
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

BATCHED STOCHASTIC MATCHING BANDITS

Anonymous authors
Paper under double-blind review

ABSTRACT

In this study, we introduce a novel bandit framework for stochastic matching based
on the Multi-nomial Logit (MNL) choice model. In our setting, N agents on one
side are assigned to K arms on the other side, where each arm stochastically se-
lects an agent from its assigned pool according to an unknown preference and
yields a corresponding reward. The objective is to minimize regret by maximiz-
ing the cumulative revenue from successful matches across all agents. This task
requires solving a combinatorial optimization problem based on estimated prefer-
ences, which is NP-hard and leads a naive approach to incur a computational cost
of O(KN) per round. To address this challenge, we propose batched algorithms
that limit the frequency of matching updates, thereby reducing the amortized com-
putational cost—i.e., the average cost per round—to O(1) while still achieving a
regret bound of Õ(

√
T).

1 INTRODUCTION

In recent years, the rapid growth of matching markets—such as ride-hailing platforms, online job
boards, and labor marketplaces—has underscored the importance of maximizing revenue from suc-
cessful matches. For example, in ride-hailing services, the platform seeks to match riders (agents)
with drivers (arms) in a way that maximizes total revenue generated from completed rides.

This demand has led to extensive research on online bipartite matching problems (Karp et al., 1990;
Mehta et al., 2007; 2013; Gamlath et al., 2019; Fuchs et al., 2005; Kesselheim et al., 2013), where
two sets of vertices are considered and one side is revealed sequentially. These studies primarily
focus on maximizing the number of matches. However, a significant gap remains between these
theoretical models and practical scenarios for maximizing revenue under latent reward functions.
Specifically, these models generally assume one-to-one assignments under deterministic matching
and focus solely on match count, without incorporating learning mechanisms that adapt to observed
reward feedback or aim to maximize cumulative revenue.

More recently, the concept of matching bandits has emerged to better capture online learning dy-
namics in matching markets (Liu et al., 2020; 2021; Sankararaman et al., 2020; Basu et al., 2021;
Zhang et al., 2022; Kong & Li, 2023). In this framework, agents are assigned to arms in each round,
and arms select one agent to match, generating stochastic reward feedback. The goal is typically to
learn reward distributions to eventually identify stable matchings (McVitie & Wilson, 1971).

Despite introducing online learning, existing matching bandit models rely on structural assumptions
that restrict their practical applicability. Specifically, prior work generally assumes that arms se-
lect agents deterministically according to known or fixed preference orders, resulting in what we
refer to as deterministic matching. However, in many real-world settings—such as ride-hailing ser-
vices—arms often make stochastic choices reflecting unknown or latent preferences. For example,
when a dispatch system offers a driver multiple rider requests, the driver may select among them
probabilistically, reflecting personal preferences, rather than following a fixed or deterministic rule.

In this work, we propose a novel and practical online matching framework, termed stochastic match-
ing bandits (SMB), designed to model such stochastic choice behavior under unknown preferences.
SMB permits multiple agents to be simultaneously assigned to the same arm, with the arm stochas-
tically selecting one agent from the assigned pool. This formulation departs from both traditional
online matching and prior matching bandit frameworks by explicitly modeling probabilistic arm
behavior, thereby addressing a different yet practically motivated objective.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

While our framework captures important aspects of real-world matching systems that are not fully
addressed by prior models, it represents a different modeling perspective rather than a direct re-
placement for existing approaches. Specifically, our work focuses on a practically significant setting
where the goal is to learn to maximize revenue under stochastic arm behavior with unknown pref-
erences. By explicitly modeling stochastic choice dynamics and allowing multiple simultaneous
proposals, our framework expands the scope of matching bandit research toward more realistic and
revenue-driven applications.

However, realizing this goal comes with substantial computational challenges: determining the op-
timal assignment in each round requires solving a combinatorial optimization problem that is NP-
hard, making naive implementations impractical in large-scale systems. This raises the following
fundamental question:

Can we maximize revenue in stochastic matching bandits
while ensuring (amortized) computational efficiency?

To address this challenge, we propose batched algorithms for the SMB framework that strategically
limit the frequency of matching assignment updates. These algorithms achieve no-regret perfor-
mance while substantially reducing the amortized computational cost—that is, the average compu-
tation required per round. Below, we summarize our main contributions.

Summary of Our Contributions.
• We introduce a novel and practical framework of stochastic matching bandits (SMB), which

incorporates the stochastic behavior of arms under latent preferences. However, naive ap-
proaches suffer from significant computational overhead, incurring an amortized cost of
O(KN) per round, where N agents are matched to K arms.

• Under SMB, we first develop a batched algorithm that balances exploration and exploitation
with limited matching updates. Assuming knowledge of a non-linearity parameter κ, the
algorithm achieves Õ(

√
T) regret using only minimal matching updates of Θ(log log T)—

and thus O(1) amortized computational cost for a large enough T .
• We further propose our second algorithm to eliminate the requirement of knowing κ, re-

taining the same Õ(
√
T) regret still with only Θ(log log T) updates and low amortized

computational cost of O(1).
• Finally, through empirical evaluations, we demonstrate that our algorithms achieve im-

proved or comparable regret while significantly reducing computational cost compared to
existing methods, highlighting their practical effectiveness.

2 RELATED WORK

Matching Bandits. We review the literature on matching bandits, which studies regret minimiza-
tion in matching markets. This line of work was initiated by Liu et al. (2020) and extended by
Sankararaman et al. (2020); Liu et al. (2021); Basu et al. (2021); Zhang et al. (2022); Kong & Li
(2023), focusing on finding optimal stable matchings through stochastic reward feedback. However,
these studies are largely limited to the standard multi-armed bandit setting, without considering
feature-based preferences or structural generalizations. Moreover, they universally assume that the
number of agents does not exceed the number of arms (N ≤ K).

Our proposed Stochastic Matching Bandits (SMB) framework departs from this literature in several
key ways. First, while prior work assumes that arms select agents deterministically based on known
preferences, SMB models arms as making stochastic choices based on unknown, latent preferences
that must be learned over time. This shifts the objective from identifying a stable matching to
maximizing cumulative reward through adaptive learning. Second, SMB captures richer preference
structures by modeling utilities as functions of agent-side features. Third, it removes structural
restrictions on the market size, allowing both N ≤ K and N ≥ K scenarios. While SMB represents,
in principle, a distinct modeling perspective, these advances make SMB applicable to a broader
range of real-world systems, such as ride-hailing and online marketplaces, where preferences are
stochastic, feature-driven, and market sizes vary across applications.

MNL-Bandits. In our study, we adopt the Multi-nomial Logit (MNL) model for arms’ choice
preferences in matching bandits. As the first MNL bandit method, Agrawal et al. (2017a) proposed

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Agents

Arms

2

3

4

1

2

3

1

utility reward

2

3

4

1

2

3

1

(a) There are multiple agents and arms, each pair
associated with an unknown utility reflecting their
preference, along with different rewards across
agent-arm pairs.

assigned

2

3

4

1

2

3

1

(b) Each agent is as-
signed to an arm by a
policy.

accepted
rejected

𝑟!!

𝑟""

2

3

4

1

2

3

1

(c) Each arm stochas-
tically accepts at most
one from assignments
and receives the reward.

Figure 1: Illustration of our stochastic matching process with 4 agents (N = 4) and 3 arms (K = 3).

an epoch-based algorithm, followed by subsequent contributions from Agrawal et al. (2017b); Chen
et al. (2023); Oh & Iyengar (2019; 2021); Lee & Oh (2024). However, unlike selecting an assortment
at each time step, our novel framework for the stochastic matching market mandates choosing at
most K distinct assortments to assign agents to each arm. Consequently, handling K-multiple
MNLs simultaneously results in exponential computational complexity. More recently, Kim & Oh
(2024) studied MNL-based preferences in matching bandits; however, their focus was on system
stability under binary (0/1) rewards, rather than revenue maximization. Additionally, their work
did not address the computational intractability of exact combinatorial optimization in this context.

Batch learning in Bandits. Batch learning in bandit problems has been explored in the context
of multi-armed bandits (MAB) (Perchet et al., 2015; Gao et al., 2019) and later extended to (gener-
alized) linear bandit models (Ruan et al., 2021; Hanna et al., 2023; Han et al., 2020; Ren & Zhou,
2024; Sawarni et al., 2024; Ren et al., 2024). Also, a concurrent work of Midigeshi et al. (2025)
study the multinomial logistic model with batched updates, but their setting is fundamentally dif-
ferent from other relevant works in the MNL bandit literature (Oh & Iyengar, 2019; 2021; Agrawal
et al., 2017a;b). In their framework, the agent selects a single item (i.e., one arm), so that the learner
does not selects a combinatorial set of arms.

To the best of our knowledge, batch-limited updates have not yet been explored in the context of
matching bandits with a combinatorial set of arms.

3 PROBLEM STATEMENT

We study stochastic matching bandits (SMB) with N agents and K arms. For better intuition,
the overall setup is illustrated in Figure 1. The detailed formulation is as follows: For each agent
n ∈ [N], feature information is known as xn ∈ Rd, and each arm k ∈ [K] is characterized by latent
vector θk ∈ Rd. We define the set of features as X = [x1, . . . , xN] ∈ Rd×N and the rank of X as
rank(X) = r(≤ d). At each time t ∈ [T], every agent n may be assigned to an arm kn,t ∈ [K].
Let assortment Sk,t = {n ∈ [N] : kn,t = k}, which is the set of agents that are assigned to an arm
k at time t. Then given an assortment to each arm k at time t, Sk,t, each arm k randomly accepts
an agent n ∈ Sk,t and receives reward rn,k ∈ [0, 1] according to the arm’s preference specified as
follows. The probability for arm k to accept agent n ∈ Sk,t follows Multi-nomial Logit (MNL)
model (Agrawal et al., 2017a;b; Oh & Iyengar, 2019; 2021; Chen et al., 2023) given by

p(n|Sk,t, θk) =
exp(x⊤

n θk)

1 +
∑

m∈Sk,t
exp(x⊤

mθk)
.

We denote x⊤
n θk as the latent preference utility of arm k for agent n. Following prior work on MNL

bandits (Oh & Iyengar, 2019; 2021; Agrawal et al., 2019), we consider that the candidate set size is
bounded by |Sk,t| ≤ L for all arms k and rounds t, and that the reward rn,k is known to the arms
in advance. This reflects practical constraints in real-world platforms such as ride-hailing, where
only a limited number of riders can be suggested to a driver—due to screen limitations or cognitive
load—and the reward (e.g., fare or price) is known prior to each assignment.

However, the expected rewards remain unknown, as they depend jointly on both the latent preference
utilities and the associated rewards. At each time step t, the agents receive stochastic feedback

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

based on the assortments Sk,tk ∈ [K]. Specifically, for each agent n ∈ Sk, t and arm k ∈ [K],
the feedback is denoted by yn,t ∈ 0, 1, where yn,t = 1 if arm k accepts agent n (i.e., a successful
match occurs), and yn,t = 0 otherwise. Following the standard MNL model, each arm k may
also choose an outside option n0 (i.e., reject all assigned agents) with probability p(n0|Sk,t, θk) =
1/(1 +

∑
m∈Sk,t

exp(x⊤
mθk)). Then, given assortments to every arm k, {Sk}k∈[K], the expected

reward (revenue) for the assortments at time t is defined as∑
k∈[K]

Rk(Sk) :=
∑

k∈[K]

∑
n∈Sk

rn,kp(n|Sk, θk) =
∑

k∈[K]

∑
n∈Sk

rn,k exp(x
⊤
n θk)

1 +
∑

m∈Sk
exp(x⊤

mθk)
.

The goal of the problem is to maximize the cumulative expected reward over a time horizon T by
learning the unknown parameters {θk}k∈[K]. We define the oracle strategy as the optimal assortment
selection when the preference parameters θk are known. Let the set of all feasible assignments be:
M = {{Sk}k∈[K] : Sk ⊂ [N], |Sk| ≤ L∀k ∈ [K], Sk∩Sl = ∅∀k ̸= l}. Then the oracle assortment
is given by: {S∗

k}k∈[K] = argmax{Sk}k∈[K]∈M
∑

k∈[K] Rk(Sk). Given {Sk,t}k∈[K] ∈ M for
all t ∈ [T], the expected cumulative regret is defined as R(T) = E

[∑
t∈[T]

∑
k∈[K] Rk(S

∗
k) −

Rk(Sk,t)
]
. The objective is to design a policy that minimizes this regret over the time horizon T .

Similar to previous work for logistic and MNL bandit (Oh & Iyengar, 2019; 2021; Lee & Oh, 2024;
Goyal & Perivier, 2021; Faury et al., 2020; Abeille et al., 2021), we consider the following regularity
condition and non-linearity quantity.
Assumption 3.1. ∥xn∥2 ≤ 1 for all n ∈ [N] and ∥θk∥2 ≤ 1 for all k ∈ [K].

Then we define a problem-dependent quantity regarding non-linearity of the MNL structure as fol-
lows:

κ := inf
θ∈Rd:∥θ∥2≤2;n∈S⊆[N]:|S|≤L

p(n|S, θ)p(n0|S, θ).

4 OPTIMIZATION IN STOCHASTIC MATCHING BANDITS: THE CURSE OF
COMPLEXITY

In this work, we develop algorithms for the Stochastic Matching Bandit (SMB) problem with pref-
erence feedback. SMB can be viewed as a generalization of the standard Multinomial Logit (MNL)
bandit model with a single assortment (Oh & Iyengar, 2021; Lee & Oh, 2024) to a setting with K
simultaneous assortments—one for each arm. Applying existing MNL-based methods to this set-
ting requires dynamically selecting K assortments at each round while simultaneously learning arm
preferences in an online fashion. This extension introduces significant computational challenges:
the resulting combinatorial optimization problem is NP-hard. In contrast, the standard MNL bandit
problem with a single assortment is known to be solvable in polynomial time (Oh & Iyengar, 2021).
Thus, the SMB framework poses a substantially more complex optimization problem, highlighting
the need for efficient algorithmic solutions.

Naively extending MNL bandits (e.g. Oh & Iyengar (2021); Lee & Oh (2024)) to SMB requires
defining the UCB index for the expected reward of an assortment Sk for all k ∈ [K] as RUCB

k,t (Sk) =∑
n∈Sk

rn,k exp(hn,k,t)
1+

∑
m∈Sk

exp(hm,k,t)
, where hn,k,t is an UCB index for the utility value between n and k

at each time t. Then at each time, the algorithm determines assortments by following the UCB
strategy: {Sk,t}k∈[K] = argmax

{Sk}k∈[K]∈M

∑
k∈[K]

RUCB
k,t (Sk). (1)

While this method can achieve a regret bound of Õ(Kr
√
T), it suffers from severe computational

limitations. Specifically, solving the combinatorial optimization in (1) incurs a worst-case compu-
tational cost of O(KN) per round, particularly when the candidate set size L ≥ N , rendering the
approach impractical for large-scale settings. Further details of the algorithm and regret analysis are
provided in Appendix A.2.

To overcome the computational burden, we propose a batched learning approach that substantially
reduces per-round computational cost on average (i.e., the amortized cost). Our method is inspired
by the batched bandit literature (Perchet et al., 2015; Gao et al., 2019; Hanna et al., 2023; Dong et al.,
2020; Han et al., 2020; Ren & Zhou, 2024; Sawarni et al., 2024), and the full details are presented
in the following sections.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Remark 4.1. For combinatorial optimization, approximation oracles (Kakade et al., 2007; Chen
et al., 2013) are often used to address computational challenges. However, this approach inevitably
targets approximation regret rather than exact regret that we aim to minimize. In this work, we
tackle the computational challenges while targeting exact regret by employing batch updates. Note
that even under approximation optimization, our proposed batch updates can also be beneficial in
further reducing the computational cost. We will discuss this in more detail in Section 5.

