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ABSTRACT

Anomaly detection in dynamic graphs is essential for safeguarding complex sys-
tems such as social, financial, and communication networks. A fundamental
challenge lies in the entanglement between node influence and anomaly signals.
Node influence—measured by metrics such as PageRank—fluctuates naturally
over time, yet existing methods often conflate these benign variations with anoma-
lous behaviors, leading to false alarms or missed detections. This paper proposes
DIDAN, a framework that distinguishes influence dynamics from true anomalies
by separating influence-related and anomaly-related features in dynamic graphs.
DIDAN integrates three components: (1) a Temporal Information Propagator
that learns stable node representations by modeling local and global temporal
dependencies; (2) an Anomaly Feature Synthesizer that alleviates severe class
imbalance by generating diverse synthetic anomalies with a flow-based model;
and (3) an Adversarial Influence-Decoupled Detector that enforces decoupling
through adversarial training. Experiments on multiple real-world dynamic graph
benchmarks show that DIDAN consistently outperforms state-of-the-art methods,
improving detection accuracy, robustness, and adaptability. Notably, ROC-AUC
scores increased by 5.71%, 27.73%, and 1.91% on the Wikipedia, Reddit, and AL-
PHA datasets, respectively, highlighting the effectiveness of influence decoupling
and anomaly augmentation in dynamic graph anomaly detection.

1 INTRODUCTION

Anomaly detection in dynamic graphs is of fundamental importance for ensuring the security, sta-
bility, and reliability of complex real-world systems such as financial transaction networks, commu-
nication infrastructures, and online social platforms Kim et al. (2024); Li et al. (2023). Detecting
abnormal nodes or edges enables applications ranging from fraud prevention to intrusion detection.
However, the dynamic and evolving nature of graphs poses significant challenges: nodes naturally
vary in their connectivity and activity over time, and naive methods may misinterpret these benign
variations as anomalies. As networks grow and adapt, nodes and edges frequently undergo natural
fluctuations in connectivity, interaction intensity, and activity patterns. Such variations often arise
from role dynamics or structural evolution driven by mechanisms like preferential attachment Qiao
et al. (2025). Consequently, naive anomaly detection approaches that rely solely on deviations in
node connectivity or embedding trajectories may misinterpret benign variations as anomalies, lead-
ing to high false positive rates. At the same time, subtle but genuinely anomalous behaviors may
remain hidden within the complex temporal dynamics, resulting in missed detections.

Existing methods for dynamic graph anomaly detection typically rely on learning dynamic node rep-
resentations and identifying deviations as anomalies. Representative approaches include TGAT (Xu
et al., 2020a), which leverages self-attention with time encoding to model temporal dependencies;
GDN (Ding et al., 2021), which uses a limited number of labeled anomalies to guide representa-
tion learning; SAD (Tian et al., 2023a), integrating a memory bank with pseudo-label contrastive
learning to exploit large unlabeled graph streams; TADDY (Liu et al., 2021), which encodes spatial-
temporal dependencies via a transformer model; and MAMF (Hong et al., 2025), which employs
GAN-based anomaly augmentation combined with meta-learning to handle concept drift. Despite
their effectiveness in capturing temporal and structural patterns, these methods share a common lim-
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itation: they often misinterpret naturally evolving node influence as anomalies. Nodes with high or
rapidly changing influence—quantified, for example, by PageRank (Gleich, 2015)—tend to exhibit
larger embedding shifts over time. Since deviation-based detectors use embedding changes as a
proxy for abnormality, normal variations in node influence can be mistakenly flagged as anomalies,
while truly abnormal nodes with smaller embedding changes may be overlooked. Here, PageRank
is used solely to quantify node importance over time and should not be interpreted as influence; the
problem arises from treating embedding deviations as anomaly indicators, which conflates normal
influence fluctuations with genuine anomalies.

From this observation, we identify two core challenges for robust dynamic graph anomaly detection.
(1) decoupling influence variations from anomalies. Node influence changes are not anomalies
themselves, yet they can dominate node representations and mislead detectors. Separating these
effects from true anomaly features is therefore essential. (2) Data imbalance under dynamic in-
fluence. Anomalies are inherently rare in real-world graphs, and natural variations in node influ-
ence can create numerous pseudo-anomalous cases, exacerbating class imbalance and making rare
anomalies even harder to detect.

To address these challenges, we propose DIDAN (Dynamic Influence-Decoupled Anomaly Net-
work), a novel framework that explicitly separates node influence-related variations from anomaly-
related representations. DIDAN integrates three ideas: a temporal propagation mechanism to cap-
ture stable and expressive node embeddings, an anomaly synthesizer to generate diverse synthetic
anomalies and mitigate imbalance, and an adversarial influence-Decoupled Detector to suppress the
interference of dynamic influence variations. Our main contributions are summarized as follows:

• We introduce DIDAN, a novel framework for dynamic graph anomaly detection that ex-
plicitly decouples node influence variations from anomaly-related features, addressing the
conflation of natural influence fluctuations with abnormal behaviors.

