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Abstract
Understanding the inner representation of a neural
network helps users improve models. Concept-
based methods have become a popular choice
for explaining deep neural networks post-hoc be-
cause, unlike most other explainable AI tech-
niques, they can be used to test high-level vi-
sual “concepts” that are not directly related to
feature attributes. For instance, the concept of
“stripes” is important to classify an image as a
zebra. Concept-based explanation methods, how-
ever, require practitioners to guess and manually
collect multiple candidate concept image sets,
making the process labor-intensive and prone to
overlooking important concepts. Addressing this
limitation, in this paper, we frame concept im-
age set creation as an image generation problem.
However, since naively using a standard gener-
ative model does not result in meaningful con-
cepts, we devise a reinforcement learning-based
preference optimization (RLPO) algorithm that
fine-tunes a vision-language generative model
from approximate textual descriptions of concepts.
Through a series of experiments, we demonstrate
our method’s ability to efficiently and reliably
articulate diverse concepts that are otherwise
challenging to craft manually. Github: https:
//github.com/aditya-taparia/RLPO

1. Introduction
In an era where black box deep neural networks (DNNs)
are becoming seemingly capable of performing complex
tasks, our ability to understand their internal representations
post-hoc has become even more important before deploy-
ing them in the real world. Among many use cases, such
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revelations help engineers in further improving models and
regulatory bodies in assessing their correctness. To help
these users, developing methods that communicate infor-
mation in a human-centric way is essential for ensuring
usefulness.

Humans utilize high-level concepts as a medium for pro-
viding and perceiving explanations. In this light, post-hoc
concept-based explanation techniques, such as Testing with
Concept Activation Vectors (TCAV) (Kim et al., 2018), have
gained great popularity in recent years. Their ability to
use abstractions that are not necessarily feature attributes
or some pixels in test images helps with communicating
these high-level concepts with humans. For instance, as
demonstrated in TCAV, the concept of stripes is important
to explain why an image is classified as a zebra, whereas
the concept of spots is important to explain why an image
is classified as a jaguar. Given 1) a set of such high-level
concepts, represented as sample images (e.g., a collection of
stripe and spot images) and 2) test images of the class (e.g.,
zebra images), TCAV assigns a score to each concept on
how well the concept explains the class decision (i.e., zebra).
Although concept-based explanations are a good represen-
tation, their requirement to create collections of candidate
concept sets necessitate the human to know which concepts
to test for. This is typically done by guessing what con-
cepts might matter and manually extracting such candidate
concept tests from existing datasets. While the stripe-zebra
analogy is attractive as an example, where it is obvious
that stripes is important to predict zebras, in most applica-
tions, we cannot guess what concepts to test for, limiting the
usefulness of concept-based methods in testing real-world
systems. Additionally, even if a human can guess a few
concepts, it does not encompass most concepts a DNN has
learned because the DNN was trained without any human
intervention. Therefore, it is important to automatically find
concepts that matter to the DNN’s decision-making process.

As attempts to automatically discover and create such con-
cept sets, several works has focused on segmenting the
image and using these segments as potential concepts, either
directly (Ghorbani et al., 2019) or through factor analy-
sis (Fel et al., 2023; 2024). In such methods, which we refer
to as retrieval methods, because the extracted concept set is
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Figure 1: Humans can imagine (green) a few concepts to
understand neural networks’ representations (purple). Some
other concepts can be retrieved from test images themselves
through, for instance, segmentation (orange). However,
if we generate concepts (blue), they will capture even a
broader set of concepts. RLPO is designed to make this
generation process more targeted toward neural networks’
representations (purple ∩ blue).

already part of the test images as shown in Fig. 1 (Retrieved
concepts), it is difficult for them to imagine concepts that do
not have a direct pixel-level resemblance to the original im-
age class. For instance, it is more likely that such methods
provide patches of zebra as concepts instead of stripes.

By departing from existing concept set creation practices
of human handcrafting and retrieval, we redefine concept
set creation as a concept generation problem. Modern gen-
erative models such as stable diffusion (SD) can be used
to generate realistic images. Nevertheless, since a genera-
tive model generates arbitrary images, we need to carefully
guide the SD to generate explanatory images. One obvious
approach is to engineer long, descriptive text prompts to gen-
erate concepts. However, engineering such prompts is not
realistic. Therefore, to automate this process, as shown in
Fig. 2, we propose a method, named reinforcement learning-
based preference optimization (RLPO), to guide SD model.
At its core, we devised a deep reinforcement learning al-
gorithm, which gradually update SD weights to generate
concept images that have a higher explanation score. The
contributions of this paper can be summarized as follows:

1. We propose a method, named RLPO, to “generate”
concepts that truly matter to the neural network (refer
to the video on github). These include concepts that
are challenging for humans or retrieval methods to
anticipate (Fig. 1).

2. We qualitatively (computational metrics and human
surveys) and quantitatively demonstrate that RLPO
can reveal networks’ internal representations.

3. Additionally, as use cases, we show how generated
concepts can be utilized to improve models, understand
model bias, and also demonstrate the generalizability
of RLPO on tasks such as NLP sentiment analysis.

Notably, due to the modularity of our approach, any compo-
nent in our framework (e.g., SD) can be seamlessly replaced
with an improved version (e.g., SD3 (Esser et al., 2024) or
Flash Diffusion (Chadebec et al., 2025)).

2. Preliminaries and Related Work
Testing with Concept Activation Vectors (TCAV): The
TCAV score quantifies the importance of a “concept” for
a specific class in a DNN classifier (Kim et al., 2018).
Here, a concept is defined broadly as a high-level, human-
interpretable idea such as stripes, sad faces, etc. A con-
cept (e.g., stripes), c, is represented by sample images, Xc

(e.g., images of stripes). In TCAV, a human has manually
collected these sample concept images based on educated
guesses, whereas our objective is to automatically gener-
ate them. For a given set of test images, Xm (e.g., zebra
images), that belong to the same decision class (e.g., ze-
bra), m, TCAV is defined as the fraction of test images
for which the model’s prediction increases in the “direction
of the concept.” By decomposing the DNN under test as
f(x) = f2(f1(x)), where f1(x) is the activation at layer l,
TCAV score is computed as,

TSc,m =
1

|Xm|
∑
Xm

I
(

∂output
∂activations

· (c direction) > 0

)
=

1

|Xm|
∑

xi∈Xm

I
(

∂f(xi)

∂f1(xi)
· v > 0

)
(1)

Here, I is the indicator function that counts how often the
directional derivative is positive. Concept activations vector
(CAV), v, is the normal vector to the hyperplane that sepa-
rates activations of concept images, {f1(x);x ∈ Xc}, from
activations of random images, {f1(x);x ∈ Xr}. Refer to
Appendix B.1 for details on the TCAV settings.

ACE (Ghorbani et al., 2019) introduced a way to automati-
cally find concepts by extracting relevant concepts from the
input class. It used segmentation over different resolution
to get a pool of segments and then grouped them based
on similarity to compute TCAV scores. Though the ACE
concepts are human understandable, they are noisy because
of the segmentation and clustering errors. As a different
method, EAC (Sun et al., 2024) extracts concepts through
segmentation. CRAFT (Fel et al., 2023) introduced a re-
cursive strategy to detect and decompose concepts across
layers. Lens (Fel et al., 2024) elegantly unified concept ex-
traction and importance estimation as a dictionary learning
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Figure 2: (a) Our proposed algorithm, RLPO, iteratively refines the concepts ci that are generated by a Stable Diffusion
(SD) model by optimizing SD weights based on an action ai. Each step in this update process provides an explanation at a
different level of abstraction (Appendix C.4). Please refer to the supplementary video for better understanding. (b) Three
concepts identified by our approach for the zebra class. Concepts are represented as images generated by SD.

problem. However, since all these methods obtain concepts
from class images, the concepts they generate tend to be
very similar to the actual class (e.g., a patch of zebra as a
concept to explain the zebra, instead of stripes as a concept),
making it challenging to maintain the “high-level abstract-
ness” of concepts. In contrast, we generate concepts from a
generative model.

