback is denoted by yn,t ∈ 0, 1, where yn,t = 1 if arm k accepts agent n (i.e., a successful
match occurs), and yn,t = 0 otherwise. Following the standard MNL model, each arm k may
also choose an outside option n0 (i.e., reject all assigned agents) with probability p(n0|Sk,t, θk) =
1/(1 +

∑
m∈Sk,t

exp(x⊤
mθk)). Then, given assortments to every arm k, {Sk}k∈[K], the expected

reward (revenue) for the assortments at time t is defined as∑
k∈[K]

Rk(Sk) :=
∑

k∈[K]

∑
n∈Sk

rn,kp(n|Sk, θk) =
∑

k∈[K]

∑
n∈Sk

rn,k exp(x
⊤
n θk)

1 +
∑

m∈Sk
exp(x⊤

mθk)
.

The goal of the problem is to maximize the cumulative expected reward over a time horizon T by
learning the unknown parameters {θk}k∈[K]. We define the oracle strategy as the optimal assortment
selection when the preference parameters θk are known. Let the set of all feasible assignments be:
M = {{Sk}k∈[K] : Sk ⊂ [N ], |Sk| ≤ L∀k ∈ [K], Sk∩Sl = ∅∀k ̸= l}. Then the oracle assortment
is given by: {S∗

k}k∈[K] = argmax{Sk}k∈[K]∈M
∑

k∈[K] Rk(Sk). Given {Sk,t}k∈[K] ∈ M for
all t ∈ [T ], the expected cumulative regret is defined as R(T ) = E

[∑
t∈[T ]

∑
k∈[K] Rk(S

∗
k) −

Rk(Sk,t)
]
. The objective is to design a policy that minimizes this regret over the time horizon T .

Similar to previous work for logistic and MNL bandit (Oh & Iyengar, 2019; 2021; Lee & Oh, 2024;
Goyal & Perivier, 2021; Faury et al., 2020; Abeille et al., 2021), we consider the following regularity
condition and non-linearity quantity.
Assumption 3.1. ∥xn∥2 ≤ 1 for all n ∈ [N ] and ∥θk∥2 ≤ 1 for all k ∈ [K].

Then we define a problem-dependent quantity regarding non-linearity of the MNL structure as fol-
lows:

κ := inf
θ∈Rd:∥θ∥2≤2;n∈S⊆[N ]:|S|≤L

p(n|S, θ)p(n0|S, θ).

4 OPTIMIZATION IN STOCHASTIC MATCHING BANDITS: THE CURSE OF
COMPLEXITY

In this work, we develop algorithms for the Stochastic Matching Bandit (SMB) problem with pref-
erence feedback. SMB can be viewed as a generalization of the standard Multinomial Logit (MNL)
bandit model with a single assortment (Oh & Iyengar, 2021; Lee & Oh, 2024) to a setting with K
simultaneous assortments—one for each arm. Applying existing MNL-based methods to this set-
ting requires dynamically selecting K assortments at each round while simultaneously learning arm
preferences in an online fashion. This extension introduces significant computational challenges:
the resulting combinatorial optimization problem is NP-hard. In contrast, the standard MNL bandit
problem with a single assortment is known to be solvable in polynomial time (Oh & Iyengar, 2021).
Thus, the SMB framework poses a substantially more complex optimization problem, highlighting
the need for efficient algorithmic solutions.

Naively extending MNL bandits (e.g. Oh & Iyengar (2021); Lee & Oh (2024)) to SMB requires
defining the UCB index for the expected reward of an assortment Sk for all k ∈ [K] as RUCB

k,t (Sk) =∑
n∈Sk

rn,k exp(hn,k,t)
1+

∑
m∈Sk

exp(hm,k,t)
, where hn,k,t is an UCB index for the utility value between n and k

at each time t. Then at each time, the algorithm determines assortments by following the UCB
strategy: {Sk,t}k∈[K] = argmax

{Sk}k∈[K]∈M

∑
k∈[K]

RUCB
k,t (Sk). (1)

While this method can achieve a regret bound of Õ(Kr
√
T ), it suffers from severe computational

limitations. Specifically, solving the combinatorial optimization in (1) incurs a worst-case compu-
tational cost of O(KN ) per round, particularly when the candidate set size L ≥ N , rendering the
approach impractical for large-scale settings. Further details of the algorithm and regret analysis are
provided in Appendix A.2.

To overcome the computational burden, we propose a batched learning approach that substantially
reduces per-round computational cost on average (i.e., the amortized cost). Our method is inspired
by the batched bandit literature (Perchet et al., 2015; Gao et al., 2019; Hanna et al., 2023; Dong et al.,
2020; Han et al., 2020; Ren & Zhou, 2024; Sawarni et al., 2024), and the full details are presented
in the following sections.
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Remark 4.1. For combinatorial optimization, approximation oracles (Kakade et al., 2007; Chen
et al., 2013) are often used to address computational challenges. However, this approach inevitably
targets approximation regret rather than exact regret that we aim to minimize. In this work, we
tackle the computational challenges while targeting exact regret by employing batch updates. Note
that even under approximation optimization, our proposed batch updates can also be beneficial in
further reducing the computational cost. We will discuss this in more detail in Section 5.

5 BATCH LEARNING FOR STOCHASTIC MATCHING BANDITS

Algorithm 1 Batched Stochastic Matching Bandit (B-SMB)
Input: κ, M ≥ 1
Init: t← 1, T1 ← ηT

1 Compute SVD of X = UΣV ⊤ and obtain Ur = [u1, . . . , ur]; Construct zn ← U⊤
r xn for n ∈ [N ]

2 for τ = 1, 2... do
3 for k ∈ [K] do
4 θ̂k,τ ← argminθ∈Rr lk,τ (θ) with (2) where Tk,τ−1 = T (1)

k,τ−1 ∪ T
(2)
k,τ−1 and T (2)

k,τ−1 =⋃
n∈Nk,τ−1

T (2)
n,k,τ−1

// Assortments Construction

5 {S(n,k)
l,τ }l∈[K] ← argmax

{Sl}l∈[K]∈Mτ−1:n∈Sk

∑
l∈[K]

RUCB
l,τ (Sl) for all n ∈ Nk,τ−1 with (3)

// Elimination

6 Nk,τ←{n ∈ Nk,τ−1 : max
{Sl}l∈[K]∈Mτ−1

∑
l∈[K]

RLCB
l,τ (Sl) ≤

∑
l∈[K]

RUCB
l,τ (S

(n,k)
l,τ )} with (3)

// G-Optimal Design
7 πk,τ ← argminπ∈P(Nk,τ )

maxn∈Nk,τ
∥zn∥2(∑n∈Nk,τ

πk,τ (n)znz⊤
n +(1/rTτ )Ir)−1

// Exploration

8 Run Warm-up (Algorithm 4) over time steps in T (1)
k,τ (defined in Algorithm 4)

9 for n ∈ Nk,τ do
10 tn,k ← t, T (2)

n,k,τ ← [tn,k, tn,k + ⌈rπk,τ (n)Tτ⌉ − 1]

11 while t ∈ T (2)
n,k,τ do

12 Offer {Sl,t}l∈[K] = {S
(n,k)
l,τ }l∈[K] and observe feedback ym,t ∈ {0, 1} for all m ∈

Sl,t and l ∈ [K]
13 t← t+ 1

14 Mτ ← {{Sk}k∈[K] : Sk ⊂ Nk,τ , |Sk| ≤ L ∀k ∈ [K], Sk ∩ Sl = ∅ ∀k ̸= l}; Tτ+1 ← ηT
√
Tτ

For batch learning to reduce the computational cost, we adopt the elimination-based bandit algorithm
(Lattimore & Szepesvári, 2020). This approach presents several key challenges in the framework
of SMB, including efficiently handling the large number of possible matchings between agents and
arms for elimination, designing an appropriate estimator for the elimination process, and minimiz-
ing the total number of updates to reduce computational overhead. The details of our algorithm
(Algorithm 1) is described as follows.

Before advancing on the rounds, the algorithm computes Singular Value Decomposition (SVD) for
feature matrix X = UΣV ⊤ ∈ Rd×N . From U = [u1, . . . , ud] ∈ Rd×d and rank(X) = r, we can
construct Ur = [u1, . . . , ur] ∈ Rd×r by extracting the left singular vectors from U that correspond
to non-zero singular values. We note that the algorithm does not necessitate prior knowledge of
r because the value can be obtained from SVD. The algorithm, then, operates within the full-rank
r-dimensional feature space with zn = U⊤

r xn ∈ Rr for n ∈ [N ]. Let θ∗k = U⊤
r θk. Then we can

reformulate the MNL model using r-dimensional feature zn ∈ Rr and latent θ∗k ∈ Rr. The detailed
description for the insight behind this approach is deferred to Appendix A.3.

In what follows, we describe the process for constructing assortments at each time step. The al-
gorithm consists of several epochs. For each k ∈ [K], from observed feedback yn,t ∈ {0, 1} for

5
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n ∈ Sk,t, t ∈ Tk,τ−1, where Tk,τ−1 is a set of the exploration time steps regarding arm k in the
τ − 1-th epoch, we first define the negative log-likelihood loss as

lk,τ (θ)= −
∑

t∈Tk,τ−1

∑
n∈Sk,t∪{n0}

yn,t log p(n|Sk,t, θ)+
1
2∥θ∥

2
2, (2)

where, with a slight abuse of notation, p(n|Sk,t, θ) := exp(z⊤n θ)/(1 +
∑

m∈Sk,t
exp(z⊤mθ)). Then

at the beginning of each epoch τ , the algorithm estimates θ̂k,τ from the method of Maximum Like-
lihood Estimation (MLE).

From the estimator, we define upper and lower confidence bounds for expected reward of assortment
Sk as

RUCB
k,τ (Sk) :=

∑
n∈Sk

[rn,kp(n|Sk, θ̂k,τ )] + 2βT max
n∈Sk

∥zn∥V −1
k,τ

,

RLCB
k,τ (Sk) :=

∑
n∈Sk

[rn,kp(n|Sk, θ̂k,τ )]− 2βT max
n∈Sk

∥zn∥V −1
k,τ

, (3)

where confidence term βT = C1

κ

√
log(TNK) for some constant C1 > 0 and Vk,τ =∑

t∈Tk,τ−1

∑
n∈Sk,t

znz
⊤
n +Ir. It is important to note that, unlike prior MNL bandit literature (Oh &

Iyengar, 2021; Lee & Oh, 2024), which constructs confidence intervals on each latent utility within
the MNL function, our approach places the confidence term outside the MNL structure, as shown in
(3). This modification is essential due to the need to incorporate both UCB and LCB indices in con-
junction with the reward terms rn,k. In particular, while our LCB formulation provides a valid lower
bound on the expected reward, applying LCBs directly to the latent utility values does not guarantee
a lower bound on the reward. This distinction is crucial for ensuring theoretical guarantees in our
learning algorithm.

For batch updates, we utilize elimination for suboptimal matches. However, exploring all possible
matchings naı̈vely for the elimination is statistically expensive. Therefore, we utilized a statistically
efficient exploration strategy by assessing the eligibility of each assignment (n, k) for n ∈ Nk,τ−1

and k ∈ [K] as a potential optimal assortment, where Nk,τ−1 is the active set of agents regarding
arm k at epoch τ . To evaluate the assignment (n, k), it constructs a representative assortment of
{S(n,k)

l,τ }l∈[K] from an optimistic view (Line 5). Then based on the representative assortments, it
obtains Nk,τ by eliminating n ∈ Nk,τ−1 which satisfies an elimination condition (Line 6). From
the obtained Nk,τ for all k ∈ [K], it constructs an active set of assortmentsMτ (Line 14), which is
likely to contain the optimal assortments as {S∗

k}k∈[K] ∈Mτ .

Following the elimination process outlined above, here we describe the policy of assigning assort-
ment {Sk,t}k∈[K] at each time t corresponding to Lines 7-13 in Algorithm 1. The algorithm initiates
the warm-up stage (Algorithm 4 in Appendix A.4) to apply regularization to the estimators, by uni-
form exploration across all agents n ∈ [N ] for each arm k ∈ [K]. Then for each k ∈ [K], the
algorithm utilizes the G-optimal design problem (Lattimore & Szepesvári, 2020) to obtain propor-
tion πk,τ ∈ P(Nk,τ ) for learning θ∗k efficiently by exploring agents in Nk,τ , where P(Nk,τ ) is the
probability simplex with vertex set Nk,τ . Notably, the G-optimal design problem can be solved by
the Frank-Wolfe algorithm (Damla Ahipasaoglu et al., 2008). Then, for all n ∈ Nk,τ , it explores
{S(n,k)

l,τ }l∈[K] several times using πk,τ (n) which is the corresponding value of n in πk,τ .

The algorithm repeats those processes over epochs τ until it reaches the time horizon T . We sched-
ule Tτ rounds for each epoch by updating Tτ = ηT

√
Tτ−1. Then, the algorithm requires a limited

number of updates for assortment assignments, which is crucial to reduce the amortized computa-
tional cost. Let ηT = (T/rK)1/2(1−2−M ) with a parameter for batch update budget M ≥ 1. Let
τT be the last epoch over T , which indicates the number of batch updates. We next observe that the
scheduling parameter M serves as a budget for the number of batch updates, as formalized in the
following proposition. This parameter plays a key role in the amortized efficiency of our algorithm,
which we discuss shortly. (The proof of the proposition is provided in Appendix A.5.)

Proposition 5.1 (Number of Batch Updates). τT ≤M .

We establish the following regret bound for our algorithm, with the proof provided in Appendix A.6.
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Theorem 5.2. Algorithm 1 with M = O(log T ) achieves:

R(T ) = Õ
(

1
κK

3
2

√
rT

(
T

rK

) 1

2(2M−1)
)
.

Corollary 5.3. For M = Θ(log log(T/rK)), Algorithm 1 achieves:

R(T ) = Õ
(

1
κK

3/2
√
rT
)
.

Remark 5.4 (Amortized Efficiency). As mentioned in Corollary 5.3, our algorithm only re-
quires combinatorial optimization at most M = Θ(log log(T/rK)) times over T , while achiev-
ing Õ(

√
T ) regret bound. This implies that the amortized computation cost is O(1) for large

enough T , since the average cost per round for combinatorial optimization becomes negligible as
NKN+1 log log(T/rK)

T = O(1) for T = Ω(NKN+1 log log(T/rK))). This is significantly lower
than the computational cost of the naive approach discussed in Section 4 (e.g. Algorithm 3 in Ap-
pendix A.2), which is O(KN ) per round.