• We design a unified framework that integrates a Temporal Information Propagator (TIP)
to capture local and global temporal dependencies for stable and expressive node embed-
dings, an Anomaly Feature Synthesizer (AFS) to generate realistic synthetic anomalies
and mitigate class imbalance, and an Adversarial Influence-Decoupled Detector (AIDD)
that uses adversarial learning to separate influence-related variations from anomaly signals,
reducing false positives and missed detections.

• We conduct extensive experiments on multiple real-world dynamic graph datasets, demon-
strating that DIDAN achieves state-of-the-art performance in terms of accuracy, robustness,
and adaptability. Notably, the ROC-AUC scores on the Wikipedia, Reddit, and ALPHA
datasets improved by 5.71%, 27.73, and 1.91%, respectively.

2 RELATED WORK

2.1 INFLUENCE PROPAGATION IN DYNAMIC NETWORKS

The study of influence propagation in dynamic networks has garnered significant attention, with var-
ious models developed to understand and optimize influence spread over time. Wang et al. (2015)
introduced a latent influence propagation model that leverages latent features to simulate influence
diffusion on dynamic social networks. Yalavarthi & Khan (2018) proposed a generalized frame-
work for efficient local updates, enabling rapid adjustment of top-k influencers as network struc-
tures evolve. Addressing negative influence mitigation, Wu et al. (2019) developed algorithms to
minimize dynamic rumor impact by exploiting community structures. Ge et al. (2020) introduced
multi-topic influence models (MTL-IC and SPM-EE) that account for complex user interests and
temporal topic evolution. Li et al. (2021b) contributed a dynamic influence maximization algorithm
based on cohesive entropy (DEIM), emphasizing local aggregation effects and network dynamics.
Wang & Zhao (2021) proposed the TPP-DA method for dynamic topic propagation prediction, Li
et al. (2021a) examined the reciprocal relationship between influence propagation and network struc-
ture using an extended Linear Threshold model. Liu et al. (2022) advanced influence maximization
with entropy-based Linear Threshold models, and Jiang et al. (2023) employed deep reinforcement
learning for rumor influence minimization. Wu et al. (2023) proposed the Influence SubGraph Prop-
agation (ISGP) method for accurate node influence estimation in dynamic networks.
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2.2 FEATURE DECOUPLING IN ANOMALY DETECTION

Feature decoupling has emerged as a significant approach in enhancing anomaly detection within
dynamic graph environments. Wang et al. (2021) introduced a framework that decouples represen-
tation learning from classification using self-supervised learning and Deep Cluster Infomax (DCI)
scheme. Zhou et al. (2024) proposed a lightweight model that integrates GNNs with knowledge dis-
tillation, extracting structural and traffic features separately using GAT and MLP techniques. Barros
et al. (2021) provided a taxonomy of dynamic graph embedding approaches, including matrix fac-
torization, deep learning, and temporal point processes. Cai et al. (2021) developed the StrGNN
model that captures structural and temporal features through graph convolution operations. Kim
et al. (2025) introduced an innovative approach where timestamps are modeled as distinct nodes,
explicitly capturing temporal dependencies.

While these studies have contributed valuable methodologies, existing models still face challenges
in handling the complex nature of node interactions, particularly in addressing interference caused
by dynamic influence changes. Most approaches focus on separating specific feature types but
overlook the dynamic variations of node influence over time, which can severely interfere with
anomaly detection performance.

In our work, we propose DIDAN, which explicitly addresses the interference of dynamic influ-
ence changes through a dual-channel design that decouples influence-related features from anomaly-
related features. Our framework consists of three modules: the Temporal Information Propagator,
Anomaly Feature Synthesizer, and Adversarial Influence-Decoupled Detector, each designed to
tackle specific challenges in dynamic graph anomaly detection.

3 METHODOLOGY

In this section, we present the overall architecture of our proposed framework, DIDAN (Dynamic
Influence-decoupled Anomaly Network), which is specifically designed to address the challenges
posed by temporal variations in node influence and class imbalance in dynamic graphs.DIDAN
comprises three unified modules, each targeting a distinct challenge identified in the introduction:
influence decoupling and anomaly detection under dynamic influence. The overall architecture of
DIDAN is illustrated in Figure 1. The following sections provide detailed descriptions of each
module, including theoretical foundations and implementation details.
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Figure 1: Overall architecture of the DIDANframework.

3.1 OVERVIEW OF DIDAN ARCHITECTURE

The DIDAN framework is designed to address two core challenges in dynamic graph anomaly
detection: (1) learning high-expressiveness node representations that capture both local and global
temporal structure, and (2) decoupling influence-related features from anomaly-related features to
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suppress interference from dynamic influence variations. Formally, let G = {G(1), G(2), . . . , G(T )}
denote a sequence of dynamic graphs, where G(t) = (V(t), E(t)) represents the graph at time t, with
node set V(t) and edge set E(t). Each node v ∈ V(t) is associated with a feature vector x(t)

v ∈ Rd,
and the feature matrix for all nodes at time t is denoted as X(t) ∈ RN×d, where N = |V(t)| is the
number of nodes and d is the feature dimension. The normalized adjacency matrix with self-loops
is denoted as Â ∈ RN×N .