Deep Q Networks (DQN): DQN (Mnih et al., 2015) is a
deep RL algorithm that combines Q-learning with deep
neural networks. It is designed to learn optimal poli-
cies in environments with large state and action spaces
by approximating the Q-value function using a neural net-
work. A separate target network, Qtarget(s, a

′, θ′), Here a′ is
argmaxQ(snext, a) which is a copy of the Q-network with
parameters θ′, is updated less frequently to provide stable
targets for Q-value updates,

Q(st, at)← Q(st, at) + α
(
r(st, at)

+ γmax
a′

Qtarget(st+1, a
′)−Q(st, at)

) (2)

Here, st is the state at step t, at is the action taken, and rt is
the reward obtained after taking action at. The parameters
α and γ are learning rate and discount factor, respectively.
DQNs are used for controlling robots (Tang et al., 2025;
Senanayake, 2024; Charpentier et al., 2022), detecting fail-
ures (Sagar et al., 2024), etc.

Preference Optimization: Optimizing generative models
with preference data was first introduced in Direct Prefer-
ence Optimization (DPO) (Rafailov et al., 2024). It is a
technique used to ensure models, such as large language
models, learn to align its outputs with human preference by
asking a human which of its generated output is preferred.
This technique was later extended to diffusion models in
Diffusion-DPO (Wallace et al., 2024), where they updated
Stable Diffusion XL model using Pick-a-Pic dataset (human
preferred generated image dataset). Unlike traditional im-

age or text generation tasks, where the dataset for human
preferred outputs are readily available, it is hard to have
a general enough dataset for XAI tasks. To counter this
problem, we provide preference information by using the
TCAV score instead of a human, and use it to align the text-
to-image generative model to generate concept images that
matters for the neural network under test.

Use of VLM in Explanation: Recent advancements in
Vision-Language models (VLMs) have open the doors for
the use of VLMs in multiple domains, mainly because of
their ability to generalize over large amount of data, they
can be leveraged to obtain useful information. Work by (Sun
et al., 2024) present a novel method combining the Segment
Anything Model (SAM) with concept-based explanations,
called Explain Any Concept (EAC). This method uses SAM
for precise instance segmentation to automatically extract
concept sets from images, then it employs a lightweight
surrogate model to efficiently explain decision made by any
neural network based on extracted concepts. Another work
by Yan et al. (Yan et al., 2023) introduced Learning Con-
cise and Descriptive Attributes (LCDA), which leverages
Large Language Models (LLMs) to query a set of attributes
describing each class and then use that information with
vision-language models to classify images. They highlight
in their paper that with a concise set of attributes, they can
improve the classifier’s performance and also increase inter-
pretability and interactivity for end user.

3. Methodology: Reinforcement
Learning-based Preference Optimization

Our objective is to find a set of concept images, C, that
maximize the TCAV scores, TSc,m, indicating that the con-
cepts are relevant to the neural networks’ decision-making
process. We leverage state-of-the-art text-to-image genera-
tive models to generate high-quality explainable concepts.
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Figure 3: Overview of the RLPO framework with its dynamic environment interaction. The RL policy selects actions (seed
prompts) which generates concept sets (G1, G2) scored through TCAV. Reward is calculated based on the scores obtained
for both the sets. Simultaneously, best set is determined based on the scores obtained, which is used to update the LoRA
layer of the SD model.

Algorithm 1 The RLPO algorithm. Appendix B.2 for the
expanded algorithm.

Input: Set of test images f(·)
Run pre-processing and obtain seed prompts (action
space)
for each episode do

for each time step t do
Execute at by picking a seed prompt
Generate image groups G1 and G2

Evaluate TCAV scores TS1 and TS2

Update SD based on the better score
Compute reward

end for
end for
Output: Set of concept images

However, because the search space of potential text prompts
is too large, we use deep RL to guide the image generation
process. As described in Fig. 3 and Algorithm 1, our al-
gorithm, RLPO, uses RL to pick potential keywords from
a predefined list and iteratively optimizes stable diffusion
weights to generate images that have a preference for higher
TCAV scores. This process is described below.

Notation: Our framework contains three core deep learning
models: the network under test f(·), the image generator
g(·), and the deep RL network h(·). First, we have a pre-
trained neural network classifier that we want to explain.
We then have a generative neural network, whose purpose
is generating concept image sets, given some text prompts.
In this paper, we use Stable Diffusion (SD) v1-5 as the
generator as it is a state-of-the-art generative model that can
generate realistic images. The core search algorithm that
we train is a DQN.

3.1. The Rationales Behind Design Choices

We explain the design choices, which are validated through
experiments in Section 4.1-4.4.

Rationale 1: Why concept generation is a better idea. If
we use concept-based explanation the traditional way (Kim
et al., 2018; Schut et al., 2025), then the end users need to
manually guess what concepts to test for. Automatically
retrieving the concept set by segmenting test images (Sun
et al., 2024) also results in a limited concept set. In contrast,
a SOTA generative model can generate high quality images.
We provide more theoretical insights in Appendix A.

Rationale 2: Why a deep RL-controlled VLM fine-
tuning for generating concepts is a better idea. “A picture
is worth a thousand words but words flow easier than paint.”
As the saying goes, “a picture is worth a thousand words,”
it is much easier for people to explain and understand high-
level concepts when images are used instead of language.
For instance, we need a long textual description such as
“The circles are centered around a common point, with alter-
nating red and white colors creating a pattern” to describe a
simple image of a dart board (i.e., Target Co. logo). There-
fore, we keep our ultimate concept representation as images.
However, controlling a generative model from visual inputs
is much harder. Since human language can be used as a
directed and easier way to seed our thought process, as the
saying goes, “words flow easier than paint,” we control the
outcome by using text prompts. Since the vastness of the
search space cannot be handled by most traditional search
strategies, we resort to a DQN for controlling text. Since
simple text alone cannot generate complex, high-level visual
concepts, in each DQN update step, we use preference opti-
mization to further guide the search process towards a more
preferred outcome, allowing the DQN to focus on states
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similar to the target. This approach improves our starting
points for each DQN episode, enabling more efficient search
and incremental progress towards the desired target.

3.2. Extracting Seed Prompts

Since a generative model can generate arbitrary images, if
we provide good starting point for optimization then the
convergence to explainable states would be faster. In this
paper, to extract seed prompts for a particular class we make
use of the off-the-shelf VQA model followed by several pre-
processing steps, as described in Appendix B.3. We also
explore how gibberish prompts can be used as seed prompts
in Appendix B.4 which did not yield useful concepts.

3.3. Deep Reinforcement Learning Formulation

Our objective of using deep RL is automatically controlling
text input of Stable Diffusion. As text input, we start with
K seed prompts from Section 3.2, that have the potential to
generate meaningful concept images after many deep RL
episodes. We setup our RL state-action at iteration t as,

• Action at: Selecting a seed prompt, kt ∈ K, that best
influences concept image generation.

• State st: Preferred concept images generated from the
seed prompt, kt−1.

• Reward rt: It is proportional to the TCAV score com-
puted at state st on action at, adjusted by a mono-
tonically increasing scaling factor ξt,k. As each seed
concept reaches the explainable state at different times,
this factor is introduced to scale the reward over time
t for each unique seed concept k. Since the g(.)
is getting optimized at each time step t. The scal-
ing factor is updated as ξt+1,k ← min

(
1,

ξt,k+1
T

)
,

where T is total number of RL steps. Therefore,
the expected cumulative adjusted reward is R(π) =

E
[∑T

t=0 ξt · rt(st, at)
]
.

Our objective in deep RL is to learn a policy, π : s → a,
that takes actions (i.e., picking a seed prompt) leading to
explainable states (i.e., correct concept images) from proxy
states (i.e., somewhat correct concept images). We formally
define explainable state and proxy state as follow:

Definition 1. Explainable states: States that have a concept
score TSc,m ≥ η for a user-defined threshold η ∈ [0, 1] for
concept c and class m is defined as an explainable state.

Definition 2. Proxy states: States that have a concept score
TSc,m < η for the threshold η ∈ [0, 1] for concept c and
class m is defined as a proxy state.