5 BATCH LEARNING FOR STOCHASTIC MATCHING BANDITS

Algorithm 1 Batched Stochastic Matching Bandit (B-SMB)
Input: κ, M ≥ 1
Init: t← 1, T1 ← ηT

1 Compute SVD of X = UΣV ⊤ and obtain Ur = [u1, . . . , ur]; Construct zn ← U⊤
r xn for n ∈ [N]

2 for τ = 1, 2... do
3 for k ∈ [K] do
4 θ̂k,τ ← argminθ∈Rr lk,τ (θ) with (2) where Tk,τ−1 = T (1)

k,τ−1 ∪ T
(2)
k,τ−1 and T (2)

k,τ−1 =⋃
n∈Nk,τ−1

T (2)
n,k,τ−1

// Assortments Construction

5 {S(n,k)
l,τ }l∈[K] ← argmax

{Sl}l∈[K]∈Mτ−1:n∈Sk

∑
l∈[K]

RUCB
l,τ (Sl) for all n ∈ Nk,τ−1 with (3)

// Elimination

6 Nk,τ←{n ∈ Nk,τ−1 : max
{Sl}l∈[K]∈Mτ−1

∑
l∈[K]

RLCB
l,τ (Sl) ≤

∑
l∈[K]

RUCB
l,τ (S

(n,k)
l,τ)} with (3)

// G-Optimal Design
7 πk,τ ← argminπ∈P(Nk,τ)

maxn∈Nk,τ
∥zn∥2(∑n∈Nk,τ

πk,τ (n)znz⊤
n +(1/rTτ)Ir)−1

// Exploration

8 Run Warm-up (Algorithm 4) over time steps in T (1)
k,τ (defined in Algorithm 4)

9 for n ∈ Nk,τ do
10 tn,k ← t, T (2)

n,k,τ ← [tn,k, tn,k + ⌈rπk,τ (n)Tτ⌉ − 1]

11 while t ∈ T (2)
n,k,τ do

12 Offer {Sl,t}l∈[K] = {S
(n,k)
l,τ }l∈[K] and observe feedback ym,t ∈ {0, 1} for all m ∈

Sl,t and l ∈ [K]
13 t← t+ 1

14 Mτ ← {{Sk}k∈[K] : Sk ⊂ Nk,τ , |Sk| ≤ L ∀k ∈ [K], Sk ∩ Sl = ∅ ∀k ̸= l}; Tτ+1 ← ηT
√
Tτ

For batch learning to reduce the computational cost, we adopt the elimination-based bandit algorithm
(Lattimore & Szepesvári, 2020). This approach presents several key challenges in the framework
of SMB, including efficiently handling the large number of possible matchings between agents and
arms for elimination, designing an appropriate estimator for the elimination process, and minimiz-
ing the total number of updates to reduce computational overhead. The details of our algorithm
(Algorithm 1) is described as follows.

Before advancing on the rounds, the algorithm computes Singular Value Decomposition (SVD) for
feature matrix X = UΣV ⊤ ∈ Rd×N . From U = [u1, . . . , ud] ∈ Rd×d and rank(X) = r, we can
construct Ur = [u1, . . . , ur] ∈ Rd×r by extracting the left singular vectors from U that correspond
to non-zero singular values. We note that the algorithm does not necessitate prior knowledge of
r because the value can be obtained from SVD. The algorithm, then, operates within the full-rank
r-dimensional feature space with zn = U⊤

r xn ∈ Rr for n ∈ [N]. Let θ∗k = U⊤
r θk. Then we can

reformulate the MNL model using r-dimensional feature zn ∈ Rr and latent θ∗k ∈ Rr. The detailed
description for the insight behind this approach is deferred to Appendix A.3.

In what follows, we describe the process for constructing assortments at each time step. The al-
gorithm consists of several epochs. For each k ∈ [K], from observed feedback yn,t ∈ {0, 1} for

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

n ∈ Sk,t, t ∈ Tk,τ−1, where Tk,τ−1 is a set of the exploration time steps regarding arm k in the
τ − 1-th epoch, we first define the negative log-likelihood loss as

lk,τ (θ)= −
∑

t∈Tk,τ−1

∑
n∈Sk,t∪{n0}

yn,t log p(n|Sk,t, θ)+
1
2∥θ∥

2
2, (2)

where, with a slight abuse of notation, p(n|Sk,t, θ) := exp(z⊤n θ)/(1 +
∑

m∈Sk,t
exp(z⊤mθ)). Then

at the beginning of each epoch τ , the algorithm estimates θ̂k,τ from the method of Maximum Like-
lihood Estimation (MLE).

From the estimator, we define upper and lower confidence bounds for expected reward of assortment
Sk as

RUCB
k,τ (Sk) :=

∑
n∈Sk

[rn,kp(n|Sk, θ̂k,τ)] + 2βT max
n∈Sk

∥zn∥V −1
k,τ

,

RLCB
k,τ (Sk) :=

∑
n∈Sk

[rn,kp(n|Sk, θ̂k,τ)]− 2βT max
n∈Sk

∥zn∥V −1
k,τ

, (3)

where confidence term βT = C1

κ

√
log(TNK) for some constant C1 > 0 and Vk,τ =∑

t∈Tk,τ−1

∑
n∈Sk,t

znz
⊤
n +Ir. It is important to note that, unlike prior MNL bandit literature (Oh &

Iyengar, 2021; Lee & Oh, 2024), which constructs confidence intervals on each latent utility within
the MNL function, our approach places the confidence term outside the MNL structure, as shown in
(3). This modification is essential due to the need to incorporate both UCB and LCB indices in con-
junction with the reward terms rn,k. In particular, while our LCB formulation provides a valid lower
bound on the expected reward, applying LCBs directly to the latent utility values does not guarantee
a lower bound on the reward. This distinction is crucial for ensuring theoretical guarantees in our
learning algorithm.

For batch updates, we utilize elimination for suboptimal matches. However, exploring all possible
matchings naı̈vely for the elimination is statistically expensive. Therefore, we utilized a statistically
efficient exploration strategy by assessing the eligibility of each assignment (n, k) for n ∈ Nk,τ−1

and k ∈ [K] as a potential optimal assortment, where Nk,τ−1 is the active set of agents regarding
arm k at epoch τ . To evaluate the assignment (n, k), it constructs a representative assortment of
{S(n,k)

l,τ }l∈[K] from an optimistic view (Line 5). Then based on the representative assortments, it
obtains Nk,τ by eliminating n ∈ Nk,τ−1 which satisfies an elimination condition (Line 6). From
the obtained Nk,τ for all k ∈ [K], it constructs an active set of assortmentsMτ (Line 14), which is
likely to contain the optimal assortments as {S∗

k}k∈[K] ∈Mτ .

Following the elimination process outlined above, here we describe the policy of assigning assort-
ment {Sk,t}k∈[K] at each time t corresponding to Lines 7-13 in Algorithm 1. The algorithm initiates
the warm-up stage (Algorithm 4 in Appendix A.4) to apply regularization to the estimators, by uni-
form exploration across all agents n ∈ [N] for each arm k ∈ [K]. Then for each k ∈ [K], the
algorithm utilizes the G-optimal design problem (Lattimore & Szepesvári, 2020) to obtain propor-
tion πk,τ ∈ P(Nk,τ) for learning θ∗k efficiently by exploring agents in Nk,τ , where P(Nk,τ) is the
probability simplex with vertex set Nk,τ . Notably, the G-optimal design problem can be solved by
the Frank-Wolfe algorithm (Damla Ahipasaoglu et al., 2008). Then, for all n ∈ Nk,τ , it explores
{S(n,k)

l,τ }l∈[K] several times using πk,τ (n) which is the corresponding value of n in πk,τ .

The algorithm repeats those processes over epochs τ until it reaches the time horizon T . We sched-
ule Tτ rounds for each epoch by updating Tτ = ηT

√
Tτ−1. Then, the algorithm requires a limited

number of updates for assortment assignments, which is crucial to reduce the amortized computa-
tional cost. Let ηT = (T/rK)1/2(1−2−M) with a parameter for batch update budget M ≥ 1. Let
τT be the last epoch over T , which indicates the number of batch updates. We next observe that the
scheduling parameter M serves as a budget for the number of batch updates, as formalized in the
following proposition. This parameter plays a key role in the amortized efficiency of our algorithm,
which we discuss shortly. (The proof of the proposition is provided in Appendix A.5.)

Proposition 5.1 (Number of Batch Updates). τT ≤M .

We establish the following regret bound for our algorithm, with the proof provided in Appendix A.6.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Theorem 5.2. Algorithm 1 with M = O(log T) achieves:

R(T) = Õ
(

1
κK

3
2

√
rT

(
T

rK

) 1

2(2M−1)
)
.

Corollary 5.3. For M = Θ(log log(T/rK)), Algorithm 1 achieves:

R(T) = Õ
(

1
κK

3/2
√
rT
)
.

Remark 5.4 (Amortized Efficiency). As mentioned in Corollary 5.3, our algorithm only re-
quires combinatorial optimization at most M = Θ(log log(T/rK)) times over T , while achiev-
ing Õ(

√
T) regret bound. This implies that the amortized computation cost is O(1) for large

enough T , since the average cost per round for combinatorial optimization becomes negligible as
NKN+1 log log(T/rK)

T = O(1) for T = Ω(NKN+1 log log(T/rK))). This is significantly lower
than the computational cost of the naive approach discussed in Section 4 (e.g. Algorithm 3 in Ap-
pendix A.2), which is O(KN) per round.

Discussion on the Tightness of the Regret Bound. We begin by comparing our results to those
from previous batch bandit studies under a (generalized) linear structure. Our regret bound, given
as Õ(T 1/2+1/2(2M−1)) = Õ(T 1/2(1−2−M)) for a general M = O(log(T)), matches the results
from Han et al. (2020); Ren & Zhou (2024); Sawarni et al. (2024). Notably, this bound also aligns
with the lower bound for the linear structure, Ω(T 1/2(1−2−M)) (Han et al., 2020). For the case
of M = Θ(log log(T/rK)), our bound of Õ(

√
T) corresponds to the findings for linear bandits in

Ruan et al. (2021); Hanna et al. (2023), where only such values of M were considered. Additionally,
with respect to the parameter r, we achieve a tight bound of O(

√
r) for M = Θ(log log(T/rK)),

which matches the lower bound for linear bandits established by Lattimore & Szepesvári (2020). To
the best of our knowledge, this is the first work to address batch updates in matching bandits.

Given that our problem generalizes the single-assortment MNL setting to K-multiple assortments,
we can obtain the regret lower bound of Ω(K

√
T) with respect to K and T for the contextual

setting, by simply extending the result of Theorem 3 in Lee & Oh (2024) for single-assortment to
K-multiple assortments. In comparison, our analysis indicates a regret dependence of K3/2 when
M = Θ

(
log log

(
T/(rK)

))
, which is worse by a factor of

√
K relative to the lower bound. This gap

arises from the need to explore all potential matches during the epoch-based elimination procedure
in batch updates.

Our batch updates can also be applied to approximation oracles, introduced in Kakade et al. (2007);
Chen et al. (2013) to mitigate computational challenges in combinatorial optimization. The approx-
imation oracle approach focuses on obtaining an approximate solution to the optimization problem
rather than identifying the exact optimal assortment, with the trade-off of incurring a guarantee for
a relaxed regret measure (γ-regret). Further details are provided in Appendix A.8.

Although Algorithm 1 is amortized efficient in computation, achieving regret of Õ(
√
T), the regret

bound relies on problem-specific knowledge of κ and, importantly, requires this parameter to be
known in advance for setting βT . The regret bound scales linearly with 1/κ, which can be as large
as O(L2) in the worst-case scenario. In the following section, we propose an algorithm improving
the dependence on κ without using the knowledge of κ.

6 IMPROVING DEPENDENCE ON κ WITHOUT PRIOR KNOWLEDGE

Here we provide details of our proposed algorithm (Algorithm 2 in Appendix A.1), focusing on
the difference from the algorithm in the previous section. While we follow the framework of Algo-
rithm 1, for the improvement on κ without knowledge of it, we utilize the local curvature information
for the gram matrix as

Hk,τ (θ̂k,τ) =
∑

t∈Tk,τ−1

[∑
n∈Sk,t

p(n|Sk,t, θ̂k,τ)znz
⊤
n −

∑
n,m∈Sk,t

p(n|Sk,t, θ̂k,τ)p(m|Sk,t, θ̂k,τ)znz
⊤
m

]
+λIr,(4)

where λ = C2r log(K) for some constant C2 > 0 and we denote Hk,τ (θ̂k,τ) by Hk,τ when there
is no confusion. We define z̃n,k,τ (Sk,t) = zn −

∑
m∈Sk,t

p(m|Sk,t, θ̂τ)zm and we use z̃n,k,τ for it,

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

when there is no confusion. For the confidence bound, we define

Bτ (Sk,t) :=
13
2 ζ2τ max

n∈Sk,t

∥zn∥2H−1
k,τ

+ 2ζ2τ max
n∈Sk,t

∥z̃n,k,τ∥2H−1
k,τ

+ ζτ
∑

n∈Sk,t

p(n|Sk,t, θ̂k,τ−1)∥z̃n,k,τ∥H−1
k,τ

,

where ζτ = 1
2

√
λ+ 2r√

λ
log(4KT (1+ 2(tτ−1)L

rλ)) with the start time of τ -th episode tτ . We note that
the first term arises from the second-order term in the Taylor expansion for the error from estimator,
while the second and last terms originate from the first-order term. Notably, our confidence bounds
for τ -th episode utilize not only the current estimator θ̂k,τ but the previous one θ̂k,τ−1 (in the last
term) because the historical data in Hk,τ is obtained from the G/D-optimal policy which is optimized
under θ̂k,τ−1. Then we define upper and lower confidence bounds as

RUCB
k,τ (Sk,t) :=

∑
n∈Sk,t

rn,kp(n|Sk,t, θ̂k,τ) +Bτ (Sk,t),

RLCB
k,τ (Sk,t) :=

∑
n∈Sk,t

rn,kp(n|Sk,t, θ̂k,τ)−Bτ (Sk,t). (5)

For the G/D-optimal design aimed at exploring the space of arms, the algorithm must account for
both Vk,τ and Hk,τ (θ̂k,τ) to achieve a tight regret bound that avoids dependence on 1/κ. This
marks a key distinction from Algorithm 1. From this, the algorithm requires two different types of
procedures regarding assortment construction, elimination, and exploration. Let J (A) be the set
of all combinations of subset of A with cardinality bound L as J (A) = {B ⊆ A | |B| ≤ L},
and let K(A) be the set of all combinations of subset A (with cardinality bound L) and its element
as K(A) = {(b, B) | b ∈ B ⊆ A, |B| ≤ L}. The G/D-optimal design seeks to minimize the
ellipsoidal volume under Vk,τ , based on arm selection probabilities within the active set of arms
Nk,τ . Additionally, since the action space in Hk,τ (θ̂k,τ) depends not only on the selection of actions
but also on the selection of assortments, the G/D-optimal design incorporates assortment selection
probabilities for J (Nk,τ) and K(Nk,τ). Following this policy, the algorithm includes two separate
exploration procedures regarding the selection of arms and assortments.
Remark 6.1. It is worth noting that our localized Gram matrix in (4) offers advantages over the
localized Gram matrices proposed in the MNL bandit literature (Goyal & Perivier, 2021; Lee & Oh,
2024). In Goyal & Perivier (2021), the localized term introduces a dependency on non-convex op-
timization to achieve optimism, whereas our approach utilizes θ̂k,τ without requiring such complex
optimization. Meanwhile, Lee & Oh (2024) incorporate all historical information of the estima-
tor into the Gram matrix, which is not well-suited for the G/D-optimal design. In contrast, our
method leverages the most current estimator, enabling alignment with the rescaled feature for the
G/D-optimal design.
Remark 6.2. Our G/D-optimal design for the localized Gram matrix differs from those employed in
linear bandits (Lattimore & Szepesvári, 2020) and generalized linear bandits (Sawarni et al., 2024).
Unlike these settings, where the probability depends on a single action, our approach accounts for
the dependence on assortments (combinatorial actions). As a result, it requires exploring a rescaled
feature space that considers the assortment space rather than focusing solely on individual actions.

We set ηT = (T/rK)1/(2(1−2−M)) with a parameter for batch update budget M ≥ 1. Then, by
following the same proof of Proposition 5.1, we have the following bound for the number of epochs.
Proposition 6.3 (Number of Batch Updates). τT ≤M .

Then, we have the following regret bounds (the proof is provided in Appendix A.1).

Theorem 6.4. Algorithm 2 with M = O(log(T)) achieves: R(T) = Õ
(
rK

3
2

√
T

(
T
rK

) 1

2(2M−1)
)
.

Corollary 6.5. For M = Θ(log log(T/rK)), Algorithm 2 achieves:

R(T) = Õ
(
rK

3
2

√
T
)
.

Remark 6.6 (Improvement on κ). This algorithm does not require prior knowledge of κ, which
enhances its practicality in real-world applications. Moreover, in terms of dependence on κ, the

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

regret bound improves over that of Algorithm 1 (Theorem 5.2) by eliminating the 1/κ = O(L2) de-
pendency from the leading term. This improvement comes at the cost of an additional multiplicative
factor of

√
r in the regret.

Remark 6.7 (Amortized-Efficiency). Like Algorithm 1, this advanced algorithm requires only
Θ(log log(T/rK)) updates to achieve a Õ(

√
T) regret bound. This implies that the amortized com-

putational cost is O(1) for sufficiently large T , since the average cost for combinatorial optimization
becomes negligible as LK1+NNL log log(T/Kr)

T = O(1) for T = Ω(LK1+NNL log log(T/Kr)).

7 EXPERIMENTS

B-SMB
(Alg1)

B-SMB +

(Alg2)
OFU-MNL + TS-QMB UCB-QMB

Algorithms

0

1

2

3

4

Ti
m

e
(s

ec
on

ds
)

Runtime per Algorithm

0 1000 2000 3000 4000 5000
Time t

0.0

0.2

0.4

0.6

0.8

1.0

(t)

1e3 Regret per Algorithm

UCB-QMB
TS-QMB
OFU-MNL +

B-SMB + (Algorithm2)
B-SMB (Algorithm1)

Figure 2: Experimental results with N = 3, K = 2, for (left) runtime cost and (right) regret

B-SMB
(Alg1)

B-SMB +

(Alg2)
OFU-MNL + TS-QMB UCB-QMB

Algorithms

0

1000

2000

3000

4000

5000

Ti
m

e
(s

ec
on

ds
)

Runtime per Algorithm

0 1000 2000 3000 4000 5000
Time t

0

1

2

3

(t)

1e3 Regret per Algorithm

UCB-QMB
TS-QMB
OFU-MNL +

B-SMB + (Algorithm2)
B-SMB (Algorithm1)

Figure 3: Experimental results with N = 7, K = 4, for (left) runtime cost and (right) regret

In our experiments, we compare the proposed algorithms with existing methods for MNL bandits
and matching bandits under the MNL model. Specifically, the feature vectors xn and the latent
parameters θk are independently sampled from the uniform distribution over [−1, 1]d and then nor-
malized. Also, the reward rn,k is generated from uniform distribution over [0, 1]. We use the settings
N = 3, K = 2, r = 2, and T = 5000 for Figure 2, and increase the problem size to N = 7, K = 4
for Figure 3. Additional experiments are provided in Appendix A.13.