The three core components of DIDAN are as follows:

• Temporal Information Propagator (TIP): This module captures both local and global
temporal dependencies through multi-step neighbor propagation. By providing stable and
expressive node representations that are less biased by transient influence fluctuations, TIP
forms a reliable foundation for subsequent influence decoupling.

• Anomaly Feature Synthesizer (AFS): To mitigate the severe class imbalance inherent in
real-world dynamic graphs, AFS employs a flow-based generative model to produce high-
quality synthetic anomalies, ensuring sufficient anomaly samples for effective training.

• Adversarial Influence-Decoupled Detector (AIDD): This module explicitly sepa-
rates influence-related features from anomaly-related features using a projection–back-
projection architecture with adversarial training. By decoupling the influence signals cap-
tured by node metrics such as degree, betweenness, and PageRank, AIDD enables accurate
detection of true anomalies under fluctuating node influence.

3.2 TEMPORAL INFORMATION PROPAGATOR (TIP)

The TIP module generates stable and expressive node representations by propagating initial features
through the graph using APPNP (Gasteiger et al., 2018). Let X(t) ∈ RN×d denote the input node
features at time step t. The initial embeddings are obtained via a multi-layer perceptron (MLP):

H
(t)
0 = MLP(X(t)), (1)

and updated recursively as

H
(t)
k = (1− α)ÂH

(t)
k−1 + αH

(t)
0 , k = 1, 2, . . . ,K, (2)

where α ∈ (0, 1) is the teleport probability.

By iteratively propagating features while retaining a fraction of the original node information, TIP
produces embeddings that are smooth across the graph yet discriminative for individual nodes. We
formally prove in Appendix C.1 that this iterative propagation converges to a unique fixed point
(Theorem 1) and that the final embeddings preserve contributions from the original features, ensur-
ing node individuality (Corollary 2).

3.3 ANOMALY FEATURE SYNTHESIZER (AFS)

The AFS module alleviates the class imbalance problem by generating high-quality synthetic
anomaly features, enabling the detector to learn robust decision boundaries even with scarce
anomaly samples.

Let Da = {xi}Na
i=1 denote the set of observed anomaly node features. We employ a flow-based

generative model fθ : Rd → Rd that is invertible and differentiable, mapping latent variables
z ∼ N (0, I) to the feature space:

x = f−1
θ (z), z ∼ N (0, I), (3)

with likelihood

pθ(x) = pz(fθ(x))

∣∣∣∣det ∂fθ∂x

∣∣∣∣ , (4)
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and training objective

Lflow(θ) = −
1

Na

Na∑
i=1

log pθ(xi)

= − 1

Na

Na∑
i=1

[
log pz(fθ(xi)) + log

∣∣∣det ∂fθ
∂xi

∣∣∣]. (5)

Synthetic anomalies xgen are generated by sampling z ∼ N (0, I) and applying xgen = f−1
θ (z). We

formally prove in Appendix C.1 (Theorem 3) that the likelihood is exact and the generation process is
bijective. As a consequence, any generated sample xgen is guaranteed to follow the learned anomaly
distribution, ensuring statistical consistency and well-defined features for training.

By augmenting the training set with {xgen}, the AFS module effectively mitigates class imbalance,
allowing the anomaly detector to learn accurate boundaries between normal and abnormal nodes.
These theoretical guarantees (Appendix C.1, Theorem 3) justify the use of flow-based generation
and support the robustness of DIDAN in dynamic graphs with scarce anomalies.

3.4 ADVERSARIAL INFLUENCE-DECOUPLED DETECTOR (AIDD)

The AIDD module aims to decouple node embeddings into components correlated with normal
influence variations and components indicative of genuine anomalies. This ensures that the anomaly
detector focuses on abnormal behaviors rather than benign fluctuations in node influence.

Design Assumption: We assume that temporal variations in a node’s PageRank primarily reflect
normal influence changes. Under this assumption, we aim to extract embedding components corre-
lated with PageRank and remove them from the anomaly detection features.

Projection–Back-Projection: Let h ∈ Rd be the embedding obtained from TIP. We introduce a
linear projection Wp and a back-projection Wb to isolate PageRank-correlated components:

hpr = Wph, hmain = h−Wbhpr (6)

Rationale: The projection Wp maps the embedding into a ”PageRank information subspace,” cap-
turing components most correlated with normal influence changes. The back-projection Wb re-
moves these components from hmain, so that the features used for anomaly detection are less sen-
sitive to normal PageRank fluctuations. This design separates the embedding space into influence-
correlated and anomaly-related subspaces.

Adversarial Mechanism for decoupling: While projection/back-projection isolates the
PageRank-correlated component, it does not guarantee that hmain is fully decoupled. We employ an
adversarial training strategy using a PageRank predictor DPR and a gradient reversal layer (GRL).
The adversarial loss is:

Ladv = MSE
(
DPR(GRL(hpr)), y

PR
)

(7)

The total loss for training AIDD is:

L = Lanomaly + λadvLadv (8)

Mechanism: The GRL ensures that hmain receives gradients that penalize information predictive of
PageRank, while hpr is optimized to retain PageRank information. At equilibrium, hmain contains
minimal PageRank-related information, achieving effective decoupling. Here, λadv is a trade-off
hyperparameter that balances anomaly detection loss and adversarial loss.