Discussion on the Tightness of the Regret Bound. We begin by comparing our results to those
from previous batch bandit studies under a (generalized) linear structure. Our regret bound, given
as Õ(T 1/2+1/2(2M−1)) = Õ(T 1/2(1−2−M )) for a general M = O(log(T )), matches the results
from Han et al. (2020); Ren & Zhou (2024); Sawarni et al. (2024). Notably, this bound also aligns
with the lower bound for the linear structure, Ω(T 1/2(1−2−M )) (Han et al., 2020). For the case
of M = Θ(log log(T/rK)), our bound of Õ(

√
T ) corresponds to the findings for linear bandits in

Ruan et al. (2021); Hanna et al. (2023), where only such values of M were considered. Additionally,
with respect to the parameter r, we achieve a tight bound of O(

√
r) for M = Θ(log log(T/rK)),

which matches the lower bound for linear bandits established by Lattimore & Szepesvári (2020). To
the best of our knowledge, this is the first work to address batch updates in matching bandits.

Given that our problem generalizes the single-assortment MNL setting to K-multiple assortments,
we can obtain the regret lower bound of Ω(K

√
T ) with respect to K and T for the contextual

setting, by simply extending the result of Theorem 3 in Lee & Oh (2024) for single-assortment to
K-multiple assortments. In comparison, our analysis indicates a regret dependence of K3/2 when
M = Θ

(
log log

(
T/(rK)

))
, which is worse by a factor of

√
K relative to the lower bound. This gap

arises from the need to explore all potential matches during the epoch-based elimination procedure
in batch updates.

Our batch updates can also be applied to approximation oracles, introduced in Kakade et al. (2007);
Chen et al. (2013) to mitigate computational challenges in combinatorial optimization. The approx-
imation oracle approach focuses on obtaining an approximate solution to the optimization problem
rather than identifying the exact optimal assortment, with the trade-off of incurring a guarantee for
a relaxed regret measure (γ-regret). Further details are provided in Appendix A.8.

Although Algorithm 1 is amortized efficient in computation, achieving regret of Õ(
√
T ), the regret

bound relies on problem-specific knowledge of κ and, importantly, requires this parameter to be
known in advance for setting βT . The regret bound scales linearly with 1/κ, which can be as large
as O(L2) in the worst-case scenario. In the following section, we propose an algorithm improving
the dependence on κ without using the knowledge of κ.

6 IMPROVING DEPENDENCE ON κ WITHOUT PRIOR KNOWLEDGE

Here we provide details of our proposed algorithm (Algorithm 2 in Appendix A.1), focusing on
the difference from the algorithm in the previous section. While we follow the framework of Algo-
rithm 1, for the improvement on κ without knowledge of it, we utilize the local curvature information
for the gram matrix as

Hk,τ (θ̂k,τ ) =
∑

t∈Tk,τ−1

[ ∑
n∈Sk,t

p(n|Sk,t, θ̂k,τ )znz
⊤
n −

∑
n,m∈Sk,t

p(n|Sk,t, θ̂k,τ )p(m|Sk,t, θ̂k,τ )znz
⊤
m

]
+λIr,(4)

where λ = C2r log(K) for some constant C2 > 0 and we denote Hk,τ (θ̂k,τ ) by Hk,τ when there
is no confusion. We define z̃n,k,τ (Sk,t) = zn −

∑
m∈Sk,t

p(m|Sk,t, θ̂τ )zm and we use z̃n,k,τ for it,

7
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when there is no confusion. For the confidence bound, we define

Bτ (Sk,t) :=
13
2 ζ2τ max

n∈Sk,t

∥zn∥2H−1
k,τ

+ 2ζ2τ max
n∈Sk,t

∥z̃n,k,τ∥2H−1
k,τ

+ ζτ
∑

n∈Sk,t

p(n|Sk,t, θ̂k,τ−1)∥z̃n,k,τ∥H−1
k,τ

,

where ζτ = 1
2

√
λ+ 2r√

λ
log(4KT (1+ 2(tτ−1)L

rλ )) with the start time of τ -th episode tτ . We note that
the first term arises from the second-order term in the Taylor expansion for the error from estimator,
while the second and last terms originate from the first-order term. Notably, our confidence bounds
for τ -th episode utilize not only the current estimator θ̂k,τ but the previous one θ̂k,τ−1 (in the last
term) because the historical data in Hk,τ is obtained from the G/D-optimal policy which is optimized
under θ̂k,τ−1. Then we define upper and lower confidence bounds as

RUCB
k,τ (Sk,t) :=

∑
n∈Sk,t

rn,kp(n|Sk,t, θ̂k,τ ) +Bτ (Sk,t),

RLCB
k,τ (Sk,t) :=

∑
n∈Sk,t

rn,kp(n|Sk,t, θ̂k,τ )−Bτ (Sk,t). (5)

For the G/D-optimal design aimed at exploring the space of arms, the algorithm must account for
both Vk,τ and Hk,τ (θ̂k,τ ) to achieve a tight regret bound that avoids dependence on 1/κ. This
marks a key distinction from Algorithm 1. From this, the algorithm requires two different types of
procedures regarding assortment construction, elimination, and exploration. Let J (A) be the set
of all combinations of subset of A with cardinality bound L as J (A) = {B ⊆ A | |B| ≤ L},
and let K(A) be the set of all combinations of subset A (with cardinality bound L) and its element
as K(A) = {(b, B) | b ∈ B ⊆ A, |B| ≤ L}. The G/D-optimal design seeks to minimize the
ellipsoidal volume under Vk,τ , based on arm selection probabilities within the active set of arms
Nk,τ . Additionally, since the action space in Hk,τ (θ̂k,τ ) depends not only on the selection of actions
but also on the selection of assortments, the G/D-optimal design incorporates assortment selection
probabilities for J (Nk,τ ) and K(Nk,τ ). Following this policy, the algorithm includes two separate
exploration procedures regarding the selection of arms and assortments.
Remark 6.1. It is worth noting that our localized Gram matrix in (4) offers advantages over the
localized Gram matrices proposed in the MNL bandit literature (Goyal & Perivier, 2021; Lee & Oh,
2024). In Goyal & Perivier (2021), the localized term introduces a dependency on non-convex op-
timization to achieve optimism, whereas our approach utilizes θ̂k,τ without requiring such complex
optimization. Meanwhile, Lee & Oh (2024) incorporate all historical information of the estima-
tor into the Gram matrix, which is not well-suited for the G/D-optimal design. In contrast, our
method leverages the most current estimator, enabling alignment with the rescaled feature for the
G/D-optimal design.
Remark 6.2. Our G/D-optimal design for the localized Gram matrix differs from those employed in
linear bandits (Lattimore & Szepesvári, 2020) and generalized linear bandits (Sawarni et al., 2024).
Unlike these settings, where the probability depends on a single action, our approach accounts for
the dependence on assortments (combinatorial actions). As a result, it requires exploring a rescaled
feature space that considers the assortment space rather than focusing solely on individual actions.

We set ηT = (T/rK)1/(2(1−2−M )) with a parameter for batch update budget M ≥ 1. Then, by
following the same proof of Proposition 5.1, we have the following bound for the number of epochs.
Proposition 6.3 (Number of Batch Updates). τT ≤M .

Then, we have the following regret bounds (the proof is provided in Appendix A.1).

Theorem 6.4. Algorithm 2 with M = O(log(T )) achieves: R(T ) = Õ
(
rK

3
2

√
T

(
T
rK

) 1

2(2M−1)
)
.

Corollary 6.5. For M = Θ(log log(T/rK)), Algorithm 2 achieves:

R(T ) = Õ
(
rK

3
2

√
T
)
.

Remark 6.6 (Improvement on κ). This algorithm does not require prior knowledge of κ, which
enhances its practicality in real-world applications. Moreover, in terms of dependence on κ, the
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regret bound improves over that of Algorithm 1 (Theorem 5.2) by eliminating the 1/κ = O(L2) de-
pendency from the leading term. This improvement comes at the cost of an additional multiplicative
factor of

√
r in the regret.

Remark 6.7 (Amortized-Efficiency). Like Algorithm 1, this advanced algorithm requires only
Θ(log log(T/rK)) updates to achieve a Õ(

√
T ) regret bound. This implies that the amortized com-

putational cost is O(1) for sufficiently large T , since the average cost for combinatorial optimization
becomes negligible as LK1+NNL log log(T/Kr)

T = O(1) for T = Ω(LK1+NNL log log(T/Kr)).

7 EXPERIMENTS
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Figure 2: Experimental results with N = 3, K = 2, for (left) runtime cost and (right) regret
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Figure 3: Experimental results with N = 7, K = 4, for (left) runtime cost and (right) regret

In our experiments, we compare the proposed algorithms with existing methods for MNL bandits
and matching bandits under the MNL model. Specifically, the feature vectors xn and the latent
parameters θk are independently sampled from the uniform distribution over [−1, 1]d and then nor-
malized. Also, the reward rn,k is generated from uniform distribution over [0, 1]. We use the settings
N = 3, K = 2, r = 2, and T = 5000 for Figure 2, and increase the problem size to N = 7, K = 4
for Figure 3. Additional experiments are provided in Appendix A.13.

We first evaluate the computational efficiency of our proposed algorithms, B-SMB (Algorithm 1) and
B-SMB+ (Algorithm 2), by comparing them with an adapted version of the MNL bandit algorithm
OFU-MNL+ (Lee & Oh, 2024) and existing matching bandit algorithms for the stable MNL model,
UCB-QMB and TS-QMB (Kim & Oh, 2024). The details of how OFU-MNL+ is adapted to our setting
are provided in Appendix A.2. As discussed in Section 4, although the extension of OFU-MNL+

achieves sublinear regret, it suffers from significant computational overhead due to the need to solve
a combinatorial optimization problem at every round. In Figure 2 (left), we observe that our batched
algorithms are faster than OFU-MNL+, UCB-QMB, and TS-QMB. This efficiency gap becomes more
evident as N and K increase, as shown in Figure 3 (left). Notably, while the computational cost
of the benchmark algorithms grows rapidly with larger N and K, our batched algorithms maintain
their efficiency, demonstrating scalability to larger problem instances.

On the regret side, as shown in Figures 2 and 3 (right), our algorithms achieve sublinear regret
comparable to that of OFU-MNL+, in line with our theoretical guarantees, while outperforming
UCB-QMB and TS-QMB across both problem sizes.

8 CONCLUSION
In this work, we propose a novel and practical framework for stochastic matching bandits, where a
naive approach incurs a prohibitive computational cost of O(KN ) per round due to the combinatorial
optimization. To address this challenge, we propose an elimination-based algorithm that achieves a
regret of Õ

(
1
κK

3
2

√
rT
)

with M = Θ(log log(T/rK)) batch updates under known κ. Additionally,
we present an algorithm without knowledge of κ, achieving a regret of Õ

(
rK

3
2

√
T
)

under the same
number of batch updates. Leveraging the batch approach, our algorithms significantly reduce the
computational overhead, achieving an amortized cost of O(1) per round.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

All theoretical results are derived under clearly stated assumptions, with complete proofs provided
in the appendix. The proposed algorithms (B-SMB and B-SMB+) are described in detail in the
main text and appendix, including pseudocode and explanations of the elimination and exploration
procedures. To facilitate replication of our experiments, we provide code as supplementary material.
The experimental setup is described in the main and Appendix A.13.
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A APPENDIX

A.1 ALGORITHM WITHOUT PRIOR KNOWLEDGE OF κ (ALGORITHM 2)

A.2 NAIVE APPROACH BY EXTENDING MNL BANDIT

For our framework, we can utilize MNL bandit Lee & Oh (2024) by extending it to
K-mutliple MNLs (Algorithm 3) as follows. Let the negative log-likelihood lk,t(θ) =
−
∑

n∈Sk,s∪{0} yn,t log p(n|Sk,t, θ) where yn,t ∈ {0, 1} is observed preference feedback (1 de-
notes a choice, and 0 otherwise). Then we define the gradient of the likelihood as

gk,t(θ) := ∇θlk,t(θ) =
∑
n∈St

(p(n|Sk,t, θ)− yn,t)xn. (6)

We also define gram matrices from∇2
θlk,t(θ) as follows:

Gk,t(θ) :=
∑

n∈Sk,t

p(n|Sk,t, θ)znz
⊤
n −

∑
n,m∈Sk,t

p(n|Sk,t, θ)p(m|Sk,t, θ)znz
⊤
m. (7)

We define the UCB index for assortment Sk as

RUCB
k,t (Sk) =

∑
n∈Sk

exp(hn,k,t)

1 +
∑

m∈Sk
exp(hm,k,t)

, (8)

where hn,k,t = z⊤n θ̂k,t + γt∥zn∥G−1
k,t

with γt = C4 log(L)
√

d log(t) log(KT ) for some C4 > 0.
We set λ = C5d log(K) and η = C6 log(K) for some C5 > 0 and C6 > 0.

Proposition A.1. Algorithm 3 achieves a regret bound of R(T ) = Õ(rK
√
T ) and the computa-

tional cost per round is O(KN ).

Proof. The proof is provided in Appendix A.10.

Algorithm 3 Extension of OFU-MNL+ Lee & Oh (2024)
Compute SVD of X = UΣV ⊤ and obtain Ur = [u1, . . . , ur]; Construct zn ← U⊤

r xn for n ∈ [N ]
for t = 1, . . . , T do

for k ∈ [K] do
G̃k,t ← λId +

∑t−2
s=1 Gk,s(θ̂k,s) + ηGk,t−1(θ̂k,t−1) with (7)

Gk,t ← λId +
∑t−1

s=1 Gk,s(θ̂k,s) with (7)
θ̂k,t ← argminθ∈Θ gk,t−1(θ̂k,t−1)

⊤θ + 1
2η∥θ − θ̂k,t−1∥2G̃−1

k,t

with (6)

{Sk,t}k∈[K] ← argmax
{Sk}k∈[K]∈M

∑
k∈[K]

RUCB
k,t (Sk) with (8)

Offer {Sk,t}k∈[K] and observe yn,t for all n ∈ Sk,t, k ∈ [K]

A.3 DETAILS REGARDING PROJECTION IN FEATURE SPACE

Since xn for n ∈ [N ] lies in the subspace Ur, we observe that xn = Urbn for some bn ∈ Rr. Let
θ∗k = U⊤

r θk. Then we have x⊤
n θk = z⊤n θ∗k by following x⊤

n θk = b⊤nU
⊤
r θk = b⊤n (U

⊤
r Ur)U

⊤
r θk =

x⊤
nUrU

⊤
r θk = z⊤n θ∗k using U⊤

r Ur = Id. Therefore, we can reformulate the MNL model using
r-dimensional feature zn ∈ Rr and latent θ∗k ∈ Rr in place of d-dimensional xn ∈ Rd and θk ∈ Rd,
respectively, for n ∈ [N ] and k ∈ [K]. We note that this procedure is beneficial not only for
reducing feature dimension but also for introducing appropriate regularization for estimators without
imposing any assumption about feature distributions considered in Oh & Iyengar (2021).