In practice, we set η to a relatively large number, such as 0.7,
to ensure that we look at highly meaningful concepts. In
DQN, in relation to Eq. 2, we learn a policy that iteratively

maximizes the Q(s, a) value by using the update rule,

Q∗(s, a) = Es′∼P (·|s,a)[ξtr(s, a) + γmax
a′∈A

Qtarget(s
′, a′)]

(3)

3.4. Optimizing the States

At time t, the policy picks the seed prompt kt, which is then
used by the generative model, g(kt;wt), with model weights
w, to generate 2Z number of images. We randomly divide
the generated images into two groups: Xc1,t = {xc1,t,i}Zi=1

and Xc2,t = {xc2,t,i}Zi=1. Let the TCAV scores of each
group be TSc1,m,t and TSc2,m,t. Since our objective is
to find concepts that generate a higher TCAV score, con-
cept images that have a higher score is preferred. Note
that, unlike in the classical preference optimization setting
with a human to rank, RLPO preference comes from the
TCAV scores (e.g., TXc1,t ≻ TXc2,t). We call this notion
RLPO-XAIF in ablation studies below. If the generative
model at time t is not capable of generating concepts that
are in an explainable state, max(TSc1,m,t, TSc2,m,t) ≤ η,
we then perform preference update on SD’s weights (more
details in Appendix B.5). Following Low-Rank Adaptation
(LoRA) (Hu et al., 2022)—a method that allows quick SD
adaptation with a few samples,— we only learn auxiliary
weights a and b at each time step, and update the weights as
wt+1 ← wt + λab.

As the deep RL agent progresses over time, the states be-
come more relevant as it approaches explainable states
(Fig. 2), thus the same action yields increasing rewards
over time. To accommodate this, with reference to the re-
wards defined in Section 3.3, we introduce a parameter ξ,
which starts at 0.1 and incrementally rises up to 1 as the
preference threshold, η, is approached. Different actions
may result in different explainable states, reflecting various
high-level concepts inherent to f(·). Some actions might
take longer to reach an explainable state. As the goal is to
optimize all states to achieve a common target, DQN pro-
gressively improves action selection to expedite reaching
these states. Thus, deep RL becomes relevant as it optimizes
over time to choose the actions that are most likely to reach
an explainable state more efficiently.

4. Experiments
To verify the effectiveness of our approach, we tested it
across multiple models and several classes. We consid-
ered two CNN-based classifiers, GoogleNet (Szegedy et al.,
2015) and InceptionV3 (Szegedy et al., 2016), and two
transformer-based classifiers, ViT (Dosovitskiy et al., 2020)
and Swin (Liu et al., 2021), pre-trained on ImageNet dataset.
Unless said otherwise, only GoogleNet results are shown
in the main paper. All other model details and results are
provided in Appendix B.1 and C.3, respectively.
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Table 1: Search strategy ablation. We see that RL, compared
to ϵ-greedy search, is the best strategy to explore the search
space with high entropy, average normalized count (ANC)
per action, and inverse coefficient of variance (ICV).

Method Entropy (↑) ANC (↑) ICV (↑)

RL (Ours) 2.80 0.43 2.17
0.25 Greedy 2.40 0.21 1.04
0.5 Greedy 1.95 0.15 0.59
0.75 Greedy 1.85 0.15 0.56

4.1. Ablation: Search Strategies (Why Deep RL?)

We chose DQN as our RL algorithm because of its ability to
effectiveness traverse through discrete action space (Mnih
et al., 2015) (20 unique seed prompts). We assess the effec-
tiveness of RL by disabling the preference optimization step.
As shown in Table 1, on the GoogleNet classifier, compared
to ϵ-greedy methods, the RL setup exhibits higher entropy,
average normalized count (ANC), and inverse coefficient of
variance (ICV) (See Appendix A.1 for definitions), indicat-
ing RL’s ability to efficiently explore across diverse actions.
Qualitative results obtained on updating SD model with and
without RL are discussed in Appendix C.5.

4.2. Ablation: Scoring Mechanisms (Why TCAV?)

Another important aspect of our setup is the use of TCAV
score, an XAI method, to provide preference feedback and
calculate rewards. Alternatively, this XAI scoring feedback
can also be replaced with human feedback or LLM-based AI
feedback. As an ablation study, to test the effect of human
feedback, we conducted human feedback experiment with
eight human subjects who provided live human feedback.
Further, to evaluate the LLM-based AI feedback, we made
use of GPT-4o. More details on the experiment setup and
results are provided in Appendix C.2. As shown in Table 2,
we concluded that, even though other feedback techniques
can be used, XAI-based feedback is best for generating
concepts that are important to model with high speed and
low computation cost. Though human and AI (GPT4o) are
good at correlating semantics, by only looking at test images
and concepts instead of model activations, they are not able
to provide model specific explanations.

Table 2: Scoring mechanisms ablation. We see that RLPO
with Explainable AI feedback (RLPO-XAIF), in this case
TCAV, is a better choice than RLPO with human feedback
(RLPO-HF) and AI feedback (RLPO-AIF).

Method Class-based Model-specific Feedback Execution
Explanations Explanations Cost* Time (↓)

RLPO-HF ✓ ✗ NIL 180 ± 30s
RLPO-AIF ✓ ✗ > 10 GB 72 ± 1.2s
RLPO-XAIF ✓ ✓ < 1 GB 56 ± 0.7s

* Feedback cost refers to the GPU memory requirements.

Table 3: Exploration Gap (EG) and Odds for different meth-
ods based on the human survey (Appendix C.9). This ver-
ifies that RLPO can generate concepts that human cannot
think of.

Laymen Expert
(n=260) (n=240)

EG (Retrieval) 6.54% 10.45%
EG (Ours) 91.54% 65.45%
Odds (Retrieval) 14.29 8.57
Odds (Ours) 0.09 0.53

Figure 4: Samples of concepts generated by different meth-
ods. Observe that RLPO generates diverse images, beyond
patches from the test images.

4.3. Concepts Generated by RLPO

Objective of RLPO is to automatically generate concepts
that a human or a retrieval method cannot propose but the
neural network has indeed learned (i.e., gets activated). As
illustrated in Fig. 4, we observed that the RLPO can generate
diverse set of concepts that a human would not typically
think of but leads activations of the DNN to trigger. To
validate this hypothesis, we conducted a survey to see if
humans can think of these generated concepts as important
for the DNN to understand a certain class.

As detailed in Appendix C.9, during our human survey,
we presented a random class image followed by two con-
cepts, one generated by our method and another from a
previous retrieval-based method (Fel et al., 2024; 2023).
While the choices were similar in terms of XAI-score from
both methods, we discovered that most participants recog-
nize retrieval-based concepts, and only those with domain-
specific knowledge could identify generated concepts as
important. As highlighted in Table 3, high Exploration Gap
(EG) (definition in Appendix A.1) of our method indicates
that most people can only identify concepts from a small
subset of what f(·) learns during training. Intuitively, when
we retrieve concepts from the test class, they tend to be sim-
ilar to the test images. We further verify that the generated
concepts have the following properties.

Diverse representations per concept. We verify the di-
versity (e.g., different types of stripes) of generated and
retrieval-based concepts by computing the vector similarity
of the CLIP and ResNET50 embeddings between Xc and
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Table 4: Novel concepts: TSc,m (TCAV score), CS (Cosine similarity), ED (Euclidean distance), RCS, and RED (CS and
ED with ResNet50 embedding). This indicates that RLPO can generate a diverse set of concepts that triggers the network.

Methods Concepts TSc,m(↑) CS (↓) ED (↑) RCS (↓) RED (↑)
EAC (Sun et al., 2024) C 1.0 0.76± 0.03 7.21± 0.63 0.67± 0.14 6.34± 2.16

Lens (Fel et al., 2024)
C1 1.0 0.77± 0.02 7.17± 0.34 0.50± 0.18 9.70± 3.20
C2 1.0 0.72± 0.04 8.02± 0.87 0.42± 0.10 10.90± 2.80
C3 1.0 0.69± 0.05 8.45± 0.96 0.45± 0.05 11.03± 2.17

CRAFT (Fel et al., 2023)
C1 1.0 0.76± 0.04 7.37± 0.62 0.57± 0.16 8.80± 3.20
C2 1.0 0.72± 0.02 8.25± 0.39 0.50± 1.90 9.90± 3.40
C3 1.0 0.73± 0.04 7.98± 0.79 0.44± 0.07 10.80± 1.90

RLPO (Ours)
C1 1.0 0.52± 0.04 10.48± 0.50 0.04± 0.01 16.80± 1.40
C2 1.0 0.49± 0.02 10.65± 0.20 0.02± 0.02 17.20± 0.80
C3 1.0 0.49± 0.02 10.74± 0.30 0.03± 0.01 17.60± 4.40

Table 5: Inter-concept Comparison for “zebra” class across
three trial runs. Low Cosine Similarity (CS), high Wasser-
stein Distance (WD), and high Hotelling’s T-squared Score
(HTS) suggests that concepts generated from different seed
prompts are different from one another.