Limitations: This decoupling is specific to the PageRank metric. Other forms of influence or node
metrics may still leak into hmain. Extending this mechanism to multiple influence measures requires
additional projections and adversarial discriminators.
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Integration with DIDAN: Finally, TIP, AFS, and AIDD are trained jointly. TIP provides ex-
pressive embeddings, AFS augments the training set with synthetic anomalies, and AIDD decouples
embeddings to produce robust anomaly predictions. Appendix C.1 provides a formal proof (Theo-
rem 4) that the adversarial mechanism ensures decoupling under ideal conditions.

3.5 ALGORITHMIC PROCEDURE

The DIDAN framework performs dynamic graph anomaly detection through a three-stage work-
flow, integrating temporal feature propagation, anomaly feature augmentation, and influence-aware
decoupling. Specifically:

1. Temporal Embedding Extraction (TIP): For each time step, node features are propagated
across the graph using a personalized propagation scheme, capturing temporal dependen-
cies and evolving structural patterns. The resulting embeddings encode both the historical
and local neighborhood information of each node.

2. Anomaly Feature Synthesis (AFS): To address the scarcity of anomalous nodes, known
anomaly embeddings are used to train a flow-based generator. The generator produces
synthetic anomaly features that augment the training data, improving the model’s exposure
to diverse anomalous patterns and mitigating class imbalance.

3. Influence decoupling (AIDD): Node embeddings are projected onto an influence subspace
to separate benign structural influences (e.g., PageRank-like effects) from genuine anomaly
signals. Adversarial training ensures that the decoupled representations focus on anomaly-
relevant information, reducing false positives and enhancing detection robustness.

This modular design allows DIDAN to jointly capture temporal dynamics, enrich anomaly repre-
sentations, and suppress confounding influences. For full implementation details and step-by-step
training pseudocode, see Appendix D.

3.6 TIME COMPLEXITY ANALYSIS

Here, N is the number of nodes, E is the number of edges, d is the feature dimension, K is the
number of propagation steps, T is the number of time steps, L is the number of layers in the flow
model, B is the batch size, S is the number of synthetic anomaly samples, M is the number of
influence metrics/discriminators, and Ef is the number of epochs for flow model training.

We analyze the time complexity of each module in the DIDAN framework as follows:

1. Temporal Information Propagator (TIP):

For each time step t, the main computational cost comes from the APPNP propagation. Let N be the
number of nodes, E the number of edges, d the feature dimension, and K the number of propagation
steps. The complexity per step is O(Ed) for sparse matrix multiplication, and the total for K steps
is O(KEd). Including the initial MLP, the overall complexity per time step is O(Nd2+KEd). For
T time steps, the total is O(T (Nd2 +KEd)).

2. Anomaly Feature Synthesizer (AFS):

Assuming the flow-based model (e.g., RealNVP) has L layers and batch size B, the forward and
inverse pass per sample is O(Ld2). For S synthetic samples generated, the total complexity is
O(SLd2). Training the flow model on M anomaly samples for Ef epochs is O(EfMLd2).

3. Adversarial Influence-Decoupled Detector (AIDD):

For each batch, the projection and back-projection are O(d2) per node. The adversarial discrimi-
nators (assuming M influence metrics) add O(Md2) per node. For B nodes per batch, the total is
O(BMd2). The anomaly classifier is also O(Bd2) per batch.

Overall Complexity:

The overall time complexity per epoch is dominated by the TIP module (graph propagation) and the
AIDD module (adversarial training). For a dynamic graph with T time steps, N nodes, E edges,
feature dimension d, K propagation steps, and M influence metrics, the total complexity per epoch

6
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Table 1: Performance comparison on Wikipedia, Reddit, and UCI datasets.

Method Wikipedia Reddit UCI
ROC-AUC F1-score AUPR ROC-AUC F1-score AUPR ROC-AUC F1-score AUPR

TGAT 0.7576 0.4995 0.0251 0.6222 0.4998 0.0020 0.9491 0.4985 0.1258
DOMINANT 0.6707 0.1022 0.0845 0.6101 0.2281 0.1602 0.5233 0.0805 0.1912
DONE 0.6486 0.0839 0.0775 0.5690 0.2144 0.1353 0.4993 0.0850 0.1848
CONAD 0.6698 0.1022 0.0845 0.6119 0.2300 0.1602 0.5225 0.0805 0.1913
AnomalyDAE 0.6706 0.0996 0.0831 0.5666 0.2222 0.1444 0.4912 0.0805 0.1835
SAD 0.8641 0.4995 0.0181 0.6880 0.4998 0.0027 0.9223 0.4985 0.1746
MAMF 0.9355 0.8307 0.7507 0.7221 0.6425 0.6053 0.9735 0.9741 0.9725
DIDAN(Ours) 0.9926 0.9873 0.9953 0.9994 0.9963 0.9996 0.9910 0.9828 0.9928

Table 2: Performance comparison on EU-Core1/3, OTC, and ALPHA datasets.