A.4 WARM-UP STAGE FOR ALGORITHM 1

Let λmin(A) denote the minimum eigenvalue of matrix A. Then we provide the warm-up stage for
Algorithm 1 in Algorithm 4.
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Algorithm 2 Batched Stochastic Matching Bandit+ (B-SMB+)

Input: M ≥ 1; Init: t← 1, T1 ← C3 log(T ) log
2(TKL) for some constant C3 > 0

15 Compute SVD of X = UΣV ⊤ and obtain Ur = [u1, . . . , ur]; Construct zn ← U⊤
r xn for n ∈ [N ]

16 for τ = 1, 2... do
17 for k ∈ [K] do
18 θ̂k,τ ← argminθ∈Rr:∥θ∥2≤1 lk,τ (θ) with (2) where Tk,τ−1 =⋃

n∈Nk,τ−1
Tn,k,τ−1

⋃
J∈J (Nk,τ−1)

TJ,k,τ−1

// Assortments Construction

19 {S(n,k)
l,τ }l∈[K] ← argmax{Sl}l∈[K]∈Mτ−1:n∈Sk

∑
l∈[K] R

UCB
l,τ (Sl) for all n ∈ Nk,τ−1 with

(5)
20 {S(J,k)

l,τ }l∈[K] ← argmax{Sl}l∈[K]∈Mτ−1:Sk=J

∑
l∈[K] R

UCB
l,τ (Sl) for all J ∈ J (Nk,τ−1)

with (5)
// Elimination

21 N ′
k,τ ←{n ∈ Nk,τ−1 : max{Sl}l∈[K]∈Mτ−1

∑
l∈[K] R

LCB
l,τ (Sl) ≤

∑
l∈[K] R

UCB
l,τ (S

(n,k)
l,τ )}

with (5)
22 Nk,τ ← {n ∈ J : J ∈ J (N ′

k,τ ),max{Sl}l∈[K]∈Mτ−1

∑
l∈[K] R

LCB
l,τ (Sl) ≤∑

l∈[K] R
UCB
l,τ (S

(J,k)
l,τ )} with (5)

// G-Optimal Design
23 πk,τ ← argminπ∈P(Nk,τ )

maxn∈Nk,τ
∥zn∥2(∑n∈Nk,τ

π(n)znz⊤
n +(λ/rTτ )Ir)−1

24 π̃k,τ ← argmin
π∈P(J (Nk,τ ))

max
J∈J (Nk,τ )

∥∥∥∑
n∈J

z̃′n,k,τ (J)
∥∥∥2
(
∑

J∈J (Nk,τ ) π(J)
∑

n∈J z̃′
n,k,τ (J)z̃

′
n,k,τ (J)

⊤+(λ/Tτr)Ir)−1

where z̃′n,k,τ (J) =

√
p(n|J, θ̂k,τ )z̃n,k,τ (J)

25 π̄k,τ ← argmin
π∈P(K(Nk,τ ))

max
(n,J)∈K(Nk,τ )

∥z̃n,k,τ (J)∥2(∑(n,J)∈K(Nk,τ ) π(n,J)z̃n,k,τ (J)z̃n,k,τ (J)⊤+(λ/Tτr)Ir)−1

// Exploration
26 for n ∈ Nk,τ do
27 tn,k ← t, Tn,k,τ ← [tn,k, tn,k + ⌈rπk,τ (n)Tτ⌉ − 1]
28 while t ∈ Tn,k,τ do
29 Offer {Sl,t}l∈[K] = {S

(n,k)
l,τ }l∈[K] and observe feedback ym,t ∈ {0, 1} for all m ∈

Sl,t and l ∈ [K]
30 t← t+ 1

31 for J ∈ J (Nk,τ ) do
32 tJ,k ← t, TJ,k,τ ← [tJ,k, tJ,k + ⌈rπ̃k,τ (J)Tτ⌉ − 1]
33 while t ∈ TJ,k,τ do
34 Offer {Sl,t}l∈[K] = {S

(J,k)
l,τ }l∈[K] and observe feedback ym,t ∈ {0, 1} for all m ∈

Sl,t and l ∈ [K]
35 t← t+ 1

36 for (n, J) ∈ K(Nk,τ ) do
37 tn,J,k ← t, Tn,J,k,τ ← [tn,J,k, tn,J,k + ⌈rπ̄k,τ (n, J)Tτ⌉ − 1]
38 while t ∈ TJ,k,τ do
39 Offer {Sl,t}l∈[K] = {S

(J,k)
l,τ }l∈[K] and observe feedback ym,t ∈ {0, 1} for all m ∈

Sl,t and l ∈ [K]
40 t← t+ 1

41 Mτ ← {{Sk}k∈[K] : Sk ⊆ Nk,τ , |Sk| ≤ L ∀k ∈ [K], Sk ∩ Sl = ∅ ∀k ̸= l}
42 Tτ+1 ← ηT

√
Tτ

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Algorithm 4 Round-robin Warm-up

λmin ← λmin(
∑

n∈[N ] znz
⊤
n )

tk ← t, i← min{L,N}
T ′
k ← (C3N/iκ2λmin log(TK))(r + log(TK))2

T (1)
k,τ ← [tk, tk + T ′

k − 1]

for t ∈ T (1)
k,τ do

a← (i(t− 1) + 1 mod N), b← (it mod N)
if a ≤ b then

Sk,t ← [a, b]
else

Sk,t ← [1, b] ∪ [a,N ]

Construct any Sl,t for l ∈ [K]/{k} satisfying {Sk,t}k∈[K] ∈M0

Offer {Sk,t}k∈[K] and observe feedback yn,t ∈ {0, 1} for all n ∈ Sk,t, k ∈ [K]

A.5 PROOF OF PROPOSITION 5.1

Here we utilize the proof techniques in Sawarni et al. (2024). Recall that τT to be the smallest
τ ∈ [T ] such that ∑

τ ′∈[τ ]

∑
k∈[K]

|T (1)
k,τ ′ |+ |T (2)

k,τ ′ | ≥ T.

In other words,
∑

τ ′∈[τT−1]

∑
k∈[K] |T

(1)
k,τ ′ | + |T (2)

k,τ ′ | < T . Then we can show that τT ≤ M by
contradiction as follows. Suppose τT > M . Then, we have

TτT−1 ≥ (ηT )
∑τT −1

k=1 ( 1
2 )

k−1

≥ (ηT )
2(1−( 1

2 )
τT −1) = (T/rK)

1−21−τT

1−2−M ≥ T/rK,

where the last inequality comes from M + 1 ≤ τT . This implies that
∑

τ ′∈[τT−1]

∑
k∈[K] |T

(1)
k,τ ′ |+

|T (2)
k,τ ′ | ≥ KrTτT−1 ≥ T , which is contradiction. Thus, we can conclude that τT ≤M .

A.6 PROOF OF THEOREM 5.2

In the following proof, with a slight abuse of notation, we use p(n|S, θ) = exp(z⊤n θ)/(1 +∑
m∈S exp(z⊤mθ)) with zn ∈ Rr instead of xn ∈ Rd. We provide a lemma for a confidence bound.

Lemma A.2. For any τ ∈ [T ], k ∈ [K], and n ∈ [N ], with probability at least 1 − δ, for some
constant C > 0, we have

|z⊤n (θ̂k,τ − θ∗k)| ≤ C
κ

√
∥zn∥2V −1

k,τ

log(TKN/δ).

Proof. We define the gradient of the likelihood as

gk,τ (θ) :=
∑

t∈Tk,τ

∇θlk,t(θ) =
∑

t∈Tk,τ

∑
n∈Sk,t

(p(n|Sk,t, θ)− yn,t)zn + θ.

Then we first provide a bound in the following lemma.

Lemma A.3. For any n ∈ [N ], k ∈ [K], and τ ∈ [T ], with probability at least 1− δ, we have

|z⊤n (θ̂k,τ−θ∗k)| ≤
3
√
log(TKN/δ)

κ
∥zn∥V −1

k,τ
+

6

κ2
∥θ̂k,τ−θ∗k∥2∥gk,τ (θ̂k,τ )−gk,τ (θ∗k)∥V −1

k,τ
∥zn∥V −1

k,τ
.

Proof. The proof is deferred to Appendix A.9.1
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Then we define

E1 =

{
|z⊤n (θ̂k,τ − θ∗k)| ≤

3
√
log(TKN/δ)

κ
∥zn∥V −1

k,τ

+
6

κ2
∥θ̂k,τ − θ∗k∥2∥gk,τ (θ̂k,τ )− gk,τ (θ

∗
k)∥V −1

k,τ
∥zn∥V −1

k,τ
∀n ∈ [N ], k ∈ [K], τ ∈ [T ]

}
,

which holds at least 1−δ. Now we provide bounds for ∥θ̂k,τ−θ∗k∥2 and ∥gk,τ (θ̂k,τ )−gk,τ (θ∗k)∥V −1
k,τ

.

Lemma A.4 (Lemma 7 in Li et al. (2017)). For all k ∈ [K], τ ∈ [T ], with probability at least 1− δ
for δ > 0, we have

∥gk,τ (θ̂k,τ )− gk,τ−1(θ
∗
k)∥V −1

k,τ
≤ 4
√

2r + log(KTN/δ).

We define V 0
k,τ =

∑
t∈T (1)

k,τ−1

∑
n∈Sk,t

znz
⊤
n . Then we have the following lemma.

Lemma A.5. For all k ∈ [K] and τ ≥ 2, we have λmin(V
0
k,τ ) ≥ (C0/κ

2 log(TKN/δ))(r2 +

log2(TKN/δ) + 2r log(TKN/δ)).

Proof. Let λ′ = (C0/κ
2λmin log(TK/δ))(r2 + log2(TKN/δ) + 2r log(TKN/δ)) and recall

λmin = λmin(
∑

n∈[N ] znz
⊤
n ). From the phase in the warm-up stage (Algorithm 4), we can ob-

serve that V 0
k,τ contains znz⊤n for each n ∈ [N ] at least λ′. Since

∑
n∈[N ] znz

⊤
n =

∑
s∈[r] λsusus

⊤,
we have V 0

k,τ =
∑

t∈T (1)
k,τ−1

∑
n∈Sk,t

znz
⊤
n =

∑
s∈[r] λ

′
susus

⊤ where λ′
s ≥ λ′λs. Then from

λmin = λr, we can conclude λmin(V
0
k ) ≥ λ′λmin.

Lemma A.6 (Lemma 9 in Kveton et al. (2020)). Suppose λmin(V
0
k,τ ) ≥

max{(1/4κ2)(r log(T/r) + 2 log(KTN/δ)), 1} for all k ∈ [K]. Then, for all τ ∈ [T ] and
k ∈ [K], we have

P(∥θ̂k,τ − θ∗k∥2 ≥ 1) ≤ 1/δ.

We define E2 = {∥θ̂k,τ − θ∗k∥2 ≤ 1 ∀k ∈ [K], τ ∈ [T ]}. Then from Lemmas A.5, A.6, we have
P(E1) ≥ 1− δ.

We also denote by E3 the event of {∥gk,τ (θ̂k,τ )− gk,τ−1(θ
∗
k)∥V −1

k,τ
≤ 4
√

2r + log(KTN/δ) ∀τ ∈
[T ], k ∈ [K]}, which hold with probability at least 1− δ from Lemma A.4.

Lemma A.7. Under E2 and E3, for any τ ∈ [T ], k ∈ [K], we have

∥θ̂k,τ − θ∗k∥2 ≤
2

κ

√
2r + log(TNK/δ)

λmin(V 0
k )

.

Proof. The proof is deferred to Appendix A.9.2

Finally, under E1 ∪ E2 ∪ E3 which holds with probability at least 1− 3δ, we have

|z⊤n (θ̂k,τ − θ∗k)|

≤
2
√
log(TKN/δ)

κ
∥zn∥V −1

k,τ
+ (6/κ2)∥zn∥V −1

k,τ
∥θ̂k,τ − θ∗k∥2∥(gk,τ (θ̂k,τ )− gk,τ (θ

∗
k))∥V −1

k,τ

≤
2
√

log(TKN/δ)

κ
∥zn∥V −1

k,τ
+

48(2r + log(KTN/δ))

κ2
√

λmin(V 0
k,τ )

∥zn∥V −1
k,τ

≤
3
√
log(TKN/δ)

κ
∥zn∥V −1

k,τ

= (3/κ)
√
∥zn∥2V −1

τ,k

log(TKN/δ) := β(δ)∥zn∥V −1
τ,k

,
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which concludes the proof.

Then we define event E = {|z⊤n (θ̂k,τ − θ∗k)| ≤ βT ∥zn∥V −1
k,τ
∀τ ∈ [T ], k ∈ [K], n ∈ [N ]} for some

c1 > 0, which holds at least 1− 1/T with Lemma A.2 and δ = 1/T .
Lemma A.8. Under E, for all τ ∈ [T ], k ∈ [K], and S ⊆ Nk,τ−1, we have

0 ≤ RUCB
k,τ (S)−Rk(S) ≤ 4βT max

n∈S
∥zn∥V −1

k,τ
and − 4βT max

n∈S
∥zn∥V −1

k,τ
≤ RLCB

k,τ (S)−Rk(S) ≤ 0

Proof. Let un,k = z⊤n θ∗k, ûn,k = z⊤n θ̂k,τ , and R̂k,τ (S) =
∑

n∈S rn,k exp(ûn,k)

1+
∑

m∈S exp(ûm,k)
. Then by the mean

value theorem, there exists ūn,k = (1 − c)ûn,k + cun,k for some c ∈ (0, 1) satisfying, for any
S ⊂ Nk,τ−1∣∣∣R̂k,τ (S)−Rk(S)

∣∣∣ = ∣∣∣∣∑n∈S rn,k exp(ûn,k)

1 +
∑

m∈S exp(ûn,k)
−
∑

n∈S rn,k exp(un,k)

1 +
∑

m∈S exp(um,k)

∣∣∣∣
=

∣∣∣∣∣∑
n∈S

∇vn

(∑
m∈S rm,k exp(vm)

1 +
∑

m∈S exp(vm)

) ∣∣∣
vn=ūn,k

(ûn,k − un,k)

∣∣∣∣∣
≤
∣∣∣∣ (1 +∑n∈S exp(ūn,k))(

∑
n∈S rn,k exp(ūn,k)(ûn,k − un,k))

(1 +
∑

n∈S exp(ūn,k))2

∣∣∣∣
+

∣∣∣∣ (∑n∈S exp(ūn,k))(
∑

n∈S rn,k exp(ūn,k)(ûn,k − un,k))

(1 +
∑

n∈S exp(ūn,k))2

∣∣∣∣
≤ 2

∑
n∈S

exp(ūn,k)

1 +
∑

m∈S exp(ūm,k)
|ûn,k − un,k|

≤ 2max
n∈S
|ûn,k − un,k|

≤ 2βT max
n∈S
∥zn∥V −1

k,τ
,

where the last inequality is obtained from, under E, |z⊤n θ∗k − z⊤n θ̂k,τ | ≤ βT ∥zn∥V −1
k,τ

. Then, from

the definition of RUCB
k,τ (S) and RLCB

k,τ (S), we can conclude the proof.