Metrics Stripes-Running Running-Mud Mud-Stripes
Concept Concept Concept

Avg. CS (↓) 0.67± 0.01 0.69± 0.0004 0.73± 0.0004
Avg. WD (↑) 8.15± 0.05 7.85± 0.02 7.48± 0.03
Avg. HTS (↑) 7598.50± 84.5 13069.68± 2147.81 7615.73± 538.06

Are they from the
same distribution? No No No

Xm for different classes. As highlighted in Table 4, we
observe that concepts from retrieval-based methods tend to
have high cosine similarity with test images, making them
less useful as abstract concepts (e.g., to explain the zebra
class, a patch of zebra as a concept is less useful compared
to stripes concept).

Multiple concepts per class. Since RLPO algorithm ex-
plores various explainable states, we can obtain multiples
concepts (e.g., stripes, savanna) with varying level of impor-
tance. Fig. 5 shows the top three class-level concepts identi-
fied by our method for the “zebra” class for the GoogleNet
classifier. We see that, each concept set has a different
TCAV score associated with them indicating their impor-
tance. Additionally, as shown in Table 5, these concepts are
inherently different from one another. As an additional re-
sult, we can see in Appendix C.4 how each concept evolves—
representing different levels of concept abstractions—with
each RL step.

4.4. Are Generated Concepts Correct?

After generating the concepts, next step is to identify
what those concepts signify. To locate where in the class
images generated concepts correspond, we made use of

Table 6: Intra-concept Comparisons for “zebra” class across
three trial runs. High Cosine Similarity (CS), low Wasser-
stein Distance (WD), and low Hotelling’s T-squared Score
(HTS) suggests that concepts generated from same seed
prompts lies on the same distribution.

Metrics Stripes-Stripes Running-Running Mud-Mud
Concept Concept Concept

Avg. CS (↑) 0.99± 0.0008 0.99± 0.0004 0.99± 0.0004
Avg. WD (↓) 0.95± 0.07 0.82± 0.07 0.82± 0.06
Avg. HTS (↓) 2.46± 0.091 2.36± 0.08 2.66± 0.22

Are they from the
same distribution? Yes Yes Yes

CLIPSeg (Lüddecke & Ecker, 2022), a transformer-based
segmentation model which takes in concept images as
prompts, Xc, and highlights in a test image, x ∈ Xm, which
part resembles the input prompt as a heat map. More details
on this is available in Appendix C.3.3. As shown in Fig. 5,
class image on left highlights the top 3 identified concepts
by RLPO. We also compare the output generated by other
popular XAI techniques such as LIME and GradCam with
ones generated by RLPO, more details in Appendix C.6.

After finding the relationship between generated concepts
and input images, we need to validate the importance of
the identified concepts. To that end, we applied c-deletion,
a commonly used validation method in XAI, to the class
images for each identified concept. We gradually deleted
concept segments based on the heat map obtained from
ClipSeg. The results for the c-deletion are shown in the
Fig. 6. We see the area under curve is the highest for the
most important concept “stripes” and the lowest for least
important concept “mud,” indicating the order of importance
of each concept. More examples on the c-deletion are in
Appendix C.3.4. Additionally, to verify if the generated
concepts are consistent, we compared their CLIP embedding
across multiple runs. As shown in Table 6, we can see that
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Figure 5: The figure shows the concepts generated by our method and where they are located in the input image (“zebra”
class) for GoogleNet classifier. As highlighted the “stripes” concept images are located near zebra, the “running” concept
images, showing trees, highlight the background, and the “mud” concept highlights the grass and soil in the input image.
The concepts are ordered in their importance (TCAV score) with “stripes” being the highest and “mud” being the lowest.
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Figure 6: C-deletion. Removing concepts over time to
measure the reliability. The colored numbers indicate the
area under the curve.

the concepts generated from same seed prompt belongs to
the same distribution across multiple runs.

4.5. How Are Generated Concepts Useful to Engineers?

To verify the usability of the generated concepts, we con-
ducted a human study with 19 ML engineers. We first
provided them the concept generated by our method for
“zebra” class and ask them to choose relevant concepts for
GoogleNet to classify a zebra without telling them that all
shown images are actual concepts. All the engineers se-
lected the “stripes” concept to be important while some also
selected the “mud” concept. But most missed the “running”
concept. This indicates that engineers cannot think of all the
important concepts that gets the neural network activated. In
the next step, we showed engineers the concept-explanation
mapping on a random input image (similar to Fig. 5) and
asked them if the provided explanation helped them un-
derstand the model better and if it provided new insights.
94.7% of the engineers agreed that the explanation helped in
better understanding the neural network and 84.2% agreed
that it provided new insights. This result shows that the
new concepts discovered by our proposed method help engi-
neers discover new patterns that they did not imagine before
(More details in Appendix C.10).

We now demonstrate how engineers can use these newly
revealed information about concepts to improve the model.
As identified by RLPO, for Tiger class, the base GoogleNet
model gives equal importance to both foreground (high-
lighted by concepts “orange black and white” and “or-
ange and black”) and background (highlighted by concepts
“blurry”) in the input (see Fig. 12 in Appendix C.3 for exam-
ple explanations). As shown in Fig. 7, when we fine-tune
the GoogleNet on images of Tiger-related concepts, we see
that the fine-tuned model now focuses more on tiger than the
background while maintaining a similar accuracy (65.6%).
Details in Appendix C.8.

Fine-tuning based 
on concepts 

related to Tiger

Figure 7: Usefulness of RLPO. Fine-tuning GoogleNet
based on generated concepts for the Tiger class.

4.6. Can concept Generation Help in Understanding
Model Bias?

Apart from generating actionable concepts, our proposed
framework can also be used to identify spurious correlations
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or undesirable biases learned by the model during train-
ing. To demonstrate this, we applied RLPO to a ResNet-18
classifer trained on the CelebA dataset (Liu et al., 2015)
for “Blonde” versus “Not Blonde” classification, a task
with known gender biases (De Coninck et al., 2024; Subra-
manyam et al., 2024; Chen et al., 2023). We adapted our
seed prompts to include higher-level semantic about gender,
and as shown in Fig. 8, RLPO showed that concepts repre-
senting “female face” were more important for the model
for the “Blonde” class. Additionally, we see that for the
“male face” seed prompt, the generated concepts started gen-
erating males with long blonde hair, further narrowing down
on the fine-grain concepts the model is looking at (i.e. long
and blonde hair).

Figure 8: (a) TCAV scores obtained from “Male face” and
“Female face” seed prompt, highlighting the importance of
female gender over male. (b) Sample generated concepts
for “Female face” and “Male face” seed prompt.

4.7. Can RLPO Generalized Beyond Images?

To demonstrate the generalizability of the proposed algo-
rithm, we extended RLPO to generate words to explain
sentiment analysis in NLP. We made use of Mistral-7B In-
struct model to generate synonyms of seed prompts and
optimized the language model based on preferences from
TextCNN model pre-trained on IMDB sentiment dataset.
Fig. 9 highlights relevant words with their importance score
in the input. More details are provided in Appendix C.7.

5. Limitations and Conclusions
In this work, we introduced Reinforcement Learning-based
Preference Optimization (RLPO) to automatically articulate
concepts that explain the internal representations of neural
networks. We demonstrated how RLPO can guide a vision-

The customer service team was very helpful and responsive when I reached out for 

support. They were patient and provided clear instructions on how to address 

some of the issues, which improved the situation slightly.

0.7

0.3 0.4

0.7

Positive Prompt

Generated Concepts
Customer: client, purchaser, consumer, user, shopper

Team: group, crew, unit, squad, alliance, partnership

Helpful: supportive, useful, valuable, beneficial, productive 

Clear: transparent, unclouded, open, lucid, distinct

Address: speak, contact, communicate, interact, approach

Issues: problems, concerns, matters, challenges, disputes

0.4 0.3

Figure 9: We use sentiment analysis in NLP to show the
generalizability of RLPO. Concepts tend to be synonyms
and the numbers indicate the TCAV scores.

language generative model to navigate an infinitely large
concept space, addressing the challenge of manually curat-
ing concept image sets. However, our approach also suffers
from some limitations. Firstly, while RLPO is designed
to iteratively refine these prompts and can drift towards
more model-relevant abstractions beyond the original scope,
the quality and nature of the initial seeds can influence
the search trajectory and efficiency. Increasing the number
of seeds helps generate better concepts. Additionally, the
quality and diversity of the generated concepts are also influ-
enced by the generative model being used. The pre-training
data of such models can introduce biases, and their capacity
to accurately render certain concepts. While this depen-
dency is not unique to generative approach, retrieval-based
methods are similarly constrained by available data and hu-
man cognitive biases, explicitly addressing and potentially
mitigating these inherited biases in the context of XAI is an
important direction.