We first evaluate the computational efficiency of our proposed algorithms, B-SMB (Algorithm 1) and
B-SMB+ (Algorithm 2), by comparing them with an adapted version of the MNL bandit algorithm
OFU-MNL+ (Lee & Oh, 2024) and existing matching bandit algorithms for the stable MNL model,
UCB-QMB and TS-QMB (Kim & Oh, 2024). The details of how OFU-MNL+ is adapted to our setting
are provided in Appendix A.2. As discussed in Section 4, although the extension of OFU-MNL+

achieves sublinear regret, it suffers from significant computational overhead due to the need to solve
a combinatorial optimization problem at every round. In Figure 2 (left), we observe that our batched
algorithms are faster than OFU-MNL+, UCB-QMB, and TS-QMB. This efficiency gap becomes more
evident as N and K increase, as shown in Figure 3 (left). Notably, while the computational cost
of the benchmark algorithms grows rapidly with larger N and K, our batched algorithms maintain
their efficiency, demonstrating scalability to larger problem instances.

On the regret side, as shown in Figures 2 and 3 (right), our algorithms achieve sublinear regret
comparable to that of OFU-MNL+, in line with our theoretical guarantees, while outperforming
UCB-QMB and TS-QMB across both problem sizes.

8 CONCLUSION
In this work, we propose a novel and practical framework for stochastic matching bandits, where a
naive approach incurs a prohibitive computational cost of O(KN) per round due to the combinatorial
optimization. To address this challenge, we propose an elimination-based algorithm that achieves a
regret of Õ

(
1
κK

3
2

√
rT
)

with M = Θ(log log(T/rK)) batch updates under known κ. Additionally,
we present an algorithm without knowledge of κ, achieving a regret of Õ

(
rK

3
2

√
T
)

under the same
number of batch updates. Leveraging the batch approach, our algorithms significantly reduce the
computational overhead, achieving an amortized cost of O(1) per round.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

All theoretical results are derived under clearly stated assumptions, with complete proofs provided
in the appendix. The proposed algorithms (B-SMB and B-SMB+) are described in detail in the
main text and appendix, including pseudocode and explanations of the elimination and exploration
procedures. To facilitate replication of our experiments, we provide code as supplementary material.
The experimental setup is described in the main and Appendix A.13.

REFERENCES

Marc Abeille, Louis Faury, and Clément Calauzènes. Instance-wise minimax-optimal algorithms for
logistic bandits. In International Conference on Artificial Intelligence and Statistics, pp. 3691–
3699. PMLR, 2021.

Shipra Agrawal, Vashist Avadhanula, Vineet Goyal, and Assaf Zeevi. Mnl-bandit: A dynamic
learning approach to assortment selection. arXiv preprint arXiv:1706.03880, 2017a.

Shipra Agrawal, Vashist Avadhanula, Vineet Goyal, and Assaf Zeevi. Thompson sampling for the
mnl-bandit. In Conference on learning theory, pp. 76–78. PMLR, 2017b.

Shipra Agrawal, Vashist Avadhanula, Vineet Goyal, and Assaf Zeevi. Mnl-bandit: A dynamic
learning approach to assortment selection. Operations Research, 67(5):1453–1485, 2019.

Soumya Basu, Karthik Abinav Sankararaman, and Abishek Sankararaman. Beyond log2(t) regret
for decentralized bandits in matching markets. In International Conference on Machine Learning,
pp. 705–715. PMLR, 2021.

Wei Chen, Yajun Wang, and Yang Yuan. Combinatorial multi-armed bandit: General framework
and applications. In International conference on machine learning, pp. 151–159. PMLR, 2013.

Xi Chen, Akshay Krishnamurthy, and Yining Wang. Robust dynamic assortment optimization in the
presence of outlier customers. Operations Research, 2023.

S Damla Ahipasaoglu, Peng Sun, and Michael J Todd. Linear convergence of a modified frank–
wolfe algorithm for computing minimum-volume enclosing ellipsoids. Optimisation Methods
and Software, 23(1):5–19, 2008.

Kefan Dong, Yingkai Li, Qin Zhang, and Yuan Zhou. Multinomial logit bandit with low switching
cost. In International Conference on Machine Learning, pp. 2607–2615. PMLR, 2020.

Louis Faury, Marc Abeille, Clément Calauzènes, and Olivier Fercoq. Improved optimistic algo-
rithms for logistic bandits. In International Conference on Machine Learning, pp. 3052–3060.
PMLR, 2020.

Bernhard Fuchs, Winfried Hochstättler, and Walter Kern. Online matching on a line. Theoretical
Computer Science, 332(1-3):251–264, 2005.

Buddhima Gamlath, Michael Kapralov, Andreas Maggiori, Ola Svensson, and David Wajc. On-
line matching with general arrivals. In 2019 IEEE 60th Annual Symposium on Foundations of
Computer Science (FOCS), pp. 26–37. IEEE, 2019.

Zijun Gao, Yanjun Han, Zhimei Ren, and Zhengqing Zhou. Batched multi-armed bandits problem.
Advances in Neural Information Processing Systems, 32, 2019.

Vineet Goyal and Noemie Perivier. Dynamic pricing and assortment under a contextual mnl demand.
arXiv preprint arXiv:2110.10018, 2021.

Yanjun Han, Zhengqing Zhou, Zhengyuan Zhou, Jose Blanchet, Peter W Glynn, and Yinyu
Ye. Sequential batch learning in finite-action linear contextual bandits. arXiv preprint
arXiv:2004.06321, 2020.

Osama A Hanna, Lin Yang, and Christina Fragouli. Contexts can be cheap: Solving stochastic con-
textual bandits with linear bandit algorithms. In The Thirty Sixth Annual Conference on Learning
Theory, pp. 1791–1821. PMLR, 2023.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Sham M Kakade, Adam Tauman Kalai, and Katrina Ligett. Playing games with approximation
algorithms. In Proceedings of the thirty-ninth annual ACM symposium on Theory of computing,
pp. 546–555, 2007.

Richard M Karp, Umesh V Vazirani, and Vijay V Vazirani. An optimal algorithm for on-line bi-
partite matching. In Proceedings of the twenty-second annual ACM symposium on Theory of
computing, pp. 352–358, 1990.

Thomas Kesselheim, Klaus Radke, Andreas Tönnis, and Berthold Vöcking. An optimal online
algorithm for weighted bipartite matching and extensions to combinatorial auctions. In European
symposium on algorithms, pp. 589–600. Springer, 2013.

Jung-hun Kim and Min-hwan Oh. Queueing matching bandits with preference feedback. arXiv
preprint arXiv:2410.10098, 2024.

Fang Kong and Shuai Li. Player-optimal stable regret for bandit learning in matching markets.
In Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp.
1512–1522. SIAM, 2023.

Branislav Kveton, Manzil Zaheer, Csaba Szepesvari, Lihong Li, Mohammad Ghavamzadeh, and
Craig Boutilier. Randomized exploration in generalized linear bandits. In International Confer-
ence on Artificial Intelligence and Statistics, pp. 2066–2076. PMLR, 2020.

Tor Lattimore and Csaba Szepesvári. Bandit algorithms. Cambridge University Press, 2020.

Joongkyu Lee and Min-hwan Oh. Nearly minimax optimal regret for multinomial logistic bandit.
arXiv preprint arXiv:2405.09831, 2024.

Lihong Li, Yu Lu, and Dengyong Zhou. Provably optimal algorithms for generalized linear contex-
tual bandits. In International Conference on Machine Learning, pp. 2071–2080. PMLR, 2017.

Lydia T Liu, Horia Mania, and Michael Jordan. Competing bandits in matching markets. In Inter-
national Conference on Artificial Intelligence and Statistics, pp. 1618–1628. PMLR, 2020.

Lydia T Liu, Feng Ruan, Horia Mania, and Michael I Jordan. Bandit learning in decentralized
matching markets. The Journal of Machine Learning Research, 22(1):9612–9645, 2021.

David G McVitie and Leslie B Wilson. The stable marriage problem. Communications of the ACM,
14(7):486–490, 1971.

Aranyak Mehta, Amin Saberi, Umesh Vazirani, and Vijay Vazirani. Adwords and generalized online
matching. Journal of the ACM (JACM), 54(5):22–es, 2007.

Aranyak Mehta et al. Online matching and ad allocation. Foundations and Trends® in Theoretical
Computer Science, 8(4):265–368, 2013.

Sukruta Prakash Midigeshi, Tanmay Goyal, and Gaurav Sinha. Achieving limited adaptivity for
multinomial logistic bandits. arXiv preprint arXiv:2508.03072, 2025.

Min-hwan Oh and Garud Iyengar. Thompson sampling for multinomial logit contextual bandits.
Advances in Neural Information Processing Systems, 32, 2019.

Min-hwan Oh and Garud Iyengar. Multinomial logit contextual bandits: Provable optimality and
practicality. In Proceedings of the AAAI conference on artificial intelligence, volume 35, pp.
9205–9213, 2021.

Vianney Perchet, Philippe Rigollet, Sylvain Chassang, and Erik Snowberg. Batched bandit prob-
lems. In Conference on Learning Theory, pp. 1456–1456. PMLR, 2015.

Xuanfei Ren, Tianyuan Jin, and Pan Xu. Optimal batched linear bandits. arXiv preprint
arXiv:2406.04137, 2024.

Zhimei Ren and Zhengyuan Zhou. Dynamic batch learning in high-dimensional sparse linear con-
textual bandits. Management Science, 70(2):1315–1342, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yufei Ruan, Jiaqi Yang, and Yuan Zhou. Linear bandits with limited adaptivity and learning distri-
butional optimal design. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory
of Computing, pp. 74–87, 2021.

Abishek Sankararaman, Soumya Basu, and Karthik Abinav Sankararaman. Dominate or delete:
Decentralized competing bandits with uniform valuation. arXiv preprint arXiv:2006.15166, 2020.

Ayush Sawarni, Nirjhar Das, Siddharth Barman, and Gaurav Sinha. Generalized linear bandits with
limited adaptivity. In The Thirty-eighth Annual Conference on Neural Information Processing
Systems, 2024.

Yirui Zhang, Siwei Wang, and Zhixuan Fang. Matching in multi-arm bandit with collision. Advances
in Neural Information Processing Systems, 35:9552–9563, 2022.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 ALGORITHM WITHOUT PRIOR KNOWLEDGE OF κ (ALGORITHM 2)

A.2 NAIVE APPROACH BY EXTENDING MNL BANDIT

For our framework, we can utilize MNL bandit Lee & Oh (2024) by extending it to
K-mutliple MNLs (Algorithm 3) as follows. Let the negative log-likelihood lk,t(θ) =
−
∑

n∈Sk,s∪{0} yn,t log p(n|Sk,t, θ) where yn,t ∈ {0, 1} is observed preference feedback (1 de-
notes a choice, and 0 otherwise). Then we define the gradient of the likelihood as

gk,t(θ) := ∇θlk,t(θ) =
∑
n∈St

(p(n|Sk,t, θ)− yn,t)xn. (6)

We also define gram matrices from∇2
θlk,t(θ) as follows:

Gk,t(θ) :=
∑

n∈Sk,t

p(n|Sk,t, θ)znz
⊤
n −

∑
n,m∈Sk,t

p(n|Sk,t, θ)p(m|Sk,t, θ)znz
⊤
m. (7)

We define the UCB index for assortment Sk as

RUCB
k,t (Sk) =

∑
n∈Sk

exp(hn,k,t)

1 +
∑

m∈Sk
exp(hm,k,t)

, (8)

where hn,k,t = z⊤n θ̂k,t + γt∥zn∥G−1
k,t

with γt = C4 log(L)
√

d log(t) log(KT) for some C4 > 0.
We set λ = C5d log(K) and η = C6 log(K) for some C5 > 0 and C6 > 0.

Proposition A.1. Algorithm 3 achieves a regret bound of R(T) = Õ(rK
√
T) and the computa-

tional cost per round is O(KN).

Proof. The proof is provided in Appendix A.10.

Algorithm 3 Extension of OFU-MNL+ Lee & Oh (2024)
Compute SVD of X = UΣV ⊤ and obtain Ur = [u1, . . . , ur]; Construct zn ← U⊤

r xn for n ∈ [N]
for t = 1, . . . , T do

for k ∈ [K] do
G̃k,t ← λId +

∑t−2
s=1 Gk,s(θ̂k,s) + ηGk,t−1(θ̂k,t−1) with (7)

Gk,t ← λId +
∑t−1

s=1 Gk,s(θ̂k,s) with (7)
θ̂k,t ← argminθ∈Θ gk,t−1(θ̂k,t−1)

⊤θ + 1
2η∥θ − θ̂k,t−1∥2G̃−1

k,t

with (6)

{Sk,t}k∈[K] ← argmax
{Sk}k∈[K]∈M

∑
k∈[K]

RUCB
k,t (Sk) with (8)

Offer {Sk,t}k∈[K] and observe yn,t for all n ∈ Sk,t, k ∈ [K]

A.3 DETAILS REGARDING PROJECTION IN FEATURE SPACE

Since xn for n ∈ [N] lies in the subspace Ur, we observe that xn = Urbn for some bn ∈ Rr. Let
θ∗k = U⊤

r θk. Then we have x⊤
n θk = z⊤n θ∗k by following x⊤

n θk = b⊤nU
⊤
r θk = b⊤n (U

⊤
r Ur)U

⊤
r θk =

x⊤
nUrU

⊤
r θk = z⊤n θ∗k using U⊤

r Ur = Id. Therefore, we can reformulate the MNL model using
r-dimensional feature zn ∈ Rr and latent θ∗k ∈ Rr in place of d-dimensional xn ∈ Rd and θk ∈ Rd,
respectively, for n ∈ [N] and k ∈ [K]. We note that this procedure is beneficial not only for
reducing feature dimension but also for introducing appropriate regularization for estimators without
imposing any assumption about feature distributions considered in Oh & Iyengar (2021).

