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ABSTRACT

In this study, we introduce a novel bandit framework for stochastic matching based
on the Multi-nomial Logit (MNL) choice model. In our setting, N agents on one
side are assigned to K arms on the other side, where each arm stochastically se-
lects an agent from its assigned pool according to an unknown preference and
yields a corresponding reward. The objective is to minimize regret by maximiz-
ing the cumulative revenue from successful matches across all agents. This task
requires solving a combinatorial optimization problem based on estimated prefer-
ences, which is NP-hard and leads a naive approach to incur a computational cost
of O(K™) per round. To address this challenge, we propose batched algorithms
that limit the frequency of matching updates, thereby reducing the amortized com-
putational cost—i.e., the average cost per round—to O(1) while still achieving a

regret bound of O(v/T).

1 INTRODUCTION

In recent years, the rapid growth of matching markets—such as ride-hailing platforms, online job
boards, and labor marketplaces—has underscored the importance of maximizing revenue from suc-
cessful matches. For example, in ride-hailing services, the platform seeks to match riders (agents)
with drivers (arms) in a way that maximizes total revenue generated from completed rides.

This demand has led to extensive research on online bipartite matching problems (Karp et al., [ 1990;
Mehta et al., [2007; 2013 (Gamlath et al., [2019; |Fuchs et al., 2005} [Kesselheim et al.| [2013), where
two sets of vertices are considered and one side is revealed sequentially. These studies primarily
focus on maximizing the number of matches. However, a significant gap remains between these
theoretical models and practical scenarios for maximizing revenue under latent reward functions.
Specifically, these models generally assume one-to-one assignments under deterministic matching
and focus solely on match count, without incorporating learning mechanisms that adapt to observed
reward feedback or aim to maximize cumulative revenue.

More recently, the concept of matching bandits has emerged to better capture online learning dy-
namics in matching markets (Liu et al., |2020; 2021; |Sankararaman et al., |2020; Basu et al., 2021}
Zhang et al.| [2022; [ Kong & Li, [2023). In this framework, agents are assigned to arms in each round,
and arms select one agent to match, generating stochastic reward feedback. The goal is typically to
learn reward distributions to eventually identify stable matchings (McVitie & Wilsonl [1971)).

Despite introducing online learning, existing matching bandit models rely on structural assumptions
that restrict their practical applicability. Specifically, prior work generally assumes that arms select
agents deterministically according to known or fixed preference orders, resulting in what we refer
to as deterministic matching. However, in many real-world settings—such as ride-hailing services
and online freelancer marketplace—arms often make stochastic choices reflecting unknown or latent
preferences. For example, when a dispatch system offers a driver multiple rider requests, the driver
may select among them probabilistically, reflecting personal preferences, rather than following a
fixed or deterministic rule.

In this work, we propose a novel and practical online matching framework, termed stochastic match-
ing bandits (SMB), designed to model such stochastic choice behavior under unknown preferences.
SMB permits multiple agents to be simultaneously assigned to the same arm, with the arm stochas-
tically selecting one agent from the assigned pool. This formulation departs from both traditional
online matching and prior matching bandit frameworks by explicitly modeling probabilistic arm
behavior, thereby addressing a different yet practically motivated objective.
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While our framework captures important aspects of real-world matching systems that are not fully
addressed by prior models, it represents a different modeling perspective rather than a direct re-
placement for existing approaches. Specifically, our work focuses on a practically significant setting
where the goal is to learn to maximize revenue under stochastic arm behavior with unknown pref-
erences. By explicitly modeling stochastic choice dynamics and allowing multiple simultaneous
proposals, our framework expands the scope of matching bandit research toward more realistic and
revenue-driven applications.

However, realizing this goal comes with substantial computational challenges: determining the op-
timal assignment in each round requires solving a combinatorial optimization problem that is NP-
hard, making naive implementations impractical in large-scale systems. This raises the following
fundamental question:
Can we maximize revenue in stochastic matching bandits
while ensuring (amortized) computational efficiency?

To address this challenge, we propose batched algorithms for the SMB framework that strategically
limit the frequency of matching assignment updates. These algorithms achieve no-regret perfor-
mance while substantially reducing the amortized computational cost—that is, the average compu-
tation required per round. Below, we summarize our main contributions.

Summary of Our Contributions.

* We introduce a novel and practical framework of stochastic matching bandits (SMB), which
incorporates the stochastic behavior of arms under latent preferences. However, naive ap-
proaches suffer from significant computational overhead, incurring an amortized cost of
O(K™N) per round, where N agents are matched to K arms.

* Under SMB, we first develop a batched algorithm that balances exploration and exploitation
with limited matching updates. Assuming knowledge of a non-linearity parameter «, the
algorithm achieves O(/T) regret using only minimal matching updates of © (loglog T')—
and thus O(1) amortized computational cost for a large enough 7.

* We further propose our second algorithm to eliminate the requirement of knowing «, re-

taining the same O(v/T) regret still with only ©(loglogT') updates and low amortized
computational cost of O(1).

* Finally, through empirical evaluations, we demonstrate that our algorithms achieve im-
proved or comparable regret while significantly reducing computational cost compared to
existing methods, highlighting their practical effectiveness.

2 RELATED WORK

Matching Bandits. We review the literature on matching bandits, which studies regret minimiza-
tion in matching markets. This line of work was initiated by |Liu et al,| (2020) and extended by
Sankararaman et al.| (2020); |[Liu et al.| (2021); Basu et al.| (2021)); [Zhang et al.| (2022); |Kong & Li
(2023), focusing on finding optimal stable matchings through stochastic reward feedback. However,
these studies are largely limited to the standard multi-armed bandit setting, without considering
feature-based preferences or structural generalizations. Moreover, they universally assume that the
number of agents does not exceed the number of arms (N < K).

Our proposed Stochastic Matching Bandits (SMB) framework departs from this literature in several
key ways. First, while prior work assumes that arms select agents deterministically based on known
preferences, SMB models arms as making stochastic choices based on unknown, latent preferences
that must be learned over time. This shifts the objective from identifying a stable matching to
maximizing cumulative reward through adaptive learning. Second, SMB captures richer preference
structures by modeling utilities as functions of agent-side features. Third, it removes structural
restrictions on the market size, allowing both N < K and N > K scenarios. While SMB represents,
in principle, a distinct modeling perspective, these advances make SMB applicable to a broader
range of real-world systems, such as ride-hailing and online marketplaces, where preferences are
stochastic, feature-driven, and market sizes vary across applications.

MNL-Bandits. In our study, we adopt the Multi-nomial Logit (MNL) model for arms’ choice
preferences in matching bandits. As the first MNL bandit method, [Agrawal et al.| (2017a)) proposed
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Figure 1: Illustration of our stochastic matching process with 4 agents (N = 4) and 3 arms (K = 3).

an epoch-based algorithm, followed by subsequent contributions from|Agrawal et al.|(2017b);|Chen
et al.|(2023);/0Oh & Iyengar (2019;2021); Lee & Oh|(2024). However, unlike selecting an assortment
at each time step, our novel framework for the stochastic matching market mandates choosing at
most K distinct assortments to assign agents to each arm. Consequently, handling /K -multiple
MNLs simultaneously results in exponential computational complexity. More recently, |Kim & Oh
(2024) studied MNL-based preferences in matching bandits; however, their focus was on system
stability under binary (0/1) rewards, rather than revenue maximization. Additionally, their work
did not address the computational intractability of exact combinatorial optimization in this context.

Batch learning in Bandits. Batch learning in bandit problems has been explored in the context
of multi-armed bandits (MAB) (Perchet et al.| 2015} |Gao et al.l 2019)) and later extended to (gener-
alized) linear bandit models (Ruan et al., [2021; [Hanna et al., [2023; |Han et al., 2020; Ren & Zhou,
2024} Sawarni et al., |2024; Ren et al., 2024). Also, a concurrent work of [Midigeshi et al.| (2025))
study the multinomial logistic model with batched updates, but their setting is fundamentally dif-
ferent from other relevant works in the MNL bandit literature (Oh & lyengar, |2019; 2021} |Agrawal
et al.,2017agb)). In their framework, the agent selects a single item (i.e., one arm), so that the learner
does not selects a combinatorial set of arms.

To the best of our knowledge, batch-limited updates have not yet been explored in the context of
matching bandits with a combinatorial set of arms.

3 PROBLEM STATEMENT

We study stochastic matching bandits (SMB) with /V agents and K arms. For better intuition,
the overall setup is illustrated in Figure [I] The detailed formulation is as follows: For each agent
n € [N], feature information is known as z,, € R?, and each arm k € [K] is characterized by latent
vector 0, € RY. We define the set of features as X = [z1,...,2x] € R and the rank of X as
rank(X) = r(< d). Ateach time t € [T, every agent n may be assigned to an arm k,,; € [K].
Let assortment Sy, = {n € [N] : k,,; = k}, which is the set of agents that are assigned to an arm
k at time ¢. Then given an assortment to each arm k at time ¢, Sy ;, each arm k£ randomly accepts
an agent n € Sy ¢ and receives reward r,, ;; € [0, 1] according to the arm’s preference specified as
follows. The probability for arm & to accept agent n € Sy, + follows Multi-nomial Logit (MNL)
model (Agrawal et al., 2017azb; |Oh & Iyengar, [2019; 2021} [Chen et al.| [2023)) given by

B exp(z,, Ok)
p(n|Sk’t’ ak) B 1+ ZmGSk t eXp(Jj;l;ek) .

We denote x| 6}, as the latent preference utility of arm k for agent n. Following prior work on MNL
bandits (Oh & Iyengar, [2019;2021; |Agrawal et al.,[2019), we consider that the candidate set size is
bounded by |Sk¢| < L for all arms k and rounds ¢, and that the reward r,, 5, is known to the arms
in advance. This reflects practical constraints in real-world platforms such as ride-hailing, where
only a limited number of riders can be suggested to a driver—due to screen limitations or cognitive
load—and the reward (e.g., fare or price) is known prior to each assignment.

However, the expected rewards remain unknown, as they depend jointly on both the latent preference
utilities and the associated rewards. At each time step ¢, the agents receive stochastic feedback
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based on the assortments { .Sk ; }rc[x]- Specifically, for each agent n € S ; and arm k € [K], the
feedback is denoted by y,: € 0,1, where y,+ = 1 if arm k accepts agent n (i.e., a successful
match occurs), and y,,; = 0 otherwise. Following the standard MNL model, each arm £ may
also choose an outside option ny (i.e., reject all assigned agents) with probability p(no|Sk ¢, Ox) =
/(14 X mes,., exp(,,0)). Then, given assortments to every arm k, {Si }re (k] the expected
reward (revenue) for the assortments at time ¢ is defined as

n 0
Z Ry (Sk) : Z Z T kD(1| Sk, Or) = Z Z +%Zzzpeip(;z_ek)

ke[K] kE[K]nESk ke[K] nESk

The goal of the problem is to maximize the cumulative expected reward over a time horizon 7' by
learning the unknown parameters {0y } ,c|x). We define the oracle strategy as the optimal assortment
selection when the preference parameters 6y, are known. Let the set of all feasible assignments be:
M = {{Sk}reix] : Sk C [N],[Sk| < LVk € [K], S.NS; = OVE # 1}. Then the oracle assortment
is given by: {Si}trex) = argmaxgg,y, e m Doneix) Br(Sk). Given {Skitre(x) € M for
all t € [T, the expected cumulative regret is defined as R(T') = E[ X, c (7 X perr) B (S5) —
Rk(Smﬂ . The objective is to design a policy that minimizes this regret over the time horizon 7T'.

Similar to previous work for logistic and MNL bandit (Oh & Iyengar, [2019; 2021} |Lee & Ohl[2024;
Goyal & Perivier, [2021; [Faury et al.| [2020; |Abeille et al.| 2021)), we consider the following regularity
condition and non-linearity quantity.

Assumption 3.1. ||z,|2 < 1foralln € [N] and ||0k|l2 < 1forall k € [K].

Then we define a problem-dependent quantity regarding non-linearity of the MNL structure as fol-

lows: = in p(nS, 8)p(nolS, 0).