The concepts that our algorithm generates can be diverse as
it tries to reveal the concepts inherent to the f(·), making it
less domain-specific (e.g., for a medical application, there
is a chance it might generate non-medical images if the f(·)
activations get excited for non-medical data). As a future
extension, we aim to input preferences from both TCAV and
domain experts while optimizing, making generated expla-
nations even more aligned to specific applications. Despite
these challenges, our results demonstrate how to leverage
the strengths of visual representations and adaptive learning
to provide intuitive and effective solutions for understanding
complex, high-level concepts in neural networks.

Impact Statement
Our paper is a generic algorithmic contribution, and we do
not foresee direct negative societal impacts. As a positive
trait, our approach can potentially be used to understand and
explain model bias.
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Appendix
In this appendix, we describe the theorems, algorithm, metrics, experimental setup and additional results.

A. Definition, Theorems, and Proves
Comparative Overlap of Human-Interpretable and Generative Model Concepts in Neural Understanding Tasks (f(·)).
We formalize this with reference to Fig. 1.
Theorem 1. Let the set of human-interpretable concepts that the f(·) has learned be CN , and the concept sets human
collected, retrieved though segmentation, and generated using a generative model be CH , CR, and CG, respectively. Then,
|CG ∩ CN | ≥ |CH ∩ CN | ≥ 0 and |CG ∩ CN | ≥ |CR ∩ CN | ≥ 0.

Proof sketch. CH ⊆ CG and CR ⊆ CG =⇒ |CH ∩ CN | ≥ 0 and |CR ∩ CN | ≥ 0

Proof of Theorem 1.

Definition 3. Let CH , CR, and CG denote the sets representing human-interpretable concepts, retrieved concepts, and
concepts generated by a generative model, respectively. We define the relationships between these sets as follows:

CH ⊆ CG and CR ⊆ CG.

Property 1. For any set Ci, where i ∈ {H,R,G}, it holds that:

∅ ⊆ (Ci ∩ CN ) ⊆ (Ci ∪ CN ),

where CN represents the set of concepts learned by f(·).

For any two sets A and B, the size of their intersection |A ∩ B| is non-negative since it represents the number of elements
common to both sets. Thus, we have:

|CH ∩ CN | ≥ 0 and |CR ∩ CN | ≥ 0. (4)

Given Definition 3 and Property 1, we assume the following subset relationships between the sets:

|CH ⊆ CG| and |CR ⊆ CG|.

Case 1. Since CH ⊆ CG, any element x ∈ CH is also in CG. Therefore, any element x ∈ CH ∩ CN is also in CG ∩ CN .
Hence,

CH ∩ CN ⊆ CG ∩ CN .

Case 2. Similarly, since CR ⊆ CG, any element x ∈ CR is also in CG. Therefore, any element x ∈ CR ∩ CN is also in
CG ∩ CN . Hence,

CR ∩ CN ⊆ CG ∩ CN .

From Case 1 and Case 2, since CH ∩ CN and CR ∩ CN are subsets of CG ∩ CN , it follows that:

|CH ∩ CN | ≤ |CG ∩ CN | (5)

and
|CR ∩ CN | ≤ |CG ∩ CN | (6)

Combining Eqs. 5 and 6 with the non-negativity established in Eq 4, we have:

|CG ∩ CN | ≥ |CH ∩ CN | ≥ 0 (7)

and
|CG ∩ CN | ≥ |CR ∩ CN | ≥ 0. (8)
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The Effects of DQN-PO based Concept Space Traversal. We now formalize what concepts the DQN has learned, with
reference to Fig. 2.

Theorem 2. When traversing in the concept space, with each reinforcement learning step,

1. Case 1: Moving from a proxy state towards an explainable state monotonically increases the reward.
2. Case 2: Moving from an explainable state towards the target class does not increase the reward.

Proof sketch. Obtain the rewards before and after η and compute the difference in reward for each segment.

Property 2. As ξ increases, the reward function proportionally amplifies, particularly enhancing the significance of
outcomes near tη , which marks the point beyond which TCAV scores are always 1.

Proof of Theorem 2. WLOG, let the TCAV score, Sc,m,t, for concept c and class m at time t be St. The reward function is
defined as (Section. 3.3),

R(t, a) = K · St · f(t), (9)

for a constant K and a factor,

f(t) =

{
ξ · t if t ≤ tη,

ξ0 otherwise,
(10)

for positive parameters ξ and ξ0.

Case 1: Considering the difference in reward function at time t when t ≤ tη ,

R(t+ 1, a)−R(t, a) = K · St+1 · f(t+ 1)−K · St · f(t) (11)
= K · St+1 · ξ · (t+ 1)−K · St · ξ · t
= K · ξ · (St+1 · (t+ 1)− St · t)
= K · ξ · (t(St+1 − St) + St+1)

From (St+1 − St) =
h(t+ 1)− h(t)

(t+ 1)− t
) = h′(t), (12)

R(t+ 1, a)−R(t, a) = K · ξ · (t · h′(t) + St+1). (13)

Since,

1. St is monotonically increasing for t ≤ tη =⇒ h′(t) > 0 and
2. St ∈ [0, 1],

R(t+ 1, a)−R(t, a) ≥ 0. (14)

Case 2: Considering the same difference in rewards for t ≥ tη .

R(t+ 1, a)−R(t, a) = K · St+1 · f(t+ 1)−K · St · f(t) (15)
= K · St+1 · ξ −K · St · ξ0
= K · ξ0 · (St+1 − St)

Given that St and St+1 are both outcomes generated from a generative model fine-tuned for a particular concept, St+1−St ≈
0 in response to the same action. Hence,

R(t+ 1, a)−R(t, a) ≈ 0. (16)
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Theorem 2 characterizes the how TCAV scores (i.e., proportional to rewards) are increased up to η. As a result, as shown
in Theorem 3, if the generator moves close to the image class, then the explainer generates images similar to the class.
Therefore, by varying η we can generate concepts with different levels of abstractions.

Theorem 3. As we go closer to the concept class, |CG ∩ CN | becomes larger for generated concepts CG and f(·)’s internal
concepts, CN .

Proof sketch. Measure the sensitivity difference between Sc1,m,t and Sc2,m,t as t→∞.

Proof of Theorem 3. At each time step t, two sets of samples are generated near CG(t) using a generative function g(.),
denoted by s1(t) = g(CG(t)) and s2(t) = g(CG(t)). We define the sensitivity of these samples to the concept class using a
measurable attribute, σ(s), that quantifies the alignment or closeness of a sample s to the target concept class.

The optimization step at each time step selects the sample with higher sensitivity, denoted by:

sopt(t) = argmax{σ(s1(t)), σ(s2(t))}

The sample with the lower sensitivity is given by

smin(t) = argmin{σ(s1(t)), σ(s2(t))}

Sample sopt(t) and smin(t) is then used to adjust CG, increasing its overall sensitivity to the concept class. Consequently, the
sequence of CG over time evolves as:

CG(t+ 1) = (CG(t) ∪ sopt(t)) \ smin(t)

This process incrementally increases the sensitivity of CG(t+ 1) to the concept class, driven by the iterative inclusion of
optimized samples.

Given that CN is already close to the target concept class, the movement of CG through this optimization process indirectly
steers CG towards CN . As CG evolves in this manner, the overlap between CG and CN naturally increases, leading to:

lim
t→∞

|CG(t) ∩ CN | =⇒ lim
t→∞

CG(t) = CN .

This results from CG(t) containing more elements that exhibit higher sensitivity similar to those in CN , thereby increasing
their intersection.

A.1. Definitions

Entropy: Entropy quantifies the uncertainty or randomness inherent in a probability distribution. For a discrete random
variable X with possible outcomes x1, x2, . . . , xn and corresponding probabilities P (X = xi) = pi, the entropy H(X) is
defined as: H(X) = −

∑n
i=1 pi log pi, where pi represents the probability of outcome xi.