A.4 WARM-UP STAGE FOR ALGORITHM 1

Let λmin(A) denote the minimum eigenvalue of matrix A. Then we provide the warm-up stage for
Algorithm 1 in Algorithm 4.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Algorithm 2 Batched Stochastic Matching Bandit+ (B-SMB+)

Input: M ≥ 1; Init: t← 1, T1 ← C3 log(T) log
2(TKL) for some constant C3 > 0

15 Compute SVD of X = UΣV ⊤ and obtain Ur = [u1, . . . , ur]; Construct zn ← U⊤
r xn for n ∈ [N]

16 for τ = 1, 2... do
17 for k ∈ [K] do
18 θ̂k,τ ← argminθ∈Rr:∥θ∥2≤1 lk,τ (θ) with (2) where Tk,τ−1 =⋃

n∈Nk,τ−1
Tn,k,τ−1

⋃
J∈J (Nk,τ−1)

TJ,k,τ−1

// Assortments Construction

19 {S(n,k)
l,τ }l∈[K] ← argmax{Sl}l∈[K]∈Mτ−1:n∈Sk

∑
l∈[K] R

UCB
l,τ (Sl) for all n ∈ Nk,τ−1 with

(5)
20 {S(J,k)

l,τ }l∈[K] ← argmax{Sl}l∈[K]∈Mτ−1:Sk=J

∑
l∈[K] R

UCB
l,τ (Sl) for all J ∈ J (Nk,τ−1)

with (5)
// Elimination

21 N ′
k,τ ←{n ∈ Nk,τ−1 : max{Sl}l∈[K]∈Mτ−1

∑
l∈[K] R

LCB
l,τ (Sl) ≤

∑
l∈[K] R

UCB
l,τ (S

(n,k)
l,τ)}

with (5)
22 Nk,τ ← {n ∈ J : J ∈ J (N ′

k,τ),max{Sl}l∈[K]∈Mτ−1

∑
l∈[K] R

LCB
l,τ (Sl) ≤∑

l∈[K] R
UCB
l,τ (S

(J,k)
l,τ)} with (5)

// G-Optimal Design
23 πk,τ ← argminπ∈P(Nk,τ)

maxn∈Nk,τ
∥zn∥2(∑n∈Nk,τ

π(n)znz⊤
n +(λ/rTτ)Ir)−1

24 π̃k,τ ← argmin
π∈P(J (Nk,τ))

max
J∈J (Nk,τ)

∥∥∥∑
n∈J

z̃′n,k,τ (J)
∥∥∥2
(
∑

J∈J (Nk,τ) π(J)
∑

n∈J z̃′
n,k,τ (J)z̃

′
n,k,τ (J)

⊤+(λ/Tτr)Ir)−1

where z̃′n,k,τ (J) =

√
p(n|J, θ̂k,τ)z̃n,k,τ (J)

25 π̄k,τ ← argmin
π∈P(K(Nk,τ))

max
(n,J)∈K(Nk,τ)

∥z̃n,k,τ (J)∥2(∑(n,J)∈K(Nk,τ) π(n,J)z̃n,k,τ (J)z̃n,k,τ (J)⊤+(λ/Tτr)Ir)−1

// Exploration
26 for n ∈ Nk,τ do
27 tn,k ← t, Tn,k,τ ← [tn,k, tn,k + ⌈rπk,τ (n)Tτ⌉ − 1]
28 while t ∈ Tn,k,τ do
29 Offer {Sl,t}l∈[K] = {S

(n,k)
l,τ }l∈[K] and observe feedback ym,t ∈ {0, 1} for all m ∈

Sl,t and l ∈ [K]
30 t← t+ 1

31 for J ∈ J (Nk,τ) do
32 tJ,k ← t, TJ,k,τ ← [tJ,k, tJ,k + ⌈rπ̃k,τ (J)Tτ⌉ − 1]
33 while t ∈ TJ,k,τ do
34 Offer {Sl,t}l∈[K] = {S

(J,k)
l,τ }l∈[K] and observe feedback ym,t ∈ {0, 1} for all m ∈

Sl,t and l ∈ [K]
35 t← t+ 1

36 for (n, J) ∈ K(Nk,τ) do
37 tn,J,k ← t, Tn,J,k,τ ← [tn,J,k, tn,J,k + ⌈rπ̄k,τ (n, J)Tτ⌉ − 1]
38 while t ∈ TJ,k,τ do
39 Offer {Sl,t}l∈[K] = {S

(J,k)
l,τ }l∈[K] and observe feedback ym,t ∈ {0, 1} for all m ∈

Sl,t and l ∈ [K]
40 t← t+ 1

41 Mτ ← {{Sk}k∈[K] : Sk ⊆ Nk,τ , |Sk| ≤ L ∀k ∈ [K], Sk ∩ Sl = ∅ ∀k ̸= l}
42 Tτ+1 ← ηT

√
Tτ

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Algorithm 4 Round-robin Warm-up

λmin ← λmin(
∑

n∈[N] znz
⊤
n)

tk ← t, i← min{L,N}
T ′
k ← (C3N/iκ2λmin log(TK))(r + log(TK))2

T (1)
k,τ ← [tk, tk + T ′

k − 1]

for t ∈ T (1)
k,τ do

a← (i(t− 1) + 1 mod N), b← (it mod N)
if a ≤ b then

Sk,t ← [a, b]
else

Sk,t ← [1, b] ∪ [a,N]

Construct any Sl,t for l ∈ [K]/{k} satisfying {Sk,t}k∈[K] ∈M0

Offer {Sk,t}k∈[K] and observe feedback yn,t ∈ {0, 1} for all n ∈ Sk,t, k ∈ [K]

A.5 PROOF OF PROPOSITION 5.1

Here we utilize the proof techniques in Sawarni et al. (2024). Recall that τT to be the smallest
τ ∈ [T] such that ∑

τ ′∈[τ]

∑
k∈[K]

|T (1)
k,τ ′ |+ |T (2)

k,τ ′ | ≥ T.

In other words,
∑

τ ′∈[τT−1]

∑
k∈[K] |T

(1)
k,τ ′ | + |T (2)

k,τ ′ | < T . Then we can show that τT ≤ M by
contradiction as follows. Suppose τT > M . Then, we have

TτT−1 ≥ (ηT)
∑τT −1

k=1 (1
2)

k−1

≥ (ηT)
2(1−(1

2)
τT −1) = (T/rK)

1−21−τT

1−2−M ≥ T/rK,

where the last inequality comes from M + 1 ≤ τT . This implies that
∑

τ ′∈[τT−1]

∑
k∈[K] |T

(1)
k,τ ′ |+

|T (2)
k,τ ′ | ≥ KrTτT−1 ≥ T , which is contradiction. Thus, we can conclude that τT ≤M .

A.6 PROOF OF THEOREM 5.2

In the following proof, with a slight abuse of notation, we use p(n|S, θ) = exp(z⊤n θ)/(1 +∑
m∈S exp(z⊤mθ)) with zn ∈ Rr instead of xn ∈ Rd. We provide a lemma for a confidence bound.

Lemma A.2. For any τ ∈ [T], k ∈ [K], and n ∈ [N], with probability at least 1 − δ, for some
constant C > 0, we have

|z⊤n (θ̂k,τ − θ∗k)| ≤ C
κ

√
∥zn∥2V −1

k,τ

log(TKN/δ).

Proof. We define the gradient of the likelihood as

gk,τ (θ) :=
∑

t∈Tk,τ

∇θlk,t(θ) =
∑

t∈Tk,τ

∑
n∈Sk,t

(p(n|Sk,t, θ)− yn,t)zn + θ.

Then we first provide a bound in the following lemma.

Lemma A.3. For any n ∈ [N], k ∈ [K], and τ ∈ [T], with probability at least 1− δ, we have

|z⊤n (θ̂k,τ−θ∗k)| ≤
3
√
log(TKN/δ)

κ
∥zn∥V −1

k,τ
+

6

κ2
∥θ̂k,τ−θ∗k∥2∥gk,τ (θ̂k,τ)−gk,τ (θ∗k)∥V −1

k,τ
∥zn∥V −1

k,τ
.

Proof. The proof is deferred to Appendix A.9.1

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Then we define

E1 =

{
|z⊤n (θ̂k,τ − θ∗k)| ≤

3
√
log(TKN/δ)

κ
∥zn∥V −1

k,τ

+
6

κ2
∥θ̂k,τ − θ∗k∥2∥gk,τ (θ̂k,τ)− gk,τ (θ

∗
k)∥V −1

k,τ
∥zn∥V −1

k,τ
∀n ∈ [N], k ∈ [K], τ ∈ [T]

}
,

which holds at least 1−δ. Now we provide bounds for ∥θ̂k,τ−θ∗k∥2 and ∥gk,τ (θ̂k,τ)−gk,τ (θ∗k)∥V −1
k,τ

.

Lemma A.4 (Lemma 7 in Li et al. (2017)). For all k ∈ [K], τ ∈ [T], with probability at least 1− δ
for δ > 0, we have

∥gk,τ (θ̂k,τ)− gk,τ−1(θ
∗
k)∥V −1

k,τ
≤ 4
√

2r + log(KTN/δ).

We define V 0
k,τ =

∑
t∈T (1)

k,τ−1

∑
n∈Sk,t

znz
⊤
n . Then we have the following lemma.

Lemma A.5. For all k ∈ [K] and τ ≥ 2, we have λmin(V
0
k,τ) ≥ (C0/κ

2 log(TKN/δ))(r2 +

log2(TKN/δ) + 2r log(TKN/δ)).

Proof. Let λ′ = (C0/κ
2λmin log(TK/δ))(r2 + log2(TKN/δ) + 2r log(TKN/δ)) and recall

λmin = λmin(
∑

n∈[N] znz
⊤
n). From the phase in the warm-up stage (Algorithm 4), we can ob-

serve that V 0
k,τ contains znz⊤n for each n ∈ [N] at least λ′. Since

∑
n∈[N] znz

⊤
n =

∑
s∈[r] λsusus

⊤,
we have V 0

k,τ =
∑

t∈T (1)
k,τ−1

∑
n∈Sk,t

znz
⊤
n =

∑
s∈[r] λ

′
susus

⊤ where λ′
s ≥ λ′λs. Then from

λmin = λr, we can conclude λmin(V
0
k) ≥ λ′λmin.

Lemma A.6 (Lemma 9 in Kveton et al. (2020)). Suppose λmin(V
0
k,τ) ≥

max{(1/4κ2)(r log(T/r) + 2 log(KTN/δ)), 1} for all k ∈ [K]. Then, for all τ ∈ [T] and
k ∈ [K], we have

P(∥θ̂k,τ − θ∗k∥2 ≥ 1) ≤ 1/δ.

We define E2 = {∥θ̂k,τ − θ∗k∥2 ≤ 1 ∀k ∈ [K], τ ∈ [T]}. Then from Lemmas A.5, A.6, we have
P(E1) ≥ 1− δ.

We also denote by E3 the event of {∥gk,τ (θ̂k,τ)− gk,τ−1(θ
∗
k)∥V −1

k,τ
≤ 4
√

2r + log(KTN/δ) ∀τ ∈
[T], k ∈ [K]}, which hold with probability at least 1− δ from Lemma A.4.

Lemma A.7. Under E2 and E3, for any τ ∈ [T], k ∈ [K], we have

∥θ̂k,τ − θ∗k∥2 ≤
2

κ

√
2r + log(TNK/δ)

λmin(V 0
k)

.

Proof. The proof is deferred to Appendix A.9.2

Finally, under E1 ∪ E2 ∪ E3 which holds with probability at least 1− 3δ, we have

|z⊤n (θ̂k,τ − θ∗k)|

≤
2
√
log(TKN/δ)

κ
∥zn∥V −1

k,τ
+ (6/κ2)∥zn∥V −1

k,τ
∥θ̂k,τ − θ∗k∥2∥(gk,τ (θ̂k,τ)− gk,τ (θ

∗
k))∥V −1

k,τ

≤
2
√

log(TKN/δ)

κ
∥zn∥V −1

k,τ
+

48(2r + log(KTN/δ))

κ2
√

λmin(V 0
k,τ)

∥zn∥V −1
k,τ

≤
3
√
log(TKN/δ)

κ
∥zn∥V −1

k,τ

= (3/κ)
√
∥zn∥2V −1

τ,k

log(TKN/δ) := β(δ)∥zn∥V −1
τ,k

,

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

which concludes the proof.

Then we define event E = {|z⊤n (θ̂k,τ − θ∗k)| ≤ βT ∥zn∥V −1
k,τ
∀τ ∈ [T], k ∈ [K], n ∈ [N]} for some

c1 > 0, which holds at least 1− 1/T with Lemma A.2 and δ = 1/T .
Lemma A.8. Under E, for all τ ∈ [T], k ∈ [K], and S ⊆ Nk,τ−1, we have

0 ≤ RUCB
k,τ (S)−Rk(S) ≤ 4βT max

n∈S
∥zn∥V −1

k,τ
and − 4βT max

n∈S
∥zn∥V −1

k,τ
≤ RLCB

k,τ (S)−Rk(S) ≤ 0

Proof. Let un,k = z⊤n θ∗k, ûn,k = z⊤n θ̂k,τ , and R̂k,τ (S) =
∑

n∈S rn,k exp(ûn,k)

1+
∑

m∈S exp(ûm,k)
. Then by the mean

value theorem, there exists ūn,k = (1 − c)ûn,k + cun,k for some c ∈ (0, 1) satisfying, for any
S ⊂ Nk,τ−1∣∣∣R̂k,τ (S)−Rk(S)

∣∣∣ = ∣∣∣∣∑n∈S rn,k exp(ûn,k)

1 +
∑

m∈S exp(ûn,k)
−
∑

n∈S rn,k exp(un,k)

1 +
∑

m∈S exp(um,k)

∣∣∣∣
=

∣∣∣∣∣∑
n∈S

∇vn

(∑
m∈S rm,k exp(vm)

1 +
∑

m∈S exp(vm)

) ∣∣∣
vn=ūn,k

(ûn,k − un,k)

∣∣∣∣∣
≤
∣∣∣∣ (1 +∑n∈S exp(ūn,k))(

∑
n∈S rn,k exp(ūn,k)(ûn,k − un,k))

(1 +
∑

n∈S exp(ūn,k))2

∣∣∣∣
+

∣∣∣∣ (∑n∈S exp(ūn,k))(
∑

n∈S rn,k exp(ūn,k)(ûn,k − un,k))

(1 +
∑

n∈S exp(ūn,k))2

∣∣∣∣
≤ 2

∑
n∈S

exp(ūn,k)

1 +
∑

m∈S exp(ūm,k)
|ûn,k − un,k|

≤ 2max
n∈S
|ûn,k − un,k|

≤ 2βT max
n∈S
∥zn∥V −1

k,τ
,

where the last inequality is obtained from, under E, |z⊤n θ∗k − z⊤n θ̂k,τ | ≤ βT ∥zn∥V −1
k,τ

. Then, from

the definition of RUCB
k,τ (S) and RLCB

k,τ (S), we can conclude the proof.

In the following, by adopting the proof technique in Chen et al. (2023), we provide a lemma for
showing thatMτ is likely to contain the optimal assortment.
Lemma A.9. Under E, (S∗

1 , . . . , S
∗
K) ∈Mτ−1 for all τ ∈ [T].

Proof. Here we use induction for the proof. Suppose that for fixed τ , we have (S∗
1 , . . . , S

∗
K) ∈Mτ

for all k ∈ [K]. Recall that βT = (C1/κ)
√

log(TKN). From Lemma A.8, we have RUCB
k,τ+1(S) ≥

Rk(S) and RLCB
k,τ+1(S) ≤ Rk(S) for any S ⊂ [N]. Then for k ∈ [K], n ∈ S∗

k , and any (S1, .., SK) ∈
Mτ , we have ∑

l∈[K]

RUCB
l,τ+1(S

(n,k)
l,τ+1) ≥

∑
l∈[K]

RUCB
l,τ+1(S

∗
l)

≥
∑
l∈[K]

Rl(S
∗
l)

≥
∑
l∈[K]

Rl(Sl)

≥
∑
l∈[K]

RLCB
l,τ+1(Sl), (9)

where the first inequality comes from the elimination condition in the algorithm and (S∗
1 , . . . S

∗
K) ∈

Mτ , and the third inequality comes from the optimality of (S∗
1 , . . . , S

∗
K). This implies that n ∈

Nk,τ+1 from the algorithm. Then by following the same statement of (9) for all n ∈ S∗
k and

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

k ∈ [K], we have S∗
k ⊂ Nk,τ+1 for all k ∈ [K], which implies (S∗

1 , . . . , S
∗
K) ∈ Mτ+1. Therefore,

with (S∗
1 , . . . , S

∗
K) ∈M1, we can conclude the proof from the induction.

From the above Lemmas A.8 and A.9, under E, we have∑
l∈[K]

Rl(S
∗
l)−

∑
l∈[K]

Rl(S
(n,k)
l,τ) ≤

∑
l∈[K]

RLCB
l,τ (S∗

l) + 4βT max
m∈S∗

l

∥zm∥V −1
l,τ

−
∑
l∈[K]

RUCB
l,τ−1(S

(n,k)
l,τ) + 4βT max

m∈S
(n,k)
l,τ

∥zm∥V −1
l,τ−1

≤ 4βT

∑
l∈[K]

(max
m∈S∗

l

∥zm∥V −1
l,τ−1

+ max
m∈S

(n,k)
l,τ

∥zm∥V −1
l,τ−1

), (10)

where the last inequality comes from the fact that (S∗
1 , . . . , S

∗
K) ∈ Mτ−1 and

max(S1,...,SK)∈Mτ−1

∑
l∈[K] R

LCB
l,τ (Sl) ≤

∑
l∈[K] R

UCB
l,τ (S

(n,k)
l,τ) from the algorithm.

We define V (πk,τ) =
∑

n∈Nk,τ
πk,τ (n)znz

⊤
n and supp(πk,τ) = {n ∈ Nk,τ : πk,τ (n) ̸= 0}. Then

we have the following lemma from the G/D-optimal design problem.
Lemma A.10 (Theorem 21.1 (Kiefer-Wolfowitz) in Lattimore & Szepesvári (2020)). For all τ ∈ [T]
and k ∈ [K], we have

max
n∈Nk,τ

∥zn∥2(V (πk,τ)+(1/rTτ)Ir)−1 ≤ r and |supp(πk,τ)| ≤ r(r + 1)/2.

Proof. For completeness, we provide a proof in Appendix A.11.

From the definition of Vk,τ and Tτ , we have

Vk,τ ⪰
∑

n∈Nk,τ−1

rπk,τ−1(n)Tτ−1znz
⊤
n + Ir

= Tτ−1r(V (πk,τ−1) + (1/Tτ−1r)Ir). (11)
Then from Lemma A.10 and (11), for any n ∈ Nk,τ we have

βT ∥zn∥V −1
k,τ

= (1/κ)
√
∥zn∥2V −1

k,τ

log(KNT)

= Õ
(
(1/κ)

√
1/Tτ−1

√
∥zn∥2(V (πk,τ−1)+(1/Tτ−1r)Ir)−1/r

)
= Õ((1/κ)

√
1/Tτ−1). (12)

Therefore under E, from (10) and (12), for τ > 1, we have∑
l∈[K]

(Rl(S
∗
l)−Rl(S

(n,k)
l,τ)) = Õ((1/κ)K

√
1/Tτ−1).