0€R:||0]|2<2;neSC[N]:|S|<L

4  OPTIMIZATION IN STOCHASTIC MATCHING BANDITS: THE CURSE OF
COMPLEXITY

In this work, we develop algorithms for the Stochastic Matching Bandit (SMB) problem with pref-
erence feedback. SMB can be viewed as a generalization of the standard Multinomial Logit (MNL)
bandit model with a single assortment (Oh & Iyengar, 2021} |Lee & Oh, [2024) to a setting with K
simultaneous assortments—one for each arm. Applying existing MNL-based methods to this set-
ting requires dynamically selecting K assortments at each round while simultaneously learning arm
preferences in an online fashion. This extension introduces significant computational challenges:
the resulting combinatorial optimization problem is NP-hard. In contrast, the standard MNL bandit
problem with a single assortment is known to be solvable in polynomial time (Oh & Iyengar, 2021}
Thus, the SMB framework poses a substantially more complex optimization problem, highlighting
the need for efficient algorithmic solutions.

Naively extending MNL bandits (e.g. |Oh & Iyengar| (2021); |[Lee & Ohl (2024))) to SMB requires
defining the UCB index for the expected reward of an assortment Sy, for all k € [K] as R {?(Sy,) =

Z Tn,k €XP(An k,t)
neSy 1+Emesk exp(Pm,k,t)’

at each time ¢. Then at each time, the algorithm determines assortments by following the UCB

strategy3 {Sht}ke[[{] argmax Z RUCB (1)
{Sk}ke K]GM kG[K]

where h,, 1, is an UCB index for the utility value between n and k

While this method can achieve a regret bound of O(K r/T), it suffers from severe computational
limitations. Specifically, solving the combinatorial optimization in (I incurs a worst-case compu-
tational cost of O(K N ) per round, particularly when the candidate set size L > N, rendering the
approach impractical for large-scale settings. Further details of the algorithm and regret analysis are
provided in Appendix [A.2]

To overcome the computational burden, we propose a batched learning approach that substantially
reduces per-round computational cost on average (i.e., the amortized cost). Our method is inspired
by the batched bandit literature (Perchet et al., 2015 |Gao et al.,[2019;|Hanna et al.,|2023;|Dong et al.,
2020; Han et al.| [2020; Ren & Zhoul 2024; [Sawarni et al., [2024)), and the full details are presented
in the following sections.
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Remark 4.1. For combinatorial optimization, approximation oracles (Kakade et al.| [2007; |Chen
et al.| 2013) are often used to address computational challenges. However, this approach inevitably
targets approximation regret rather than exact regret that we aim to minimize. In this work, we
tackle the computational challenges while targeting exact regret by employing batch updates. Note
that even under approximation optimization, our proposed batch updates can also be beneficial in
further reducing the computational cost. We will discuss this in more detail in Section[5]

5 BATCH LEARNING FOR STOCHASTIC MATCHING BANDITS

Algorithm 1 Batched Stochastic Matching Bandit (B—SMB)

Input: s, M > 1

Imit: ¢t < 1,7} < np

Compute SVD of X = UXV T and obtain U,. = [u1, ..., u,]; Construct z,, < U,' z,, forn € [N]

2 forT=1,2...do

10

11

12

13

14

for k € [K] do

é,m — argmingcp, li - (0) with @) where Ty ,—1 = 7;(17) 1 ’7;(27) , and 7;(22 =

(2)
UnENk)T,l 7;L,k,‘r—1

// Assortments Construction

{S(n k)}le K] argmax Z RUCB (Sy) for all n € N, -1 with (3)
{Sthei)€EMr—1in€Sk o

// Elimination

Niré{n €Npr_1:  max ST RFEB(S) < Y RYCE (S} with @)

{Sihiem €M 1€[K] l€[K]

// G-Optimal Design
Thyr 4 AIGMIN cp(n;, ) MAXneN; . ”Z”H?Ee/\fk wr (M) 2n 2T +(1/rTy) 1) =1
// Exploration 7
Run Warm-up (Algorithm E) over time steps in 77C . (defined in Algonthm'
for n € Ny, ; do
bng < 1, 7:L k 4 [tngs tnge + [rme, (0)Tr] — 1]
while ¢ € 7:1,1@,7

Offer {1+ }1e(x] = {Sl(?k)}le[;q and observe feedback y,, + € {0, 1} forall m €

Siiand ! € [K]
t+t+1

B M, {{Sk}ke[K] 2 Sk CNkﬂ—, |Sk| < LVk € [K],Sk NS =0Vk #1}; Triq < nrV/Ty

For batch learning to reduce the computational cost, we adopt the elimination-based bandit algorithm
(Lattimore & Szepesvari, |2020). This approach presents several key challenges in the framework
of SMB, including efficiently handling the large number of possible matchings between agents and
arms for elimination, designing an appropriate estimator for the elimination process, and minimiz-
ing the total number of updates to reduce computational overhead. The details of our algorithm
(Algorithm T)) is described as follows.

Before advancing on the rounds, the algorithm computes Singular Value Decomposition (SVD) for
feature matrix X = UXVT € RN, From U = [uy,...,uq) € R4 and rank(X) = r, we can
construct U, = [uy, ..., u,] € R4X" by extracting the left singular vectors from U that correspond
to non-zero singular values. We note that the algorithm does not necessitate prior knowledge of
r because the value can be obtained from SVD. The algorithm, then, operates within the full-rank
r-dimensional feature space with z, = U, x,, € R" forn € [N]. Let 0} = U,’ 0. Then we can
reformulate the MNL model using r-dimensional feature z, € R" and latent 8;, € R". The detailed
description for the insight behind this approach is deferred to Appendix [A.3]

In what follows, we describe the process for constructing assortments at each time step. The al-
gorithm consists of several epochs. For each k € [K], from observed feedback y,, , € {0,1} for
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n € Skt t € Tpr—1, where Ty, ;1 is a set of the exploration time steps regarding arm k in the
7 — 1-th epoch, we first define the negative log-likelihood loss as

br(O)==2 D yntlogp(nlSke,0)+3]10]3, @)
t€Tk,r—1 n€Sy 1 U{no}
where, with a slight abuse of notation, p(n|Sk 1, 0) := exp(z, 6)/(1 + 3, cs, , €xp(z,,0)). Then

at the beginning of each epoch 7, the algorithm estimates gk,T from the method of Maximum Like-
lihood Estimation (MLE).

From the estimator, we define upper and lower confidence bounds for expected reward of assortment
S as

RYCE(S1) = [rnsp(nl Sk, 1) + 287 max [lzn 1,

neSk
RETP(Sk) == ) [rnip(nl Sk, O] — 267 max ||zally -1, 3)
neSy " k .

where confidence term fBr = % V0og(TNK) for some constant C; > 0 and Vi, =
Dot €Thr 1 Y one Si, Zn 2! +1I,. Tt is important to note that, unlike prior MNL bandit literature (Oh &
Iyengar, |2021}; |Lee & Oh, 2024), which constructs confidence intervals on each latent utility within
the MNL function, our approach places the confidence term outside the MNL structure, as shown in
(@). This modification is essential due to the need to incorporate both UCB and LCB indices in con-
junction with the reward terms 7, ;.. In particular, while our LCB formulation provides a valid lower
bound on the expected reward, applying LCBs directly to the latent utility values does not guarantee
a lower bound on the reward. This distinction is crucial for ensuring theoretical guarantees in our
learning algorithm.

For batch updates, we utilize elimination for suboptimal matches. However, exploring all possible
matchings naively for the elimination is statistically expensive. Therefore, we utilized a statistically
efficient exploration strategy by assessing the eligibility of each assignment (n, k) for n € Ny, ,—1
and k € [K] as a potential optimal assortment, where N}, -_1 is the active set of agents regarding
arm k at epoch 7. To evaluate the assignment (n, k), it constructs a representative assortment of

{Sl(’i’k)}le[ &1 from an optimistic view (Line . Then based on the representative assortments, it
obtains N; k,~ Dy eliminating n € N, k,~—1 which satisfies an elimination condition (Line @) From
the obtained N, i, for all k € [K], it constructs an active set of assortments M, (Line , which is
likely to contain the optimal assortments as {5} }re[x] € M.

Following the elimination process outlined above, here we describe the policy of assigning assort-
ment { Sy ¢ } e[k at each time ¢ corresponding to Lines in Algorithm The algorithm initiates
the warm-up stage (Algorithm [d]in Appendix to apply regularization to the estimators, by uni-
form exploration across all agents n € [N] for each arm k € [K]. Then for each k € [K], the
algorithm utilizes the G-optimal design problem (Lattimore & Szepesvaril |2020) to obtain propor-
tion 1y, € P(Nj,,) for learning 0} efficiently by exploring agents in Ny, ., where P (N, ;) is the
probability simplex with vertex set NV}, .. Notably, the G-optimal design problem can be solved by
the Frank-Wolfe algorithm (Damla Ahipasaoglu et al., 2008). Then, for all n € /\/}m, it explores

{Sl(i’k) }ie[x) several times using 7 - (n) which is the corresponding value of n in 7y, .

The algorithm repeats those processes over epochs 7 until it reaches the time horizon T'. We sched-
ule 7’; rounds for each epoch by updating T'; = nr+/7Tr_1. Then, the algorithm requires a limited
number of updates for assortment assignments, which is crucial to reduce the amortized computa-
tional cost. Let ny = (T/rK)Y/ 21-2"") with a parameter for batch update budget M > 1. Let
7r be the last epoch over T, which indicates the number of batch updates. We next observe that the
scheduling parameter M serves as a budget for the number of batch updates, as formalized in the
following proposition. This parameter plays a key role in the amortized efficiency of our algorithm,
which we discuss shortly. (The proof of the proposition is provided in Appendix [A.5])

Proposition 5.1 (Number of Batch Updates). 70 < M.

We establish the following regret bound for our algorithm, with the proof provided in Appendix
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Theorem 5.2. Algorithm[I|with M = O(log T') achieves:
1
. T \ 2675
T)=0(1K:ViT( — :
rn=0( () )
Corollary 5.3. For M = O(loglog(T/rK)), Algorithm[I|achieves:
R(T) = O (LK**ViT).

Remark 5.4 (Amortized Efficiency). As mentioned in Corollary our algorithm only re-
quires combinatorial optimization at most M = O(loglog(T/rK)) times over T, while achiev-
ing O(\/T) regret bound. This implies that the amortized computation cost is O(1) for large
enough T, since the average cost per round for combinatorial optimization becomes negligible as

NETT longog(T/rK) = 0(1) for T = Q(NKN*!loglog(T/rK))). Furthermore, in Algorithm
1, the optimization is not performed over the full matching spaces, but the active set M., whose
size typically shrinks quickly due to elimination—an effect that we later confirm empirically. This
is significantly lower than the computational cost of the naive approach discussed in Section[](e.g.
Algarithm in Appendix , which is O(K™N) per round.

Discussion on the Tightness of the Regret Bound. We begin by comparing our results to those
from previous batch bandit studies under a (generalized) linear structure. Our regret bound, given
as O(TV/2+1/22Y 1)) = O(T1/20-2"")) for a general M = O(log(T)), matches the results
from Han et al.| (2020); Ren & Zhou! (2024); |[Sawarni et al.[(2024)). Notably, this bound also aligns
with the lower bound for the linear structure, Q(7"/ 2(1_271”)) (Han et al., [2020). For the case
of M = O(loglog(T/rK)), our bound of O(y/T) corresponds to the findings for linear bandits in
Ruan et al.|(2021));|[Hanna et al.|(2023)), where only such values of M were considered. Additionally,
with respect to the parameter 7, we achieve a tight bound of O(+/r) for M = ©(loglog(T/rK)),
which matches the lower bound for linear bandits established by |Lattimore & Szepesvari|(2020). To
the best of our knowledge, this is the first work to address batch updates in matching bandits.

Given that our problem generalizes the single-assortment MNL setting to K -multiple assortments,
we can obtain the regret lower bound of Q(K+/T) with respect to K and 7' for the contextual
setting, by simply extending the result of Theorem 3 in |Lee & Oh| (2024)) for single-assortment to
K -multiple assortments. In comparison, our analysis indicates a regret dependence of K3/2 when
M = ©(loglog(T/(rK))), which is worse by a factor of /K relative to the lower bound. This gap
arises from the need to explore all potential matches during the epoch-based elimination procedure
in batch updates.