In the following, by adopting the proof technique in Chen et al. (2023), we provide a lemma for
showing thatMτ is likely to contain the optimal assortment.
Lemma A.9. Under E, (S∗

1 , . . . , S
∗
K) ∈Mτ−1 for all τ ∈ [T ].

Proof. Here we use induction for the proof. Suppose that for fixed τ , we have (S∗
1 , . . . , S

∗
K) ∈Mτ

for all k ∈ [K]. Recall that βT = (C1/κ)
√

log(TKN). From Lemma A.8, we have RUCB
k,τ+1(S) ≥

Rk(S) and RLCB
k,τ+1(S) ≤ Rk(S) for any S ⊂ [N ]. Then for k ∈ [K], n ∈ S∗

k , and any (S1, .., SK) ∈
Mτ , we have ∑

l∈[K]

RUCB
l,τ+1(S

(n,k)
l,τ+1) ≥

∑
l∈[K]

RUCB
l,τ+1(S

∗
l )

≥
∑
l∈[K]

Rl(S
∗
l )

≥
∑
l∈[K]

Rl(Sl)

≥
∑
l∈[K]

RLCB
l,τ+1(Sl), (9)

where the first inequality comes from the elimination condition in the algorithm and (S∗
1 , . . . S

∗
K) ∈

Mτ , and the third inequality comes from the optimality of (S∗
1 , . . . , S

∗
K). This implies that n ∈

Nk,τ+1 from the algorithm. Then by following the same statement of (9) for all n ∈ S∗
k and
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k ∈ [K], we have S∗
k ⊂ Nk,τ+1 for all k ∈ [K], which implies (S∗

1 , . . . , S
∗
K) ∈ Mτ+1. Therefore,

with (S∗
1 , . . . , S

∗
K) ∈M1, we can conclude the proof from the induction.

From the above Lemmas A.8 and A.9, under E, we have∑
l∈[K]

Rl(S
∗
l )−

∑
l∈[K]

Rl(S
(n,k)
l,τ ) ≤

∑
l∈[K]

RLCB
l,τ (S∗

l ) + 4βT max
m∈S∗

l

∥zm∥V −1
l,τ

−
∑
l∈[K]

RUCB
l,τ−1(S

(n,k)
l,τ ) + 4βT max

m∈S
(n,k)
l,τ

∥zm∥V −1
l,τ−1

≤ 4βT

∑
l∈[K]

(max
m∈S∗

l

∥zm∥V −1
l,τ−1

+ max
m∈S

(n,k)
l,τ

∥zm∥V −1
l,τ−1

), (10)

where the last inequality comes from the fact that (S∗
1 , . . . , S

∗
K) ∈ Mτ−1 and

max(S1,...,SK)∈Mτ−1

∑
l∈[K] R

LCB
l,τ (Sl) ≤

∑
l∈[K] R

UCB
l,τ (S

(n,k)
l,τ ) from the algorithm.

We define V (πk,τ ) =
∑

n∈Nk,τ
πk,τ (n)znz

⊤
n and supp(πk,τ ) = {n ∈ Nk,τ : πk,τ (n) ̸= 0}. Then

we have the following lemma from the G/D-optimal design problem.
Lemma A.10 (Theorem 21.1 (Kiefer-Wolfowitz) in Lattimore & Szepesvári (2020)). For all τ ∈ [T ]
and k ∈ [K], we have

max
n∈Nk,τ

∥zn∥2(V (πk,τ )+(1/rTτ )Ir)−1 ≤ r and |supp(πk,τ )| ≤ r(r + 1)/2.

Proof. For completeness, we provide a proof in Appendix A.11.

From the definition of Vk,τ and Tτ , we have

Vk,τ ⪰
∑

n∈Nk,τ−1

rπk,τ−1(n)Tτ−1znz
⊤
n + Ir

= Tτ−1r(V (πk,τ−1) + (1/Tτ−1r)Ir). (11)
Then from Lemma A.10 and (11), for any n ∈ Nk,τ we have

βT ∥zn∥V −1
k,τ

= (1/κ)
√
∥zn∥2V −1

k,τ

log(KNT )

= Õ
(
(1/κ)

√
1/Tτ−1

√
∥zn∥2(V (πk,τ−1)+(1/Tτ−1r)Ir)−1/r

)
= Õ((1/κ)

√
1/Tτ−1). (12)

Therefore under E, from (10) and (12), for τ > 1, we have∑
l∈[K]

(Rl(S
∗
l )−Rl(S

(n,k)
l,τ )) = Õ((1/κ)K

√
1/Tτ−1).

We have

R(T ) = E

∑
t∈[T ]

∑
k∈[K]

Rk(S
∗
k)−Rk(Sk,t)


≤ E

 ∑
τ∈[τT ]

∑
l∈[K]

∑
t∈T (1)

l,τ

⋂
T (2)
l,τ

∑
k∈[K]

Rk(S
∗
k)−Rk(Sk,t)

 ,

(13)
which consists of regret from the stage of warming up and main. We first analyze the regret from
the warming-up as follows:

E

 ∑
τ∈[τT ]

∑
l∈[K]

∑
t∈T (1)

l,τ

∑
k∈[K]

Rk(S
∗
k)−Rk(Sk,t)

 ≤ E

 ∑
τ∈[τT ]

∑
l∈[K]

K
∣∣∣T (1)

l,τ

∣∣∣


= Õ(r2K2N/(min{L,N}κ2λmin)), (14)
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where the first equality comes from τT ≤M = O(log(log(T/rK))) from Proposition 5.1.

For the regret bound from the main part of the algorithm, with large enough T , we have

E

 ∑
τ∈[τT ]

∑
l∈[K]

∑
t∈T (2)

l,τT

∑
k∈[K]

Rk(S
∗
k)−Rt(Sk,t)


≤ E

 ∑
τ∈[τT ]

∑
l∈[K]

∑
t∈T (2)

l,τ

∑
k∈[K]

(Rk(S
∗
k)−Rk(Sk,t))1(E)


+ E

 ∑
τ∈[τT ]

∑
l∈[K]

∑
t∈T (2)

l,τ

∑
k∈[K]

(Rk(S
∗
k)−Rk(Sk,t))1(E

c)


= Õ

(K/κ)

τT∑
τ=2

∑
l∈[K]

∑
n∈Nl,τ

|T (2)
n,l,τ |

√
1/Tτ−1

+O(rKηT ) +O(K)

= Õ

(K/κ)

τT∑
τ=2

∑
l∈[K]

∑
n∈Nl,τ

|T (2)
n,l,τ |

√
1/Tτ−1

+O(rKηT )

= Õ

(K/κ)

τT∑
τ=2

∑
l∈[K]

(rTτ + |Supp(πl,τ )|)
√

1/Tτ−1

+O(rKηT )

= Õ

(
(K2/κ)

τT∑
τ=2

(rηT + r2
√

1/Tτ−1)

)
= Õ

(
(K2/κ)(rηT + r2)

)
= Õ

(
1
κrK

2(T/rK)
1

2(1−2−M )

)
, (15)

where the third last equality comes from Lemma A.10 and the second last equality comes from
τT ≤ M = O(log(log(T/rK))) from Proposition 5.1. From (13), (14), (15), for T ≥
r3KN2/min{L,N}2κ2λ2

min, we can conclude the proof.

A.7 PROOF OF THEOREM 6.4

Let gk,τ (θ) =
∑

t∈Tτ−1

∑
n∈Sk,t

p(n|Sk,t, θ)zn + λθ and ζτ (δ) = 1
2

√
λ +

2r√
λ
log
(

4K
δ

(
1 + 2(tτ−1)L

rλ

))
.

Lemma A.11 (Proposition 2 in Goyal & Perivier (2021)). With probability at least 1 − δ, for all
τ ≥ 1 and k ∈ [K], we have

∥gk,τ (θ̂k,τ )− gk,τ (θ
∗
k)∥H−1

k,τ (θ
∗
k)
≤ ζτ (δ).

From the above lemma, we define event E = {∥gk,τ (θ̂k,τ ) − gk,τ (θ
∗
k)∥H−1

k,τ (θ
∗
k)
≤ ζτ (δ), ∀τ ≥

1, k ∈ [K]}. Then we have the following lemma.

Lemma A.12. Under E, for any τ ≥ 1 and k ∈ [K], we have

∥θ̂k,τ − θ∗k∥Hk,τ (θ̂k,τ )
≤ (1 + 3

√
2)ζτ (δ).
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Proof. Here we utilize the proof techniques in Goyal & Perivier (2021). Let Gk,τ (θ1, θ2) =∫ 1

v=0
∇gk,τ (θ1 + v(θ2 − θ1))dv. By the multivariate mean value theorem, we have

gk,τ (θ1)− gk,τ (θ2) =

∫ 1

v=0

∇gk,τ (θ1 + v(θ2 − θ1))dv(θ1 − θ2) = Gk,τ (θ1, θ2)(θ1 − θ2), (16)

which implies
∥gk,τ (θ1)− gk,τ (θ2)∥G−1

k,τ (θ1,θ2)
= ∥θ1 − θ2∥Gk,τ (θ1,θ2).

By following the proof steps of Proposition 3 in Goyal & Perivier (2021) with Proposition C.1 in
Lee & Oh (2024), we can show that

Gk,τ (θ1, θ2) ⪰
1

1 + 3
√
2
Hk,τ (θ1) and Gk,τ (θ1, θ2) ⪰

1

1 + 3
√
2
Hk,τ (θ2).

Finally, we have

∥θ1 − θ2∥Hk,τ (θ1) ≤ (1 + 3
√
2)1/2∥θ1 − θ2∥Gk,τ (θ1,θ2)

= (1 + 3
√
2)1/2∥gk,τ (θ1)− gk,τ (θ2)∥G−1

k,τ (θ1,θ2)

≤ (1 + 3
√
2)∥gk,τ (θ1)− gk,τ (θ2)∥H−1

k,τ (θ2)
,

which concludes the proof with E.

From the above lemma and E with δ = 1/T , with probability at least 1− (1/T ), for all τ ≥ 1 and
k ∈ [K], we have

|z⊤n (θ̂k,τ − θ∗k)| ≤ ∥zn∥H−1
k,τ (θ̂k,τ )

∥θ̂k,τ − θ∗k∥Hk,τ (θ̂k,τ )
≤ ζτ∥zn∥H−1

k,τ (θ̂k,τ )
.

In the following proof, with a slight abuse of notation, we define E = {|z⊤n (θ̂k,τ − θ∗k)| ≤
ζτ∥zn∥H−1

k,τ (θ̂k,τ )
∀τ ≥ 1, k ∈ [K], n ∈ [N ]}, which holds at least 1 − (1/T ). We also use

p(n|S, θ) = exp(z⊤n θ)/(1 +
∑

m∈S exp(z⊤mθ)) with zn instead of xn.

Lemma A.13. Under E, for all k ∈ [K] and τ ∈ [T ], for any S ⊂ Nk,τ−1, we have

0 ≤ RUCB
k,τ (S)−Rk(S)

≤ 13ζ2τ max
n∈S
∥zn∥2H−1

k,τ (θ̂k,τ )
+ 4ζ2τ max

n∈S
∥z̃n,k,τ∥2H−1

k,τ (θ̂k,τ )
+ 2ζτ

∑
n∈S

p(n|S, θ̂k,τ−1)∥z̃n,k,τ∥H−1
k,τ (θ̂k,τ )

,

0 ≤ Rk(S)−RLCB
k,τ (S)

≤ 13ζ2τ max
n∈S
∥zn∥2H−1

k,τ (θ̂k,τ )
+ 4ζ2τ max

n∈S
∥z̃n,k,τ∥H−1

k,τ (θ̂k,τ )
+ 2ζτ

∑
n∈S

p(n|S, θ̂k,τ−1)∥z̃n,k,τ∥H−1
k,τ (θ̂k,τ )

.

Proof. Let un,k = z⊤n θ∗k, ûn,k = z⊤n θ̂k,τ , and R̂k,τ (S) =
∑

n∈S rn,k exp(ûn,k)

1+
∑

m∈S exp(ûm,k)
. We also define

un,k = z⊤n θ∗k, uk = (un,k : n ∈ S), ûk,τ = (ûn,k,τ : n ∈ S), and Q(v) =
∑

n∈S
rn,k exp(vn)

1+
∑

m∈S exp(vm) .
Then by a second-order Taylor expansion, we have∣∣∣R̂k,τ (S)−Rk(S)

∣∣∣ = |Q(ûk,τ )−Q(uk)|

=
∣∣∇Q(uk)

⊤(ûk,τ − uk)
∣∣+ ∣∣∣∣12(ûk,τ − uk)

⊤∇2Q(ūk)(ûk,τ − uk)

∣∣∣∣ , (17)

where ūk is the convex combination of ûk,τ and uk. Let en,k,τ = ûn,k,τ − un,k, en0,k,τ = 0,
ēn,k,τ = en,k,τ −

∑
m∈S∪{n0} p(m|S, θ

∗
k)em,k,τ = en,k,τ − Eθ∗

k
[em,k,τ ], and ẽn,k,τ = en,k,τ −
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∑
m∈S∪{n0} p(m|S, θ̂k,τ )em,k,τ = en,k,τ − Eθ̂k,τ

[em,k,τ ]. Then the first-order term in the above is
bounded as∣∣∇Q(uk)

⊤(ûk,τ − uk)
∣∣

=

∣∣∣∣∑n∈S rn,k exp(un,k)(ûn,k,τ − un,k)

1 +
∑

n∈S exp(un,k)
−

(
∑

n∈S rn,k exp(un,k))(
∑

n∈S exp(un,k)(ûn,k,τ − un,k))

(1 +
∑

n∈S exp(un,k))2

∣∣∣∣
=

∣∣∣∣∣∣
∑
n∈S

rn,kp(n|S, θ∗k)(ûn,k,τ − un,k)−
∑

n,m∈S

rm,kp(n|S, θ∗k)p(m|S, θ∗k)(ûn,k,τ − un,k)

∣∣∣∣∣∣
=

∣∣∣∣∣∑
n∈S

rn,kp(n|S, θ∗k)