Method EU-Core1 EU-Core3 OTC ALPHA
ROC-AUC F1-score AUPR ROC-AUC F1-score AUPR ROC-AUC F1-score AUPR ROC-AUC F1-score AUPR

TGAT 0.4475 0.4986 0.0057 0.5558 0.4972 0.0980 0.6730 0.4770 0.1845 0.7542 0.4836 0.1427
DOMINANT 0.5282 0.1162 0.2214 0.5856 0.0995 0.2123 0.6227 0.2518 0.4129 0.6823 0.3289 0.4152
DONE 0.5138 0.1328 0.2247 0.5535 0.0724 0.2019 0.6347 0.2710 0.4350 0.6843 0.3237 0.4006
CONAD 0.5255 0.1162 0.2199 0.5868 0.0995 0.2128 0.6250 0.2556 0.4137 0.6816 0.3368 0.4107
AnomalyDAE 0.4993 0.1162 0.2170 0.5835 0.0905 0.2063 0.3941 0.0347 0.1694 0.4962 0.0474 0.1436
SAD 0.5361 0.4972 0.0170 0.9080 0.4972 0.1555 0.7173 0.4770 0.1997 0.7574 0.4836 0.1414
MAMF 0.9573 0.9455 0.9258 0.9403 0.8748 0.8381 0.9415 0.9284 0.9074 0.9355 0.9293 0.9320
DIDAN(Ours) 0.9604 0.9457 0.9601 0.9558 0.9407 0.9644 0.9516 0.9362 0.9668 0.9546 0.9317 0.9679

is:
O
(
T (Nd2 +KEd) +BMd2 + SLd2

)
(9)

where B is the batch size and S is the number of synthetic samples generated by AFS.

In practice, the method is efficient for sparse graphs (E ≪ N2) and moderate feature dimensions,
and the modules can be parallelized to further accelerate training.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

(a) Datasets. We assess DIDAN on diverse real-world dynamic graph datasets: Wikipedia (hyper-
link evolution) (Kumar et al., 2019), Reddit (user interactions) (Kumar et al., 2019), EU-Core1/3
(collaboration networks) (Guo et al., 2022), OTC/ALPHA (Bitcoin transactions) (Kumar et al.,
2016), and UCI (Message Network) (Zheng et al., 2019). All datasets exhibit severe class imbal-
ance with anomalous nodes constituting less than 5% of the total.

(b) Baselines. We compare against seven representative methods: TGAT (Xu et al., 2020b) (tem-
poral attention networks), DOMINANT (Ding et al., 2019) (structure/attribute reconstruction),
DONE (Bandyopadhyay et al., 2020) (GCN with temporal autoencoders), CONAD (Xu et al.,
2022) (contrastive learning with temporal augmentation), AnomalyDAE (Fan et al., 2020) (deep au-
toencoder), SAD (Tian et al., 2023b) (semi-supervised detection), and MAMF (Hong et al., 2025)
(multitask meta-learning). These baselines cover a wide range of paradigms, including temporal
modeling, reconstruction-based, contrastive, semi-supervised, and meta-learning approaches.

(c) Evaluation Metrics. We adopt four metrics: ROC-AUC (ranking ability) (Huang & Ling, 2005),
F1-score (precision-recall balance) (Huang et al., 2015), and AUPR (imbalanced data perfor-
mance) (Zhou, 2023).

(d) Implementation Details. Each dataset is split into five temporal segments (last for testing, first
four for training/validation). Node embeddings dimension is 128, batch size is 100, λadv is set to
1. We train the model using mini-batches of 100 nodes, with the Adam optimizer (Bock & Weiß,
2019) and an initial learning rate of 0.0001. Experiments run on NVIDIA GeForce RTX 4060 GPU
with 20 runs for statistical reliability.

4.2 PERFORMANCE COMPARISON

We benchmark DIDAN against seven representative baselines: TGAT Xu et al. (2020b), DOMI-
NANT Ding et al. (2019), DONE Bandyopadhyay et al. (2020), CONAD Xu et al. (2022), Anoma-
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lyDAE Fan et al. (2020), SAD Tian et al. (2023b), and MAMF Hong et al. (2025), across seven
benchmark datasets (Wikipedia, Reddit, UCI, EU-Core1/3, OTC, ALPHA). As shown in Tables 1
and 2, DIDAN achieves the best or near-best performance on all datasets and metrics. Notably,
it significantly outperforms strong baselines such as MAMF and SAD, especially on large-scale
graphs with complex dynamics. This demonstrates the scalability and robustness of our approach.
Overall, the consistent gains highlight the effectiveness of our three key components—TIP, AFS,
and AIDD—in learning discriminative and generalizable anomaly representations across diverse
dynamic graph scenarios.

4.3 ABLATION STUDY

We study the impact of TIP propagation and influence decoupling in DIDAN via two variants: (i)
w/o APPNP, replacing APPNP with GCN; (ii) w/o ID, disabling AIDD. Experiments use 128-d
embeddings, batch size 100, 20 runs.
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Figure 2: Ablation study: removing key components degrades performance, highlighting their im-
portance. Left: ROC-AUC; Middle: F1-score; Right: AUPR.

Results show that removing APPNP or disabling AIDD clearly reduces performance, confirming
that both TIP propagation and influence decoupling are critical for robust anomaly detection.