Our batch updates can also be applied to approximation oracles, introduced in|Kakade et al. (2007);
Chen et al.|(2013)) to mitigate computational challenges in combinatorial optimization. The approx-
imation oracle approach focuses on obtaining an approximate solution to the optimization problem
rather than identifying the exact optimal assortment, with the trade-off of incurring a guarantee for
a relaxed regret measure (y-regret). Further details are provided in Appendix [A-8]

Although Algorithmis amortized efficient in computation, achieving regret of O(\/T), the regret
bound relies on problem-specific knowledge of x and, importantly, requires this parameter to be
known in advance for setting 8. The regret bound scales linearly with 1/k, which can be as large
as O(L?) in the worst-case scenario. In the following section, we propose an algorithm improving
the dependence on x without using the knowledge of k.

6 IMPROVING DEPENDENCE ON x WITHOUT PRIOR KNOWLEDGE

Here we provide details of our proposed algorithm (Algorithm [2] in Appendix [A.T), focusing on
the difference from the algorithm in the previous section. While we follow the framework of Algo-
rithmm for the improvement on x without knowledge of it, we utilize the local curvature information
for the gram matrix as

Hk,T(é\k‘,T) = Z Z p(n|Sk,ta é\k,T)ZnZ;ff ZP(”‘Sk,ta ak,T)p(m|Sk,ta é\k,‘r)znzr—g +AIT’7(4)

t€Tk,r—1"NESk,¢ n,meESk,¢
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where A = Cyrlog(K) for some constant Cy > 0 and we denote H k,T(@M) by Hj, » when there
is no confusion. We define 2, . - (Skt) = 2n — ZmGSk , p(m|Sk.t,0;)zm and we use 2, i , for it,
when there is no confusion. For the confidence bound, we define

Br(Sk,t) = gcgn%gft‘|zn||§{;1+ 2C3n%1g§t”5mkﬁ||§1;1 + ¢ Z p(n|5k,t79k77—1)||2n7k77||HI;_1’_a

nESk ¢

where ¢, = 1V + 2% 10g(4K T(1+ M)) with the start time of 7-th episode ¢,. We note that
the first term arises from the second-order term in the Taylor expansion for the error from estimator,
while the second and last terms originate from the first- order term. Notably, our conﬁdence bounds
for 7-th episode utilize not only the current estimator Hk _~ but the previous one Gk +—1 (in the last
term) because the historical data in H}, ; is obtained from the G/D- optimal policy which is optimized

under @;m,l. Then we define upper and lower confidence bounds as

UCB(Skt Z Tn kD n‘Skt,ng)"‘B (Skt)

nESk ¢

LCB(Skt Z T kP(1| Sk, tﬂk 7) — B (Sky)- )
nESk,t

For the G/D-optimal design aimed at exploring the space of arms, the algorithm must account for
both Vi, and Hj -(6k ) to achieve a tight regret bound that avoids dependence on 1/k. This
marks a key distinction from Algorithm |1} From this, the algorithm requires two different types of
procedures regarding assortment construction, elimination, and exploration. Let J(A) be the set
of all combinations of subset of A with cardinality bound L as J(A) = {B C A | |B| < L},
and let K(A) be the set of all combinations of subset A (with cardinality bound L) and its element
as K(A) = {(b,B) | b € B C A,|B| < L}. The G/D-optimal design seeks to minimize the
ellipsoidal volume under V-, based on arm selection probabilities within the active set of arms

N, %, Additionally, since the action space in Hy, () ) depends not only on the selection of actions
but also on the selection of assortments, the G/D-optimal design incorporates assortment selection
probabilities for J (N ) and (N ). Following this policy, the algorithm includes two separate
exploration procedures regarding the selection of arms and assortments.

Remark 6.1. Ir is worth noting that our localized Gram matrix in @) offers advantages over the
localized Gram matrices proposed in the MNL bandit literature (Goyal & Perivier, 2021} |Lee & Oh|
2024)). In|Goyal & Perivier (2021), the localized term introduces a dependency on non-convex op-
timization to achieve optimism, whereas our approach utilizes 8y, ; without requiring such complex
optimization. Meanwhile, Lee & Oh| (2024)) incorporate all historical information of the estima-
tor into the Gram matrix, which is not well-suited for the G/D-optimal design. In contrast, our
method leverages the most current estimator, enabling alignment with the rescaled feature for the
G/D-optimal design.

Remark 6.2. Our G/D-optimal design for the localized Gram matrix differs from those employed in
linear bandits (Lattimore & Szepesvari, |2020) and generalized linear bandits (Sawarni et al.||2024)).
Unlike these settings, where the probability depends on a single action, our approach accounts for
the dependence on assortments (combinatorial actions). As a result, it requires exploring a rescaled
feature space that considers the assortment space rather than focusing solely on individual actions.

We set ny = (T/rK)l/@(l*TM)) with a parameter for batch update budget M > 1. Then, by
following the same proof of Proposition[5.1] we have the following bound for the number of epochs.

Proposition 6.3 (Number of Batch Updates). 7 < M.

Then, we have the following regret bounds (the proof is provided in Appendix [A.T).

Theorem 6.4. Algorithmwith M = O(log(T')) achieves: R(T) = @(TK%\/T(%) 2@M-1)),
Corollary 6.5. For M = O(loglog(T/rK)), Algorithm@achieves: R(T) = @(TK%\/T)
Remark 6.6 (Improvement on x). This algorithm does not require prior knowledge of k, which
enhances its practicality in real-world applications. Moreover, in terms of dependence on k, the
regret bound improves over that of Algorlthml ( Theoremﬂ) by eliminating the 1/x = O(L?) de-

pendency from the leading term. This improvement comes at the cost of an additional multiplicative
factor of \/T in the regret.
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Remark 6.7 (Amortized-Efficiency). Like Algorithm I} this advanced algorithm requires only
O(loglog(T/rK)) updates to achieve a O(\/T) regret bound. This implies that the amortized com-
putational cost is O(1) for sufficiently large T, since the average cost for combinatorial optimization

becomes negligible as LETTNNT l})g loe(M/K") — O(1) for T = QLK™N NL1oglog(T/Kr)).

7 EXPERIMENTS

le3 Regret per Algorithm
Runtime per Algorithm 10
: UCB-QMB
Ts-QMB
=4 0.81—%— OFU-MNL*
3 —m— B-SMB* (Algorithm2)
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1 _
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Figure 2: Experimental results with N = 3, K = 2, for (left) runtime cost and (right) regret
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Figure 3: Experimental results with N = 7, K = 4, for (left) runtime cost and (right) regret

R(t)

In our experiments, we compare the proposed algorithms with existing methods for MNL bandits
and matching bandits under the MNL model. Specifically, the feature vectors z,, and the latent
parameters 0}, are independently sampled from the uniform distribution over [—1,1]¢ and then nor-
malized. Also, the reward r,, ;, is generated from uniform distribution over [0, 1]. We use the settings
N=3,K=2r=2,and T = 5000 for Figure@ and increase the problem sizeto N =7, K =4
for Figure[3] Additional experiments, including larger problem instances and results illustrating the
reduction of the active set, are provided in Appendix [A.T3]

We first evaluate the computational efficiency of our proposed algorithms, B—SMB (Algorithm|[T)) and
B-SMB™T (Algorithm IEI), by comparing them with an adapted version of the MNL bandit algorithm
OFU-MNL™ (Lee & Ohl[2024) and existing matching bandit algorithms for the stable MNL model,
UCB-QMB and TS—QOMB (Kim & Ohl[2024). The details of how OFU-MNL™ is adapted to our setting
are provided in Appendix As discussed in Section [4] although the extension of OFU-MNT,
achieves sublinear regret, it suffers from significant computational overhead due to the need to solve
a combinatorial optimization problem at every round. In Figure 2] (left), we observe that our batched
algorithms are faster than OFU-MNL T, UCB-QMB, and TS—QMB. This efficiency gap becomes more
evident as N and K increase, as shown in Figure [3] (left). Notably, while the computational cost
of the benchmark algorithms grows rapidly with larger N and K, our batched algorithms maintain
their efficiency, demonstrating scalability to larger problem instances.

On the regret side, as shown in Figures [2] and [3] (right), our algorithms achieve sublinear regret
comparable to that of OFU-MNL™T, in line with our theoretical guarantees, while outperforming
UCB-QMB and TS—QMB across both problem sizes.

8 CONCLUSION

In this work, we propose a novel and practical framework for stochastic matching bandits, where a
naive approach incurs a prohibitive computational cost of O(K V) per round due to the combinatorial
optimization. To address this challenge, we propose an elimination-based algorithm that achieves a
regret of O (LK 2V/7T) with M = ©(loglog(T/rK)) batch updates under known . Additionally,

we present an algorithm without knowledge of r, achieving a regret of O (rK 3T ) under the same
number of batch updates. Leveraging the batch approach, our algorithms significantly reduce the
computational overhead, achieving an amortized cost of O(1) per round.
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REPRODUCIBILITY STATEMENT

All theoretical results are derived under clearly stated assumptions, with complete proofs provided
in the appendix. The proposed algorithms (B—SMB and B—SMB™) are described in detail in the
main text and appendix, including pseudocode and explanations of the elimination and exploration
procedures. To facilitate replication of our experiments, we provide code as supplementary material.
The experimental setup is described in the main and Appendix
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A APPENDIX

A.1 ALGORITHM WITHOUT PRIOR KNOWLEDGE OF £ (ALGORITHM [2)
A.2 NAIVE APPROACH BY EXTENDING MNL BANDIT

For our framework, we can utilize MNL bandit |[Lee & Oh| (2024) by extending it to
K-mutliple MNLs (Algorithm [3) as follows. Let the negative log-likelihood I +(0) =
— Znesk_su{o} Yn.t log p(n|Sk ¢, 0) where y,, € {0,1} is observed preference feedback (1 de-

notes a choice, and 0 otherwise). Then we define the gradient of the likelihood as
gkt (0) == Volxt(0) = Y (p(n]Sk.1,0) = ynt)Tn. (6)
neSt

We also define gram matrices from V3l +(0) as follows:

Gi.(0) == Z p(n|Sk.i,0) 2z, — Z p(n|Sk.t, O)p(m|Sk ¢, 0) 20z, (7
nESk,¢ n,meSk ¢
We define the UCB index for assortment S}, as
exp(hy,

neSk 1+ ZmESk exp(hm kt)’

where hy, . = 2, Gk : + fyt||zn|\G ' with 4, = Cylog(L)+/dlog(t)log(KT) for some Cy > 0.
We set A = Csdlog(K) and n = C’G log( ) for some C5 > 0 and Cg > 0.

Proposition A.1. Algorithm 3| achieves a regret bound of R(T) = O(rK+/T) and the computa-
tional cost per round is O(K™).

Proof. The proof is provided in Appendix O

Algorithm 3 Extension of OFU-MNL+ |Lee & Oh|(2024)

Compute SVD of X = UXV " and obtain U,. = [u1, . .., u,]; Construct z,, <+ U, z,, forn € [N]
fort=1,...,Tdo
for k € [K] do

Grt 4= Ma+ 123 Greis(Oh6) + G2 (B 1) with

Qk 4 Mg+ EZ 11Gk s(ek S) with (7] .

Gk 4 < argmingcg gk — 1(9k 1) 0 + 5 ||0 Gk t 1||g,1 with (6))

{Sk,t}ke[K] < argmax Z RUCB (Sk) with (8)
{Sk}ke GM kG K]

| Offer {Sk,¢}re(x) and observe y,, ; foralln € Sy, k € [K]

A.3 DETAILS REGARDING PROJECTION IN FEATURE SPACE

Since x,, for n € [N] lies in the subspace U,., we observe that =, = U,.b,, for some b, € R". Let
0; = U,’ 0).. Then we have z, 0 = z,! 05 by following z,] 0, = b, U,” 0, = b} (U, U,)U," 0, =
xz UTUTT 0, = zl 0}, using UTT U, = I;. Therefore, we can reformulate the MNL model using
r-dimensional feature z,, € R" and latent §;, € R" in place of d-dimensional x,, € R? and 9;, € RY,
respectively, for n € [N] and k£ € [K]. We note that this procedure is beneficial not only for
reducing feature dimension but also for introducing appropriate regularization for estimators without
imposing any assumption about feature distributions considered in|Oh & Iyengar| (2021}).