(
(ûn,k,τ − un,k)−

∑
m∈S

p(m|S, θ∗k)(ûm,k,τ − um,k)

)∣∣∣∣∣
≤
∑
n∈S

rn,kp(n|S, θ∗k)
∣∣en,k,τ − Eθ∗

k
[em,k,τ ]

∣∣
≤
∑
n∈S

p(n|S, θ∗k)
∣∣en,k,τ − Eθ∗

k
[em,k,τ ]

∣∣
=
∑
n∈S

p(n|S, θ∗k) |ēn,k,τ |

≤
∑
n∈S

p(n|S, θ∗k) |ēn,k,τ − ẽn,k,τ |+
∑
n∈S

p(n|S, θ∗k) |ẽn,k,τ |

For the first term above, we have∑
n∈S

p(n|S, θ∗k) |ēn,k,τ − ẽn,k,τ |

=
∑
n∈S

p(n|S, θ∗k)
∣∣∣Eθ∗

k
[em,k,τ ]− Eθ̂k,τ

[em,k,τ ]
∣∣∣

=
∑
n∈S

p(n|S, θ∗k)

∣∣∣∣∣∑
m∈S

(p(m|S, θ∗k)− p(m|S, θ̂k,τ ))em,k,τ

∣∣∣∣∣
≤ 2ζ2τ

∑
n∈S

p(n|S, θ∗k)∥zn∥2H−1
k,τ

≤ 2ζ2τ max
n∈S
∥zn∥2H−1

k,τ

,

where the first inequality is obtained by using the mean value theorem. Then for the second term,
we have

∑
n∈S

p(n|S, θ∗k)|ẽn,k,τ | ≤
∑
n∈S

(p(n|S, θ∗k)− p(n|S, θ̂k,τ−1))|ẽn,k,τ |+
∑
n∈S

p(n|S, θ̂k,τ−1)|ẽn,k,τ |

≤ 2ζτ max
n∈S
∥zn∥H−1

k,τ
|(θ̂k,τ − θ∗k)

⊤(zn − Eθ̂k,τ
[zn])|

+
∑
n∈S

p(n|S, θ̂k,τ−1)|(θ̂k,τ − θ∗k)
⊤(zn − Eθ̂k,τ

[zn])|

≤ 2ζ2τ (max
n∈S
∥zn∥2H−1

k,τ

+max
n∈S
∥z̃n,k,τ∥2H−1

k,τ

) + ζτ
∑
n∈S

p(n|S, θ̂k,τ−1)∥z̃n,k,τ∥H−1
k,τ

.

From the above inequalities, we have∣∣∇Q(uk)
⊤(ûk,τ − uk)

∣∣ ≤ 4ζ2τ max
n∈S
∥zn∥2H−1

k,τ

+ 2ζ2τ max
n∈S
∥z̃n,k,τ∥2H−1

k,τ

+ ζτ
∑
n∈S

p(n|S, θ̂k,τ−1)∥z̃n,k,τ∥H−1
k,τ

.

(18)
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Now we focus on the second-order term which is bounded as∣∣∣∣12(ûk,τ − uk)
⊤∇2Q(ūk)(ûk,τ − uk)

∣∣∣∣
=

∣∣∣∣∣∣12
∑

n,m∈S

(ûn,k,τ − un,k)
∂2Q(ūk)

∂n∂m
(ûm,k,τ − um,k)

∣∣∣∣∣∣
=

∣∣∣∣∣∣12
∑

n,m∈S

(ûn,k,τ − un,k)
∂2Q(ūk)

∂n∂m
(ûm,k,τ − um,k) +

1

2

∑
n,m∈S

(ûn,k,τ − un,k)
∂2Q(ūk)

∂n∂m
(ûm,k,τ − um,k)

∣∣∣∣∣∣
≤

∑
n,m∈S

|ûn,k,τ − un,k|
exp(ūn,k)

1 +
∑

l∈S exp(ūl,k)

exp(ūm,k)

1 +
∑

l∈S exp(ūl,k)
|ûm,k,τ − um,k|

+
3

2

∑
n∈S

(ûn,k,τ − un,k)
2 exp(ūn,k)

1 +
∑

l∈S exp(ūl,k)

≤ 5

2

∑
n∈S

(ûn,k,τ − un,k)
2 exp(ūn,k)

1 +
∑

l∈S exp(ūl,k)

≤ 5

2
ζ2τ max

n∈S
∥zn∥2H−1

k,τ (θ̂k,τ )
, (19)

where the first inequality is obtained from Lemma A.22 and the second inequality is obtained from
AM-GM inequality. Then from (17), (18), (19), and with the definition of RUCB

k,τ (S) and RLCB
k,τ (S),

we can conclude the proof.

In the following, similar to Lemma A.9, we provide a lemma for showing that Mτ is likely to
contain the optimal assortment.

Lemma A.14. Under E, (S∗
1 , . . . , S

∗
K) ∈Mτ−1 for all τ ∈ [T ].

Proof. Here we use induction for the proof. Suppose that for fixed τ , we have (S∗
1 , . . . , S

∗
K) ∈Mτ

for all k ∈ [K]. From E, we have RUCB
k,τ+1(S) ≥ Rk(S) and RLCB

k,τ+1(S) ≤ Rk(S) for any S ⊂ [N ].
Then for k ∈ [K], n ∈ S∗

k , and any (S1, .., SK) ∈Mτ , we have

∑
l∈[K]

RUCB
l,τ+1(S

(n,k)
l,τ+1) ≥

∑
l∈[K]

RUCB
l,τ+1(S

∗
l )

≥
∑
l∈[K]

Rl(S
∗
l )

≥
∑
l∈[K]

Rl(Sl)

≥
∑
l∈[K]

RLCB
l,τ+1(Sl), (20)

where the first inequality comes from the elimination condition in the algorithm and (S∗
1 , . . . S

∗
K) ∈

Mτ , and the third inequality comes from the optimality of (S∗
1 , . . . , S

∗
K). This implies that n ∈

N ′
k,τ+1 from the algorithm. Then by following the same statement of (20) for all n ∈ S∗

k and
k ∈ [K], we have S∗

k ⊆ N ′
k,τ+1 for all k ∈ [K].
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Then for k ∈ [K], J = S∗
k , and any (S1, .., SK) ∈Mτ , we have∑

l∈[K]

RUCB
l,τ+1(S

J
l,τ+1) ≥

∑
l∈[K]

RUCB
l,τ+1(S

∗
l )

≥
∑
l∈[K]

Rl(S
∗
l )

≥
∑
l∈[K]

Rl(Sl)

≥
∑
l∈[K]

RLCB
l,τ+1(Sl), (21)

where the first inequality comes from the elimination condition in the algorithm and (S∗
1 , . . . S

∗
K) ∈

Mτ , and the third inequality comes from the optimality of (S∗
1 , . . . , S

∗
K). This implies that J(=

S∗
k) ∈ J (N ′

k,τ+1) from the algorithm. Then by following the same statement of (21) for all k ∈ [K],
we have S∗

k ⊆ Nk,τ+1 for all k ∈ [K], which implies (S∗
1 , . . . , S

∗
K) ∈ Mτ+1. Therefore, with

(S∗
1 , . . . , S

∗
K) ∈M1, we can conclude the proof from the induction.

We define V̄ (π̄k,τ ) =
∑

n∈J∈Jk,τ
π̄k,τ (n, J)z̃n,k,τ (J)z̃n,k,τ (J)

⊤ and Ṽ (π̃k,τ ) =∑
J∈Jk,τ

π̃k,τ (J)
∑

n∈J p(n|J, θ̂k,τ )z̃n,k,τ (J)z̃n,k,τ (J)⊤. Then we have the following lemma
from the G/D-optimal design problem.

Lemma A.15 (Kiefer-Wolfowitz). For all τ ∈ [T ] and k ∈ [K], we have

max
n∈J∈J (Nk,τ )

∥z̃n,k,τ (J)∥2(V̄ (π̄k,τ )+(λ/Tτr)Ir)−1 ≤ r and |supp(π̄k,τ )| ≤ r(r + 1)/2,

max
J∈J (Nk,τ )

∑
n∈J

p(n|J, θ̂k,τ )∥z̃n,k,τ (J)∥2(Ṽ (π̃k,τ )+(λ/Tτr)Ir)−1 ≤ r and |supp(π̃k,τ )| ≤ r(r + 1)/2.

Proof. This lemma follows by adapting the proof steps of Lemma A.10. To establish the result, we
utilize the following:∑

n∈J∈J
π̄k,τ (n, J)∥z̃n,k,τ (J)∥2(V̄ (π̄k,τ )+(λ/Tτr)Ir)−1

= trace(
∑

n∈J∈J
π̄(n, J)z̃n,k,τ (J)z̃n,k,τ (J)

⊤(V̄ (π̄k,τ ) + (λ/Tτr)Ir)
−1)

= trace(Ir)− (λ/Trr)trace((V̄ (π̄k,τ ) + (λ/Tτr)Ir)
−1) ≤ r.

Similarly, we have:∑
J∈J (Nk,τ )

π̃k,τ (J)
∑
n∈J

p(n|J, θ̂k,τ )∥z̃n,k,τ (J)∥2(Ṽ (π̃k,τ )+(λ/Tτr)Ir)−1

= trace(
∑
J

π̃k,τ (J)
∑
n

p(n|J, θ̂k,τ )z̃n,k,τ (J)z̃n,k,τ (J)⊤(Ṽ (π̃k,τ ) + (λ/Tτr)Ir)
−1)

= trace(Ir)− (λ/Tτr)trace((Ṽ (π̃k,τ ) + (λ/Tτr)Ir)
−1) ≤ r.

The remaining steps are identical to the proof of Lemma A.10.
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From the above Lemmas A.14 and A.8, under E, we have

∑
l∈[K]

Rl(S
∗
l )−

∑
l∈[K]

Rl(S
(n,k)
l,τ )

≤
∑
l∈[K]

[
RLCB

l,τ (S∗
l ) + 13ζ2τ max

m∈S∗
l

∥zm∥2H−1
l,τ (θ̂l,τ )

+ 4ζ2τ max
m∈S∗

l

∥z̃m,l,τ∥2H−1
l,τ (θ̂l,τ )

+2ζτ
∑

m∈S∗
l

p(m|S∗
l , θ̂l,τ−1)∥z̃m,l,τ∥H−1

l,τ (θ̂l,τ )


−
∑
l∈[K]

[
RUCB

l,τ (S
(n,k)
l,τ )− 13ζ2τ max

m∈S
(n,k)
l,τ

∥zm∥2H−1
l,τ (θ̂l,τ )

− 4ζ2τ max
m∈S

(n,k)
l,τ

∥zm∥2H−1
l,τ−1(θ̂l,τ−1)

−2ζτ
∑

m∈S
(n,k)
l,τ

p(m|S(n,k)
l,τ , θ̂l,τ−1)∥z̃m,l,τ∥H−1

l,τ (θ̂l,τ )


≲
∑
l∈[K]

ζ2τ max
m∈S∗

l

∥zm∥2H−1
l,τ (θ̂l,τ )

+ ζ2τ max
m∈S∗

l

∥z̃m,l,τ∥2H−1
l,τ (θ̂l,τ )

+ ζτ
∑

m∈S∗
l

p(m|S∗
l , θ̂l,τ−1)∥z̃m,l,τ∥H−1

l,τ (θ̂l,τ )

+ζ2τ max
m∈S

(n,k)
l,τ

∥zm∥2H−1
l,τ (θ̂l,τ )

+ ζ2τ max
m∈S

(n,k)
l,τ

∥z̃m,l,τ∥2H−1
l,τ (θ̂l,τ )

+ζτ
∑

m∈S
(n,k)
l,τ

p(m|S(n,k)
l,τ , θ̂l,τ−1)∥z̃m,l,τ∥H−1

l,τ (θ̂l,τ )


≤
∑
l∈[K]

[
ζ2τ max

m∈S∗
l

∥zm∥2H−1
l,τ (θ̂l,τ )

+ ζ2τ max
m∈S∗

l

∥z̃m,l,τ∥H−1
l,τ (θ̂l,τ )

+ ζ2τ max
m∈S

(n,k)
l,τ

∥zm∥2H−1
l,τ (θ̂l,τ )

+ζ2τ max
m∈S

(n,k)
l,τ

∥z̃m,l,τ∥H−1
l,τ (θ̂l,τ )

+ ζτ

√ ∑
m∈S∗

l

p(m|S∗
l , θ̂l,τ−1)

√ ∑
m∈S∗

l

p(m|S∗
l , θ̂l,τ−1)∥z̃m,l,τ∥2

H−1
l,τ (θ̂l,τ )

+ζτ

√√√√ ∑
m∈S

(n,k)
l,τ

p(m|S(n,k)
l,τ , θ̂l,τ−1)

√√√√ ∑
m∈S

(n,k)
l,τ

p(m|S(n,k)
l,τ , θ̂l,τ−1)∥z̃m,l,τ∥2

H−1
l,τ (θ̂l,τ )

 ,

(22)

where the second inequality comes from the fact that (S∗
1 , . . . , S

∗
K) ∈ Mτ−1 and

max(S1,...,SK)∈Mτ−1

∑
l∈[K] R

LCB
l,τ (Sl) ≤

∑
l∈[K] R

UCB
l,τ (S

(n,k)
l,τ ) from the algorithm.
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Likewise, we also have

∑
l∈[K]

Rl(S
∗
l )−

∑
l∈[K]

Rl(S
(J,k)
l,τ )

≲
∑
l∈[K]

[
ζ2τ max

m∈S∗
l

∥zm∥2H−1
l,τ (θ̂l,τ )

+ ζ2τ max
m∈S∗

l

∥z̃m,l,τ∥2H−1
l,τ (θ̂l,τ )

+ ζ2τ max
m∈S

(J,k)
l,τ

∥zm∥2H−1
l,τ (θ̂l,τ )

+ζ2τ max
m∈S

(J,k)
l,τ

∥z̃m,l,τ∥2H−1
l,τ (θ̂l,τ )

+ ζτ

√ ∑
m∈S∗

l

p(m|S∗
l , θ̂l,τ−1)

√ ∑
m∈S∗

l

p(m|S∗
l , θ̂l,τ−1)∥z̃m,l,τ∥2

H−1
l,τ (θ̂l,τ )

+ζτ

√√√√ ∑
m∈S

(n,k)
l,τ

p(m|S(J,k)
l,τ , θ̂l,τ−1)

√√√√ ∑
m∈S

(J,k)
l,τ

p(m|S(J,k)
l,τ , θ̂l,τ−1)∥z̃m,l,τ∥2

H−1
l,τ (θ̂l,τ )

 .