We have

R(T) = E

∑
t∈[T]

∑
k∈[K]

Rk(S
∗
k)−Rk(Sk,t)


≤ E

 ∑
τ∈[τT]

∑
l∈[K]

∑
t∈T (1)

l,τ

⋂
T (2)
l,τ

∑
k∈[K]

Rk(S
∗
k)−Rk(Sk,t)

 ,

(13)
which consists of regret from the stage of warming up and main. We first analyze the regret from
the warming-up as follows:

E

 ∑
τ∈[τT]

∑
l∈[K]

∑
t∈T (1)

l,τ

∑
k∈[K]

Rk(S
∗
k)−Rk(Sk,t)

 ≤ E

 ∑
τ∈[τT]

∑
l∈[K]

K
∣∣∣T (1)

l,τ

∣∣∣


= Õ(r2K2N/(min{L,N}κ2λmin)), (14)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

where the first equality comes from τT ≤M = O(log(log(T/rK))) from Proposition 5.1.

For the regret bound from the main part of the algorithm, with large enough T , we have

E

 ∑
τ∈[τT]

∑
l∈[K]

∑
t∈T (2)

l,τT

∑
k∈[K]

Rk(S
∗
k)−Rt(Sk,t)


≤ E

 ∑
τ∈[τT]

∑
l∈[K]

∑
t∈T (2)

l,τ

∑
k∈[K]

(Rk(S
∗
k)−Rk(Sk,t))1(E)


+ E

 ∑
τ∈[τT]

∑
l∈[K]

∑
t∈T (2)

l,τ

∑
k∈[K]

(Rk(S
∗
k)−Rk(Sk,t))1(E

c)


= Õ

(K/κ)

τT∑
τ=2

∑
l∈[K]

∑
n∈Nl,τ

|T (2)
n,l,τ |

√
1/Tτ−1

+O(rKηT) +O(K)

= Õ

(K/κ)

τT∑
τ=2

∑
l∈[K]

∑
n∈Nl,τ

|T (2)
n,l,τ |

√
1/Tτ−1

+O(rKηT)

= Õ

(K/κ)

τT∑
τ=2

∑
l∈[K]

(rTτ + |Supp(πl,τ)|)
√

1/Tτ−1

+O(rKηT)

= Õ

(
(K2/κ)

τT∑
τ=2

(rηT + r2
√

1/Tτ−1)

)
= Õ

(
(K2/κ)(rηT + r2)

)
= Õ

(
1
κrK

2(T/rK)
1

2(1−2−M)

)
, (15)

where the third last equality comes from Lemma A.10 and the second last equality comes from
τT ≤ M = O(log(log(T/rK))) from Proposition 5.1. From (13), (14), (15), for T ≥
r3KN2/min{L,N}2κ2λ2

min, we can conclude the proof.

A.7 PROOF OF THEOREM 6.4

Let gk,τ (θ) =
∑

t∈Tτ−1

∑
n∈Sk,t

p(n|Sk,t, θ)zn + λθ and ζτ (δ) = 1
2

√
λ +

2r√
λ
log
(

4K
δ

(
1 + 2(tτ−1)L

rλ

))
.

Lemma A.11 (Proposition 2 in Goyal & Perivier (2021)). With probability at least 1 − δ, for all
τ ≥ 1 and k ∈ [K], we have

∥gk,τ (θ̂k,τ)− gk,τ (θ
∗
k)∥H−1

k,τ (θ
∗
k)
≤ ζτ (δ).

From the above lemma, we define event E = {∥gk,τ (θ̂k,τ) − gk,τ (θ
∗
k)∥H−1

k,τ (θ
∗
k)
≤ ζτ (δ), ∀τ ≥

1, k ∈ [K]}. Then we have the following lemma.

Lemma A.12. Under E, for any τ ≥ 1 and k ∈ [K], we have

∥θ̂k,τ − θ∗k∥Hk,τ (θ̂k,τ)
≤ (1 + 3

√
2)ζτ (δ).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Proof. Here we utilize the proof techniques in Goyal & Perivier (2021). Let Gk,τ (θ1, θ2) =∫ 1

v=0
∇gk,τ (θ1 + v(θ2 − θ1))dv. By the multivariate mean value theorem, we have

gk,τ (θ1)− gk,τ (θ2) =

∫ 1

v=0

∇gk,τ (θ1 + v(θ2 − θ1))dv(θ1 − θ2) = Gk,τ (θ1, θ2)(θ1 − θ2), (16)

which implies
∥gk,τ (θ1)− gk,τ (θ2)∥G−1

k,τ (θ1,θ2)
= ∥θ1 − θ2∥Gk,τ (θ1,θ2).

By following the proof steps of Proposition 3 in Goyal & Perivier (2021) with Proposition C.1 in
Lee & Oh (2024), we can show that

Gk,τ (θ1, θ2) ⪰
1

1 + 3
√
2
Hk,τ (θ1) and Gk,τ (θ1, θ2) ⪰

1

1 + 3
√
2
Hk,τ (θ2).

Finally, we have

∥θ1 − θ2∥Hk,τ (θ1) ≤ (1 + 3
√
2)1/2∥θ1 − θ2∥Gk,τ (θ1,θ2)

= (1 + 3
√
2)1/2∥gk,τ (θ1)− gk,τ (θ2)∥G−1

k,τ (θ1,θ2)

≤ (1 + 3
√
2)∥gk,τ (θ1)− gk,τ (θ2)∥H−1

k,τ (θ2)
,

which concludes the proof with E.

From the above lemma and E with δ = 1/T , with probability at least 1− (1/T), for all τ ≥ 1 and
k ∈ [K], we have

|z⊤n (θ̂k,τ − θ∗k)| ≤ ∥zn∥H−1
k,τ (θ̂k,τ)

∥θ̂k,τ − θ∗k∥Hk,τ (θ̂k,τ)
≤ ζτ∥zn∥H−1

k,τ (θ̂k,τ)
.

In the following proof, with a slight abuse of notation, we define E = {|z⊤n (θ̂k,τ − θ∗k)| ≤
ζτ∥zn∥H−1

k,τ (θ̂k,τ)
∀τ ≥ 1, k ∈ [K], n ∈ [N]}, which holds at least 1 − (1/T). We also use

p(n|S, θ) = exp(z⊤n θ)/(1 +
∑

m∈S exp(z⊤mθ)) with zn instead of xn.

Lemma A.13. Under E, for all k ∈ [K] and τ ∈ [T], for any S ⊂ Nk,τ−1, we have

0 ≤ RUCB
k,τ (S)−Rk(S)

≤ 13ζ2τ max
n∈S
∥zn∥2H−1

k,τ (θ̂k,τ)
+ 4ζ2τ max

n∈S
∥z̃n,k,τ∥2H−1

k,τ (θ̂k,τ)
+ 2ζτ

∑
n∈S

p(n|S, θ̂k,τ−1)∥z̃n,k,τ∥H−1
k,τ (θ̂k,τ)

,

0 ≤ Rk(S)−RLCB
k,τ (S)

≤ 13ζ2τ max
n∈S
∥zn∥2H−1

k,τ (θ̂k,τ)
+ 4ζ2τ max

n∈S
∥z̃n,k,τ∥H−1

k,τ (θ̂k,τ)
+ 2ζτ

∑
n∈S

p(n|S, θ̂k,τ−1)∥z̃n,k,τ∥H−1
k,τ (θ̂k,τ)

.

Proof. Let un,k = z⊤n θ∗k, ûn,k = z⊤n θ̂k,τ , and R̂k,τ (S) =
∑

n∈S rn,k exp(ûn,k)

1+
∑

m∈S exp(ûm,k)
. We also define

un,k = z⊤n θ∗k, uk = (un,k : n ∈ S), ûk,τ = (ûn,k,τ : n ∈ S), and Q(v) =
∑

n∈S
rn,k exp(vn)

1+
∑

m∈S exp(vm) .
Then by a second-order Taylor expansion, we have∣∣∣R̂k,τ (S)−Rk(S)

∣∣∣ = |Q(ûk,τ)−Q(uk)|

=
∣∣∇Q(uk)

⊤(ûk,τ − uk)
∣∣+ ∣∣∣∣12(ûk,τ − uk)

⊤∇2Q(ūk)(ûk,τ − uk)

∣∣∣∣ , (17)

where ūk is the convex combination of ûk,τ and uk. Let en,k,τ = ûn,k,τ − un,k, en0,k,τ = 0,
ēn,k,τ = en,k,τ −

∑
m∈S∪{n0} p(m|S, θ

∗
k)em,k,τ = en,k,τ − Eθ∗

k
[em,k,τ], and ẽn,k,τ = en,k,τ −

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

∑
m∈S∪{n0} p(m|S, θ̂k,τ)em,k,τ = en,k,τ − Eθ̂k,τ

[em,k,τ]. Then the first-order term in the above is
bounded as∣∣∇Q(uk)

⊤(ûk,τ − uk)
∣∣

=

∣∣∣∣∑n∈S rn,k exp(un,k)(ûn,k,τ − un,k)

1 +
∑

n∈S exp(un,k)
−

(
∑

n∈S rn,k exp(un,k))(
∑

n∈S exp(un,k)(ûn,k,τ − un,k))

(1 +
∑

n∈S exp(un,k))2

∣∣∣∣
=

∣∣∣∣∣∣
∑
n∈S

rn,kp(n|S, θ∗k)(ûn,k,τ − un,k)−
∑

n,m∈S

rm,kp(n|S, θ∗k)p(m|S, θ∗k)(ûn,k,τ − un,k)

∣∣∣∣∣∣
=

∣∣∣∣∣∑
n∈S

rn,kp(n|S, θ∗k)

(
(ûn,k,τ − un,k)−

∑
m∈S

p(m|S, θ∗k)(ûm,k,τ − um,k)

)∣∣∣∣∣
≤
∑
n∈S

rn,kp(n|S, θ∗k)
∣∣en,k,τ − Eθ∗

k
[em,k,τ]

∣∣
≤
∑
n∈S

p(n|S, θ∗k)
∣∣en,k,τ − Eθ∗

k
[em,k,τ]

∣∣
=
∑
n∈S

p(n|S, θ∗k) |ēn,k,τ |

≤
∑
n∈S

p(n|S, θ∗k) |ēn,k,τ − ẽn,k,τ |+
∑
n∈S

p(n|S, θ∗k) |ẽn,k,τ |

For the first term above, we have∑
n∈S

p(n|S, θ∗k) |ēn,k,τ − ẽn,k,τ |

=
∑
n∈S

p(n|S, θ∗k)
∣∣∣Eθ∗

k
[em,k,τ]− Eθ̂k,τ

[em,k,τ]
∣∣∣

=
∑
n∈S

p(n|S, θ∗k)

∣∣∣∣∣∑
m∈S

(p(m|S, θ∗k)− p(m|S, θ̂k,τ))em,k,τ

∣∣∣∣∣
≤ 2ζ2τ

∑
n∈S

p(n|S, θ∗k)∥zn∥2H−1
k,τ

≤ 2ζ2τ max
n∈S
∥zn∥2H−1

k,τ

,

where the first inequality is obtained by using the mean value theorem. Then for the second term,
we have

∑
n∈S

p(n|S, θ∗k)|ẽn,k,τ | ≤
∑
n∈S

(p(n|S, θ∗k)− p(n|S, θ̂k,τ−1))|ẽn,k,τ |+
∑
n∈S

p(n|S, θ̂k,τ−1)|ẽn,k,τ |

≤ 2ζτ max
n∈S
∥zn∥H−1

k,τ
|(θ̂k,τ − θ∗k)

⊤(zn − Eθ̂k,τ
[zn])|

+
∑
n∈S

p(n|S, θ̂k,τ−1)|(θ̂k,τ − θ∗k)
⊤(zn − Eθ̂k,τ

[zn])|

≤ 2ζ2τ (max
n∈S
∥zn∥2H−1

k,τ

+max
n∈S
∥z̃n,k,τ∥2H−1

k,τ

) + ζτ
∑
n∈S

p(n|S, θ̂k,τ−1)∥z̃n,k,τ∥H−1
k,τ

.

From the above inequalities, we have∣∣∇Q(uk)
⊤(ûk,τ − uk)

∣∣ ≤ 4ζ2τ max
n∈S
∥zn∥2H−1

k,τ

+ 2ζ2τ max
n∈S
∥z̃n,k,τ∥2H−1

k,τ

+ ζτ
∑
n∈S

p(n|S, θ̂k,τ−1)∥z̃n,k,τ∥H−1
k,τ

.

(18)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Now we focus on the second-order term which is bounded as∣∣∣∣12(ûk,τ − uk)
⊤∇2Q(ūk)(ûk,τ − uk)

∣∣∣∣
=

∣∣∣∣∣∣12
∑

n,m∈S

(ûn,k,τ − un,k)
∂2Q(ūk)

∂n∂m
(ûm,k,τ − um,k)

∣∣∣∣∣∣
=

∣∣∣∣∣∣12
∑

n,m∈S

(ûn,k,τ − un,k)
∂2Q(ūk)

∂n∂m
(ûm,k,τ − um,k) +

1

2

∑
n,m∈S

(ûn,k,τ − un,k)
∂2Q(ūk)

∂n∂m
(ûm,k,τ − um,k)

∣∣∣∣∣∣
≤

∑
n,m∈S

|ûn,k,τ − un,k|
exp(ūn,k)

1 +
∑

l∈S exp(ūl,k)

exp(ūm,k)

1 +
∑

l∈S exp(ūl,k)
|ûm,k,τ − um,k|

+
3

2

∑
n∈S

(ûn,k,τ − un,k)
2 exp(ūn,k)

1 +
∑

l∈S exp(ūl,k)

≤ 5

2

∑
n∈S

(ûn,k,τ − un,k)
2 exp(ūn,k)

1 +
∑

l∈S exp(ūl,k)

≤ 5

2
ζ2τ max

n∈S
∥zn∥2H−1

k,τ (θ̂k,τ)
, (19)

where the first inequality is obtained from Lemma A.22 and the second inequality is obtained from
AM-GM inequality. Then from (17), (18), (19), and with the definition of RUCB

k,τ (S) and RLCB
k,τ (S),

we can conclude the proof.

In the following, similar to Lemma A.9, we provide a lemma for showing that Mτ is likely to
contain the optimal assortment.

Lemma A.14. Under E, (S∗
1 , . . . , S

∗
K) ∈Mτ−1 for all τ ∈ [T].

Proof. Here we use induction for the proof. Suppose that for fixed τ , we have (S∗
1 , . . . , S

∗
K) ∈Mτ

for all k ∈ [K]. From E, we have RUCB
k,τ+1(S) ≥ Rk(S) and RLCB

k,τ+1(S) ≤ Rk(S) for any S ⊂ [N].
Then for k ∈ [K], n ∈ S∗

k , and any (S1, .., SK) ∈Mτ , we have

∑
l∈[K]

RUCB
l,τ+1(S

(n,k)
l,τ+1) ≥

∑
l∈[K]

RUCB
l,τ+1(S

∗
l)

≥
∑
l∈[K]

Rl(S
∗
l)

≥
∑
l∈[K]

Rl(Sl)

≥
∑
l∈[K]

RLCB
l,τ+1(Sl), (20)

where the first inequality comes from the elimination condition in the algorithm and (S∗
1 , . . . S

∗
K) ∈

Mτ , and the third inequality comes from the optimality of (S∗
1 , . . . , S

∗
K). This implies that n ∈

N ′
k,τ+1 from the algorithm. Then by following the same statement of (20) for all n ∈ S∗

k and
k ∈ [K], we have S∗

k ⊆ N ′
k,τ+1 for all k ∈ [K].

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Then for k ∈ [K], J = S∗
k , and any (S1, .., SK) ∈Mτ , we have∑

l∈[K]

RUCB
l,τ+1(S

J
l,τ+1) ≥

∑
l∈[K]

RUCB
l,τ+1(S

∗
l)

≥
∑
l∈[K]

Rl(S
∗
l)

≥
∑
l∈[K]

Rl(Sl)

≥
∑
l∈[K]

RLCB
l,τ+1(Sl), (21)

where the first inequality comes from the elimination condition in the algorithm and (S∗
1 , . . . S

∗
K) ∈

Mτ , and the third inequality comes from the optimality of (S∗
1 , . . . , S

∗
K). This implies that J(=

S∗
k) ∈ J (N ′

k,τ+1) from the algorithm. Then by following the same statement of (21) for all k ∈ [K],
we have S∗

k ⊆ Nk,τ+1 for all k ∈ [K], which implies (S∗
1 , . . . , S

∗
K) ∈ Mτ+1. Therefore, with

(S∗
1 , . . . , S

∗
K) ∈M1, we can conclude the proof from the induction.

We define V̄ (π̄k,τ) =
∑

n∈J∈Jk,τ
π̄k,τ (n, J)z̃n,k,τ (J)z̃n,k,τ (J)

⊤ and Ṽ (π̃k,τ) =∑
J∈Jk,τ

π̃k,τ (J)
∑

n∈J p(n|J, θ̂k,τ)z̃n,k,τ (J)z̃n,k,τ (J)⊤. Then we have the following lemma
from the G/D-optimal design problem.

Lemma A.15 (Kiefer-Wolfowitz). For all τ ∈ [T] and k ∈ [K], we have

max
n∈J∈J (Nk,τ)

∥z̃n,k,τ (J)∥2(V̄ (π̄k,τ)+(λ/Tτr)Ir)−1 ≤ r and |supp(π̄k,τ)| ≤ r(r + 1)/2,

max
J∈J (Nk,τ)

∑
n∈J

p(n|J, θ̂k,τ)∥z̃n,k,τ (J)∥2(Ṽ (π̃k,τ)+(λ/Tτr)Ir)−1 ≤ r and |supp(π̃k,τ)| ≤ r(r + 1)/2.