A.4 WARM-UP STAGE FOR ALGORITHMI]

Let Amin(A) denote the minimum eigenvalue of matrix A. Then we provide the warm-up stage for
Algorithm[T}in Algorithm
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Algorithm 2 Batched Stochastic Matching Bandit™ (B—SMB™)

Input: M > 1;Init: t + 1, Ty «+ Cslog(T) logz(TKL) for some constant C'3 > 0

Compute SVD of X = UXV " and obtain U,. = [uy, ..., u,|; Construct z,, < U, z,, forn € [N]

forr=1,2...do

for k € [K] do

Ok~ +— argmingeg:.g,<1 lk,-(0)  with @) where  Ti ., =
Uneni, s Tnkr—1Usegn, . ) Trkr—1

// Assortments Construction

& .
{S(n )}le K] ¢ argmaXyg,y, e M, mes; 2| ]Rz CB(S,) forall n € Ny, ,—1 with

(J.k
{57 Y ieiw) + AXGMAX (5,3, _ Mo y5umd Dotc(] RECE(S) forall J € T (Vi r1)
w1th @
// Elimination
n,k
Ié,r —{n € Ni,r cMAXLS Y ek €EMr_1 Zle[K] RiC T B(s) < Zle RUCB(Sz(J ))}
with (@)
New < {n € J : J € j(Nl{C,T)’maX{Sl}le[K]eMT—l Zle[K] RZLEB(SZ) <
Tk .
i) BECE (517} with G)
// G-Optimal Design

. 2
Thyr <= ArGMIN;cp(n; ) MAXneN, ||ZnH(Z
Tk,r <  argmin max

7€P(T(Ni.7)) €T N 7) ‘ Z Zn ke (

where Z), , _(J) = \/p(n|J, 0y, ) n e (J)

T, r < ~n T J z z z -
o weglgir(rfl\gl )) (ns J)EIC(Nk ) ”Z - ( )”(Z("v”e’c(i\/k,r)W(n’J)Z”‘I"”(J)Z”*’“*T(J)TJF()‘/T"T)I’") !

// Exploration
for n € Nj; - do
tn,k: —t, 7;L,k,‘r — [tn,kntn,k + [Tﬂk,T(n)T‘r] - 1]
while t € 7, . - do
Offer {1+ }1e(x] = {Sl(?k)}le[;q and observe feedback y,,, ; € {0,1} forall m €
Sitand! € [K]
t+t+1

or J € J(Ng,-) do
tik <t Trkqr < Lok tok + 17 (J)Tr] — 1]
while t € T; - do
Offer {Sy,¢ }1e(x] = {Sl(i’k)}le[K] and observe feedback y,,, ¢ € {0,1} for all m €
Sitand! € [K]
t+t+1

or (n,J) € K(Ng,.) do
tngk <t Tndkr < [tngk tn,gk + [1Te-(n, J)Tr] — 1]
while t € T - do
Offer {Sy,¢ }ie(x] = {Sl(:i’k)}le[K] and observe feedback v, € {0,1} for all m €
Sptand ! € [K]
t+t+1

e./\/k m(n)znz, +(A/rTr) )=t

‘(ZJEJ(Nk y T (D) Eones 2k - (NZ, o (D THA/Ter) 1)~

Yy

Yy

M, {{Sktret) Sk © Niors [Sk| < LVE € [K], S, N S = 0k # 1}
TT+1 — nT\/i

14
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Algorithm 4 Round-robin Warm-up

)\min — )\min(zne[N] ZnZI)
tp < t, i < min{L, N}
+ (C3N/ik* Ain 1og(TK)) (r + log(TK))?
T o [t tre + T} — 1]
fort ¢ 7;( ) do
+— ((t—=1)+1 mod N),b <+ (it mod N)

1fa < b then

‘ Sk,t — [a,b]
else

| Skt [1,0]U[a, N]
Construct any .Sy ; for I € [K]/{k} satisfying {Sk ¢} re[x] € Mo
Offer { Skt }re[x) and observe feedback y,, ; € {0,1} forall n € Sk, k € [K]

A.5 PROOF OF PROPOSITION[5.1]

Here we utilize the proof techniques in Sawarni et al| (2024). Recall that 7 to be the smallest

7 € [T] such that
1 2
o S mO+ T =T
7' €[1] kE[K]

In other words, > (., 1] D ke(k \’Tk o+ 1T, (2)| < T. Then we can show that 7 < M by
contradiction as follows. Suppose 77 > M. Then, we have

1-—21-71

> ()2 (HTH = (T/rK) 7> ™ >T/rK,

TP — 1( )k 1

T'rTfl 2 (nT)Z

Where the last inequality comes from M + 1 < 7r. This implies that 3°_, ¢, 11 > 4e(x |Tk(1T),| +
|77C .| > KrT.,_1 > T, which is contradiction. Thus, we can conclude that 7 < M.

A.6 PROOF OF THEOREM[5.2]
In the following proof, with a slight abuse of notation, we use p(n|S,0) = exp(z,6)/(1 +
> mes €xp(z,,0)) with z, € R” instead of 2,, € R%. We provide a lemma for a confidence bound.

Lemma A.2. Forany 7 € [T), k € [K], and n € [N], with probability at least 1 — 6, for some
constant C > 0, we have

|2 (O = 03)] < %\/llznllf/kfl log(TKN/9).

Proof. We define the gradient of the likelihood as

ger(0) = > Volei(0) = Y > (p(n|Sks,0) = ynt)zn + 0.

tETh tETh,r €Sk
Then we first provide a bound in the following lemma.
Lemma A.3. Foranyn € [N], k € [K], and T € [T, with probability at least 1 — 6, we have

3/log(TKN/6)

K

—~ % 6 -~ * o *
|Z7—Lr(9k577-_0k)| < Hzn”Vk—j""? 10k, —0% H2||9k,‘r(9k,‘r)_gk,‘r(9k)Hvkjj HZTLHV,V‘T1

Proof. The proof is deferred to Appendix O
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Then we define

~ 3/1g(TKEN/S
B = {|zz<ek,f _gy)) < BVIBTEN/)

i ”anij
6 -~ * n *
o Br = 65l o) — B0y llanl 2 v € [Nk € 17 e 171,
which holds at least 1 —§. Now we provide bounds for ||§k,7 —0;]|2 and ||gk,T(§kJ) — 9k, (05) ”V{l'

Lemma A.4 (Lemma 7 in|Li et al.[(2017)). Forall k € [K], T € [T, with probability at least 1 — ¢
for § > 0, we have

91, Or.r) = grr—1(07) |2 < 4y/2r +1og(KTN/6).
We define V) =", T Donesy Zn%,) . Then we have the following lemma.
) k,r—1 ot

Lemma A.5. For all k € [K] and T > 2, we have Amin(Vy).) > (Co/k*1log(TKN/6))(r* +
log>(TK N/8) + 2rlog(TKN/6)).

Proof. Let X' = (Co/k*Amin log(TK/8))(r? + log*>(TKN/§) + 2rlog(TKN/J)) and recall
Amin = )\min(zne[ N Z,%, ). From the phase in the warm-up stage (Algorithm , we can ob-

serve that V) contains 2,2, foreachn € [N]atleast \'. Since 35, c1n) ZnZn = D_gef) AsUsUs | »
we have V) = Zte?’,j_lj_l > neSh. ZnZy = 2sepr] Mugus " where N, > M\, Then from
Amin = A, we can conclude Apin (V) > N Amin. O

Lemma A.6 (Lemma 9 in |Kveton et al| (2020)). Suppose )\min(V,gT) >

max{(1/4x2)(rlog(T/r) + 2log(KTN/$)),1} for all k € [K]. Then, for all = € [T] and
k € [K], we have

P(||6. — O3l > 1) < 1/6.

We define Ey = {||§;” —0;ll2 < 1Vk € [K],7 € [T]}. Then from Lemmas we have
P(Ey) >1-0.

We also denote by Ej3 the event of {||gk’7(§;m) - gkyT,l(GZ)HVk_l < 4y/2r +1og(KTN/5) VT €
[T], k € [K]}, which hold with probability at least 1 — § from Leinma

Lemma A.7. Under E5 and Es, for any T € [T, k € [K], we have

~ 2 |2r+1log(TNK/0)
Opr — Oill2 < — .
|| k, kH2 — H\/ A]nin(vlg)

Proof. The proof is deferred to Appendix [A.9.7]

Finally, under F; U E5 U E3 which holds with probability at least 1 — 36, we have
|2 (k. — 67)]

24/log(TKN/§)

< VB el + (6/82) znl [B,r = 052110k, (Ber) = g1r (BF )y

K
_ 2/log(TEN/3) _ 48(2r + log(KTN/5))
K2 Amin (V)

> HZn”vk—T1 HanV’;Tl

K

< 3/log(TKN/6)

< S el

= /%) fTeall?_ 1oB(TENB) i= B)znll 2.
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which concludes the proof. O

Then we define event £ = {|z,| (9;”—9*)| <6THzn||V 1 VT € [T],k € [K],n € [N]} for some
¢1 > 0, which holds at least 1 — 1/7" with Lemma-and 0=1/T.
Lemma A.8. Under E, forall T € [T), k € [K], and S C Ny, r_1, we have

0 < R{SP(S) — Ry(S) < 4B max||zp|ly,—+ and — 47 max ||zl -1 < RESB(S) — Ru(S) <0

_ . Tp o) _ 2nes Tk eXp(Un k)
Proof. Let . = 2, 05, Unk = 2, O -, and Ry -(S) = 1+§)S,,,L€Sexp(ﬁm,k) . Then by the mean

value theorem, there exists @, 5 = (1 — ¢)Up,k + cun k for some ¢ € (0,1) satisfying, for any

S C Nk,T—l

Z’I’LES Tn,k eXp(an,k) . EnES Tn,k eXp(Un,k)
1+ esexp(Ung) 14 3,c5exXP(Um,k)
_ Z v (ZmGS "'m,k exp(vm)>
2 (T > mes eXp(Um)
(1 + ZneS exp(amk))(znes Tn,k eXp(ﬁn,k)(an,k - Un,k)) ‘

(1+ 2 ,es exp(iin,k))?
i ‘ (Znes eXp(ﬂn,k))(ZneS T,k €XP(Un k) (Un i — Un,k)) ’

(L4 > nes exp(ink))?
GXp Unp k) ~

2 Un,k — Un,k
'ILEZS 1+ ZmES eXp(um k) l |

< 2max |[Up g — Un k]
nes

Ek,T(S) - Rk(S)’ =

(amk - U/n,k:)

Vp=Un k

IN

< 2fr Iggg ||Zn‘|ka717

where the last inequality is obtained from, under E, |2 05 — 20y, < fr|/zn|l, 1. Then, from
kT

the definition of R/C”(S) and R{$P(S), we can conclude the proof. O

In the following, by adopting the proof technique in |Chen et al| (2023)), we provide a lemma for
showing that M is likely to contain the optimal assortment.

Lemma A.9. Under E, (S5,...,55%) € M,_1 forall T € [T).

Proof. Here we use induction for the proof. Suppose that for fixed 7, we have (S5,...,5%) € M,
for all k € [K]. Recall that S7 = (C/k)+/log(TKN). From Lemma we have R[/CP, (S) >
Ry(S) and Rﬁgfl(S) < Ry (S)forany S C [N]. Thenfork € [K],n € S, and any (51, .., Sk) €
M, we have

> REFAWSTR) = Y RICA(S

le[K] le[K]

> > Ri(S)

l€[K]

> Z Ri(S1)

l€[K]

> Y RIZA(S ©)
l€[K]

V

where the first inequality comes from the elimination condition in the algorithm and (S7,...S%) €
M, and the third inequality comes from the optimality of (S5, ..., S} ). This implies that n €
Ni,r+1 from the algorithm. Then by following the same statement of (9) for all n € S} and

17
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k € [K], we have S} C N -41 forall k € [K], which implies (S}, ..., S%) € Mr41. Therefore,
with (S5,...,S%) € Mj, we can conclude the proof from the induction. O

From the above Lemmas[A.8]and[A.9] under E, we have
> RS = Y0 RiS(YY) < 37 RECP(S]) + 47 max < llzmlly, -

le[K] l€[K] le[K]
= 3" RICHSIN) + 48 max |zl
? S(n,k) lL,T—1
le[K] meSy .