(23)

We can show that

Hk,τ (θ̂k,τ )

= λIr +
∑

t∈Tk,τ−1

∑
n∈Sk,t

p(n|Sk,t, θ̂k,τ )znz
⊤
n −

∑
t∈Tk,τ−1

∑
n∈Sk,t

∑
m∈Sk,t

p(n|Sk,t, θ̂k,τ )p(m|Sk,t, θ̂k,τ )znz
⊤
m

= λIr +
∑

t∈Tk,τ−1

∑
n∈Sk,t

p(n|Sk,t, θ̂k,τ )znz
⊤
n −

1

2

∑
t∈Tk,τ−1

∑
n∈Sk,t

∑
m∈Sk,t

p(n|Sk,t, θ̂k,τ )p(m|Sk,t, θ̂k,τ )(znz
⊤
m + znz

⊤
m)

⪰ λIr +
∑

t∈Tk,τ−1

∑
n∈Sk,t

p(n|Sk,t, θ̂k,τ )znz
⊤
n −

1

2

∑
t∈Tk,τ−1

∑
n∈Sk,t

∑
m∈Sk,t

p(n|Sk,t, θ̂k,τ )p(m|Sk,t, θ̂k,τ )(znz
⊤
n + zmz⊤m)

= λIr +
∑

t∈Tk,τ−1

∑
n∈Sk,t

p(n|Sk,t, θ̂k,τ )znz
⊤
n −

∑
t∈Tk,τ−1

∑
n∈Sk,t

∑
m∈Sk,t

p(n|Sk,t, θ̂k,τ )p(m|Sk,t, θ̂k,τ )znz
⊤
n

= λIr +
∑

t∈Tk,τ−1

∑
n∈Sk,t

p(n|Sk,t, θ̂k,τ )

1−
∑

m∈Sk,t

p(m|Sk,t, θ̂k,τ )

 znz
⊤
n

= λIr +
∑

t∈Tk,τ−1

∑
n∈Sk,t

p(n|Sk,s, θ̂k,s)p(n0|Sk,s, θ̂k,)znz
⊤
n ⪰ λIr +

∑
t∈Tk,τ−1

∑
n∈Sk,t

κznz
⊤
n

⪰ λIr +
∑

n∈Nk,τ−1

κrπk,τ−1(n)Tτ−1znz
⊤
n = κTτ−1r(V (πk,τ−1) + (λ/κrTτ−1)Ir)

⪰ κTτ−1r(V (πk,τ−1) + (λ/rTτ−1)Ir). (24)

From Lemma A.10 and (24), we also have, for any n ∈ Nk,τ

∥zn∥2H−1
k,τ (θ̂k,τ )

= O

(
∥zn∥2(V (πk,τ−1)+(λ/rTτ−1)Ir)−1

κrTτ−1

)

= O
(

1

κTτ−1

)
. (25)
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We have
Hk,τ (θ̂k,τ )

= λIr +
∑

t∈Tk,τ−1

∑
n∈Sk,t

p(n|Sk,t, θ̂k,τ )znz
⊤
n −

∑
t∈Tk,τ−1

∑
n∈Sk,t

∑
m∈Sk,t

p(n|Sk,t, θ̂k,τ )p(m|Sk,t, θ̂k,τ )znz
⊤
m

= λIr +
∑

t∈Tk,τ−1

Eθ̂k,τ
[znz

⊤
n ]− Eθ̂k,τ

[zn]Eθ̂k,τ
[zn]

⊤

= λIr +
∑

t∈Tk,τ−1

Eθ̂k,τ
[z̃n,k,τ z̃

⊤
n,k,τ ]

= λIr +
∑

t∈Tk,τ−1

∑
n∈Sk,t

p(n|Sk,t, θ̂k,τ )z̃n,k,τ z̃
⊤
n,k,τ

⪰ λIr +
∑

J∈J (Nk,τ−1)

∑
t∈TJ,k,τ−1

∑
n∈J

p(n|J, θ̂k,τ )z̃n,k,τ z̃⊤n,k,τ

⪰ λIr +
∑

J∈J (Nk,τ−1)

rπ̄k,τ−1(J)Tτ−1

∑
n∈J

κz̃n,k,τ z̃
⊤
n,k,τ

⪰ κTτ−1r
(
V̄ (π̄k,τ−1) + (λ/Tτ−1r)Ir

)
. (26)

From Lemma A.15 and (26) with Nk,τ ⊆ Nk,τ−1, we also have, for any n ∈ J ∈ J (Nk,τ )

∥z̃n,k,τ (J)∥2H−1
k,τ (θ̂k,τ )

= O

(
∥z̃n,k,τ (J))∥2(V̄ (π̄k,τ−1)+(λ/rTτ−1)Ir)−1

κrTτ−1

)

= O
(

1

κTτ−1

)
. (27)

We have
Hk,τ (θ̂k,τ )

= λIr +
∑

t∈Tk,τ−1

∑
n∈Sk,t

p(n|Sk,t, θ̂k,τ )znz
⊤
n −

∑
t∈Tk,τ−1

∑
n∈Sk,t

∑
m∈Sk,t

p(n|Sk,t, θ̂k,τ )p(m|Sk,t, θ̂k,τ )znz
⊤
m

= λIr +
∑

t∈Tk,τ−1

Eθ̂k,τ
[znz

⊤
n ]− Eθ̂k,τ

[zn]Eθ̂k,τ
[zn]

⊤

= λIr +
∑

t∈Tk,τ−1

Eθ̂k,τ
[z̃n,k,τ z̃

⊤
n,k,τ ]

= λIr +
∑

t∈Tk,τ−1

∑
n∈Sk,t

p(n|Sk,t, θ̂k,τ )z̃n,k,τ z̃
⊤
n,k,τ

⪰ λIr +
∑

J∈J (Nk,τ−1)

∑
t∈TJ,k,τ−1

∑
n∈J

p(n|J, θ̂k,τ )z̃n,k,τ z̃⊤n,k,τ

⪰ λIr +
∑

J∈J (Nk,τ−1)

rπ̃k,τ−1(J)Tτ−1

∑
n∈J

p(n|J, θ̂k,τ )z̃n,k,τ z̃⊤n,k,τ

⪰ λIr +
∑

J∈J (Nk,τ−1)

rπ̃k,τ−1(J)Tτ−1

∑
n∈J

p(n|J, θ̂k,τ−1)z̃n,k,τ z̃
⊤
n,k,τ

− 2ζτ
∑

J∈J (Nk,τ−1)

rπ̃k,τ−1(J)Tτ−1 max
n∈J

(∥zn∥H−1
k,τ (θ̂k,τ )

+ ∥zn∥H−1
k,τ−1(θ̂k,τ−1)

)z̃n,k,τ z̃
⊤
n,k,τ

= Tτ−1r
(
Ṽ (π̃k,τ−1) + (λ/Tτ−1r)Ir

−2ζτ
∑

J∈J (Nk,τ−1)

π̃k,τ−1(J)max
n∈J

(∥zn∥H−1
k,τ (θ̂k,τ )

+ ∥zn∥H−1
k,τ−1(θ̂k,τ−1)

)z̃n,k,τ z̃
⊤
n,k,τ

 ,

(28)
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where the last inequality is obtained from, using the mean value theorem,

∑
n∈J

(p(n|J, θ̂k,τ )− p(n|J, θ̂k,τ−1)z̃n,k,τ z̃
⊤
n,k,τ

=
∑
n∈J

(p(n|J, θ̂k,τ )− p(n|J, θ∗k) + p(n|J, θ∗k)− p(n|J, θ̂k,τ−1))z̃n,k,τ z̃
⊤
n,k,τ

⪰ −2ζτ (max
n∈J
∥zn∥H−1

k,τ (θ̂k,τ )
+max

n∈J
∥zn∥H−1

k,τ−1(θ̂k,τ−1)
)z̃n,k,τ z̃

⊤
n,k,τ . (29)

Let B = 2ζτ
∑

J∈J (Nk,τ−1)
π̃k,τ−1(J)maxn∈J(∥zn∥H−1

k,τ (θ̂k,τ )
+ ∥zn∥H−1

k,τ−1(θ̂k,τ−1)
)z̃n,k,τ z̃

⊤
n,k,τ

and we have B ⪯ 4ζτ
√

1
κTτ−2

∑
J∈J (Nk,τ−1)

π̃k,τ−1(J)maxn∈J z̃n,k,τ z̃
⊤
n,k,τ from (25). Then for

τ ≥ 3, we have

Ṽ (π̃k,τ−1)−B

⪰ 1

2
Ṽ (π̃k,τ−1) +

1

2
Ṽ (π̃k,τ−1)−B

⪰ 1

2
Ṽ (π̃k,τ−1) +

1

2

∑
J∈J (Nk,τ )

π̃k,τ (J)
∑
n∈J

κz̃n,k,τ z̃
⊤
n,k,τ − 4ζτ

√
1

κTτ−2

∑
J∈J (Nk,τ−1)

π̃k,τ−1(J)max
n∈J

z̃n,k,τ z̃
⊤
n,k,τ

⪰ 1

2
Ṽ (π̃k,τ−1), (30)

where the last inequality is obtained from 1
2κ ≥ 4ζτ

√
1

κTτ−2
because Tτ−2 ≥ min{T1, ηT } with

large enough T such that T ≥ max{ r
3K
κ6 log4(KTL), exp( r

κ3 )}.
Then, we have

∥z̃n,k,τ∥2H−1
k,τ (θ̂k,τ )

≤ rTτ−1∥z̃n,k,τ∥2(Ṽ (π̃k,τ−1)+(λ/Tτ−1r)Ir−B)−1

≤ rTτ−1∥z̃n,k,τ∥2( 1
2 Ṽ (π̃k,τ−1)+

1
2 (λ/Tτ−1r)Ir)−1

≤ 2rTτ−1∥z̃n,k,τ∥2(Ṽ (π̃k,τ−1)+(λ/Tτ−1r)Ir)−1 .

Then from the above, Lemma A.15, and (28) with Nk,τ ⊆ Nk,τ−1, we have, for any J ∈ J (Nk,τ )∑
n∈J

p(n|J, θ̂k,τ−1)∥z̃n,k,τ∥2H−1
k,τ (θ̂k,τ )

= O

∑n∈J p(n|J, θ̂k,τ−1)∥z̃n,k,τ∥2(Ṽ (π̃k,τ−1)+(λ/Tτ−1r)Ir)−1

rTτ−1


= O

(
1

Tτ−1

)
. (31)

Therefore under E, from (22), (23), (25),(27), and (31), we have the following.

For t ∈
⋃

n∈Nk,τ ,k∈[K] Tn,k,τ
⋃

J∈J (Nk,τ ),k∈[K] TJ,k,τ
⋃

n∈J∈J (Nk,τ ),k∈[K] Tn,J,k,τ ,

∑
k∈[K]

(Rk(S
∗
k)−Rk(Sk,t)) = O

(
K

(√
r

Tτ−1
+

r

Tτ−1κ

))
.
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For the regret bound, we have

E

∑
t∈[T ]

∑
k∈[K]

Rk(S
∗
k)−Rt(Sk,t)


≤ E

∑
t∈[T ]

∑
k∈[K]

(Rk(S
∗
k)−Rk(Sk,t))1(E)

+ E

∑
t∈[T ]

∑
k∈[K]

(Rk(S
∗
k)−Rk(Sk,t))1(E

c)


= Õ

K

τT∑
τ=3

∑
k∈[K]

 ∑
J∈J (Nk,τ )

|TJ,k,τ |+
∑

n∈Nk,τ

|Tn,k,τ |

(√ r

Tτ−1
+

r

Tτ−1κ

)+ Õ(rKηT ) +O(K)

= Õ

K

τT∑
τ=3

∑
k∈[K]

 ∑
J∈J (Nk,τ )

|TJ,k,τ |+
∑

n∈Nk,τ

|Tn,k,τ |

(√ r

Tτ−1
+

r

Tτ−1κ

)+ Õ(rKηT )

= Õ

K

τT∑
τ=3

∑
k∈[K]

(rTτ + |Supp(πk,τ )|+ |Supp(π̃k,τ )|)
(√

r

Tτ−1
+

r

Tτ−1κ

)+ Õ(rKηT )

= Õ

(
K2

τT∑
τ=3

(
r3/2ηT + r2

1

κ
√
Tτ−1

ηT

))
= Õ

(
K2r3/2ηT

)
= Õ

(
r3/2K2(T/rK)

1

2(1−2−M )

)
, (32)

where the third last equality comes from Lemma A.10 and the second last equality comes from
τT ≤M = Õ(1) and Tτ−1 ≥ ηT for τ ≥ 3.

A.8 APPROXIMATION ORACLE

Here we discuss the combinatorial optimization in our algorithm. We can utilize an α-approximation
oracle with 0 ≤ α ≤ 1, first introduced in Kakade et al. (2007). Instead of obtaining the exact opti-
mal assortment solution, the α-approximation oracle, denoted by Oα, outputs {Sα

k }k∈[K] satisfying∑
k∈[K] fk(S

α
k ) ≥ max{Sk}k∈[K]∈M

∑
k∈[K] αfk(Sk).

We introduce an algorithm (Algorithm 5 in Appendix A.8) by modifying Algorithm 1 to incorporate
α-approximation oracles for the optimization. Due to the redundancy, we explain only the distinct
parts of the algorithm here. (Approximation oracles can also be applied to Algorithm 2 similarly, but
we omit it in this discussion.) For testing the assignment (n, k), the algorithm constructs assortment
{Sα,(n,k)

l,τ }l∈[K] (where n ∈ S
α,(n,k)
k,τ ) in an optimistic view with an α-approximation oracle to

resolve computation issue as follows. We define an approximation oracle Oα,(n,k)
UCB which outputs

{Sα,(n,k)
l,τ }l∈[K] satisfying

max
{Sl}l∈[K]∈Mτ−1:n∈Sk

∑
l∈[K]

αRUCB
l,τ (Sl) ≤

∑
l∈[K]

RUCB
l,τ (S

α,(n,k)
l,τ ), (33)

which replaces Line 5 in Algorithm 1. For the elimination procedure, we define another β-
approximation oracle, denoted by Oβ

LCB , which outputs {Sβ
l,τ}l∈[K] satisfying

max
{Sl}l∈[K]∈Mτ−1

∑
l∈[K]

βRLCB
l,τ (Sl) ≤

∑
l∈[K]

RLCB
l,τ (Sβ

l,τ ). (34)

Then it updates Nk,τ by eliminating n ∈ Nk,τ−1 which satisfies the elimination condition of∑
l∈[K]

αRLCB
l,τ (Sβ

l,τ ) >
∑
l∈[K]

RUCB
l,τ (S

α,(n,k)
l,τ ), (35)
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which replaces Line 6 in Algorithm 1. We note that the algorithm utilizes the two different types of
approximation oracles, Oα,(n,k)

UCB and Oβ
LCB . Then the algorithm achieves a regret bound for γ-regret

defined asRγ(T ) = E[
∑

t∈[T ]

∑
k∈[K] γRk(S

∗
k)−Rk(Sk,t)] in the following theorem.