4.4 PARAMETER SENSITIVITY ANALYSIS

We investigate the sensitivity of DIDAN to the learning rate, varying it over the range
{1e−6, 5e−6, 1e−5, 5e−5, 1e−4, 5e−3}. All other hyperparameters are kept fixed.

Figure 3: Effect of learning rate on model performance. Performance increases from 1e−6 to 5e−6,
then plateaus, and declines for 1e−4 to 5e−3.

As shown in Figure 3, performance first improves from 1 × 10−6 to 5 × 10−6, then stays almost
constant between 5×10−6 and 1×10−4, and finally declines for learning rates larger than 1×10−4.
Following this trend, we select 1 × 10−4 as the default learning rate. This analysis confirms that

8
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DIDAN is relatively stable over a small range of learning rates, but excessively large values can
harm training.

4.5 EMBEDDING VISUALIZATION

To qualitatively illustrate the effect of influence decoupling (ID) on node representations, we project
learned embeddings to three-dimensional space using PCA. Figure 4 shows the UCI dataset as an
example, where purple nodes are anomalous and yellow nodes are normal.

(a) w/o ID (b) w/ ID

Figure 4: PCA-based 3D visualization of node embeddings on the UCI dataset. Influence decoupling
(ID) improves separation between anomalous and normal nodes.

As seen in Figure 4, applying ID clearly increases the separation between anomalous and normal
nodes. This demonstrates that AIDD effectively removes influence-related variations, allowing em-
beddings to focus on genuine anomalies. For completeness, visualizations of embeddings on the
other six datasets are provided in Appendix E.

5 CONCLUSION

In this paper, we proposed DIDAN, a Dynamic Influence-decoupled Generative Anomaly detector
for dynamic graphs. DIDAN effectively addresses two key challenges: extracting robust temporal
node representations through the Temporal Information Propagator (TIP), and decoupling influence-
related features from anomaly-related features via the Adversarial Influence-Decoupled Detector
(AIDD). Additionally, the Anomaly Feature Synthesizer (AFS) alleviates class imbalance by gener-
ating high-quality synthetic anomalies. Extensive experiments on real-world dynamic graph datasets
demonstrate that DIDAN outperforms state-of-the-art baselines in anomaly detection accuracy and
robustness, particularly under severe class imbalance and dynamic influence variations. These re-
sults validate the effectiveness of our dual-channel design and the importance of influence decou-
pling in dynamic graph anomaly detection. In summary, DIDAN provides a practical and effective
framework for detecting node-level anomalies in evolving networks, combining robust temporal
feature extraction, generative augmentation, and adversarial feature decoupling.

ETHICS STATEMENT

Our research focuses on anomaly detection in dynamic graphs, with applications in fraud detection,
intrusion detection, and monitoring of online platforms. The methods proposed are intended for
legitimate and responsible uses, aiming to enhance the security, stability, and reliability of complex
systems. We acknowledge that misuse of anomaly detection technologies could lead to privacy
concerns or unfair treatment of individuals, and we emphasize that all deployments should comply
with relevant laws and ethical guidelines. Our experiments use publicly available datasets, ensuring
no private or sensitive user data is exposed.
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REPRODUCIBILITY STATEMENT

We have taken steps to ensure the reproducibility of our results. All datasets used in our experi-
ments are publicly available, and the main text provides detailed descriptions of data preprocessing,
model architectures, hyperparameters, and training procedures. The code for our experiments is
publicly released and available at https://anonymous.4open.science/r/DIDAN-6D6F, allowing other
researchers to directly reproduce our results on the same datasets.
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A USE OF LARGE LANGUAGE MODELS (LLMS)

We made limited use of ChatGPT (GPT-4) in this work. Specifically, it was employed for language
polishing (grammar checks and writing style refinement) and providing small suggestions for code
debugging. The LLM did not contribute to research conception, methodology, or analysis; all sub-
stantive contributions were made by the authors.

B NOTATION

Table 3 summarizes the main mathematical symbols used throughout the description of the DIDAN
framework. Each symbol is listed with its meaning and, where appropriate, its type or shape. This
table serves as a reference for understanding the notations in the methodology section.

Table 3: Symbol Table for DIDANFramework

Symbol Description

G Sequence of dynamic graphs
G(t) Graph at time t
V(t) Node set at time t
E(t) Edge set at time t

x
(t)
v Feature vector of node v at time t

X(t) Feature matrix at time t
K Number of propagation steps (APPNP)
α Teleport (restart) probability (APPNP)
Â Normalized adjacency matrix

H
(t)
k Node representations at step k
L Number of layers in flow model
B Batch size
S Number of synthetic anomaly samples
M Number of influence metrics/discriminators
h Node representation
hinf Influence-related feature
hmain Anomaly-related feature

Wp,Wb Projection/back-projection matrices
Di i-th influence discriminator
yinf
i i-th influence label

Lanomaly Anomaly detection loss
Ladv Adversarial loss
λadv Adversarial loss weight

C APPENDIX: THEORETICAL PROOFS FOR DIDAN MODULES

C.1 PROOF OF TIP CONVERGENCE AND FEATURE PRESERVATION

The Temporal Information Propagator (TIP) iteratively propagates node features across the graph
while retaining a fraction of the original features. Although the recursive formulation in Eq. equa-
tion 2 is intuitive, it is important to formally establish that this iterative process converges to a unique
fixed point and that the final embeddings preserve contributions from the initial features. Without
these guarantees, repeated propagation could lead to unstable representations or loss the individual-
ity of nodes, which would undermine the reliability of downstream anomaly detection.