<4Br D (max [lzmlly- + max zm|y- ) (10)
lE[K] i meS;

where the last inequality comes from the fact that (S},...,S%) € M,_; and

max(s, _si)emr1 derr] RS P (S1) < Xieikg RUCB(SZ(,T:IC)) from the algorithm.

We define V(mx,7) = >, cnr - k- (n) 20z, and supp(my..) = {n € Ny : T~ (n) # 0}. Then
we have the following lemma from the G/D-optimal design problem.

Lemma A.10 (Theorem 21.1 (Kiefer-Wolfowitz) in|Lattimore & Szepesvari|(2020)). Forall T € [T
and k € [K], we have

3 1zallGy (r, )1/ 1,)-1 S 7 and [supp(m )| < r(r+1)/2.

Proof. For completeness, we provide a proof in Appendix [A.T1} O

From the definition of V}, , and 7>, we have

Vk,‘r = Z rﬂ-k,'rfl(n)TTflznz;lr + Ir
n€ENk 1

= T,1T(V(7T]€’T,1) + (1/T7—,1’I")I»,‘). (11)
Then from Lemma[A.T0]and (TT)), for any n € N}, - we have

Brllzallys = (1), /T, 1og(KNT)

= O (WAL o\ lealo iy vy iy /7)
= O((1/r)\/1/Tr—1). (12)

Therefore under E, from (I0) and (T2), for 7 > 1, we have

> (RS = RulS{2) = O((1/m) KT, ).

lE[K]

‘We have

R(T)=E | > Y Ri(Sk) — Rr(Sk)
LtE[T) ke[K]

<E Z Z Z Z Ri(Sy) — Re(Ske) |

TE[TT] lE[K] terTl(l) 07;(2) kE[K]

13)
which consists of regret from the stage of warming up and main. We first analyze the regret from
the warming-up as follows:

Z Z Z ZRk(SZ)*Rk(Sk,t) <E Z ZK"E

Te[rr]I€[K] e,V kE[K] Telrr] l€[K]

= O(r*K?N/(min{L, N}£*Amin)), (14)

18
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where the first equality comes from 77 < M = O(log(log(T'/rK))) from Proposition[5.1]

For the regret bound from the main part of the algorithm, with large enough 7', we have

ST 5T 3T ST Ru(S)) — Re(Sk)

T€[rr] lE[K] teTl(?) ke[K]
sTT

S5 S ST (Ra(SE) — Ri(Ser) 1(E)

TE[rr] lE[K] teTl(?) ke[K]

+E Z Z Z Z (Ri(S;) — Ri(Sk,t)) 1(E®)

Te€[rr] I€[K] tET(2) kE[K]

=0 (K/m)> > > | an|\/1/TT 1| + O(rKnr) + O(K)
T=2[c[K]|neN;,+
:(’j (K/K)Z Z Z anl\/l/T.,- 1 —I—O TK?]T>
T=2[c[K]|neN;,+
=6 [(K/n) S S 6T + |Supp(m ) )VITTs | + O EK)
T=2]¢[K]
=0 ((KQ/H) Z(TUT + 12y 1/TT—1)>
T=2
= O ((K*/K)(rnr +17))
=0 (%TKQ(T/TK)W) : (15)

where the third last equality comes from Lemma [A.10] and the second last equality comes from

T < M = O(log(log(T/rK))) from Proposition From (13), (14), (13), for T >
3KN2/111111{L N1}2k2)2 . we can conclude the proof.

min?

A.7 PROOF OF THEOREM[6.4]

Let gr-(0) = Yier . Znesk,tp(nwk,t,@)zn + A and (. (6) = %ﬁ +
2r (t —1)L
A log ( (1 =+ 7)) .

Lemma A.11 (Proposition 2 in|Goyal & Perivier| (2021)). With probability at least 1 — 9, for all
T > land k € [K], we have

||9k;r(§k,r) - gk,'r(elt)HH,;i(eg) < Cr(5)~

From the above lemma, we define event £ = {||gk_,7.(§k,7) — gk’T(G,’;)HH’:l(e;) < ¢ (6), VT >
1,k € [K]}. Then we have the following lemma. 1
Lemma A.12. Under E, forany 7 > 1 and k € [K], we have

16k = O3l g, 3,y < (1+3V2)¢(3).
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Proof. Here we utilize the proof techniques in |Goyal & Perivier| (2021). Let Gy -(61,02) =
fvlzo Vi (01 + v(02 — 61))dv. By the multivariate mean value theorem, we have

1
G, (01) — g, (02) = / Vi, (01 +v(02 — 01))dv(01 — 02) = G ~(01,02)(61 — 02), (16)
v=0
which implies
1gr,7(01) = gr.r (B2)l g1 6, 0,y = 11 = O2ll Gy . (1.0

By following the proof steps of Proposition 3 in |Goyal & Perivier| (2021) with Proposition C.1 in
Lee & Oh|(2024), we can show that

G- (61,02) = Hy +(01) and Gy, (601, 02) =

1 1
_ e Hio ().
1+3v2 5 aya k)
Finally, we have
1601 — 02|71, 00y < (1 +3V2)2101 — Oallc, . (6,.0)
= (1+3v2)"2| g, (61) — 9 (02)ll a1 0,60
< (14 3V2)llg, (01) = 9. (02) ]l 11 5,

which concludes the proof with E.
O

From the above lemma and E with § = 1/T", with probability at least 1 — (1/7"), for all 7 > 1 and
k € [K], we have

o _
20 Brr = 01 < Nzl WOr = O3l o,y < Gllznlligr -

In the following proof, with a slight abuse of notation, we define £ = {|z,] (5;” —67)] <
GHZ"”H*I(@ y VT = Lk € [K],n € [N]}, which holds at least 1 — (1/7"). We also use
k,T\7R,T

p(n|S,0) = exp(z,) 0)/(1+ 3, c5 exp(z,,0)) with 2, instead of z,.
Lemma A.13. Under E, for all k € [K] and T € [T}, for any S C N r—1, we have
0 < RYSB(S) — Ry(S)
2 2 2 . 2 5 -
< 13¢; max ”ZnHH;;i(gk,r) +4¢; max 120,k HH::,L(@C,T) +2¢; Z p(n|S, ok,‘r—l)Hzn,k,‘r||H;)i(§kj)a

nes

0 < Ri(S) — RSP (S)

<13¢Emax(|znllyy s g, ) 4 max |12 kel s g, )+ 2 Y P01 Bk ) Enkr it @ )

1 @)
nes
Proof. Let tn s = 2107, T = 2 Or, and Ry, (S) = ZneslmkOPUnk) e a150 define
. n,k — “p Yk, Unk — <5 VL1 k,T - 1+Zmese’<p(am,k) .
_ T _ . s~ . _ T,k €XP(Vn)
Un,k = Zp, 0;;’ g = (un,k n e S)’ Uy r = (un,kﬂ' VNS S)9 and Q(V) - ZnGS 1+£ eSexpn(vm) :

Then by a second-order Taylor expansion, we have
By (S) = Ru(S)| = Qkr) — Q(up)|
~ 1. NN
= |VQ(ur) " (Ukr —uwi)| + 5(111” —w) ' V2Q(Ux) (ks — wi)|, (17)

where uy, is the convex combination of Uy, and uy. Let €, k7 = Unkr — Un ks €ngke;r = O,
€nk,r = Cnk,r — ZmesU{nO}p(m‘Sa GZ)em,k,T = Cnk,r — ]EGZ [em,k,f}a and €n k7 = €nk,r —

20
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ZmESU{no} p(m|S, é\kj)em,kj =enkr— ]Egk [€m,k,~]- Then the first-order term in the above is
bounded as

Q)T @ — )|
ZnES Tn,k eXP(Un,k)(ﬂn,k,T - Un,k) (ZnES Tn,k eXp(un,k))(Znes eXp(un,k)(an,k,T - Un,k))

L+, csexp(tnk) (14>, csexp(un,k))?

=D ruap(nlS. 0) @k — i) = D Temgp(n]S, 05)p(m]S, 07) (g ir — 1)

nes n,mes

= D raxp(nlS.0;) <<an,k,f —tun i) = Y pn]S,08) (A, — um,w) |
nes mes

<Y (0l S, 67) |ensr — Eog em, k.|
nes

< Z p(n|S, 0;:;) !en,k:,r - ]Ee;j [em,k,r] |
nes

= ZP(TLIS, %) €n k7|
nes

<Y p(nlS,07) [en ke — Enprl + D p(1|S,07) En s
nes nes

For the first term above, we have

> (IS, 07) [en ki, — En el

nes

= Zp(n|5, 0r) ‘E% [em,k,r] — Eékyf[em-,k,'r]
nes

= > p(nlS,6;)

nes

> (p(mlS,65) — p(m]S, 01.2))em k.-
mesS

<202 p(nlS,07)llzal3y

nes

where the first inequality is obtained by using the mean value theorem. Then for the second term,
we have

ZP(”‘Sv 05)|Enk,r| < Z(p(n|57 0) — p(n]S, é\k,‘rfl))|én,k"r| + Zp(n|5a é\k"rfl)lén,lc,‘r|

nes nes nes

0 *\ T
< 96, max [onll 1 (B = 00)T (2 — By, (2]

+ > p(]S, e )| Bir = 0) T (20 — Bg,_[20])]

nes
< 262 (max 23, 4 max [ Zn g r 3, 0) + G Y p(lS, Orr )12kl

nes

From the above inequalities, we have

[VQ) T @ — )| < ¢ max 22,1 + 262 max o I3 + G Y p11S, D)l Entr 1

nes
(18)
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Now we focus on the second-order term which is bounded as

1 A
5 (W — w,) " V2Q(uy) Uy, — uy)

1 N 2*Q(uy)
= 5 Z (un,k,‘r_un,k:)M(umﬁ,‘r_um,k)

n,mes anam

1 N 0?Q(ay) . 1 N 9?Q(uy) ,
= 5 Z (un,k,‘r_un,k:)M(umﬁ,‘r_um,k)'i_i Z (un,k,‘l’_unﬁ)ﬂ(um,k,r

n,mes anam n,mes anam
~ exp(an k) exp(ﬂm k) ~
< [Un,k,r — Un k] — [ Um e = Ul
HJZL;S TR L Y esexp(ng) 14 Y egexp(ag) T
3 ~ 2 exp(an k)
+ = (un,k;r - un,k) ——
22 TF Sres explinn)
5 N exp(Un. g
S*Z(unk'r_unk)2 p( = )

2 ey ” ’ 1+ ZleS exp(al,k)

IN

5
3¢ max Hznllzﬁ Bon (19)

where the first inequality is obtained from Lemma[A.22]and the second inequality is obtained from
AM-GM inequality. Then from (T7), (T8), (T9), and with the definition of R{/¢”(S) and RSP (S),
we can conclude the proof. O

In the following, similar to Lemma [A.9] we provide a lemma for showing that M is likely to
contain the optimal assortment.

Lemma A.14. Under E, (ST,...,S%) € M,_1 forall T € [T)].

Proof. Here we use induction for the proof. Suppose that for fixed 7, we have (ST, ..., S%) € M,
forall k € [K]. From E, we have R[/ZF, (S) > Ry.(S) and RSP, (S) < Ry.(S) forany S C [N].
Then for k € [K], n € S, and any (S, .., Sk ) € M., we have

n,k)
S° RIGA(SI = 3 RECA (ST
l€[K] lE[K]

> Y Ri(S))

IE[K]

> Ri(S)

le[K]

> RECE(S 0)
l€[K]

Vv

Y

where the first inequality comes from the elimination condition in the algorithm and (S5, ... S%) €
M-, and the third inequality comes from the optimality of (S7,...,S5 ). This implies that n €
Nj..+4, from the algorithm. Then by following the same statement of for all n € S} and

k € [K], we have S; C Ny, forall k € [K].