Proof. This lemma follows by adapting the proof steps of Lemma A.10. To establish the result, we
utilize the following:∑

n∈J∈J
π̄k,τ (n, J)∥z̃n,k,τ (J)∥2(V̄ (π̄k,τ)+(λ/Tτr)Ir)−1

= trace(
∑

n∈J∈J
π̄(n, J)z̃n,k,τ (J)z̃n,k,τ (J)

⊤(V̄ (π̄k,τ) + (λ/Tτr)Ir)
−1)

= trace(Ir)− (λ/Trr)trace((V̄ (π̄k,τ) + (λ/Tτr)Ir)
−1) ≤ r.

Similarly, we have:∑
J∈J (Nk,τ)

π̃k,τ (J)
∑
n∈J

p(n|J, θ̂k,τ)∥z̃n,k,τ (J)∥2(Ṽ (π̃k,τ)+(λ/Tτr)Ir)−1

= trace(
∑
J

π̃k,τ (J)
∑
n

p(n|J, θ̂k,τ)z̃n,k,τ (J)z̃n,k,τ (J)⊤(Ṽ (π̃k,τ) + (λ/Tτr)Ir)
−1)

= trace(Ir)− (λ/Tτr)trace((Ṽ (π̃k,τ) + (λ/Tτr)Ir)
−1) ≤ r.

The remaining steps are identical to the proof of Lemma A.10.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

From the above Lemmas A.14 and A.8, under E, we have

∑
l∈[K]

Rl(S
∗
l)−

∑
l∈[K]

Rl(S
(n,k)
l,τ)

≤
∑
l∈[K]

[
RLCB

l,τ (S∗
l) + 13ζ2τ max

m∈S∗
l

∥zm∥2H−1
l,τ (θ̂l,τ)

+ 4ζ2τ max
m∈S∗

l

∥z̃m,l,τ∥2H−1
l,τ (θ̂l,τ)

+2ζτ
∑

m∈S∗
l

p(m|S∗
l , θ̂l,τ−1)∥z̃m,l,τ∥H−1

l,τ (θ̂l,τ)


−
∑
l∈[K]

[
RUCB

l,τ (S
(n,k)
l,τ)− 13ζ2τ max

m∈S
(n,k)
l,τ

∥zm∥2H−1
l,τ (θ̂l,τ)

− 4ζ2τ max
m∈S

(n,k)
l,τ

∥zm∥2H−1
l,τ−1(θ̂l,τ−1)

−2ζτ
∑

m∈S
(n,k)
l,τ

p(m|S(n,k)
l,τ , θ̂l,τ−1)∥z̃m,l,τ∥H−1

l,τ (θ̂l,τ)


≲
∑
l∈[K]

ζ2τ max
m∈S∗

l

∥zm∥2H−1
l,τ (θ̂l,τ)

+ ζ2τ max
m∈S∗

l

∥z̃m,l,τ∥2H−1
l,τ (θ̂l,τ)

+ ζτ
∑

m∈S∗
l

p(m|S∗
l , θ̂l,τ−1)∥z̃m,l,τ∥H−1

l,τ (θ̂l,τ)

+ζ2τ max
m∈S

(n,k)
l,τ

∥zm∥2H−1
l,τ (θ̂l,τ)

+ ζ2τ max
m∈S

(n,k)
l,τ

∥z̃m,l,τ∥2H−1
l,τ (θ̂l,τ)

+ζτ
∑

m∈S
(n,k)
l,τ

p(m|S(n,k)
l,τ , θ̂l,τ−1)∥z̃m,l,τ∥H−1

l,τ (θ̂l,τ)


≤
∑
l∈[K]

[
ζ2τ max

m∈S∗
l

∥zm∥2H−1
l,τ (θ̂l,τ)

+ ζ2τ max
m∈S∗

l

∥z̃m,l,τ∥H−1
l,τ (θ̂l,τ)

+ ζ2τ max
m∈S

(n,k)
l,τ

∥zm∥2H−1
l,τ (θ̂l,τ)

+ζ2τ max
m∈S

(n,k)
l,τ

∥z̃m,l,τ∥H−1
l,τ (θ̂l,τ)

+ ζτ

√ ∑
m∈S∗

l

p(m|S∗
l , θ̂l,τ−1)

√ ∑
m∈S∗

l

p(m|S∗
l , θ̂l,τ−1)∥z̃m,l,τ∥2

H−1
l,τ (θ̂l,τ)

+ζτ

√√√√ ∑
m∈S

(n,k)
l,τ

p(m|S(n,k)
l,τ , θ̂l,τ−1)

√√√√ ∑
m∈S

(n,k)
l,τ

p(m|S(n,k)
l,τ , θ̂l,τ−1)∥z̃m,l,τ∥2

H−1
l,τ (θ̂l,τ)

 ,

(22)

where the second inequality comes from the fact that (S∗
1 , . . . , S

∗
K) ∈ Mτ−1 and

max(S1,...,SK)∈Mτ−1

∑
l∈[K] R

LCB
l,τ (Sl) ≤

∑
l∈[K] R

UCB
l,τ (S

(n,k)
l,τ) from the algorithm.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Likewise, we also have

∑
l∈[K]

Rl(S
∗
l)−

∑
l∈[K]

Rl(S
(J,k)
l,τ)

≲
∑
l∈[K]

[
ζ2τ max

m∈S∗
l

∥zm∥2H−1
l,τ (θ̂l,τ)

+ ζ2τ max
m∈S∗

l

∥z̃m,l,τ∥2H−1
l,τ (θ̂l,τ)

+ ζ2τ max
m∈S

(J,k)
l,τ

∥zm∥2H−1
l,τ (θ̂l,τ)

+ζ2τ max
m∈S

(J,k)
l,τ

∥z̃m,l,τ∥2H−1
l,τ (θ̂l,τ)

+ ζτ

√ ∑
m∈S∗

l

p(m|S∗
l , θ̂l,τ−1)

√ ∑
m∈S∗

l

p(m|S∗
l , θ̂l,τ−1)∥z̃m,l,τ∥2

H−1
l,τ (θ̂l,τ)

+ζτ

√√√√ ∑
m∈S

(n,k)
l,τ

p(m|S(J,k)
l,τ , θ̂l,τ−1)

√√√√ ∑
m∈S

(J,k)
l,τ

p(m|S(J,k)
l,τ , θ̂l,τ−1)∥z̃m,l,τ∥2

H−1
l,τ (θ̂l,τ)

 .

(23)

We can show that

Hk,τ (θ̂k,τ)

= λIr +
∑

t∈Tk,τ−1

∑
n∈Sk,t

p(n|Sk,t, θ̂k,τ)znz
⊤
n −

∑
t∈Tk,τ−1

∑
n∈Sk,t

∑
m∈Sk,t

p(n|Sk,t, θ̂k,τ)p(m|Sk,t, θ̂k,τ)znz
⊤
m

= λIr +
∑

t∈Tk,τ−1

∑
n∈Sk,t

p(n|Sk,t, θ̂k,τ)znz
⊤
n −

1

2

∑
t∈Tk,τ−1

∑
n∈Sk,t

∑
m∈Sk,t

p(n|Sk,t, θ̂k,τ)p(m|Sk,t, θ̂k,τ)(znz
⊤
m + znz

⊤
m)

⪰ λIr +
∑

t∈Tk,τ−1

∑
n∈Sk,t

p(n|Sk,t, θ̂k,τ)znz
⊤
n −

1

2

∑
t∈Tk,τ−1

∑
n∈Sk,t

∑
m∈Sk,t

p(n|Sk,t, θ̂k,τ)p(m|Sk,t, θ̂k,τ)(znz
⊤
n + zmz⊤m)

= λIr +
∑

t∈Tk,τ−1

∑
n∈Sk,t

p(n|Sk,t, θ̂k,τ)znz
⊤
n −

∑
t∈Tk,τ−1

∑
n∈Sk,t

∑
m∈Sk,t

p(n|Sk,t, θ̂k,τ)p(m|Sk,t, θ̂k,τ)znz
⊤
n

= λIr +
∑

t∈Tk,τ−1

∑
n∈Sk,t

p(n|Sk,t, θ̂k,τ)

1−
∑

m∈Sk,t

p(m|Sk,t, θ̂k,τ)

 znz
⊤
n

= λIr +
∑

t∈Tk,τ−1

∑
n∈Sk,t

p(n|Sk,s, θ̂k,s)p(n0|Sk,s, θ̂k,)znz
⊤
n ⪰ λIr +

∑
t∈Tk,τ−1

∑
n∈Sk,t

κznz
⊤
n

⪰ λIr +
∑

n∈Nk,τ−1

κrπk,τ−1(n)Tτ−1znz
⊤
n = κTτ−1r(V (πk,τ−1) + (λ/κrTτ−1)Ir)

⪰ κTτ−1r(V (πk,τ−1) + (λ/rTτ−1)Ir). (24)

From Lemma A.10 and (24), we also have, for any n ∈ Nk,τ

∥zn∥2H−1
k,τ (θ̂k,τ)

= O

(
∥zn∥2(V (πk,τ−1)+(λ/rTτ−1)Ir)−1

κrTτ−1

)

= O
(

1

κTτ−1

)
. (25)

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

We have
Hk,τ (θ̂k,τ)

= λIr +
∑

t∈Tk,τ−1

∑
n∈Sk,t

p(n|Sk,t, θ̂k,τ)znz
⊤
n −

∑
t∈Tk,τ−1

∑
n∈Sk,t

∑
m∈Sk,t

p(n|Sk,t, θ̂k,τ)p(m|Sk,t, θ̂k,τ)znz
⊤
m

= λIr +
∑

t∈Tk,τ−1

Eθ̂k,τ
[znz

⊤
n]− Eθ̂k,τ

[zn]Eθ̂k,τ
[zn]

⊤

= λIr +
∑

t∈Tk,τ−1

Eθ̂k,τ
[z̃n,k,τ z̃

⊤
n,k,τ]

= λIr +
∑

t∈Tk,τ−1

∑
n∈Sk,t

p(n|Sk,t, θ̂k,τ)z̃n,k,τ z̃
⊤
n,k,τ

⪰ λIr +
∑

J∈J (Nk,τ−1)

∑
t∈TJ,k,τ−1

∑
n∈J

p(n|J, θ̂k,τ)z̃n,k,τ z̃⊤n,k,τ

⪰ λIr +
∑

J∈J (Nk,τ−1)

rπ̄k,τ−1(J)Tτ−1

∑
n∈J

κz̃n,k,τ z̃
⊤
n,k,τ

⪰ κTτ−1r
(
V̄ (π̄k,τ−1) + (λ/Tτ−1r)Ir

)
. (26)

From Lemma A.15 and (26) with Nk,τ ⊆ Nk,τ−1, we also have, for any n ∈ J ∈ J (Nk,τ)

∥z̃n,k,τ (J)∥2H−1
k,τ (θ̂k,τ)

= O

(
∥z̃n,k,τ (J))∥2(V̄ (π̄k,τ−1)+(λ/rTτ−1)Ir)−1

κrTτ−1

)

= O
(

1

κTτ−1

)
. (27)

We have
Hk,τ (θ̂k,τ)

= λIr +
∑

t∈Tk,τ−1

∑
n∈Sk,t

p(n|Sk,t, θ̂k,τ)znz
⊤
n −

∑
t∈Tk,τ−1

∑
n∈Sk,t

∑
m∈Sk,t

p(n|Sk,t, θ̂k,τ)p(m|Sk,t, θ̂k,τ)znz
⊤
m

= λIr +
∑

t∈Tk,τ−1

Eθ̂k,τ
[znz

⊤
n]− Eθ̂k,τ

[zn]Eθ̂k,τ
[zn]

⊤

= λIr +
∑

t∈Tk,τ−1

Eθ̂k,τ
[z̃n,k,τ z̃

⊤
n,k,τ]

= λIr +
∑

t∈Tk,τ−1

∑
n∈Sk,t

p(n|Sk,t, θ̂k,τ)z̃n,k,τ z̃
⊤
n,k,τ

⪰ λIr +
∑

J∈J (Nk,τ−1)

∑
t∈TJ,k,τ−1

∑
n∈J

p(n|J, θ̂k,τ)z̃n,k,τ z̃⊤n,k,τ

⪰ λIr +
∑

J∈J (Nk,τ−1)

rπ̃k,τ−1(J)Tτ−1

∑
n∈J

p(n|J, θ̂k,τ)z̃n,k,τ z̃⊤n,k,τ

⪰ λIr +
∑

J∈J (Nk,τ−1)

rπ̃k,τ−1(J)Tτ−1

∑
n∈J

p(n|J, θ̂k,τ−1)z̃n,k,τ z̃
⊤
n,k,τ

− 2ζτ
∑

J∈J (Nk,τ−1)

rπ̃k,τ−1(J)Tτ−1 max
n∈J

(∥zn∥H−1
k,τ (θ̂k,τ)

+ ∥zn∥H−1
k,τ−1(θ̂k,τ−1)

)z̃n,k,τ z̃
⊤
n,k,τ

= Tτ−1r
(
Ṽ (π̃k,τ−1) + (λ/Tτ−1r)Ir

−2ζτ
∑

J∈J (Nk,τ−1)

π̃k,τ−1(J)max
n∈J

(∥zn∥H−1
k,τ (θ̂k,τ)

+ ∥zn∥H−1
k,τ−1(θ̂k,τ−1)

)z̃n,k,τ z̃
⊤
n,k,τ

 ,

(28)

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

where the last inequality is obtained from, using the mean value theorem,

∑
n∈J

(p(n|J, θ̂k,τ)− p(n|J, θ̂k,τ−1)z̃n,k,τ z̃
⊤
n,k,τ

=
∑
n∈J

(p(n|J, θ̂k,τ)− p(n|J, θ∗k) + p(n|J, θ∗k)− p(n|J, θ̂k,τ−1))z̃n,k,τ z̃
⊤
n,k,τ

⪰ −2ζτ (max
n∈J
∥zn∥H−1

k,τ (θ̂k,τ)
+max

n∈J
∥zn∥H−1

k,τ−1(θ̂k,τ−1)
)z̃n,k,τ z̃

⊤
n,k,τ . (29)

Let B = 2ζτ
∑

J∈J (Nk,τ−1)
π̃k,τ−1(J)maxn∈J(∥zn∥H−1

k,τ (θ̂k,τ)
+ ∥zn∥H−1

k,τ−1(θ̂k,τ−1)
)z̃n,k,τ z̃

⊤
n,k,τ

and we have B ⪯ 4ζτ
√

1
κTτ−2

∑
J∈J (Nk,τ−1)

π̃k,τ−1(J)maxn∈J z̃n,k,τ z̃
⊤
n,k,τ from (25). Then for

τ ≥ 3, we have

Ṽ (π̃k,τ−1)−B

⪰ 1

2
Ṽ (π̃k,τ−1) +

1

2
Ṽ (π̃k,τ−1)−B

⪰ 1

2
Ṽ (π̃k,τ−1) +

1

2

∑
J∈J (Nk,τ)

π̃k,τ (J)
∑
n∈J

κz̃n,k,τ z̃
⊤
n,k,τ − 4ζτ

√
1

κTτ−2

∑
J∈J (Nk,τ−1)

π̃k,τ−1(J)max
n∈J

z̃n,k,τ z̃
⊤
n,k,τ

⪰ 1

2
Ṽ (π̃k,τ−1), (30)

where the last inequality is obtained from 1
2κ ≥ 4ζτ

√
1

κTτ−2
because Tτ−2 ≥ min{T1, ηT } with

large enough T such that T ≥ max{ r
3K
κ6 log4(KTL), exp(r

κ3)}.
Then, we have

∥z̃n,k,τ∥2H−1
k,τ (θ̂k,τ)

≤ rTτ−1∥z̃n,k,τ∥2(Ṽ (π̃k,τ−1)+(λ/Tτ−1r)Ir−B)−1

≤ rTτ−1∥z̃n,k,τ∥2(1
2 Ṽ (π̃k,τ−1)+

1
2 (λ/Tτ−1r)Ir)−1

≤ 2rTτ−1∥z̃n,k,τ∥2(Ṽ (π̃k,τ−1)+(λ/Tτ−1r)Ir)−1 .

Then from the above, Lemma A.15, and (28) with Nk,τ ⊆ Nk,τ−1, we have, for any J ∈ J (Nk,τ)∑
n∈J

p(n|J, θ̂k,τ−1)∥z̃n,k,τ∥2H−1
k,τ (θ̂k,τ)

= O

∑n∈J p(n|J, θ̂k,τ−1)∥z̃n,k,τ∥2(Ṽ (π̃k,τ−1)+(λ/Tτ−1r)Ir)−1

rTτ−1


= O

(
1

Tτ−1

)
. (31)

Therefore under E, from (22), (23), (25),(27), and (31), we have the following.