Theorem A.16. Algorithm 5 with M = O(log(T )) achieves a regret bound with γ = αβ as

Rγ(T ) = Õ

(
1
κK

3
2

√
rT

(
T

rK

) 1

2(2M−1)

)
.

Proof. The proof is provided in Appendix A.8.2.

A.8.1 α-APPROXIMATED ALGORITHM (ALGORITHM 5)

Algorithm 5 Batched Stochastic Matching Bandit with β-Approximation Oracle
Input: β, κ, M ≥ 1; Init: t← 1, T1 ← ηT

43 Compute SVD of X = UΣV ⊤ and obtain Ur = [u1, . . . , ur]; Construct zn ← U⊤
r xn for n ∈ [N ]

44 for τ = 1, 2... do
45 for k ∈ [K] do

// Estimation

46 θ̂k,τ ← argminθ∈Rr lk,τ (θ) with (2) where Tk,τ−1 = T (1)
k,τ−1 ∪ T

(2)
k,τ−1 and T (2)

k,τ−1 =⋃
n∈Nk,τ−1

T (2)
n,k,τ−1

// Assortments Construction

47 {Sα,(n,k)
l,τ }l∈[K] ← Oα,(n,k)

UCB from (33) for all n ∈ Nk,τ−1 with (3)
// Elimination

48 {Sβ
l,τ}l∈[K] ← Oβ

LCB from (34)

49 Nk,τ ← {n ∈ Nk,τ :
∑

l∈[K] αR
LCB
l,τ (Sβ

l,τ ) ≤
∑

l∈[K] R
UCB
l,τ (S

α,(n,k)
l,τ )} for k ∈ [K]

// G/D-optimal design
50 πk,τ ← argmaxπ∈P(Nk,τ )

log det(
∑

n∈Nk,τ
πk,τ (n)znz

⊤
n + (1/rTτ )Ir)

// Exploration

51 Run Warm-up (Algorithm 4) over time steps in T (1)
k,τ (defined in Algorithm 4)

52 for n ∈ Nk,τ do
53 tn,k ← t, T (2)

n,k,τ ← [tn,k, tn,k + ⌈rπk,τ (n)Tτ⌉ − 1]

54 while t ∈ T (2)
n,k,τ do

55 Offer {Sl,t}l∈[K] = {S
(n,k)
l,τ }l∈[K] and observe feedback ym,t ∈ {0, 1} for all m ∈

Sl,t and l ∈ [K]
56 t← t+ 1

57 Mτ ← {{Sk}k∈[K] : Sk ⊂ Nk,τ , |Sk| ≤ L ∀k ∈ [K], Sk ∩ Sl = ∅ ∀k ̸= l}; Tτ+1 ← ηT
√
Tτ

A.8.2 PROOF OF THEOREM A.16

In this proof, we provide only the parts that are different from the proof of Theorem 5.2.

Lemma A.17. Under E, (S∗
1 , . . . , S

∗
K) ∈Mτ−1 for all τ ∈ [T ].

Proof. Here we use induction for the proof. Suppose that for fixed τ , we have (S∗
1 , . . . , S

∗
K) ∈Mτ

for all k ∈ [K]. Recall that βT = (C1/κ)
√

log(TKN). From Lemma A.8, we have RUCB
k,τ+1(S) ≥

Rk(S) and RLCB
k,τ+1(S) ≤ Rk(S) for any S ⊂ [N ]. Then for k ∈ [K], n ∈ S∗

k , and any (S1, .., SK) ∈
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Mτ , we have ∑
l∈[K]

RUCB
l,τ+1(S

α,(n,k)
l,τ+1 ) ≥ max

{Sk}k∈[K]∈Mτ :n∈Sk

∑
l∈[K]

αRUCB
l,τ+1(Sl)

≥
∑
l∈[K]

αRUCB
l,τ+1(S

∗
l )

≥
∑
l∈[K]

αRl(S
∗
l )

≥
∑
l∈[K]

αRl(S
β
l,τ+1)

≥
∑
l∈[K]

αRLCB
l,τ+1(S

β
l,τ+1), (36)

where the first inequality comes from (33), the second one comes from (S∗
1 , . . . S

∗
K) ∈ Mτ , and

the firth one comes from the optimality of (S∗
1 , . . . , S

∗
K). This implies that n ∈ Nk,τ+1 from

the algorithm. Then by following the same statement of (36) for all n ∈ S∗
k and k ∈ [K], we

have S∗
k ⊂ Nk,τ+1 for all k ∈ [K], which implies (S∗

1 , . . . , S
∗
K) ∈ Mτ+1. Therefore, with

(S∗
1 , . . . , S

∗
K) ∈M1, we can conclude the proof from the induction.

From Lemmas A.17 and A.8, under E, we have∑
l∈[K]

αβRl(S
∗
l )−

∑
l∈[K]

Rl(S
α,(n,k)
l,τ ) ≤

∑
l∈[K]

αβRLCB
l,τ (S∗

l ) + 4βT max
m∈S∗

l

∥zm∥V −1
l,τ

−
∑
l∈[K]

RUCB
l,τ (S

α,(n,k)
l,τ ) + 4βT max

m∈S
(n,k)
l,τ

∥zm∥V −1
l,τ

≤
∑
l∈[K]

αRLCB
l,τ (Sβ

l,τ ) + 4βT max
m∈S∗

l

∥zm∥V −1
l,τ

−
∑
l∈[K]

RUCB
l,τ (S

α,(n,k)
l,τ ) + 4βT max

m∈S
(n,k)
l,τ

∥zm∥V −1
l,τ

≤ 4βT

∑
l∈[K]

(max
m∈S∗

l

∥zm∥V −1
l,τ

+ max
m∈S

(n,k)
l,τ

∥zm∥V −1
l,τ−1

),

(37)

where the second inequality comes from (34) and last inequality comes from the fact that
(S∗

1 , . . . , S
∗
K) ∈ Mτ−1 and

∑
l∈[K] αR

LCB
l,τ (Sβ

l,τ ) ≤
∑

l∈[K] R
UCB
l,τ (S

α,(n,k)
l,τ ) from the algorithm.

Then, by following the proof in Theorem 1, we can conclude the proof.

A.9 PROOF OF LEMMAS

A.9.1 PROOF OF LEMMA A.3

For the poof, we follow the proof steps in (Bounding the Prediction Error) Oh & Iyengar (2021).
We define

Hk,τ (θ) =
∑

t∈Tk,τ

 ∑
n∈Sk,t

p(n|Sk,t, θ)znz
⊤
n −

∑
n∈Sk,t

∑
m∈Sk,t

p(n|Sk,t, θ)p(m|Sk,t, θ)znz
⊤
m

+ Ir.
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We note that gk,τ (θ1)−gk,τ (θ2) =
∑

t∈Tk,τ

∑
n∈Sk,t

(p(n, |Sk,t, θ1)−p(n, |Sk,t, θ2))zn+(θ1−θ2).
Then from the mean value theorem, there exists θ̄ = cθ1 + (1− c)θ2 with some c ∈ (0, 1) such that
gk,τ (θ1)− gk,τ (θ2)

= ∇θgk,τ (θ)
∣∣
θ=θ̄

(θ1 − θ2)

=

 ∑
t∈Tk,τ

 ∑
n∈Sk,t

p(n|Sk,t, θ̄)znz
⊤
n −

∑
n∈Sk,t

∑
m∈Sk,t

p(n|Sk,t, θ̄)p(m|Sk,t, θ̄)znz
⊤
m

+ Ir

 (θ1 − θ2)

= Hk,τ (θ̄)(θ1 − θ2) (38)

We define Lk,τ = Hk,τ (θ
∗
k) and Ek,τ = Hk,τ (θ̄k) −Hk,τ (θ

∗
k) where θ̄k = cθ∗k + (1 − c)θ̂k,τ for

some constant c ∈ (0, 1).

From (38), we have gk,τ (θ̂k,τ ) − gk,τ (θ
∗
k) = (Lk,τ + Ek,τ )(θ̂k,τ − θ∗k). Then, for any z ∈ Rr, we

have
z⊤(θ̂k,τ − θ∗k) = z⊤(Lk,τ + Ek,τ )

−1(gk,τ (θ̂k,τ )− gk,τ (θ
∗
k))

= z⊤L−1
k,τ (gk,τ (θ̂k,τ )− gk,τ (θ

∗
k))− z⊤L−1

k,τEk,τ (Lk,τ + Ek,τ )
−1(gk,τ (θ̂k,τ )− gk,τ (θ

∗
k)).

(39)

For obtaining a bound for |z⊤(θ̂k,τ − θ∗k)|, we analyze the two terms in (39). We first provide a
bound for |z⊤L−1

k,τ (gk,τ (θ̂k,τ )− gk,τ (θ
∗
k))|. Let ϵn,t = yn,t− p(n|Sk,t, θ

∗
k) for n ∈ Sk,t. Since θ̂k,τ

is the solution from MLE such that
∑

t∈Tk,τ

∑
n∈Sk,t

(p(n|Sk,t, θ̂k,τ )− yn,k,τ )zn = 0, we have

gk,τ (θ̂k,τ )− gk,τ (θ
∗
k)

=
∑

t∈Tk,τ

∑
n∈Sk,t

(
p(n|Sk,t, θ̂k,τ )− p(n|Sk,t, θ

∗
k)
)
zn + (θ̂k,τ − θ∗k)

=
∑

t∈Tk,τ

∑
n∈Sk,t

(
p(n|Sk,t, θ̂k,τ )− yn,k,t

)
zn + θ̂k,τ +

∑
t∈Tk,τ

∑
n∈Sk,t

(yn,k,τ − p(n|Sk,t, θ
∗
k)) zn − θ∗k

= 0 +
∑

t∈Tk,τ

∑
n∈Sk,t

ϵn,tzn − θ∗k (40)

We define
Zk,t = [zn : n ∈ Sk,t]

⊤ ∈ R|Sk,t|×r for t ∈ Tk,τ ,
Dk,τ = [Zk,t : t ∈ Tk,τ ]⊤ ∈ R(

∑
t∈Tk,τ

|Sk,t|)×r
,

Ek,t = [ϵn,t : n ∈ Sk,t]
⊤ ∈ R|Sk,t|.

Then using Hoeffding inequality, we have

P(|z⊤L−1
k,τ (gk,τ (θ̂k,τ )− gk,τ (θ

∗
k))| ≥ ν) ≤ P

∣∣∣∣∣∣
∑

t∈Tk,τ

z⊤L−1
k,τZ

⊤
k,tEk,t

∣∣∣∣∣∣ ≥ ν − |z⊤L−1
k,τθ

∗
k|


≤ P

∣∣∣∣∣∣
∑

t∈Tk,τ

z⊤L−1
k,τZ

⊤
k,tEk,t

∣∣∣∣∣∣ ≥ ν − 1


≤ 2 exp

(
− 2(ν − 1)2∑

t∈Tk,τ
(2
√
2∥z⊤L−1

k,τZ
⊤
k,t∥2)2

)

= 2 exp

(
− (ν − 1)2

4∥z⊤L−1
k,τD

⊤
k,τ∥22

)

≤ 2 exp

−κ2(ν − 1)2

4∥z∥2
V −1
k,τ

 ,

(41)
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where the last inequality is obtained from the fact that

Lk,τ =
∑

t∈Tk,τ

 ∑
n∈Sk,t

p(n|Sk,t, θ
∗
k)znz

⊤
n −

∑
n∈Sk,t

∑
m∈Sk,t

p(n|Sk,t, θ
∗
k)p(m|Sk,t, θ

∗
k)znz

⊤
m


=
∑

t∈Tk,τ

 ∑
n∈Sk,t

p(n|Sk,t, θ
∗
k)znz

⊤
n −

1

2

∑
n∈Sk,t

∑
m∈Sk,t

p(n|Sk,t, θ
∗
k)p(m|Sk,t, θ

∗
k)(znz

⊤
m + zmz⊤n )


⪰
∑

t∈Tk,τ

 ∑
n∈Sk,t

p(n|Sk,t, θ
∗
k)znz

⊤
n −

1

2

∑
n∈Sk,t

∑
m∈Sk,t

p(n|Sk,t, θ
∗
k)p(m|Sk,t, θ

∗
k)(znz

⊤
n + zmz⊤m)


=
∑

t∈Tk,τ

 ∑
n∈Sk,t

p(n|Sk,t, θ
∗
k)znz

⊤
n −

∑
n∈Sk,t

∑
m∈Sk,t

p(n|Sk,t, θ
∗
k)p(m|Sk,t, θ

∗
k)znz

⊤
n


=
∑

t∈Tk,τ

 ∑
n∈Sk,t

p(n|Sk,t, θ
∗
k)p(n0|Sk,t, θ

∗
k)znz

⊤
n


⪰ κD⊤

τ Dτ (= κVk,τ ),

where the first inequality is obtained from (zn−zm)(zn−zm)⊤ = znz
⊤
n +zmz⊤m−znz⊤m−zmz⊤n ⪰

0.