22
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Then for k € [K|, J = S}, and any (S, .., Sk) € M., we have

§ UCB § : UCB
Rl T+1 Sl,‘r+1 Rl ‘r+1
l€[K] lE[K]

> Y Ri(S))

le[K]

> Ri(S)

lE[K]

" RECH(S) en
l€[K]

Y]

Y

where the first inequality comes from the elimination condition in the algorithm and (S7,...S%) €
M, and the third inequality comes from the optimality of (S},...,S}%). This implies that J(=
S%) € TNy ;1) from the algorithm. Then by following the same statement of 21) for all k € [K],

we have S;; C N, ;41 for all k € [K], which implies (S7,...,S5%) € M. 41. Therefore, with
(St,...,S5%) € My, we can conclude the proof from the induction.

O

We define V(7p,) = > nededin Tror (s D) ber (N inpr ()T and V(7p,) =
Yseq.. Trr(J) X e p(nll, @\kﬁ)én}kﬁ(J)Zn,;m(J)T. Then we have the following lemma
from the G/D-optimal design problem.

Lemma A.15 (Kiefer-Wolfowitz). Forall T € [T] and k € [K|, we have

~ 2 _
neJén}i()J(\/k ) ||zn,k,r(J)H(\‘/(ﬁk,)Jr(,\/TTr)lr)fl < rand [supp(7p,.)| < r(r+1)/2,

2 ~
Jegl%i 9 Zp n|J, ok T ”Zn,k,‘r(‘])H(‘"/(;rkYT)_,_(,\/T”-)[T)—l <rand |5upp(7rk,7')‘ <r(r+1)/2.

Proof. This lemma follows by adapting the proof steps of Lemma[A.T0} To establish the result, we
utilize the following:

Z Tho,r (s ) || 2k ,r () ||?V(ﬁk,TH(A/Tﬂ)I,,.)—l
neJeJ

=trace( Y 70, D) znnr(N)ingr () (V(7er) + N/ Ter)L) )
neJeJ
= trace(I,) — (\/Tyr)trace((V (7x,») + (N Tyr) 1)) <.

Similarly, we have:

Z 7?k,‘r(‘]) Z p(ﬂ|J, ok,r) ”'gn,k,'r(']) H?V(ﬁ'k.r)-i-(/\/TTT)lr)_l
JET (Nk,+) neJ ’

= trace(>_ 7 (1) > p(nl ] O2) e () Zn e (1) (V(Far) + (A Tpr) ) 7Y
J n

= trace(I,) — (\/Tyr)trace(V (7r..) + (N Tor)L) 1) <7

The remaining steps are identical to the proof of Lemma[A:10] O
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From the above Lemmas[A.14] and[A.8] under E, we have

SRS =Y RS

1€]K] l€[K]

<Y [RLCB Si) +13¢2 max Hzm||
le[K]

2
i) +4¢; max||zmh|| @)

+26: Y p(mlST 1) Ema,

mesS)

1+ (0ur)

_Z RUCB (nk))

l€[K]

S13¢ max [zl
m (n,k)

2 2
H,T.,}(‘al,-r) _4<‘r m%fk) HzmHH*

LN (I

n,k) o ~
=2 Y pml ST b))l

mESl(i’k)

N Z <2 Tglax ||ZmH H O )+ 42 meaX 1201, TH H O )+ Cr Z p(m|Sl*791,7'*1)||2m’l,7'||Hlel(§H)
le[K) meSy

2 5 2
o 29?)( HZmH 0 Or +C H;?fk) Hzm’l’T”Hzfj(@z,f)

k) o ~
+& > pmISEY O)maellg @y
mesi*

< Z B 2 = R 2
- l€[K] ¢ mEaSX* Zm” H; (b1 +e nI?Eagj* Hzm’l’T”Hz,rl(GW) T mEH}g?X Hzm” R

+C72- max Hém,l,T”Hrl(fg\L ot Gr Z p(m|S},61,-—1) Z p(m|Sl*,91,771)”27,11177”?{[_1(5
m BT )T

(n,k) l-,T)
ESZ,T meS; meSy

NN k) o ~
G | YD pmISTN ) | YD p(mlS ’,9177_1)||zm7lﬁ||§IE:(§Z,T) ,

7rLESl(:_’k) mESl(T:_’k)

(22)

where the second inequality comes from the fact that (SY,...,S%) € M,_1 and
n,k .
Max(s, . Sx)eM, ZlE[K] ngB(Sl) < Zle[K] RETCB(SZ(’T )) from the algorithm.
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Likewise, we also have

SRS - > RS

1€[K] 1€[K]
2 2 2 = 2 2
5 Z CT nI’PGaS}'li H;j(al,-r) + CT nr’{leas)li Hzm,lﬂ'”Hﬁj(@’ ) + C Iensa(‘x ||Zm||Hf:((9\lT)
I€[K] i
+C£ max. ||2m,l,‘r||?q—1(§L 2 +¢r Z p(m|S}, 6-—1) Z (m|S; ’91 r=1)|[Zm,1 TH 1(@1,)
mes;”: br meS; meSy

Jk) o Jk
+C‘r Z p(m|Sl(77- )79l,771) Z p(m‘sl(,.,- ) el‘r 1)||Zml7‘|| _1(91 5

mesmh) mes{h)
(23)
We can show that
Hkﬂ'(ekﬂ')
=M+ >0 D plSkas Ok )znz, — Y. Y. Y p(nlSk Ok )p(m| Sk, O r) 20z,
t€Tk,r—1 NE€Sk ¢ t€Tk,7—1 NESk,t MESk ¢
~ 1 ~ ~
_ T T T
=AM+ > > p(nfSku, Ok r)znz, — 3 ST Y plSk Ok )p(m| Skt Ok r) (202, + 202,),)
tETk,r—1 NESkt tE€Tk,7—1 NESk,t MESk ¢
~ 1 ~ ~
T T T
=AY Y p(nlSk, Okr)znz,) — 3 ST Y plSkis Ok )p(m|Sk s, Ok ) (202 + Zmz,,)
t€Tk,r—1 NESk,¢ t€Tk,r—1 NESK,t MESk +
=M+ D> D pUSka )z — S Y Y p(n]Ske Ok )p(m| Sk, O r) 20,
tE€Tk,r—1 NESk,t tETk,+—1 NESk,t MESk ¢
- )\Ir + Z Z p(n|Sk,t7 é\k,‘r) 1- Z p(m|5k,t7é\k,‘r) anr—;
t€T,+—1 NESk,t meSk ¢
=M+ Y DD pfSks Ok )p(n0]Skss Ok )2z = AL+ Y Y Kz,
t€Tk,r—1 NE€Sk ¢ t€Tk,r—1 €Skt
= M, + Z ,‘<;7"7T;€}T,1(n)TT,lznz;Lr =KL 1r(V(mgr—1) + (N krTr_1)1,)
nENg, 1
= KL _ar(V(mgr—1) + (N rTr21)1). (24)
From Lemma[A.T0]and (24)), we also have, for any n € N},
[EMI : -
|| H2 -0 PNV (7, r—1)+(N/rTr 1))t
L @) ke _q
1
=0 . 25
() es)
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We have

Hy,r (0k,7)

- )\Ir + Z Z nlSk t79k7’ ZnZp Z Z Z n|Sk,t7é\k,T)p(m|Sk,t7é\k,T)zn2;
tE€Tk,+—1 NESk ¢ tE€Tk,+—1 NESk,t MESk ¢

=AM+ Y Ej, lnza] —Ep, | [zn]]ng[zn]T
t€Tk,r—1

_)‘I+ Z E an?Tan:T]
t€Tk,r—1

=\, + Z Z p(n|5k,t7é\k,r)én,k,rér—;,k,r

t€Tk,r—1 NESk,¢

= M, + Z Z ZP(NLL é\k,r)gn,k,rglkﬂ—

JET Nk, r—1) t€T 1 k,r—1 NEJ

t )\Ir + Z rﬁ-k,-rfl(J)TTfl Z Kgn,k;rgr—zr,k;,q—
.]EJ(N)CJ_1) neJ

= HTT,17" (V(ﬁ'k’-,—,1> + ()\/Trflr)lr) . (26)

From Lemma and (26) with Ny, ; C N, r_1, we also have, forany n € J € J (N )
Znker (D)7 -0 1z Oy 2, )3 sers 1)1
Znk,T Hyt(Oh-)

krTr_q
1
=0 . 27
(HTH) @7)
We have
Hk,'r(ek,r)
- )\Ir + Z Z nlsk t79k7’ Zn Z Z Z n|Sk,t7é\k,r)p(m|sk,t7é\k,7)zn2;
tE€Tk,+—1 NESk ¢ tE€Tk,+—1 NESk,t MESk ¢
=AM+ Y Ej, [zn2n] — B, [2alEg, [on]
t€Thk,r—1
= A, + Z E an?Tan:T]
t€Tk,r—1

=\, + Z Z p(n|5k,t7ak,r)én,k,rfz,k,r

t€Tk,r—1 NESk,t

= M, + Z Z ZP(NLL é\k,r)gn,k,rglkﬂ—

JETNi,r—1) t€T s k,7—1 nEJ

= )\Ir + Z rﬁ-k,‘rfl(J)TTfl Z p(n|J, é\k,r)gn,kﬁélk,r

.]EJ(N)CJ_1) neJ
mAA Y ke (DT Y o], Ok 1) ek E g
JeT Nk,+—1) neJ

- 2¢r Z Tk —1(J) T 1 Iilg}((nzn”}{;i(@,m) + ”ZRHH,;Ll(@k,T,l
JeT Nk, r-1)

=1l qr (V(ﬁ'kﬂ-,l) + ()\/TTfl’I“)IT

. =T
))Zn,kﬂ'zn,k,r

—2(; Z 7~Tk,-r—1(J) %g?(”zn”;[;i(é\k’” + ”Z”HH,;ifl(@\k,,l))g"vkv‘rzrzkﬁ )
JET Nk, r—1)

(28)
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where the last inequality is obtained from, using the mean value theorem,

Z(p(n|<]a é\k,‘r) (TL|J okT 1)anTZ;er7—

neJ
- Z n|J ek T p(’l’L|J, 0;:) —|—p(7’l|J, 0;:) - p(n|‘]7 9k,7’—1))2n,k,7'2;£k,7—
neJ
=N =R s =T
= *QCT(ISS?}( ”Z"HH;:;(@MT) + ax ||Zn||H;}_il(gkﬁfl))Znykﬂ'zn,k;r' (29)

Let B = 26 X e gai ) Pt (D) maxnes (lznll s 3, + Iznll iyt o)) onkir e

and we have B = 4,/ ——>" 1 s ove ) Frr—1(J) maxpes 2ok an .- from 23). Then for
KTr_o €T Ny,r—1)
T > 3, we have

V(7pr—1) — B
= SV (ks 1) + 2V (Frr) — B
) Tk, r—1 2 Tk,r—1
1. 1 N I 1 N .
= §V(7Tk,7'—1) + 5 Z Wk,T(J) Z Hzn,k,Tqu7k,7— - 4(7' FLT—,—,Q Z ﬂ-k,T—l(']) mea?f( Zn k,m%n,
JeT Nk,+) neJ JeT Nk, +-1)
1~ .
= iv(ﬂ—k,'rfl)a (30)

where the last inequality is obtained from Jr > 4(; /Tl,z because T, _5 > min{T},nr} with
large enough T such that 7' > max{ Tif log*(KTL), exp(5)}.

Then, we have
5 2 5 2
”z”vva”H;(e )STT 1||Zn’k’7H(V(ﬁ'k,r—1)+()\/T7——17‘)IT*B)*1
5 2
STTT—IHZn,k,TH(%V(;‘.kJ 1)+ %O\/TT 1))t

= 2
< 2 TrallEnk o oy iy -1

Then from the above, LemmalA.15| and (28) with N}, , C N -—1, we have, for any J € J (N )

;p(’fﬂj, gkﬂ'—l) ||2n7k77—||i];l(§k,7)
n

) 5 2
ZnGJp<n‘J’ ek,Tfl)Hzn,k,T H(‘7(7?1@,7——1)+(>\/Tr—17’)1r)’1
TTT—l

1
= <TT_1) : 31)

Therefore under E, from (22)), 23), 23),(27), and (31), we have the following.