For t ∈
⋃

n∈Nk,τ ,k∈[K] Tn,k,τ
⋃

J∈J (Nk,τ),k∈[K] TJ,k,τ
⋃

n∈J∈J (Nk,τ),k∈[K] Tn,J,k,τ ,

∑
k∈[K]

(Rk(S
∗
k)−Rk(Sk,t)) = O

(
K

(√
r

Tτ−1
+

r

Tτ−1κ

))
.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

For the regret bound, we have

E

∑
t∈[T]

∑
k∈[K]

Rk(S
∗
k)−Rt(Sk,t)


≤ E

∑
t∈[T]

∑
k∈[K]

(Rk(S
∗
k)−Rk(Sk,t))1(E)

+ E

∑
t∈[T]

∑
k∈[K]

(Rk(S
∗
k)−Rk(Sk,t))1(E

c)


= Õ

K

τT∑
τ=3

∑
k∈[K]

 ∑
J∈J (Nk,τ)

|TJ,k,τ |+
∑

n∈Nk,τ

|Tn,k,τ |

(√ r

Tτ−1
+

r

Tτ−1κ

)+ Õ(rKηT) +O(K)

= Õ

K

τT∑
τ=3

∑
k∈[K]

 ∑
J∈J (Nk,τ)

|TJ,k,τ |+
∑

n∈Nk,τ

|Tn,k,τ |

(√ r

Tτ−1
+

r

Tτ−1κ

)+ Õ(rKηT)

= Õ

K

τT∑
τ=3

∑
k∈[K]

(rTτ + |Supp(πk,τ)|+ |Supp(π̃k,τ)|)
(√

r

Tτ−1
+

r

Tτ−1κ

)+ Õ(rKηT)

= Õ

(
K2

τT∑
τ=3

(
r3/2ηT + r2

1

κ
√
Tτ−1

ηT

))
= Õ

(
K2r3/2ηT

)
= Õ

(
r3/2K2(T/rK)

1

2(1−2−M)

)
, (32)

where the third last equality comes from Lemma A.10 and the second last equality comes from
τT ≤M = Õ(1) and Tτ−1 ≥ ηT for τ ≥ 3.

A.8 APPROXIMATION ORACLE

Here we discuss the combinatorial optimization in our algorithm. We can utilize an α-approximation
oracle with 0 ≤ α ≤ 1, first introduced in Kakade et al. (2007). Instead of obtaining the exact opti-
mal assortment solution, the α-approximation oracle, denoted by Oα, outputs {Sα

k }k∈[K] satisfying∑
k∈[K] fk(S

α
k) ≥ max{Sk}k∈[K]∈M

∑
k∈[K] αfk(Sk).

We introduce an algorithm (Algorithm 5 in Appendix A.8) by modifying Algorithm 1 to incorporate
α-approximation oracles for the optimization. Due to the redundancy, we explain only the distinct
parts of the algorithm here. (Approximation oracles can also be applied to Algorithm 2 similarly, but
we omit it in this discussion.) For testing the assignment (n, k), the algorithm constructs assortment
{Sα,(n,k)

l,τ }l∈[K] (where n ∈ S
α,(n,k)
k,τ) in an optimistic view with an α-approximation oracle to

resolve computation issue as follows. We define an approximation oracle Oα,(n,k)
UCB which outputs

{Sα,(n,k)
l,τ }l∈[K] satisfying

max
{Sl}l∈[K]∈Mτ−1:n∈Sk

∑
l∈[K]

αRUCB
l,τ (Sl) ≤

∑
l∈[K]

RUCB
l,τ (S

α,(n,k)
l,τ), (33)

which replaces Line 5 in Algorithm 1. For the elimination procedure, we define another β-
approximation oracle, denoted by Oβ

LCB , which outputs {Sβ
l,τ}l∈[K] satisfying

max
{Sl}l∈[K]∈Mτ−1

∑
l∈[K]

βRLCB
l,τ (Sl) ≤

∑
l∈[K]

RLCB
l,τ (Sβ

l,τ). (34)

Then it updates Nk,τ by eliminating n ∈ Nk,τ−1 which satisfies the elimination condition of∑
l∈[K]

αRLCB
l,τ (Sβ

l,τ) >
∑
l∈[K]

RUCB
l,τ (S

α,(n,k)
l,τ), (35)

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

which replaces Line 6 in Algorithm 1. We note that the algorithm utilizes the two different types of
approximation oracles, Oα,(n,k)

UCB and Oβ
LCB . Then the algorithm achieves a regret bound for γ-regret

defined asRγ(T) = E[
∑

t∈[T]

∑
k∈[K] γRk(S

∗
k)−Rk(Sk,t)] in the following theorem.

Theorem A.16. Algorithm 5 with M = O(log(T)) achieves a regret bound with γ = αβ as

Rγ(T) = Õ

(
1
κK

3
2

√
rT

(
T

rK

) 1

2(2M−1)

)
.

Proof. The proof is provided in Appendix A.8.2.

A.8.1 α-APPROXIMATED ALGORITHM (ALGORITHM 5)

Algorithm 5 Batched Stochastic Matching Bandit with β-Approximation Oracle
Input: β, κ, M ≥ 1; Init: t← 1, T1 ← ηT

43 Compute SVD of X = UΣV ⊤ and obtain Ur = [u1, . . . , ur]; Construct zn ← U⊤
r xn for n ∈ [N]

44 for τ = 1, 2... do
45 for k ∈ [K] do

// Estimation

46 θ̂k,τ ← argminθ∈Rr lk,τ (θ) with (2) where Tk,τ−1 = T (1)
k,τ−1 ∪ T

(2)
k,τ−1 and T (2)

k,τ−1 =⋃
n∈Nk,τ−1

T (2)
n,k,τ−1

// Assortments Construction

47 {Sα,(n,k)
l,τ }l∈[K] ← Oα,(n,k)

UCB from (33) for all n ∈ Nk,τ−1 with (3)
// Elimination

48 {Sβ
l,τ}l∈[K] ← Oβ

LCB from (34)

49 Nk,τ ← {n ∈ Nk,τ :
∑

l∈[K] αR
LCB
l,τ (Sβ

l,τ) ≤
∑

l∈[K] R
UCB
l,τ (S

α,(n,k)
l,τ)} for k ∈ [K]

// G/D-optimal design
50 πk,τ ← argmaxπ∈P(Nk,τ)

log det(
∑

n∈Nk,τ
πk,τ (n)znz

⊤
n + (1/rTτ)Ir)

// Exploration

51 Run Warm-up (Algorithm 4) over time steps in T (1)
k,τ (defined in Algorithm 4)

52 for n ∈ Nk,τ do
53 tn,k ← t, T (2)

n,k,τ ← [tn,k, tn,k + ⌈rπk,τ (n)Tτ⌉ − 1]

54 while t ∈ T (2)
n,k,τ do

55 Offer {Sl,t}l∈[K] = {S
(n,k)
l,τ }l∈[K] and observe feedback ym,t ∈ {0, 1} for all m ∈

Sl,t and l ∈ [K]
56 t← t+ 1

57 Mτ ← {{Sk}k∈[K] : Sk ⊂ Nk,τ , |Sk| ≤ L ∀k ∈ [K], Sk ∩ Sl = ∅ ∀k ̸= l}; Tτ+1 ← ηT
√
Tτ

A.8.2 PROOF OF THEOREM A.16

In this proof, we provide only the parts that are different from the proof of Theorem 5.2.

Lemma A.17. Under E, (S∗
1 , . . . , S

∗
K) ∈Mτ−1 for all τ ∈ [T].

Proof. Here we use induction for the proof. Suppose that for fixed τ , we have (S∗
1 , . . . , S

∗
K) ∈Mτ

for all k ∈ [K]. Recall that βT = (C1/κ)
√

log(TKN). From Lemma A.8, we have RUCB
k,τ+1(S) ≥

Rk(S) and RLCB
k,τ+1(S) ≤ Rk(S) for any S ⊂ [N]. Then for k ∈ [K], n ∈ S∗

k , and any (S1, .., SK) ∈

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Mτ , we have ∑
l∈[K]

RUCB
l,τ+1(S

α,(n,k)
l,τ+1) ≥ max

{Sk}k∈[K]∈Mτ :n∈Sk

∑
l∈[K]

αRUCB
l,τ+1(Sl)

≥
∑
l∈[K]

αRUCB
l,τ+1(S

∗
l)

≥
∑
l∈[K]

αRl(S
∗
l)

≥
∑
l∈[K]

αRl(S
β
l,τ+1)

≥
∑
l∈[K]

αRLCB
l,τ+1(S

β
l,τ+1), (36)

where the first inequality comes from (33), the second one comes from (S∗
1 , . . . S

∗
K) ∈ Mτ , and

the firth one comes from the optimality of (S∗
1 , . . . , S

∗
K). This implies that n ∈ Nk,τ+1 from

the algorithm. Then by following the same statement of (36) for all n ∈ S∗
k and k ∈ [K], we

have S∗
k ⊂ Nk,τ+1 for all k ∈ [K], which implies (S∗

1 , . . . , S
∗
K) ∈ Mτ+1. Therefore, with

(S∗
1 , . . . , S

∗
K) ∈M1, we can conclude the proof from the induction.

From Lemmas A.17 and A.8, under E, we have∑
l∈[K]

αβRl(S
∗
l)−

∑
l∈[K]

Rl(S
α,(n,k)
l,τ) ≤

∑
l∈[K]

αβRLCB
l,τ (S∗

l) + 4βT max
m∈S∗

l

∥zm∥V −1
l,τ

−
∑
l∈[K]

RUCB
l,τ (S

α,(n,k)
l,τ) + 4βT max

m∈S
(n,k)
l,τ

∥zm∥V −1
l,τ

≤
∑
l∈[K]

αRLCB
l,τ (Sβ

l,τ) + 4βT max
m∈S∗

l

∥zm∥V −1
l,τ

−
∑
l∈[K]

RUCB
l,τ (S

α,(n,k)
l,τ) + 4βT max

m∈S
(n,k)
l,τ

∥zm∥V −1
l,τ

≤ 4βT

∑
l∈[K]

(max
m∈S∗

l

∥zm∥V −1
l,τ

+ max
m∈S

(n,k)
l,τ

∥zm∥V −1
l,τ−1

),

(37)

where the second inequality comes from (34) and last inequality comes from the fact that
(S∗

1 , . . . , S
∗
K) ∈ Mτ−1 and

∑
l∈[K] αR

LCB
l,τ (Sβ

l,τ) ≤
∑

l∈[K] R
UCB
l,τ (S

α,(n,k)
l,τ) from the algorithm.

Then, by following the proof in Theorem 1, we can conclude the proof.

A.9 PROOF OF LEMMAS

A.9.1 PROOF OF LEMMA A.3

For the poof, we follow the proof steps in (Bounding the Prediction Error) Oh & Iyengar (2021).
We define

Hk,τ (θ) =
∑

t∈Tk,τ

 ∑
n∈Sk,t

p(n|Sk,t, θ)znz
⊤
n −

∑
n∈Sk,t

∑
m∈Sk,t

p(n|Sk,t, θ)p(m|Sk,t, θ)znz
⊤
m

+ Ir.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

We note that gk,τ (θ1)−gk,τ (θ2) =
∑

t∈Tk,τ

∑
n∈Sk,t

(p(n, |Sk,t, θ1)−p(n, |Sk,t, θ2))zn+(θ1−θ2).
Then from the mean value theorem, there exists θ̄ = cθ1 + (1− c)θ2 with some c ∈ (0, 1) such that
gk,τ (θ1)− gk,τ (θ2)

= ∇θgk,τ (θ)
∣∣
θ=θ̄

(θ1 − θ2)

=

 ∑
t∈Tk,τ

 ∑
n∈Sk,t

p(n|Sk,t, θ̄)znz
⊤
n −

∑
n∈Sk,t

∑
m∈Sk,t

p(n|Sk,t, θ̄)p(m|Sk,t, θ̄)znz
⊤
m

+ Ir

 (θ1 − θ2)

= Hk,τ (θ̄)(θ1 − θ2) (38)

We define Lk,τ = Hk,τ (θ
∗
k) and Ek,τ = Hk,τ (θ̄k) −Hk,τ (θ

∗
k) where θ̄k = cθ∗k + (1 − c)θ̂k,τ for

some constant c ∈ (0, 1).

From (38), we have gk,τ (θ̂k,τ) − gk,τ (θ
∗
k) = (Lk,τ + Ek,τ)(θ̂k,τ − θ∗k). Then, for any z ∈ Rr, we

have
z⊤(θ̂k,τ − θ∗k) = z⊤(Lk,τ + Ek,τ)

−1(gk,τ (θ̂k,τ)− gk,τ (θ
∗
k))

= z⊤L−1
k,τ (gk,τ (θ̂k,τ)− gk,τ (θ

∗
k))− z⊤L−1

k,τEk,τ (Lk,τ + Ek,τ)
−1(gk,τ (θ̂k,τ)− gk,τ (θ

∗
k)).

(39)

For obtaining a bound for |z⊤(θ̂k,τ − θ∗k)|, we analyze the two terms in (39). We first provide a
bound for |z⊤L−1

k,τ (gk,τ (θ̂k,τ)− gk,τ (θ
∗
k))|. Let ϵn,t = yn,t− p(n|Sk,t, θ

∗
k) for n ∈ Sk,t. Since θ̂k,τ

is the solution from MLE such that
∑

t∈Tk,τ

∑
n∈Sk,t

(p(n|Sk,t, θ̂k,τ)− yn,k,τ)zn = 0, we have

gk,τ (θ̂k,τ)− gk,τ (θ
∗
k)

=
∑

t∈Tk,τ

∑
n∈Sk,t

(
p(n|Sk,t, θ̂k,τ)− p(n|Sk,t, θ

∗
k)
)
zn + (θ̂k,τ − θ∗k)

=
∑

t∈Tk,τ

∑
n∈Sk,t

(
p(n|Sk,t, θ̂k,τ)− yn,k,t

)
zn + θ̂k,τ +

∑
t∈Tk,τ

∑
n∈Sk,t

(yn,k,τ − p(n|Sk,t, θ
∗
k)) zn − θ∗k

= 0 +
∑

t∈Tk,τ

∑
n∈Sk,t

ϵn,tzn − θ∗k (40)

We define
Zk,t = [zn : n ∈ Sk,t]

⊤ ∈ R|Sk,t|×r for t ∈ Tk,τ ,
Dk,τ = [Zk,t : t ∈ Tk,τ]⊤ ∈ R(

∑
t∈Tk,τ

|Sk,t|)×r
,

Ek,t = [ϵn,t : n ∈ Sk,t]
⊤ ∈ R|Sk,t|.

Then using Hoeffding inequality, we have

P(|z⊤L−1
k,τ (gk,τ (θ̂k,τ)− gk,τ (θ

∗
k))| ≥ ν) ≤ P

∣∣∣∣∣∣
∑

t∈Tk,τ

z⊤L−1
k,τZ

⊤
k,tEk,t

∣∣∣∣∣∣ ≥ ν − |z⊤L−1
k,τθ

∗
k|


≤ P

∣∣∣∣∣∣
∑

t∈Tk,τ

z⊤L−1
k,τZ

⊤
k,tEk,t

∣∣∣∣∣∣ ≥ ν − 1


≤ 2 exp

(
− 2(ν − 1)2∑

t∈Tk,τ
(2
√
2∥z⊤L−1

k,τZ
⊤
k,t∥2)2

)

= 2 exp

(
− (ν − 1)2

4∥z⊤L−1
k,τD

⊤
k,τ∥22

)

≤ 2 exp

−κ2(ν − 1)2

4∥z∥2
V −1
k,τ

 ,

(41)

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

where the last inequality is obtained from the fact that

Lk,τ =
∑

t∈Tk,τ

 ∑
n∈Sk,t

p(n|Sk,t, θ
∗
k)znz

⊤
n −

∑
n∈Sk,t

∑
m∈Sk,t

p(n|Sk,t, θ
∗
k)p(m|Sk,t, θ

∗
k)znz

⊤
m


=
∑

t∈Tk,τ

 ∑
n∈Sk,t

p(n|Sk,t, θ
∗
k)znz

⊤
n −

1

2

∑
n∈Sk,t

∑
m∈Sk,t

p(n|Sk,t, θ
∗
k)p(m|Sk,t, θ

∗
k)(znz

⊤
m + zmz⊤n)


⪰
∑

t∈Tk,τ

 ∑
n∈Sk,t

p(n|Sk,t, θ
∗
k)znz

⊤
n −

1

2

∑
n∈Sk,t

∑
m∈Sk,t

p(n|Sk,t, θ
∗
k)p(m|Sk,t, θ

∗
k)(znz

⊤
n + zmz⊤m)


=
∑

t∈Tk,τ

 ∑
n∈Sk,t

p(n|Sk,t, θ
∗
k)znz

⊤
n −

∑
n∈Sk,t

∑
m∈Sk,t

p(n|Sk,t, θ
∗
k)p(m|Sk,t, θ

∗
k)znz

⊤
n


=
∑

t∈Tk,τ

 ∑
n∈Sk,t

p(n|Sk,t, θ
∗
k)p(n0|Sk,t, θ

∗
k)znz

⊤
n


⪰ κD⊤

τ Dτ (= κVk,τ),

where the first inequality is obtained from (zn−zm)(zn−zm)⊤ = znz
⊤
n +zmz⊤m−znz⊤m−zmz⊤n ⪰

0.