Then from (41) using ν = (2/κ)
√

log(2TKN/δ)∥z∥V −1
k,τ

+1 and the union bound, with probability
at least 1− δ, for all τ ∈ [T ], k ∈ [K], we have

|z⊤L−1
k,τ (gk,τ (θ̂k,τ )− gk,τ (θ

∗
k))| ≤

3
√
log(TKN/δ)

κ
∥z∥V −1

k,τ
. (42)

Now we provide a bound for the second term in (39) of |z⊤L−1
k,τEk,τ (Lk,τ +Ek,τ )

−1(gk,τ (θ̂k,τ )−
gk,τ (θ

∗
k))|. We have

|z⊤L−1
k,τEk,τ (Lk,τ + Ek,τ )

−1(gk,τ (θ̂k,τ )− gk,τ (θ
∗
k))|

≤ ∥z∥L−1
k,τ
∥L−1/2

k,τ Ek,τ (Lk,τ + Ek,τ )
−1L1/2∥2∥gk,τ (θ̂k,τ )− gk,τ (θ

∗
k)∥L−1

k,τ

≤ (1/κ)∥z∥V −1
k,τ
∥L−1/2

k,τ Ek,τ (Lk,τ + Ek,τ )
−1L1/2∥2∥gk,τ (θ̂k,τ )− gk,τ (θ

∗
k)∥V −1

k,τ
. (43)

Then it follows that
∥L−1/2

k,τ Ek,τ (Lk,τ + Ek,τ )
−1L1/2∥2

= ∥L−1/2
k,τ Ek,τ (L

−1
k,τ − L−1

k,τEk,τ (Lk,τ + Ek,τ )
−1L1/2∥2

≤ ∥L−1/2
k,τ Ek,τL

−1/2
k,τ ∥2 + ∥L

−1/2
k,τ Ek,τL

−1/2
k,τ ∥2∥L

−1/2
k,τ Ek,τ (Lk,τ + Ek,τ )

−1L
1/2
k,τ ∥2,

which implies

∥L−1/2
k,τ Ek,τ (Lk,τ + Ek,τ )

−1L
1/2
k,τ ∥2 ≤

∥L−1/2
k,τ Ek,τL

−1/2
k,τ ∥2

1− ∥L−1/2
k,τ Ek,τL

−1/2
k,τ ∥2

≤ 2∥L−1/2
k,τ Ek,τL

−1/2
k,τ ∥2

≤ 6

κ
∥θ̂k,τ − θ∗k∥2, (44)

where the last inequality is obtained from (17) and (18) in Oh & Iyengar (2021). Then from (43),
(44), we have

|z⊤L−1
k,τEk,τ (Lk,τ + Ek,τ )

−1(gk,τ (θ̂k,τ )− gk,τ (θ
∗
k))|

≤ 6

κ2
∥θ̂k,τ − θ∗k∥2∥gk,τ (θ̂k,τ )− gk,τ (θ

∗
k)∥V −1

k,τ
∥z∥V −1

k,τ
. (45)

We can conclude the proof from (42) and (45).
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A.9.2 PROOF OF LEMMA A.7

We note that gk,τ (θ1)−gk,τ (θ2) =
∑

t∈Tk,τ

∑
n∈Sk,t

(p(n, |Sk,t, θ1)−p(n, |Sk,t, θ2))zn+(θ1−θ2).

Define Hk,τ (θ) =
∑

t∈Tk,τ

(∑
n∈Sk,t

p(n|Sk,t, θ)znz
⊤
n −

∑
n∈Sk,t

∑
m∈Sk,t

p(n|Sk,t, θ)p(m|Sk,t, θ)znz
⊤
m

)
+

Ir. Then we can show that there exists θ̄ = cθ1 + (1− c)θ2 with some c ∈ (0, 1) such that
gk,τ (θ1)− gk,τ (θ2)

= ∇θgk,τ (θ)
∣∣
θ=θ̄

(θ1 − θ2)

=

 ∑
t∈Tk,τ

 ∑
n∈Sk,t

p(n|Sk,t, θ̄)znz
⊤
n −

∑
n∈Sk,t

∑
m∈Sk,t

p(n|Sk,t, θ̄)p(m|Sk,t, θ̄)znz
⊤
m

+ Ir

 (θ1 − θ2)

= Hk,τ (θ̄)(θ1 − θ2). (46)

Define H̄k,τ (θ̄) =
∑

t∈Tk,τ

∑
n∈Sk,t

p(n|Sk,t, θ̄)p(n0|Sk,t, θ̄)znz
⊤
n + Ir. Then we have Hk,τ (θ̄) ⪰

H̄k,τ (θ̄) from the following.∑
t∈Tk,τ

 ∑
n∈Sk,t

p(n|Sk,t, θ̄)znz
⊤
n −

∑
n∈Sk,t

∑
m∈Sk,t

p(n|Sk,t, θ̄)p(m|Sk,t, θ̄)znz
⊤
m


=
∑

t∈Tk,τ

 ∑
n∈Sk,t

p(n|Sk,t, θ̄)znz
⊤
n −

∑
n∈Sk,t

∑
m∈Sk,t

p(n|Sk,t, θ̄)p(m|Sk,t, θ̄)znz
⊤
m


=
∑

t∈Tk,τ

 ∑
n∈Sk,t

p(n|Sk,t, θ̄)znz
⊤
n −

1

2

∑
n∈Sk,t

∑
m∈Sk,t

p(n|Sk,t, θ̄)p(m|Sk,t, θ̄)(znz
⊤
m + zmz⊤n )


⪰
∑

t∈Tk,τ

 ∑
n∈Sk,t

p(n|Sk,t, θ̄)znz
⊤
n −

1

2

∑
n∈Sk,t

∑
m∈Sk,t

p(n|Sk,t, θ̄)p(m|Sk,t, θ̄)(znz
⊤
n + zmz⊤m)


=
∑

t∈Tk,τ

 ∑
n∈Sk,t

p(n|Sk,t, θ̄)znz
⊤
n −

∑
n∈Sk,t

∑
m∈Sk,t

p(n|Sk,t, θ̄)p(m|Sk,t, θ̄)znz
⊤
n


=
∑

t∈Tk,τ

 ∑
n∈Sk,t

p(n|Sk,t, θ̄)p(n0|Sk,t, θ̄)znz
⊤
n

 , (47)

where the inequality is obtained from (zn − zm)(zn − zm)⊤ ⪰ 0. Under E1, we have
∥θ̂k,τ∥2 − ∥θ∗k∥2 ≤ 1 implying ∥θ̂k,τ∥2 ≤ 1 + ∥θ∗k∥2 = 1 + ∥U⊤

r θk∥2 ≤ 2. Then for
θ̄ = cθ̂k,τ + (1 − c)θ∗k for some c ∈ (0, 1), we have ∥Ur θ̄∥2 ≤ 2. Then from p(n|Sk,t, θ̄) =
exp(z⊤n θ̄)/(1 +

∑
m∈Sk,t

exp(z⊤mθ̄)) = exp(x⊤
n (Ur θ̄))/(1 +

∑
m∈Sk,t

exp(x⊤
m(Ur θ̄))), we can

show that H̄k,τ (θ̄) ⪰ κVk,τ , which implies Hk,τ (θ̄) ⪰ H̄k,τ (θ̄) ⪰ κVk,τ .

Then we have
∥θ̂k,τ − θ∗k∥22 ≤ (1/λmin(Vk,τ ))(θ̂k,τ − θ∗k)

⊤Vk,τ (θ̂k,τ − θ∗k)

≤ (1/κλmin(V
0
k,τ ))(θ̂k,τ − θ∗k)

⊤Hk,τ (θ̄)(θ̂k,τ − θ∗k)

≤ (1/κλmin(V
0
k,τ ))(θ̂k,τ − θ∗k)

⊤Hk,τ (θ̄)Hk,τ (θ̄)
−1Hk,τ (θ̄)(θ̂k,τ − θ∗k)

≤ (1/κ2λmin(V
0
k,τ ))(gk,τ (θ̂k,τ )− gk,τ (θ

∗
k))

⊤V −1
k,τ (gk,τ (θ̂k,τ )− gk,τ (θ

∗
k))

≤ (1/κ2λmin(V
0
k,τ ))∥gk,τ (θ̂k,τ )− gk,τ (θ

∗
k))∥2V −1

k,τ

. (48)

Then from E2, we can conclude that

∥θ̂k,τ − θ∗k∥2 ≤
4

κ

√
2r + log(KTN/δ)

λmin(V 0
k,τ )

.
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A.10 PROOF OF PROPOSITION A.1

We first provide a lemma for a confidence bound. Let γt(δ) =

c1
√
d log(L)

(
log(t) +

√
log(t) log(K/δ)

)
for some c1 > 0.

Lemma A.18 (Lemma 1 in Lee & Oh (2024)). With probability at least 1 − δ, for all t ≥ 1 and
k ∈ [K] we have

∥θ̂k,t − θ∗k∥Gk,t
≤ γt(δ).

Let δ = 1/T . From the above lemma, we define event E = {∥θ̂k,t−θ∗k∥Gk,t
≤ γt ∀k ∈ [K] and t ≥

1}, which holds with probability at least 1− 1/T . Then we provide a lemma for the optimism.
Lemma A.19. Under E, for all t ≥ 1, we have∑

k∈[K]

Rk(S
∗
k) ≤

∑
k∈[K]

RUCB
k,t (Sk,t).

Proof. Under E, we have

|z⊤n θ̂k,t − z⊤n θ∗k| ≤ ∥zn∥G−1
k,t
∥θ̂k,t − θ∗k∥Gk,t

≤ γt∥zn∥G−1
k,t

,

which implies z⊤n θ∗k ≤ z⊤n θ̂k,t + γt∥zn∥G−1
k,t

= hn,k,t. Therefore, from Lemma A.3 in Agrawal

et al. (2017a), we have Rk(S
∗
k) ≤ RUCB

k,t (S∗
k). Then using definition of Sk,t in the algorithm, we

can conclude that ∑
k∈[K]

Rk(S
∗
k) ≤

∑
k∈[K]

RUCB
k,t (S∗

k) ≤
∑

k∈[K]

RUCB
k,t (Sk,t).

Now we provide a lemma which is critical to bound regret under optimism.
Lemma A.20. Under E, for all k ∈ [K], we have

T∑
t=1

RUCB
k,t (Sk,t)−Rk(Sk,t) = O

(
r
√
T +

1

κ
r2
)

Proof. By following the proof steps in Theorem 4 in Lee & Oh (2024), we can show this lemma.

Then from Lemmas A.18 and A.20, we can conclude the proof for the regret as follows.

R(T ) = E

∑
t∈[T ]

∑
k∈[K]

Rk(S
∗
k,t)−Rk(Sk,t)


≤ E

 T∑
t=1

∑
k∈[K]

(
Rk(S

∗
k,t)−Rk(Sk,t)

)
1(E)

+ E

 T∑
t=1

∑
k∈[K]

(
Rk(S

∗
k,t)−Rk(Sk,t)

)
1(Ec)


≤ E

 T∑
t=1

∑
k∈[K]

(
RUCB

k,t (Sk,t)−Rk(Sk,t)
)
1(E)

+

T∑
t=1

∑
k∈[K]

P(Ec)

= Õ
(
rK
√
T +

1

κ
r2K

)
= Õ

(
rK
√
T
)
.

Now we discuss the computational cost. Since there exists O(KN ) number of assortment candidate
inM, especially for L ≥ N , the cost per round is O(KN ) from Line 3.
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A.11 PROOF OF LEMMA A.10

Let W (π) = V (π) + (1/rTτ )Ir and g(π) = maxn∈Nk,τ
∥zn∥2(V (π)+(1/rTτ )Ir)−1 . Since

πk,τ is G-optimal, for n ∈ supp(πk,τ ) we have that z⊤n W (πk,τ )
−1zn = g(πk,τ ) (other-

wise, there exists π′ such that g(π′) ≤ g(πk,τ ), which is a contradiction). Then we have∑
n∈Nk,τ

πk,τ (n)z
⊤
n W (πk,τ )

−1zn = g(πk,τ ). Therefore, we obtain

g(π) =
∑

n∈Nk,τ

πk,τ (n)z
⊤
n W (πk,τ )

−1zn = trace(
∑

n∈Nk,τ

πk,τ (n)znz
⊤
n W (πk,τ )

−1)

= trace((W (πk,τ )− (1/rTτ )Id)W (πk,τ )
−1) = d− (1/rTτ )trace(W (πk,τ )

−1) ≤ d.

Let S = supp(πk,τ ). Then if |S| > d(d + 1)/2 there are linearly dependent: ∃v : S →
R such that

∑
n∈S v(n)znz

⊤
n = 0. Therefore, for n ∈ S, z⊤n W (πk,τ )

−1zn
∑

n∈S v(n) =

trace(W (πk,τ )
−1
∑

n∈S v(n)znz
⊤
n ) = 0, which implies

∑
n∈S v(n) = 0. Define π(t) = πk,τ+tv,

then we have W (π(t)) = W (πk,τ ) for every t, which implies g(πk,τ ) = g(π(t)). Let t′ = sup{t >
0 : πk,τ (n) + tv(n) ≥ 0 ∀n ∈ S}. At t = t′, at least one weight becomes 0 (otherwise, there
exists t′′ ≥ t′ s.t. πk,τ (n) + t′′v(n) ≥ 0 for all n ∈ S, which is a contradiction). Thus, we have an
equally good design with |S| − 1 arms. Iterating the construction yields an optimal design π with
|supp(π)| ≤ d(d+ 1)/2.

A.12 AUXILIARY LEMMAS

Lemma A.21 (Lemma E.2 in Lee & Oh (2024)). For all t ≥ 1 and k ∈ [K], we have

(i)

t∑
s=1

∑
n∈Sk,s

p(n|Sk,s, θ̂k,s)p(n0|Sk,s, θ̂k,s)∥zn∥2H−1
k,s

≤ 2r log
(
1 + t

rλ

)
,

(ii)

t∑
s=1

max
n∈Sk,s

∥zn∥2H−1
k,s

≤ 1
κ2r log

(
1 + t

rλ

)
.

Lemma A.22 (Lemma E.3 in Lee & Oh (2024)). Define Q̃ : R|S| → R for S ∈ [N ], such that for
any u = (u1, . . . , u|S|) ∈ R|S|, Q̃(u) =

∑
n∈S

exp(un)
1+

∑
m∈S exp(um) . Let pn(u) = exp(un)

1+
∑

m∈S exp(um) .
Then for all n ∈ S, we have ∣∣∣∣∣ ∂2Q̃

∂un∂um

∣∣∣∣∣ ≤
{
3pn(u), if n = m

2pn(u)pm(u), if n ̸= m
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A.13 ADDITIONAL EXPERIMENTS

B-SMB
(Alg1)

B-SMB +

(Alg2)
OFU-MNL + TS-QMB UCB-QMB

Algorithms
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B-SMB + (Algorithm2)
B-SMB (Algorithm1)

Figure 4: Experimental results with N = 8 and K = 4 for (left) runtime cost and (right) regret
of algorithms. Notably, increasing N from 7 to 8 (as opposed to Figure 2) causes the runtime of
OFU-MNL+ to exceed 15,000 seconds—up from 5,000 seconds—whereas our algorithms maintain
runtimes under 1,000 seconds. In terms of regret performance, our algorithms achieve results com-
parable to OFU-MNL+ while outperforming other benchmarks.

B-SMB
(Alg1)

B-SMB +

(Alg2)
OFU-MNL + TS-QMB UCB-QMB

Algorithms
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20000

40000
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80000
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Figure 5: Computational overhead of benchmark algorithms prevents scaling to larger problem
sizes, limiting experimental comparison. For example, with N = 8, K = 5, and T = 100,000,
the figure reports the number of rounds completed by each algorithm within a 3600-second limit.
Increasing K from 4 to 5, similar to increasing N , significantly increases the runtime overhead of
the benchmarks, allowing only a few completed rounds (barely visible in the plot). In contrast, our
algorithms (B-SMB, B-SMB+) successfully complete all 100,000 rounds within the time limit.
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