Formally, TIP updates are given by

H
(t)
0 = MLP(X(t)), (10)

H
(t)
k = (1− α)ÂH

(t)
k−1 + αH

(t)
0 , k = 1, 2, . . . ,K, (11)
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where Â is the normalized adjacency matrix with self-loops, and α ∈ (0, 1).

Theorem 1 (Convergence of TIP embeddings). The sequence {H(t)
k }∞k=0 defined in Eq. 11 con-

verges to a unique fixed point:

H(t)
∞ = α(I− (1− α)Â)−1H

(t)
0 . (12)

Proof. Define the error at step k as

Ek = H
(t)
k −H(t)

∞ .

From Eq. 11 and the fixed point condition, we have

H(t)
∞ = (1− α)ÂH(t)

∞ + αH
(t)
0 =⇒ Ek = (1− α)ÂEk−1.

Applying this relation recursively yields

Ek = ((1− α)Â)kE0.

Since Â is row-stochastic, its spectral radius ρ(Â) = 1, and thus

ρ((1− α)Â) = 1− α < 1.

By standard linear algebra results, limk→∞((1− α)Â)k = 0, implying

lim
k→∞

Ek = 0 =⇒ lim
k→∞

H
(t)
k = H(t)

∞ .

This completes the proof of convergence.

Corollary 2 (Preservation of original features). The fixed-point embedding H
(t)
∞ preserves contri-

butions from the initial node features:

H(t)
∞ = α

∞∑
i=0

((1− α)Â)iH
(t)
0 . (13)

Proof. Unrolling the recursion in Eq. 11 gives

H
(t)
k = α

k−1∑
i=0

((1− α)Â)iH
(t)
0 + ((1− α)Â)kH

(t)
0 .

Taking the limit k →∞, the second term vanishes because ρ((1− α)Â) < 1, leaving

H(t)
∞ = α

∞∑
i=0

((1− α)Â)iH
(t)
0 ,

which proves that the final embedding retains contributions from the initial features.

THEORETICAL JUSTIFICATION FOR THE ANOMALY FEATURE SYNTHESIZER

In this appendix, we provide a formal justification for the use of flow-based generative models in the
AFS module. The AFS module generates synthetic anomaly features to mitigate class imbalance in
dynamic graph anomaly detection. Since these synthetic features are used for training the anomaly
detector, it is crucial to guarantee that they are well-defined and statistically consistent with the
observed anomalies. Without such guarantees, unreliable synthetic samples could bias the learned
decision boundaries.

We now formally prove that the likelihood of any anomaly feature is exact and that the generation
process is bijective.
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Theorem 3 (Exact likelihood and bijectivity). Let fθ : Rd → Rd be an invertible and differentiable
mapping. Then for any x ∈ Rd, there exists a unique z ∈ Rd such that x = f−1

θ (z), and the
probability density

pθ(x) = pz(fθ(x))

∣∣∣∣det ∂fθ∂x

∣∣∣∣ (14)

is exact. Consequently, sampling z ∼ N (0, I) and computing xgen = f−1
θ (z) produces synthetic

anomalies that follow the learned anomaly distribution exactly.

Proof. Since fθ is invertible by assumption, for any x ∈ Rd, there exists a unique z = fθ(x) such
that x = f−1

θ (z).

By the multivariate change-of-variables formula for probability densities, if z has density pz(z),
then the density of x induced by f−1

θ is

pθ(x) = pz(fθ(x))

∣∣∣∣det ∂fθ(x)∂x

∣∣∣∣ . (15)

This formula is exact because:

• fθ is differentiable, so the Jacobian ∂fθ
∂x exists everywhere;

• fθ is invertible, so the mapping between x and z is one-to-one, ensuring no ambiguity in
density transformation.

Furthermore, for any z ∼ N (0, I), let xgen = f−1
θ (z). Then by construction, xgen is uniquely deter-

mined by z, and the distribution of xgen is exactly pθ(x), due to the change-of-variables formula.

Hence, the generated samples are well-defined, bijective with respect to the latent space, and follow
the learned anomaly distribution exactly.

Remarks. This theorem guarantees that:

1. The log-likelihood of any anomaly feature can be computed exactly, providing statistical
consistency during training.

2. The generation process is bijective, ensuring synthetic anomalies faithfully follow the ob-
served anomaly distribution.

These properties justify the theoretical validity of using flow-based models in the AFS module for
alleviating class imbalance.

THEORETICAL JUSTIFICATION FOR ADVERSARIAL INFLUENCE-DECOUPLED DETECTOR
(AIDD)

In this appendix, we provide a formal discussion and theoretical guarantee for the feature disentan-
glement in AIDD. The goal is to show that, under ideal optimization, the anomaly-related embedding
hmain becomes invariant to PageRank-correlated variations captured by hpr.