Then from (41) using ν = (2/κ)
√

log(2TKN/δ)∥z∥V −1
k,τ

+1 and the union bound, with probability
at least 1− δ, for all τ ∈ [T], k ∈ [K], we have

|z⊤L−1
k,τ (gk,τ (θ̂k,τ)− gk,τ (θ

∗
k))| ≤

3
√
log(TKN/δ)

κ
∥z∥V −1

k,τ
. (42)

Now we provide a bound for the second term in (39) of |z⊤L−1
k,τEk,τ (Lk,τ +Ek,τ)

−1(gk,τ (θ̂k,τ)−
gk,τ (θ

∗
k))|. We have

|z⊤L−1
k,τEk,τ (Lk,τ + Ek,τ)

−1(gk,τ (θ̂k,τ)− gk,τ (θ
∗
k))|

≤ ∥z∥L−1
k,τ
∥L−1/2

k,τ Ek,τ (Lk,τ + Ek,τ)
−1L1/2∥2∥gk,τ (θ̂k,τ)− gk,τ (θ

∗
k)∥L−1

k,τ

≤ (1/κ)∥z∥V −1
k,τ
∥L−1/2

k,τ Ek,τ (Lk,τ + Ek,τ)
−1L1/2∥2∥gk,τ (θ̂k,τ)− gk,τ (θ

∗
k)∥V −1

k,τ
. (43)

Then it follows that
∥L−1/2

k,τ Ek,τ (Lk,τ + Ek,τ)
−1L1/2∥2

= ∥L−1/2
k,τ Ek,τ (L

−1
k,τ − L−1

k,τEk,τ (Lk,τ + Ek,τ)
−1L1/2∥2

≤ ∥L−1/2
k,τ Ek,τL

−1/2
k,τ ∥2 + ∥L

−1/2
k,τ Ek,τL

−1/2
k,τ ∥2∥L

−1/2
k,τ Ek,τ (Lk,τ + Ek,τ)

−1L
1/2
k,τ ∥2,

which implies

∥L−1/2
k,τ Ek,τ (Lk,τ + Ek,τ)

−1L
1/2
k,τ ∥2 ≤

∥L−1/2
k,τ Ek,τL

−1/2
k,τ ∥2

1− ∥L−1/2
k,τ Ek,τL

−1/2
k,τ ∥2

≤ 2∥L−1/2
k,τ Ek,τL

−1/2
k,τ ∥2

≤ 6

κ
∥θ̂k,τ − θ∗k∥2, (44)

where the last inequality is obtained from (17) and (18) in Oh & Iyengar (2021). Then from (43),
(44), we have

|z⊤L−1
k,τEk,τ (Lk,τ + Ek,τ)

−1(gk,τ (θ̂k,τ)− gk,τ (θ
∗
k))|

≤ 6

κ2
∥θ̂k,τ − θ∗k∥2∥gk,τ (θ̂k,τ)− gk,τ (θ

∗
k)∥V −1

k,τ
∥z∥V −1

k,τ
. (45)

We can conclude the proof from (42) and (45).

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

A.9.2 PROOF OF LEMMA A.7

We note that gk,τ (θ1)−gk,τ (θ2) =
∑

t∈Tk,τ

∑
n∈Sk,t

(p(n, |Sk,t, θ1)−p(n, |Sk,t, θ2))zn+(θ1−θ2).

Define Hk,τ (θ) =
∑

t∈Tk,τ

(∑
n∈Sk,t

p(n|Sk,t, θ)znz
⊤
n −

∑
n∈Sk,t

∑
m∈Sk,t

p(n|Sk,t, θ)p(m|Sk,t, θ)znz
⊤
m

)
+

Ir. Then we can show that there exists θ̄ = cθ1 + (1− c)θ2 with some c ∈ (0, 1) such that
gk,τ (θ1)− gk,τ (θ2)

= ∇θgk,τ (θ)
∣∣
θ=θ̄

(θ1 − θ2)

=

 ∑
t∈Tk,τ

 ∑
n∈Sk,t

p(n|Sk,t, θ̄)znz
⊤
n −

∑
n∈Sk,t

∑
m∈Sk,t

p(n|Sk,t, θ̄)p(m|Sk,t, θ̄)znz
⊤
m

+ Ir

 (θ1 − θ2)

= Hk,τ (θ̄)(θ1 − θ2). (46)

Define H̄k,τ (θ̄) =
∑

t∈Tk,τ

∑
n∈Sk,t

p(n|Sk,t, θ̄)p(n0|Sk,t, θ̄)znz
⊤
n + Ir. Then we have Hk,τ (θ̄) ⪰

H̄k,τ (θ̄) from the following.∑
t∈Tk,τ

 ∑
n∈Sk,t

p(n|Sk,t, θ̄)znz
⊤
n −

∑
n∈Sk,t

∑
m∈Sk,t

p(n|Sk,t, θ̄)p(m|Sk,t, θ̄)znz
⊤
m


=
∑

t∈Tk,τ

 ∑
n∈Sk,t

p(n|Sk,t, θ̄)znz
⊤
n −

∑
n∈Sk,t

∑
m∈Sk,t

p(n|Sk,t, θ̄)p(m|Sk,t, θ̄)znz
⊤
m


=
∑

t∈Tk,τ

 ∑
n∈Sk,t

p(n|Sk,t, θ̄)znz
⊤
n −

1

2

∑
n∈Sk,t

∑
m∈Sk,t

p(n|Sk,t, θ̄)p(m|Sk,t, θ̄)(znz
⊤
m + zmz⊤n)


⪰
∑

t∈Tk,τ

 ∑
n∈Sk,t

p(n|Sk,t, θ̄)znz
⊤
n −

1

2

∑
n∈Sk,t

∑
m∈Sk,t

p(n|Sk,t, θ̄)p(m|Sk,t, θ̄)(znz
⊤
n + zmz⊤m)


=
∑

t∈Tk,τ

 ∑
n∈Sk,t

p(n|Sk,t, θ̄)znz
⊤
n −

∑
n∈Sk,t

∑
m∈Sk,t

p(n|Sk,t, θ̄)p(m|Sk,t, θ̄)znz
⊤
n


=
∑

t∈Tk,τ

 ∑
n∈Sk,t

p(n|Sk,t, θ̄)p(n0|Sk,t, θ̄)znz
⊤
n

 , (47)

where the inequality is obtained from (zn − zm)(zn − zm)⊤ ⪰ 0. Under E1, we have
∥θ̂k,τ∥2 − ∥θ∗k∥2 ≤ 1 implying ∥θ̂k,τ∥2 ≤ 1 + ∥θ∗k∥2 = 1 + ∥U⊤

r θk∥2 ≤ 2. Then for
θ̄ = cθ̂k,τ + (1 − c)θ∗k for some c ∈ (0, 1), we have ∥Ur θ̄∥2 ≤ 2. Then from p(n|Sk,t, θ̄) =
exp(z⊤n θ̄)/(1 +

∑
m∈Sk,t

exp(z⊤mθ̄)) = exp(x⊤
n (Ur θ̄))/(1 +

∑
m∈Sk,t

exp(x⊤
m(Ur θ̄))), we can

show that H̄k,τ (θ̄) ⪰ κVk,τ , which implies Hk,τ (θ̄) ⪰ H̄k,τ (θ̄) ⪰ κVk,τ .

Then we have
∥θ̂k,τ − θ∗k∥22 ≤ (1/λmin(Vk,τ))(θ̂k,τ − θ∗k)

⊤Vk,τ (θ̂k,τ − θ∗k)

≤ (1/κλmin(V
0
k,τ))(θ̂k,τ − θ∗k)

⊤Hk,τ (θ̄)(θ̂k,τ − θ∗k)

≤ (1/κλmin(V
0
k,τ))(θ̂k,τ − θ∗k)

⊤Hk,τ (θ̄)Hk,τ (θ̄)
−1Hk,τ (θ̄)(θ̂k,τ − θ∗k)

≤ (1/κ2λmin(V
0
k,τ))(gk,τ (θ̂k,τ)− gk,τ (θ

∗
k))

⊤V −1
k,τ (gk,τ (θ̂k,τ)− gk,τ (θ

∗
k))

≤ (1/κ2λmin(V
0
k,τ))∥gk,τ (θ̂k,τ)− gk,τ (θ

∗
k))∥2V −1

k,τ

. (48)

Then from E2, we can conclude that

∥θ̂k,τ − θ∗k∥2 ≤
4

κ

√
2r + log(KTN/δ)

λmin(V 0
k,τ)

.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

A.10 PROOF OF PROPOSITION A.1

We first provide a lemma for a confidence bound. Let γt(δ) =

c1
√
d log(L)

(
log(t) +

√
log(t) log(K/δ)

)
for some c1 > 0.

Lemma A.18 (Lemma 1 in Lee & Oh (2024)). With probability at least 1 − δ, for all t ≥ 1 and
k ∈ [K] we have

∥θ̂k,t − θ∗k∥Gk,t
≤ γt(δ).

Let δ = 1/T . From the above lemma, we define event E = {∥θ̂k,t−θ∗k∥Gk,t
≤ γt ∀k ∈ [K] and t ≥

1}, which holds with probability at least 1− 1/T . Then we provide a lemma for the optimism.
Lemma A.19. Under E, for all t ≥ 1, we have∑

k∈[K]

Rk(S
∗
k) ≤

∑
k∈[K]

RUCB
k,t (Sk,t).

Proof. Under E, we have

|z⊤n θ̂k,t − z⊤n θ∗k| ≤ ∥zn∥G−1
k,t
∥θ̂k,t − θ∗k∥Gk,t

≤ γt∥zn∥G−1
k,t

,

which implies z⊤n θ∗k ≤ z⊤n θ̂k,t + γt∥zn∥G−1
k,t

= hn,k,t. Therefore, from Lemma A.3 in Agrawal

et al. (2017a), we have Rk(S
∗
k) ≤ RUCB

k,t (S∗
k). Then using definition of Sk,t in the algorithm, we

can conclude that ∑
k∈[K]

Rk(S
∗
k) ≤

∑
k∈[K]

RUCB
k,t (S∗

k) ≤
∑

k∈[K]

RUCB
k,t (Sk,t).

Now we provide a lemma which is critical to bound regret under optimism.
Lemma A.20. Under E, for all k ∈ [K], we have

T∑
t=1

RUCB
k,t (Sk,t)−Rk(Sk,t) = O

(
r
√
T +

1

κ
r2
)

Proof. By following the proof steps in Theorem 4 in Lee & Oh (2024), we can show this lemma.

Then from Lemmas A.18 and A.20, we can conclude the proof for the regret as follows.

R(T) = E

∑
t∈[T]

∑
k∈[K]

Rk(S
∗
k,t)−Rk(Sk,t)


≤ E

 T∑
t=1

∑
k∈[K]

(
Rk(S

∗
k,t)−Rk(Sk,t)

)
1(E)

+ E

 T∑
t=1

∑
k∈[K]

(
Rk(S

∗
k,t)−Rk(Sk,t)

)
1(Ec)


≤ E

 T∑
t=1

∑
k∈[K]

(
RUCB

k,t (Sk,t)−Rk(Sk,t)
)
1(E)

+

T∑
t=1

∑
k∈[K]

P(Ec)

= Õ
(
rK
√
T +

1

κ
r2K

)
= Õ

(
rK
√
T
)
.

Now we discuss the computational cost. Since there exists O(KN) number of assortment candidate
inM, especially for L ≥ N , the cost per round is O(KN) from Line 3.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

A.11 PROOF OF LEMMA A.10

Let W (π) = V (π) + (1/rTτ)Ir and g(π) = maxn∈Nk,τ
∥zn∥2(V (π)+(1/rTτ)Ir)−1 . Since

πk,τ is G-optimal, for n ∈ supp(πk,τ) we have that z⊤n W (πk,τ)
−1zn = g(πk,τ) (other-

wise, there exists π′ such that g(π′) ≤ g(πk,τ), which is a contradiction). Then we have∑
n∈Nk,τ

πk,τ (n)z
⊤
n W (πk,τ)

−1zn = g(πk,τ). Therefore, we obtain

g(π) =
∑

n∈Nk,τ

πk,τ (n)z
⊤
n W (πk,τ)

−1zn = trace(
∑

n∈Nk,τ

πk,τ (n)znz
⊤
n W (πk,τ)

−1)

= trace((W (πk,τ)− (1/rTτ)Id)W (πk,τ)
−1) = d− (1/rTτ)trace(W (πk,τ)

−1) ≤ d.

Let S = supp(πk,τ). Then if |S| > d(d + 1)/2 there are linearly dependent: ∃v : S →
R such that

∑
n∈S v(n)znz

⊤
n = 0. Therefore, for n ∈ S, z⊤n W (πk,τ)

−1zn
∑

n∈S v(n) =

trace(W (πk,τ)
−1
∑

n∈S v(n)znz
⊤
n) = 0, which implies

∑
n∈S v(n) = 0. Define π(t) = πk,τ+tv,

then we have W (π(t)) = W (πk,τ) for every t, which implies g(πk,τ) = g(π(t)). Let t′ = sup{t >
0 : πk,τ (n) + tv(n) ≥ 0 ∀n ∈ S}. At t = t′, at least one weight becomes 0 (otherwise, there
exists t′′ ≥ t′ s.t. πk,τ (n) + t′′v(n) ≥ 0 for all n ∈ S, which is a contradiction). Thus, we have an
equally good design with |S| − 1 arms. Iterating the construction yields an optimal design π with
|supp(π)| ≤ d(d+ 1)/2.

A.12 AUXILIARY LEMMAS

Lemma A.21 (Lemma E.2 in Lee & Oh (2024)). For all t ≥ 1 and k ∈ [K], we have

(i)

t∑
s=1

∑
n∈Sk,s

p(n|Sk,s, θ̂k,s)p(n0|Sk,s, θ̂k,s)∥zn∥2H−1
k,s

≤ 2r log
(
1 + t

rλ

)
,

(ii)

t∑
s=1

max
n∈Sk,s

∥zn∥2H−1
k,s

≤ 1
κ2r log

(
1 + t

rλ

)
.

Lemma A.22 (Lemma E.3 in Lee & Oh (2024)). Define Q̃ : R|S| → R for S ∈ [N], such that for
any u = (u1, . . . , u|S|) ∈ R|S|, Q̃(u) =

∑
n∈S

exp(un)
1+

∑
m∈S exp(um) . Let pn(u) = exp(un)

1+
∑

m∈S exp(um) .
Then for all n ∈ S, we have ∣∣∣∣∣ ∂2Q̃

∂un∂um

∣∣∣∣∣ ≤
{
3pn(u), if n = m

2pn(u)pm(u), if n ̸= m

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

A.13 ADDITIONAL EXPERIMENTS

B-SMB
(Alg1)

B-SMB +

(Alg2)
OFU-MNL + TS-QMB UCB-QMB

Algorithms

0

5000

10000

15000

20000

Ti
m

e
(s

ec
on

ds
)

Runtime per Algorithm

0 1000 2000 3000 4000 5000
Time t

0

1

2

3

4

(t)

1e3 Regret per Algorithm

UCB-QMB
TS-QMB
OFU-MNL +

B-SMB + (Algorithm2)
B-SMB (Algorithm1)

Figure 4: Experimental results with N = 8 and K = 4 for (left) runtime cost and (right) regret
of algorithms. Notably, increasing N from 7 to 8 (as opposed to Figure 2) causes the runtime of
OFU-MNL+ to exceed 15,000 seconds—up from 5,000 seconds—whereas our algorithms maintain
runtimes under 1,000 seconds. In terms of regret performance, our algorithms achieve results com-
parable to OFU-MNL+ while outperforming other benchmarks.

B-SMB
(Alg1)

B-SMB +

(Alg2)
OFU-MNL + TS-QMB UCB-QMB

Algorithms

0

20000

40000

60000

80000

100000

Ro
un

ds

Rounds per Algorithm within 3600 sec

Figure 5: Computational overhead of benchmark algorithms prevents scaling to larger problem
sizes, limiting experimental comparison. For example, with N = 8, K = 5, and T = 100,000,
the figure reports the number of rounds completed by each algorithm within a 3600-second limit.
Increasing K from 4 to 5, similar to increasing N , significantly increases the runtime overhead of
the benchmarks, allowing only a few completed rounds (barely visible in the plot). In contrast, our
algorithms (B-SMB, B-SMB+) successfully complete all 100,000 rounds within the time limit.

36

	Introduction
	Related Work
	Problem Statement
	Optimization in Stochastic Matching Bandits: The Curse of Complexity
	Batch Learning for Stochastic Matching Bandits
	Improving Dependence on Without Prior Knowledge
	Experiments
	Conclusion
	Appendix
	Algorithm Without Prior Knowledge of (Algorithm 2)
	Naive Approach by Extending MNL Bandit
	Details Regarding Projection in Feature Space
	Warm-up Stage for Algorithm 1
	Proof of Proposition 5.1
	Proof of Theorem 5.2
	Proof of Theorem 6.4
	Approximation Oracle
	-Approximated Algorithm (Algorithm 5)
	Proof of Theorem A.16

	Proof of Lemmas
	Proof of Lemma A.3
	Proof of Lemma A.7

	Proof of Proposition A.1
	Proof of Lemma A.10
	Auxiliary Lemmas
	Additional Experiments