Odds: Odds describe how many times an event is expected to happen compared to how many times it is not. They are often
used in gambling, sports betting, and statistics. The odds of an event with probability p (where p is the probability of the
event happening) are calculated as: p

1−p .

Exploration Gap (EG): quantifies the proportion of missed optimal actions, defined as 1− Accuracy, highlighting how
humans frequently miss the most optimal actions when presented with generated concepts.

Average Normalized Count (ANC): The ANC is a measure of the central tendency of the normalized action frequencies
within a distribution. It provides insight into how the actions are distributed relative to the overall frequency distribution.
A high ANC indicates that, on average, the action frequencies are relatively large, meaning that certain actions are more
dominant. Conversely, a low ANC suggests that the actions are low and only a few high frequent actions are present. Given
by 1

n·max(f)

∑n
i=1 fi, where fi is the frequency of action i.

Inverse Coefficient of Variation (ICV): A standardized measure of concentration, calculated as the ratio of the mean to the
standard deviation: µ

σ . It represents how many standard deviations fit into the mean.
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Feedback Cost: Feedback Cost refers to the resource(GPU) expense associated with obtaining feedback during the training
of the model.

Execution Time: Execution time refers to the total time taken by a model or algorithm to complete its task from start to
finish. This includes the time for data processing, model computation, and generating outputs.

B. Methodology
B.1. Machine Learning Models We Use

Neural Network Under Test (f(·)): We test RLPO for all the different classification models given below.

1. GoogleNet: We utilized a pretrained model from PyTorch torchvision pretrained models with weights initialized from
GoogLeNet Weights.IMAGENET1K V1.

2. InceptionV3: We utilized a pretrained model from PyTorch torchvision pretrained models with weights initialized from
Inception V3 Weights.IMAGENET1K V1.

3. Vision Transformer (ViT): We utilized a pretrained model from PyTorch torchvision pretrained models with weights
initialized from ViT B 16 Weights.IMAGENET1K V1.

4. Swin Transformer: We utilized a pretrained model from PyTorch torchvision pretrained models with weights initialized
from Swin V2 B Weights.IMAGENET1K V1.

5. TextCNN sentiment classification model: We utilized a pretrained model from Captum library. The model was trained
on IMBD sentiment dataset.

TCAV Logistic Model: We utilized a logistic regression model to address classification tasks in TCAV instead of the default
SGD (Stochastic Gradient Descent) classifier. This decision was based on our observation that the SGD classifier produced
high variance TCAV (Testing with Concept Activation Vectors) scores, which indicated inconsistent model behavior across
different runs. As demonstrated in Table 7, the standard deviations for SGD-derived scores are frequently larger than
those obtained with the logistic model, underscoring the latter’s improved stability. We configured the model to perform a
maximum of 1000 iterations (max iter=1000).

Table 7: TCAV Scores (Concept/Random) for Different Models, Layers, and Classifiers. Scores are presented as mean ±
standard deviation across 5 runs with random seed. Concepts used in these experiments are from the ones provided by the
authors of TCAV paper.

Model Layer Stripes/Random TCAV Score Dots/Random TCAV Score

SGD Logistic SGD Logistic

GoogleNet inception3a 0.662± 0.03 / 0.338± 0.03 0.67± 0.00 / 0.33± 0.00 0.36± 0.05 / 0.64± 0.05 0.33± 0.00 / 0.67± 0.00
inception4e 0.992± 0.01 / 0.008± 0.01 1.00± 0.00 / 0.00± 0.00 0.01± 0.007 / 0.99± 0.007 0.00± 0.00 / 1.00± 0.00

ResNet50 layer3 0.796± 0.02 / 0.204± 0.02 0.78± 0.00 / 0.22± 0.00 0.078± 0.07 / 0.922± 0.07 0.00± 0.00 / 1.00± 0.00
layer4 1.000± 0.00 / 0.000± 0.00 1.00± 0.00 / 0.00± 0.00 0.60± 0.54 / 0.40± 0.54 0.00± 0.00 / 1.00± 0.00

Stable Diffusion v1-5 with LoRA: We used our base generation model as SD v1-5 and updated its weights using LoRA
during preference optimization step. This version of SD was finetuned from SD v1-2 on “laion-aesthetics v2 5+” dataset
with 10% drop in text-conditioning for better CFG sampling. In our experiments, we kept LoRA rank to 8 with a scaling
factor of 8 and initial weights were defined from a gaussian distribution. We only targeted the transformer modules of U-Net
in the SD architecture.

DQN: We use a DQN with specific parameters tailored to effectively navigate a vast search space. We utilized a small buffer
size of 100, which limits the number of past experiences the model can learn from, encouraging more frequent updates. The
exploration rate was set at 0.95, prioritizing exploration significantly to ensure thorough coverage of the search space. The
batch size was configured to 32. We set the discount factor to 0.99 and the update frequency was set at every four steps. The
model updates its parameters with a the soft update coefficient of 1.0. Gradient steps was set to 1 indicating a single learning
update from each batch, and gradient clipping was capped at 10 to prevent overly large updates.

BLIP: We utilize the Bootstrapped Language Image Pretraining (BLIP) model for the task of Visual Question Answering
(VQA). This model, sourced from the pre-trained version available at ’Salesforce/blip-vqa-capfilt-large’, is designed to
generate context-aware responses to visual input by leveraging both image and language understanding. The large variant of
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the BLIP model is fine-tuned for VQA, allowing it to effectively interpret and answer questions based on the visual content
provided.

B.2. RLPO Algorithm

Algorithm 2 presents the detailed version of the algorithm introduced in Section 3, Algorithm 1.

Algorithm 2 DQN Algorithm with DPO and Adaptive Reward

Input: Set of test images, f(·)
Initialize Q-network Qθ(s, a) with random weights θ
Initialize replay buffer D and adaptive parameter ξ ← 0.1
for each episode do

for each time step t do
Observe state st and select action at based on Q (ϵ-greedy)
Execute at and generate 10 images, divided into two groups G1 and G2

Evaluate TCAV scores TCAV 1 and TCAV 2

if max(TCAV 1, TCAV 2) ≤ 0.7 then
Update policy to favor higher TCAV group and perform DPO
Update ξ ← min(1, ξ + increment)

else
Set ξ ← 1

end if
Compute reward rt = ξ ·max(TCAV 1, TCAV 2)
Store transition (st, at, rt, st+1) in D
Sample a mini-batch from D
for each sampled transition (si, ai, ri, si+1) do

Compute target yi = ri + γmaxa′ Qθ′(si+1, a
′)

end for
Compute loss L(θ) = 1

N

∑N
i=1(yi −Qθ(si, ai))

2

Perform a gradient descent step to update θ
Periodically update target network: θ′ ← τθ + (1− τ)θ′

end for
end for
Output: Set of concept images

B.3. Preprocessing for Generating the Action Space

Steps not discussed in Section 3.2.

Each patch from the test images is passed to the VQA model to extract relevant and useful information about the correspond-
ing class. In this study, we choose BLIP (Li et al., 2022) as our VAQ model. We posed a set of targeted questions to the
VQA model, aiming to gain insights into the class-specific features represented in the patches. The questions are designed to
probe various aspects of the image patches, helping the model focus on class-defining attributes.

1. “What is the pattern in the image?”
2. “What are the colors in the image?”
3. “What is the background color of the image?”
4. “What is in the background of the image?”
5. “What is the primary texture in the image?”
6. “What is the secondary texture in the image?”
7. “What is the shape of the image?”

We then remove stop words and duplicates from the generated responses using lemmantizing and perform a cross-similarity
check using CLIP between all the unique words and further filtered words which are more than 95% similar. To further
select most relevant keywords to the class images, we perform a VLM check using class images and the extracted keyword
to get the softmax score of how much the keyword and image are related. This score is then averaged over all the class
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“What is the pattern in the image?”
“What are the colors in the image?”

   ……….
“What is the shape of the image?”

Questions

VQA

stripes
black and white

green black and white
dry grass

tail
…..
mud

speckled
fence
mane

Class Images
3 x 3 Patch

1. Remove duplicates
2. Remove class name

3. Remove similar words
(cosine similarity < 0.9)
4. Select top 20 frequent 
words

Seed Prompts

Figure 10: Seed prompt pipeline

images and this average is use to sort the keywords. Now, from the sorted keywords, we select top 20 keywords as our RL
action space. The cross-similarity and VLM check are inspired from (Zang et al., 2025) where they used a similar filtering
setup to remove potentially useless concepts.