Fort € Unen, . kepr) Tnkr Useg i o keti) Tk Unese i ) ki) Toodibors

Z (Rx(S;) — Ri(Skt)) = O (K < Til T T.,.rllf)) '

ke[K]
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For the regret bound, we have

Y Z R (S5) — Ri(Sk.s)

te[T) ke[K

<E Z Z (Ri(S5) — Ri(Sk.t)) 1( +E Z Z (Ri(Sg) — Ri(Sk,t)) 1(E®)

te[T] ke[K] te[T] ke[K]
o[k S [ X w3 md | (i )
r=3 ke[K] \JET (Ni..) nENy.+ 1 Tra
~o[kX S X mads 3 | (7 +OrEnn)
T=3 ke[K] \J€T Nk,-) neNg -+
~ 7T N r ~
0 (K'Y S (T Sumlm )|+ Suptin ) (7= 4 ) | + Otrnr)
T=3ke[K} T—1 T—1
- 7T 1
=0|K? <r3/2nT+r2nT>>
=0 (KQTB/QnT)
= O (W2KA (T rK) =TT ), (32)

where the third last equality comes from Lemma [A.T0] and the second last equality comes from
7 <M =0(1)and T,_; > ny for 7 > 3.

A.8 APPROXIMATION ORACLE

Here we discuss the combinatorial optimization in our algorithm. We can utilize an ci-approximation
oracle with 0 < o < 1, first introduced in |[Kakade et al.|(2007). Instead of obtaining the exact opti-
mal assortment solution, the a-approximation oracle, denoted by O, outputs { S }re[k] satisfying

D kelr] r(SR) =2 maxgs,y, g em Dopepr) @fr(Sk)-

We introduce an algorithm (Algorithm [5|in Appendix[A.8)) by modifying Algorithm|[I]to incorporate
a-approximation oracles for the optimization. Due to the redundancy, we explain only the distinct
parts of the algorithm here. (Approximation oracles can also be applied to Algorithm 2]similarly, but
we omit it in this discussion.) For testing the assignment (n, k), the algorithm constructs assortment

{Sla;("’k)}le[m (where n € S,?’T("’k)) in an optimistic view with an a-approximation oracle to
7(n5k)

resolve computation issue as follows. We define an approximation oracle Q%" which outputs
S(nk fos
{SlojT(n )}le[K] satisfying

max Z aRUCB Z RUCB a(n k))7 (33)
{Sihiem €M -1 €Sk l€[K] l€[K]

which replaces Line |5 in Algorithm For the elimination procedure, we define another (-
approximation oracle, denoted by (O)ch - which outputs {S lﬁ + hie[x) satisfying

max Z BRLCB Z RLCB (34)

{Sihiem €M 1E[K] l€[K]
Then it updates N, , by eliminating n € N, ,—1 which satisfies the elimination condition of

Z aRLCB Z RUCB a nk)), (35)

le[K] le[K]
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which replaces Line[6]in Algorithm [I] We note that the algorithm utilizes the two different types of

approximation oracles, @g’éf;k) and @ﬁc - Then the algorithm achieves a regret bound for ~y-regret
defined as RY(T') = E[>_,c 7y Xopepr) VRE(S)) — Ri(Sk,e)] in the following theorem.

Theorem A.16. Algorithmwith M = O(log(T)) achieves a regret bound with v = a3 as

T \ 2@
2l = l 2 JR—
RY(T) =0 (KK vrT (TK) ) .

Proof. The proof is provided in Appendix [A.8.2] O

A.8.1 «-APPROXIMATED ALGORITHM (ALGORITHM[3)

Algorithm 5 Batched Stochastic Matching Bandit with 5-Approximation Oracle
Input: 5, x, M > 1;Init: t < 1,7} < nr

Compute SVD of X = UXV " and obtain U, = [u, . ..
forr=1,2...do

for k € [K] do

// Estimation

O,  argmingcp: Ik +(0) with where Ty 1 = 7;(2 . U 7;(?71 and 7;(,27)71 =

(2)
UnENk,r—l 7;%/@;7'*1

// Assortments Construction
{Slof;( ’ }lE[K — (D)Ucrjgk) from forall n € Ny ,—1 with
// Elimination
{57 heix) + O from §F
a,(n,k
Nicr = {n € Nir + Xyepae aRFEP(SP) < X sey RECP (7)) for k € [K]
// G/D-optimal design
Th,r 4= ArgmMax,cp(y;, ) logdet(32, cns Tk (M) 2nz,) + (1/rT)1,)
// Exploration

Run Warm-up (Algorithm E) over time steps in 7; (defined in Algonthm'
for n € Ny, do

bng < 1, 7;(2137 — [tndes tne + [r7r, (M) ] — 1]
while ¢t € 7:”“

Offer { Syt hex) = {5, 7 (m, )}le[K] and observe feedback y,, + € {0, 1} forall m €

Sitand !l € [K]
t+—t+1

,u,]; Construct z,, < U,Tz,, forn € [N]

| MT < {{Sk}ke[K] . Sk CNk,T, |Sk| S LVk S [K],Sk N Sl = @Vk 7é l}; TT+1 < T]T\/T.,-

A.8.2 PROOF OF THEOREM[A 16|

In this proof, we provide only the parts that are different from the proof of Theorem [5.2]
Lemma A.17. Under E, (S5,...,S%) € M,_1 forall T € [T).

Proof. Here we use induction for the proof. Suppose that for fixed 7, we have (ST, ..., S%) € M,
for all k € [K]. Recall that 87 = (C;/k)+/log(TKN). From Lemma we have R/CP, (S) >

Ry (S)and RSP, (S) < Ri(S) forany S C [N]. Thenfor k € [K],n € Si,andany (51, .., Sk) €
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M, we have

UCB ,(n,k) UCB
ZRlT+1 L,m+1 )>{s} EM s ZaRlTH
1€[K] kSke[K] T kl clK]

UCB
- Z CYRZ ‘r+1
l€[K]

Z ol (S))

l€[K]

Z aRl(Sl 7'+1)

le[K]

S aRESE(SE, ), 36)
l€[K]

Y

Vv

v

where the first inequality comes from (33)), the second one comes from (S},...S}) € M., and
the firth one comes from the optimality of (S7,...,S%). This implies that n € N ;41 from
the algorithm. Then by following the same statement of (36) for all n € S and k € [K], we
have S; C Nj -4 for all & € [K], which implies (S},...,S%) € M, y1. Therefore, with
(S%,...,5%) € My, we can conclude the proof from the induction. O

From Lemmas and[A-8] under E, we have

n, k *
Z afR;(S)) Z Ry( ( < Z aﬂRLCB(Sl )+ 487 Ylgleaé ||ZmHVl;1

Ie[K] l€[K]
— 3 RUCB(S5) + 4y mey Imllvi
1T mES 7
< Z aRFEB(S] ) + 4By Jmax ”Zm”V_
le[K]
B Z RUCE(S a(n k))+45T max ||z |y
S(n’k) LT
) mes;
< 4Br Z (Eeaszi ”ZWHVEJ + e HZmHVZTTl*%
1e[R] ! mes;
(37)

where the second inequality comes from (34) and last inequality comes from the fact that
(St,...,S%) € M,_1 and ZIG[K aR}[ CB(Sﬂ ) < e RSP (S (k) from the algorithm.
Then, by following the proof in Theoremm we can conclude the proof.

A.9 PROOF OF LEMMAS

A.9.1 PROOF OF LEMMA[AJ]

For the poof, we follow the proof steps in (Bounding the Prediction Error) |Oh & Iyengar| (2021}).
We define

Hy . (0) = Z Z p(n|Sk.t,0) Z Z (12| Sk.t,0)p(m|Sk.t,0) 202,y | + I

€Tk, r \NESk,t nESk,+ mESk ¢
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We note that i - (01) = gi,r (02) = >se7i  Dones,, (P(n, [Sk,e, 01) —p(n, [Sk,e, 02)) 20+ (61— 02).
Then from the mean value theorem, there exists 6 = c¢f; + (1 — ¢)f with some ¢ € (0, 1) such that
Ik, (01) — g, (02)

= Vogkr(0)|,_s(01 — 02)

=1 Y| 3 pnfSkes0)znzy — > D p(Sk Op(m|Sk, ) znz,, | + 1 | (01— 62)

t€Tk,» \NESk,¢ nESk,t MESk ¢
— Hy (0)(61 — 05) (38)

We define Ly, = Hy - (6}) and By, » = Hva(H_k) — Hy, -(6}) where 0, = ety +(1— c)g)\kJ for
some constant ¢ € (0,1).

From (38), we have gkﬁ(akj) — gk (0F) = (Li,r + Ek,T)(akJ — 05). Then, for any z € R", we
have

2T Orr = 03) = 2" (Lo + Brr) ™ (g (Ok.r) — 90, (67))
= 2" L gk Onr) — g1 (07) — 2" Ly 2 Bir (L + Brr) ™ (grr Orir) — gir (07)).
(39
For obtaining a bound for |z (é\kﬂ- - 67,
bound for |ZTL,;1(gk,T(§k,T) — gk~ (07))]- Let€np = Ynt — (0| Sk, 85) for n € Sy ;. Since 5;,”
is the solution from MLE such that Zte’rk_r Znesm (p(n| Sk, 5;”) — Yn,k,r)Zn = 0, we have

Ik, 2(Orr) — i (05)
= Z Z ( n|Sk t79k T) p(?’l|5k,t, 9;:)) Zn + (é\k)ﬂ' — 9;)

t€Tk,» NESk ¢

Z Z ( n|Skt79kT) ynkt>zn+9kr+ Z Z (Yn,k,r — (1| Sk 1, 0F)) 20 — Oy,

tE€Tk,r NESk¢ tE€Tk,» NESk ¢

=0+ Z Z €n.t7n — O (40)

t€Tk,r N€Sk .t

We define
Ziy=[2n:n € Sy, € RIFT fort € Ty .,
Dipr=[Zps:t€Thq] € R e \Sk1t|)><,«7

gk:,t = [Gn,t tn e Sk,t]T c R‘Skﬂ_
Then using Hoeffding inequality, we have

P2 Ly (ghr Onir) — grr O > 0) <P (| Y 2TL 20 6| > v — 2T Ly 165
t€7—k,7‘

<P(| Y 2"Llz] & >v—1
€Tk r

<2e 20v 1)
S ZeXp | — -
ZteTkJ (2\/§HzTLk}erT’t||2)2

= 2exp (_(z/_—1)2>
4|2 LDy |3
K2(v—1)2
TR )

(41)
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where the last inequality is obtained from the fact that

Lir= > | 3 plSie. 0020zl — 37 3" p(nlSke, 6)p(m|Sk.e, 67) 20z,

t€Twk,r \NESk,¢ nESk,t MESk.+

= Z Z p(n|Sk.t, 0%) an — Z Z (n| Sk, 0%) (m\Sk,u@Z)(ZnZIl-I-ZmZI)

t€Tk,» \MESk.t nESk t MESk ¢

b Z Z p(n|Skt, 0%)Znzn — = Z Z (1] Sk, 05)p(m|Sk.t, 05) (2n 2y + 2mZpn)
t€Tk,» \MESk.t nESk t MESk ¢

= Z Z p(n|Sk.t, 0%)%n2n Z Z (1| Sk.t,05)p(m| S+, 05) 2n 2y
t€Tk,» \MESk.t n€Sk,t MESk ¢

= > | > p(lSkis 05)p(nol Skt 05) 20y

t€Twk,r \NESk,¢
T
= /QD-,— D‘r(: KVk:,‘r)7

where the first inequality is obtained from (z, — 2., ) (zn — 2m
0.