Preliminaries Let h ∈ Rd be the embedding from TIP. The AIDD module decomposes it as

hpr = Wph, hmain = h−Wbhpr, (16)

where Wp ∈ Rd′×d and Wb ∈ Rd×d′
are learnable matrices. The adversarial objective is to predict

the PageRank value yPR from hpr using a discriminator DPR and a GRL:

Ladv = MSE(DPR(GRL(hpr)), y
PR). (17)
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Feature Decoupling Guarantee This appendix provides formal guarantees for the feature decou-
pling mechanism in AIDD. The goal is to show that under ideal conditions, the adversarial train-
ing ensures that the anomaly-related embedding hmain contains minimal information predictive of
PageRank, achieving disentanglement.
Theorem 4 (Feature Decoupling via Adversarial Training). Let h ∈ Rd be the node embedding
obtained from TIP. Define the projection hpr = Wph and back-projection hmain = h −Wbhpr as
in Eq. 6. Let DPR be the PageRank predictor with adversarial loss Ladv defined in Eq. 7.

Under the assumption that the adversarial loss is minimized for DPR and Lanomaly is minimized
for anomaly detection, the resulting embedding hmain is invariant to variations in h predictive of
PageRank:

I(hmain; y
PR)→ 0, (18)

where I(·; ·) denotes mutual information. Consequently, hmain contains primarily anomaly-related
information.

Proof. The training objective for hmain involves the gradient reversal layer (GRL), which effectively
reverses the gradient of Ladv during backpropagation. Formally, this can be expressed as a min-max
optimization:

min
hmain

max
DPR

E
[
MSE(DPR(hpr), y

PR)
]
. (19)

At the Nash equilibrium of this game: 1. DPR is optimal in predicting PageRank from hpr. 2. hmain

receives reversed gradients that penalize any information predictive of yPR.

Since hmain is updated to minimize the ability of DPR to predict PageRank, the mutual information
I(hmain; y

PR) is minimized. In the ideal case, this mutual information converges to zero, imply-
ing that hmain contains negligible PageRank-related information while preserving anomaly-related
signals through Lanomaly.

This proves that the adversarial mechanism achieves feature disentanglement under the stated as-
sumptions.

D ALGORITHMIC DETAILS

Algorithm 1 summarizes the training procedure of DIDAN. It combines TIP-based feature extrac-
tion, anomaly feature synthesis via a flow-based generator, and adversarial decoupling for robust
anomaly detection on dynamic graphs.

E ADDITIONAL EMBEDDING VISUALIZATIONS

To complement the visualization in Section 4.5, we provide PCA-based 3D projections for the re-
maining six datasets. For each dataset, the left subfigure shows embeddings without influence dis-
entanglement (w/o ID) and the right subfigure shows embeddings with ID (w/ ID). Purple nodes
indicate anomalies, yellow nodes indicate normal nodes.
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Algorithm 1 Training Procedure for DIDAN Framework

1: Input: Dynamic graph sequence G = {G(1), . . . , G(T )}, node features X(t), partial anomaly
labels, hyperparameters K,α, λadv

2: Output: Learned model parameters θ
3: Initialize model parameters θ
4: for each time step t = 1 to T do
5: TIP Feature Extraction: Extract node features X(t)

6: Compute initial embeddings via MLP: H(t)
0 ← MLP(X(t)) Eq. 1

7: for k = 1 to K do
8: Propagate node features: H(t)

k ← (1− α)ÂH
(t)
k−1 + αH

(t)
0 Eq. 2

9: end for
10: Set node representation: H(t) ← H

(t)
K

11: end for
12: AFS Anomaly Feature Synthesis: Collect known anomaly features Da

13: Train flow-based model fθ on Da to maximize log-likelihood (see Eq. 5 in the main text)
14: Sample synthetic anomalies: xgen = f−1

θ (z), z ∼ N (0, I) Eq. 3
15: Augment training set with xgen
16: for each training epoch do
17: for each batch of nodes do
18: Obtain node representation h from TIP
19: Project to influence subspace: hpr = Wph Eq. 6
20: Back-project to remove influence: hmain = h−Wbhpr Eq. 6
21: Compute anomaly predictions from hmain
22: Compute adversarial influence predictions from hpr
23: Compute losses: Ladv Eq. 7, total loss L = Lanomaly + λadvLadv Eq. 8
24: Update model parameters θ by backpropagation
25: end for
26: end for

(a) w/o ID (b) w/ ID

Figure 5: PCA-based 3D visualization of node embeddings on the EU-Core1 dataset.
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(a) w/o ID (b) w/ ID

Figure 6: PCA-based 3D visualization of node embeddings on the ALPHA dataset.

(a) w/o ID (b) w/ ID

Figure 7: PCA-based 3D visualization of node embeddings on the OTC dataset.

(a) w/o ID (b) w/ ID

Figure 8: PCA-based 3D visualization of node embeddings on the Wikipedia dataset.
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(a) w/o ID (b) w/ ID

Figure 9: PCA-based 3D visualization of node embeddings on the EU-Core3 dataset.
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