B.4. Exploration of Random Gibberish Prompts as Seed Prompts

In this experiment we don’t use a VQA to get seed prompts. We choose a random list of incoherent prompts, example shown
in Fig. 11. We found that for these prompts it takes a really long time to get some meaningful explanation and in most cases
lead to random generation, thus showing importance of starting from good proxy concepts.

Gibberish Seed Prompts

1. dKgN MTW8bvbxB6aW1L2TfTuTYZK3He0urbEEmclEpY
2. se-L8fPe19ZzUmuM uDYVYusFnYtNZeFM1YqXdE57Y7OMD3Z80cKwLo5
3. CzKLTlZZnWHjtBn80wIfC z8O
4. mhtxqyH2FBEC
5. SWEC6Wlqfpqaz PQjoGrxIuzm m2ua8oGJySIeG2NqCG9BBvU9Eerj7wheWk7j-t

Figure 11: Sample gibberish seed prompt used with RLPO on GoogleNet classifier to generate concepts.

B.5. Preference Optimization Update for State Space

Steps not discussed in Section 3.4.

The candidate concepts serve as the initial states for the RL agent. From these initial states, the agent takes actions
a ∈ Keywords that leads to multiple subsequent possible states using g(.). These states are then grouped, and the group’s
sensitivity is compared against Inputs of f(·) using TCAV scores. A higher TCAV score suggests higher sensitivity,
indicating that the group is more aligned with f(·)’s inputs.

We employ preference optimization over the grouped states to guide states towards explainable concepts. To prevent the
model from skipping over explainable states and directly reaching the input domain, we introduce a threshold that limits the
application of preference optimization at each step as shown in equation 17.
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Given two groups of samples G1 and G2 with their average TCAV scores TCAV 1 and TCAV 2 :

if max(TCAV 1, TCAV 2) ≤ 0.7, update π to favor the group with higher TCAV . (17)

To optimize g(.) to find better proxies, for each step in the environment we utilized average TCAV scores TCAV 1 and
TCAV 2 from G1 and G2 to decide between preferred and unpreferred concepts. Lets say TCAV 1 ≻ TCAV 2, than we
optimize g(.) over the sample S defined as S = {(a, xg1

0 , xg2
0 )}, where xg1

0 and xg2
0 are the sample points from the groups

on action a. We optimize g(.) using objective 18 to get a new optimzed g′(.) (Wallace et al., 2024).

L(θ) =− E(xg1
0 ,xg2

0 )∼S,t∼U(0,T ),xg1
t ∼q(xg1

t |xg1
0 ),xg2

t ∼q(xg2
t |xg2

0 ) log σ (−βTω(λt)(
∥ϵG1 − ϵg′(.)(x

G1
t , t)∥22 − ∥ϵG1 − ϵg(.)(x

G1
t , t)∥22

−
(
∥ϵG2 − ϵg′(.)(x

G2
t , t)∥22 − ∥ϵG2 − ϵg(.)(x

G2
t , t)∥22

)))
(18)

where x∗
t = αtx

∗
0 + σtϵ

∗, ϵ∗ ∼ N (0, I) is drawn from q(x∗
t |x∗

0). λt = α2
t /σ

2
t is the signal-to-noise ratio, and ω(λt) is

weighting function (constant in practice).

B.6. TCAV Setting for Different Models

We tested different models on different layers and classes and the summary of our setting across different models is described
in table 8.

Table 8: TCAV setting across different models

Models Layers ImageNet Classes

GoogleNet inception4e layer Goldfish, Tiger, Zebra & Police Van
InceptionV3 Mixed 7c layer Goldfish, Tiger, Lionfish & Basketball

Vision Transformer (ViT) heads layer Goldfish, Golden Retriever, Tiger & Cab
Swin Transformer head layer Goldfish, Jay, Siberian husky & Tiger

C. Experiments
C.1. Computing Resources

The experiments were conducted on a system equipped with an NVIDIA GeForce RTX 4090 GPU, 24.56 GB of memory,
and running CUDA 12.2. The system also featured a 13th Gen Intel Core i9-13900KF CPU with 32 logical CPUs and 24
cores, supported by 64 GB of RAM. This setup is optimized for high-throughput computational tasks but the experiments
are compatible with lower-specification systems.

C.2. Human and LLM-Based AI Feedback Mechanisms

We test other feedback mechanism in RL by replacing the XAI-TCAV feedback with AI and Human feedback’s. Herer we
discuss the experiental setup and configuration for both experiements.

AI Feedback: GPT-4 is leveraged to evaluate the explanatory power of image sets by focusing on concepts related to a target
class, a method that aligns with the growing trend of incorporating AI-driven feedback (Bai et al., 2022). This approach
involves sending a structured prompt to an LLM, asking it to score how well two sets of images explain a target class using
a specified concept. The process involves the following.

1. Image Encoding: The images from two sets (concept1 and concept2) are first converted into a base64 format to ensure
they can be transmitted via the request as encoded strings.

2. Structured Prompt: A detailed and specific prompt is crafted for the LLM. It asks the model to assess the quality of
explanation each image set provides for a particular class through the lens of a specific concept. The prompt used is
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“Please evaluate each of the following sets of images for how well they explain the class {class name} via the concept
{concept name}. For each set, provide a numerical score between 0 and 1 (to two decimal places)” The prompt clearly
defines how the model should respond, asking for a numerical score between 0 and 1, where:
(a) 0 indicates that the image set does not explain the class at all via the concept.
(b) 1 indicates that the image set perfectly explains the class via the concept.

3. LLM-Based Scoring: Once the prompt is sent to the LLM, it evaluates the image sets and provides scores based on its
learned knowledge and understanding. The response is parsed to extract the scores for each set of images.

Human Feedback: In this experiment, eight computer science majors provided live feedback after each step of a rein-
forcement learning process, leveraging their prior knowledge of reinforcement learning with human feedback (RLHF)
mechanisms (Christiano et al., 2017). The feedback from all participants was averaged to serve as the reward for each step
in the RL process. Given the abstract nature of the initial concepts, participants needed to take time to thoughtfully assess
each step, which contributed to a lengthier feedback cycle.

C.3. Additional Results and Analysis

To validate our method for its ability to generate concepts, we tested it with different models and classes. We started it on
traditional models, GoogleNet and InceptionV3, and then extended it to transformer-based models, Vision Transformer
(ViT) and Swin Transformer, pre-trained on ILSRVC2012 data set (ImageNet) (Krizhevsky et al., 2017). We show additional
plot in various classes shown in Fig 12,13,14,15,16.

Figure 12: Explanation plot of Tiger classification by GoogleNet from RLPO.

'black white and yellow' concept (1.000)

'square' concept (1.000)

'yellow and white' concept (0.800)

'yellow black white red' concept (0.800)

Figure 13: Explanation plot of Cab classification by ViT from RLPO.
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'background' concept (1.000)

'banner' concept (1.000)

'basket' concept (0.600)

Figure 14: Explanation plot of Basketball classification by InceptionV3 from RLPO.

'zebra' concept (1.000)

'ship' concept (1.000)

'bumpy' concept (0.800)

'feather' concept (0.800)

Figure 15: Explanation plot of Lionfish classification by InceptionV3 from RLPO.

'yellow' concept (1.000)

'fuzzy' concept (1.000)

'curled up' concept (1.000)

'yellow and brown' concept (1.000)

'white brown and green' concept (0.600)

Figure 16: Explanation plot of Golden Retriever classification by ViT from RLPO.

C.3.1. CUMULATIVE REWARDS

The cumulative rewards during training for GoogleNet and InceptionV3 is shown in Fig. 17. For ViT and Swin Transformer
it is shown in Fig. 18. This figure illustrates the steady accumulation of rewards over time as they interact with the
reinforcement learning environment. All models demonstrate a steady increase in cumulative rewards, the classes with
higher reward peak reaches its explinable state faster.
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Figure 17: Cumulative rewards on traditional models.
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Figure 18: Cumulative rewards on transformer models.