Then from @) using v = (2/k)/1og(2T K N/)||z|| v-1 +1 and the union bound, with probability
atleast 1 — ¢, forall 7 € [T], k € [K], we have 7

VT = 2n2,) +2m2, — 2n 2y — Zmz, =

3/log(TKN/)

|ZTL’;,1_(91{,T(§]€,T) — gk, (0}))] < K

[l VoL (42)
Now we provide a bound for the second term in (39) of |zTL,;1Ek,T(Lk,T + Ekﬁ)_l(gkﬁ(gkj) -
gk, (05))|. We have
|ZTL];1—E/€ T(Lk} r+ Ek T)_l(gk T(é\k 7') - gk,T(GZ)”
< =1l HLk 2Bk (Lir + Brr) " L2 gh (B ) — 9k Ol ot
< (1/r) HZHV Ly B (Lir + Brr) T LY lallgnr Orr) = g (0 lya- - 43)
Then it follows that
|Lies* B (Lir + Ei) ™' LYo
= L 2B (L = Lt Bror (L s + Brer) ML
P N e V2B L P Ly P B (L + Bier) LY 2,

which 1mphes

|2+ 1Ly 7

||L_1/2Ek TL_1/2||2

L B L
1/2

1Ly Y Bir (Lir + Err) 2L/ 22 <

1/2

<2||L Err Ly 7|2

S EHek,T - GZHQa (44)
where the last inequality is obtained from (17) and (18) in[Oh & Tyengar] (2021). Then from @3),

(@), we have

2T Ly L Brr (Lo + i) ™ (e Oreir) — 9,7 (07)))]

6 ~ . ~ )
< S8 = 0119k ) — 0Dy =l @)
We can conclude the proof from (#2)) and (@3).
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A.9.2 PROOF OF LEMMA [A7]

We note that gk,T(al)_gk,T(QZ) = ZtG'T)C,T ZnGSm (p(na |Sk,t7 91)_10(”7 |Sk?,ta 92))Zn+(91 _92)

Define Hy,-(0) = > e, . (Znesk,t p(n|Sk,t,0)znz,) — Donesi, 2omesy, P Sk, 0)p(m[ Sk, H)an;vrz)“‘
I,.. Then we can show that there exists § = cf; + (1 — ¢)f with some ¢ € (0, 1) such that

gk,'r(el) - 9k,7(92)
= Veogi,r(0)|,_5(61 — 02)

Z Z (n|Skt, Z Z n|Skt, (m\Sm,é)znzgT +1I. | (61 —02)

t€Tk,r \MESk.t nESk,t MESk ¢

= H,.,(0) (01 — 0,). (46)

Define Hy, () = D teT s Lomesy, P(]Sk,t, 0)p(no|Sk.t,0)2nz,) + I,.. Then we have Hy, . (0) =
Hj, () from the following.

S DD Sk 0)znzg — > > p(nlSk.s, 0)p(mlSk.s, 0) 20z,

t€Tk,r \NESk,¢ nESk,: MESk,4

= > | > Sk 0)znzy — > > p(lSks, 0)p(m|Sk.s, 0) 22,
t€Tk,r \NESk,¢ nESk,t mMESy ¢

= Z Z p(n|Sk.t,0) 202, — Z Z (1| Sk.t, 0)p(m|Sk.t, 0) (2n2 + 2mz,))
t€Tk,» \NESk,t nESk t MESk,¢

> Z Z p(n|Sk,t, )znszf Z Z (n|Sk.¢, 0)p(m| Sk, 0)(znz, + 2mz,)
t€Tk,» \NESk.t nesk t MESk,+

= Z Z p(n|Sk,t, )ZT,ZTf Z Z n\Skt, (m|Sk,t,9_)znzl
t€Tk,» \NESk.t n€Sk,t mESk ¢

= > | D p0lSks0)p(no|Sk.s,0)znz, | | (47)

t€Tk,» \NESk,¢
where the inequality is obtained from (z, — 2,)(2n — zm)' = 0. Under E;, we have
1Berls — 167l < 1implying [Berlls < 1+ [6lls = 1+ U0z < 2. Then for
6 = CH;M (1 — ¢)8; for some ¢ € (0,1), we have ||U,0]|2 < 2. Then from p(n|Sk,0) =
exp(z, 0)/(1 + X,cs,, exP(2,0)) = exp(z, (U;0))/(1 + 3,5, , exp(z,,(Un0))), we can
show that Hy, ,(0) = kVj, , which implies Hy, - (0) = Hy - (0) = kVi, -.

Then we have

10k — 05113 < (1/Amin (Vi) B — 05) " Vi r (Or,r — 05)
< (1/6Amin (V) Or — 03) T Hi 7 (0) (Or- — 07)
< (1/KAmin (V) O - — 03) " Hy (0 >H ( )~ Hy - (0) (0. — 0})
< (/K Amin (V) (ke Ok.) = 91,2 (05) Vit (ghr O ) — 91 (67)
S(l/HQ)\min(Vkr))||gk,r( )_gk,T(QZ))H (48)

Then from E5, we can conclude that

~ 4 [2r +1og(KTN/o)
Orr —0il2 < — .
|| k k”2 = \/ )\min(VkO’f,-)
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A.10 PROOF OF PROPOSITION [AT]
We first provide a lemma for a confidence bound. Let  ~(0) =
c1v/dlog(L) (log(t) + /log(t) log(K/é)) for some ¢; > 0.

Lemma A.18 (Lemma 1 in|Lee & Ohl (2024)). With probability at least 1 — 9, for all t > 1 and
k € [K] we have

165t = Okl <7e(9)-

Let § = 1/T. From the above lemma, we define event E = {||§kt —0;llg.. <7 Vk € [K]andt >
1}, which holds with probability at least 1 — 1/7". Then we provide a lemma for the optimism.

Lemma A.19. Under E, for allt > 1, we have

> Ri(SH) < Y RISP(Ska)

ke[K) ke[K]

Proof. Under E, we have

20 Okt = 20 O] < Mlznllg-t 10k — Ollgi . < wll2nllg1,

et al|(2017a), we have Ry (S) < R,[C{?B (S}). Then using definition of Sy ; in the algorithm, we

can conclude that
Z Rk Sk Z RUCB Z RUCB Sk t
ke[K] ke[K] ke[K]

which implies z,, 05 < Z;Lré\k,t + Yell2nll g1 = I k¢ Therefore, from Lemma A.3 in |Agrawal

Now we provide a lemma which is critical to bound regret under optimism.
Lemma A.20. Under E, for all k € [K], we have

1
ZRUCB Sk f Rk’(sk,t) = O <T\/T+ K}T2)

Proof. By following the proof steps in Theorem 4 in|Lee & Ohl(2024), we can show this lemma. [

Then from Lemmas [A.18]and we can conclude the proof for the regret as follows.

R(T)=E | > Y Ri(Si;) — Rr(Sk)
te[T] ke[K]
T

<E Z Z Ry, (S}) — Ri(Sk4)) 1 +E (DY (Re(Si,) — Ri(Ska)) 1(E)
| t=1 ke[K t=1 k€[K)]
[T T

SE D> (RISP(Ska) — Be(Ska)) LE) | +> > P(EC
| t=1 k€[K] t=1 ke[K]

=0 (rK\/T+ HﬁK) =0 (TK\/T) .

Now we discuss the computational cost. Since there exists O(K ™) number of assortment candidate
in M, especially for L > N, the cost per round is O(K ™) from L1nel
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A.11 PROOF OF LEMMA [A 10l

Let W(r) = V(m) 4+ (1/rT:)I, and g(7) = max,en; . HZ””%V(Tr)nt(l/rTT)IT)*l‘ Since
7, is G-optimal, for n € supp(mi.,) we have that z,! W(m,) 'z, = g(m.) (other-
wise, there exists 7’ such that g(n') < g(my ), which is a contradiction). Then we have

Yoneni, T (n) 2, W(mk ) 20 = g(7y,7). Therefore, we obtain

g(m) = D Thr(n)zg W(mh,) " zn = trace( Y mrr(n)zazg Wimk,s) ")
neNg, - neENk, +

= trace(W (my..) — (1/rTo)I))W (1)) = d — (1/rTy)trace(W (my,..) 1) < d.

Let S = supp(mg,,). Then if |S| > d(d + 1)/2 there are linearly dependent: Jv : S —
R such that 3 _gv(n)z,z, = 0. Therefore, for n € S, z!W(m:) 12, >, cqv(n) =
trace(W (7)™t >, c5 v(n)znz,, ) = 0, which implies Y, _s v(n) = 0. Define 7 (t) = my, , +tv,
then we have W (r(t)) = W (my, ;) for every ¢, which implies g(my, ) = g(7(¢)). Let ¢’ = sup{t >
0: 7 -(n)+tv(n) > 0Vn € S}. Att = t/, at least one weight becomes 0 (otherwise, there
exists t/ > ¢’ s.t. m - (n) +t"v(n) > 0 for all n € S, which is a contradiction). Thus, we have an

equally good design with |S| — 1 arms. Iterating the construction yields an optimal design 7 with
|[supp(m)| < d(d +1)/2.

A.12 AUXILIARY LEMMAS

Lemma A.21 (Lemma E.2 in|Lee & Oh|(2024)). Forallt > 1 and k € [K], we have

t
@) D> plSkss Ok, )p(n0] Skos, Ok, 2|21 < 2rlog (14 ),
s=1neSy, s ks
t
(é4) max |zaF, 0 < F2rlog (1+ %)

oy nESk. s

Lemma A.22 (Lemma E.3 inLee & Oh|(2024)). Define Q : RIS! — R for S € [N], such that for

anyu = (ui,...,ug) € RIS, Qu) = > ones %. Let p,(u) = —1+ZZ%:S(Z§;(MM).
Then for all n € S, we have

92Q

Oup, Oy,

{3}?”(“), lfTL:m
<
= 2pn(u)pm(u), ifn#m
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A.13 ADDITIONAL EXPERIMENTS

lel Length of M. per Algorithm led Length of M; per Algorithm
2.5 UCB-QMB ¥ 7 —m— B-SMB* (Algorithm2)
TS-QMB 3 B-SMB (Algorithm1)
—¥— OFU-MNL*
< 2.01 = B-SMB* (Algorithm2) <
- B-SMB (Algorithm1) w“
5] o2
<15 <
s s
= =
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() [
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Figure 4: Cardinality of the active assignment set M. over epochs for (left) N = 3, K = 2 and
(righty N =7, K = 4.

As shown in Figure[d] the size of the active assignment set M . decreases rapidly across epochs. This
demonstrates that elimination removes the vast majority of assignment candidates early on, greatly
reducing the effective search space for the rare assortment-optimization steps. Consequently, the
practical optimization cost is far smaller than the theoretical worst-case O(K ™) bound.

Runti Algorith le3 Regret per Algorithm
untime per gorithm
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% 15000 3 —¥— OFU-MNL* .
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£
FE 5000 1
B-SMB  B-SMB* OFU-MNL* TS-QMB UCB-QMB 917

(Alg1) (Alg2) 0 1000 2000 3000 4000 5000
Algorithms Time t

Figure 5: Experimental results with N = 8 and K = 4 for (left) runtime cost and (right) regret
of algorithms. Notably, increasing N from 7 to 8 (as opposed to Figure [2J) causes the runtime of
OFU-MNLT to exceed 15,000 seconds—up from 5,000 seconds—whereas our algorithms maintain
runtimes under 1,000 seconds. In terms of regret performance, our algorithms achieve results com-
parable to OFU-MNL™ while outperforming other benchmarks.

Rounds per Algorithm within 3600 sec
1000001 pooy

80000

60000

Rounds

40000

20000

B-SMB B-SMB* OFU-MNL* TS-QMB UCB-QMB
(Alg1) (Alg2)
Algorithms

Figure 6: Computational overhead of benchmark algorithms prevents scaling to larger problem sizes,
limiting experimental comparison. For example, with NV = 8, i = 5, and T = 100,000, the figure
reports the number of rounds completed by each algorithm within a 3600-second limit. Increasing /X
from 4 to 5, similar to increasing IV, significantly increases the runtime overhead of the benchmarks,
allowing only a few completed rounds (barely visible in the plot). In contrast, our algorithms (B-
SMB, B-SMB™) successfully complete all 100,000 rounds within the time limit.
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