C.3.2. ACTION SELECTION OPTIMIZATION DURING RLPO TRAINING

As shown in Fig. 19, during training with multiple combinations of seed prompts, we observe that the RL agent initially
explores various action combinations. However, as training progresses, individual actions become more optimized due to
preference optimization (PO). This leads the agent to prefer fewer action combinations, since just choosing one or two
actions makes the agent reach an explainable state.

C.3.3. CONCEPT HEATMAP

To determine the relationship between generated concepts and test images, we made use of CLIPSeg transformer
model (Lüddecke & Ecker, 2022). We passed generated concepts as visual prompts and test images as query images
into the model and it returns a pixel-level heatmap of the probability of visual prompt in the query image. Fig. 20, 21
showcases some examples on concept heatmap indicating the presence of the concept in the image.

C.3.4. C-DELETION

The central idea behind c-deletion in explainability is to identify and remove parts of the input context that are not crucial
for the decision-making process, allowing for clearer insights into how the model arrives at its predictions or actions.
C-deletion evaluations assesses the impact of removing certain contextual inputs (features, variables, or states) on a model’s
performance as shown in Fig. 24.
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Figure 19: Combined actions (multiple keywords) count over training time

Figure 20: Van class with “white blue and yellow”, Lion fish class with “zebra” seed prompt.

C.4. Abstract Concepts

While generating concepts with RLPO, we can observe the progression of output concepts produced by the SD model.
As shown in Fig. 25, applying RLPO to the seed prompt “zoo” on the tiger class reveals different levels of abstraction.
These abstractions provide insight into what the model prioritizes when identifying a tiger—progressing from a four-legged
orange-furred animal to one with black and white stripes, and finally to an orange-furred animal with stripes and whiskers.
We obtain concepts at varying levels of abstraction by adjusting η, though our method currently cannot determine η to
achieve a specific abstraction level.

C.5. Qualitative Comparison Between With and Without RL Preference Optimization

To demonstrate the usefulness of RL based preference optimization, we compared the output generated from the diffusion
model fine-tuned using RL with the one fine-tuned iteratively over every seed prompt (brute-force). As shown in Fig. 26, if
we don’t use RL to optimize, we see that stripes seed does not converge to a good quality concept compared to the one
obtained using RL for the same time budget. The main reason for that is, the RL agent learns over time what trajectories are
worth optimizing and drops the less explainable trajectories, highlighting the need for using RL agent while optimization.

C.6. Qualitative Comparison With Other Popular XAI Techniques

We compare the output generated by other popular XAI techniques such as LIME and GradCam with ones generated by
RLPO. As shown in Fig. 27, we can see that other methods just explains where the model is looking at whereas our approach
also explains what type of features is the model focuses on.
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Figure 21: Basketball class with “basket” seed prompt, Tiger class with “orange black and white” seed prompt.

Figure 22: The figure shows c-deletion taking place for different images from “tiger” class over time for “orange black and
white” seed concept.

Figure 23: The figure shows c-deletion taking place for different images from “cab” class over time for “yellow and white”
seed concept.

C.7. RLPO in Sentiment Analysis

We extended our method to the NLP domain, successfully identifying which parts of the input contribute to specific outputs.
For sentiment analysis, a binary classification problem, we present results for both positive and negative classes.

A list of positive and negative prompts was created, analogous to class images in traditional image classification tasks.
Random prompts, similar to those in Fig. 11, were used to simulate random classes. Every word in the prompt, excluding
stop words, along with its synonyms, was treated as a concept for this experiment. Synonyms were generated using the
Mistral-7B Instruct model, serving a role comparable to the image generation model in image-based settings. We observed
that multiple words were identified, along with their influence on the overall prompt, for both classes (positive and negative)
as shown in Fig. 9 and Fig. 28.
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Figure 24: C-deletion. Removing concepts over time to measure the reliability. The colored numbers indicate the area under
the curve (the lower the better).

Seed Prompt
“zoo”

Timestep:
Prediction:

0

“Oxcart”

10

“Sorrel”

20

“Ox”

30

“Tiger”
Tiger Class

Figure 25: Different levels of abstraction for the “Tiger” class on the GoogleNet classifier are illustrated. The generated
image starts as a random “zoo” image and gradually transitions to images with tiger-like features. Observe that the seed
prompt “zoo” becomes more animal-like at t=10, gains more stripes at t=20, develops tiger-specific colors at t=30, and
progressively refines into a tiger image. The model’s prediction also evolves, starting from a random classification of “oxcart”
to confidently identifying the generated concept as “tiger”.

C.8. Effects of Fine-Tuning

When fine-tuning a model, the optimization process updates its weights through gradient-based methods, causing shifts in
the concepts (Fig. 7) it learns. These weight adjustments modify how the model attends to different regions or patterns in an
image, leading to changes in the internal activation maps and the conceptual understanding of the input. As the model learns
new concepts or refines existing ones, it adjusts its feature extraction and decision-making processes to better align with the
specific objectives of the fine-tuning task, thereby altering the way it interprets and generates outputs.

To demonstrate this we conducted an experiment. In this experiment, we choose a pretrained GoogleNet classifier for the
Tiger class whose important seed prompts were ‘orange black and white’, ‘orange and black’, and ‘blurry image’ with
TCAV scores of 0.66, 0.66, and 0.62, respectively. Out of these seed prompts, ‘orange black and white’ and ‘orange and
black’ highlight the tiger pixels while ‘blurry image’ seed prompt highlights the background pixels (see Fig. 12). This tells
us that in order to classify a tiger, GoogleNet looks at both the foreground and background. Now, the engineers want the
classifier to classify the tiger based on tiger pixels, not its background (note: from the classical Wolfe-Husky example in
LIME (Ribeiro et al., 2016), we know the spurious correlation of background).

To this end, we generated 100 tiger images based on concepts related to ‘orange black and white’ and ‘orange and black’
using a separate generative model and fine-tuned our Googlenet model. Running RLPO on this fine-tuned model revealed
that the model learned some new concepts such as ‘whiskers’ and also revealed that previous concepts such as ‘orange black
and white’ and ‘orange and black’ are now more important with TCAV scores of 1.0 and 1.0, respectively. This means that
the classifier is now only looking at tiger pixels, not the background. Dataset samples are shown in Fig. 29.
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“Stripes” concept without RL

“Stripes” concept with RL

Figure 26: “Stripes” concept generation from SD models optimized with and without RL

C.9. Human Survey: Understanding Human Capabilities

The survey involved 50 participants, each of whom was shown 10 class images along with two concept options as shown in
Fig. 30: one derived from a retrieval-based method and the other generated using RLPO. The participants were divided into
Laymen and Experts.

1. Expert: Computer science graduates who are familiar with the concept of explainability and have a working knowledge
of AI or machine learning systems.

2. Laymen: Individuals without expertise in computer science, AI, or explainability, representing the general public’s
perspective.

C.10. Human Study: Usability

We conducted a human study to evaluate the usefulness of the provided explanations, involving 19 Machine Learning (ML)
engineers. Fig. 31 shows the survey used while conducting the human study. This study was approved by the Institutional
Review Board of Arizona State University (IRB ID STUDY00021561).
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Class Images LIME GradCam

Goldfish 
Class

Tiger Class

Polica Van 
Class
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Figure 27: Comparison of concepts identified by different methods. RLPO can show the correspondences between test
image and different concepts.

The highly anticipated movie turned out to be a colossal 

disappointment, plagued by a weak and incoherent plot, 

unconvincing performances by the lead actors, lackluster special 

effects, and numerous continuity errors, which collectively made 

it one of the worst cinematic experiences in recent memory, 

leaving audiences and critics alike utterly dissatisfied and 

frustrated.

1.0

1.0

0.3 0.0

Negative Prompt Generated Concepts

Effects: outcomes, consequences, impact, repercussions

Critics: reviewers, criticisms, commentators, pundits

Actors: performers, artists, thespians, players, entertain

Movie: film, motion, picture, feature, show, production

Lackluster: apathetic, bland, dull, uninspired, insipid

Turned: faced, aimed, pivoted, swiveled, rotate, reversed

0.60.7

Figure 28: Generated concepts explain why a given text is classified as a negetive sentiment.

Original Training dataset (from ImageNet):

New fine-tuning dataset (generated through Stable Diffusion 2):

Figure 29: Dataset samples used to fine-tune GoogleNet classifier on Tiger class.
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Figure 30: A screenshot from our human survey with instructions and a sample question.
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Figure 31: Screenshots from our human survey with sample questions to validate usability.
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