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Abstract

Deep generative models require large amounts of training data. This often poses a problem
as the collection of datasets can be expensive and di�cult, in particular datasets that are
representative of the appropriate underlying distribution (e.g. demographic). This introduces
biases in datasets which are further propagated in the models. We present an approach to
construct an unbiased generative adversarial network (GAN) from an existing biased GAN by
rebalancing the model distribution. We do so by generating balanced data from an existing
imbalanced deep generative model using an evolutionary algorithm and then using this data
to train a balanced generative model. Additionally, we propose a bias mitigation loss function
that minimizes the deviation of the learned class distribution from being equiprobable. We
show results for the StyleGAN2 models while training on the Flickr Faces High Quality
(FFHQ) dataset for racial fairness and see that the proposed approach improves on the
fairness metric by almost 5 times, whilst maintaining image quality. We further validate
our approach by applying it to an imbalanced CIFAR10 dataset where we show that we
can obtain comparable fairness and image quality as when training on a balanced CIFAR10
dataset which is also twice as large. Lastly, we argue that the traditionally used image
quality metrics such as Frechet inception distance (FID) are unsuitable for scenarios where
the class distributions are imbalanced and a balanced reference set is not available.

1 Introduction

Recent advances in generative models such as GANs and di�usion models have allowed them to generate
highly realistic images. However, popular publicly available generative models are unfair (Maluleke et al.,
2022; Jain et al., 2023). Fairness in generative models is defined as equal representation with respect to one
or more attributes (e.g. ethnicity or gender) (Hutchinson and Mitchell, 2019). This implies that a generative
model should be equally likely to generate images belonging to any of the classes in the training distribution.
For example, a fair model with regard to ethnicity should generate images of a black and white individual
with equal likelihood. The biased nature of SOTA generative models can be seen when randomly sampling
10,000 samples from the StyleGAN model. You get over 5,000 samples belonging to the white population with
less than 500 samples for blacks and Indians combined. Similarly, the super-resolution model PULSE (Menon
et al., 2020) generates only faces with lighter skin tones regardless of the demographic group of the input.

Recently, researchers have shown interest in using synthetic data generated by machine learning models either
as augmentation or on its own for training various downstream classification tasks (Grosz and Jain, 2022;
Jain et al., 2022; Jahanian et al., 2021; Jaipuria et al., 2020). The usage of synthetic data has shown various
advantages, the most important of which is its ability to eliminate the need for privacy-sensitive datasets
(e.g. medical imagery, biometrics). In fact, various countries have banned or regulated the use of biometric
datasets including facial image datasets (Voigt and Von dem Bussche, 2017; McCarthy; de la Torre, 2018).
Various popular biometric datasets were also withdrawn due to such issues (Harvey, 2021). However, models
trained on synthetic data will be biased if the models generating the data are themselves biased. This can
have major societal implications and can reinforce social biases such as in the case of face recognition systems
that are widely used by governments and border patrols for security.
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(a) Standard StyleGAN (b) Proposed Approach

Figure 1: Examples of images generated randomly using the standard StyleGAN2 and the proposed approach.

Figure 2: Pie charts showing the percentage of images belonging to di�erent demographic groups when
randomly generating 100,000 samples from the StyleGAN model trained on the FFHQ dataset (left) and our
proposed approach (right).

Previously, researchers who studied de-biasing GANs assumed access to either a smaller balanced dataset
(Teo et al., 2023) or a reference dataset from the same training data distribution (Choi et al., 2020; Grover
et al., 2019) or a labeled dataset (Xu et al., 2018; Sattigeri et al., 2018). With generative models being trained
in a self-supervised manner on datasets on the scale of billions of samples, these are impractical assumptions.
There are various applications such as medical imagery and biometrics where balanced/ labeled datasets are
di�cult to collect and do not exist for most cases, let alone one with the same data distribution.

In this work, we do not assume access to either a labeled or a reference dataset. In fact, we make an even
stronger assumption that we do not have access to the original training dataset altogether. Access to the
original training dataset is often problematic as it relies on access to a privacy-sensitive dataset. There
are also various applications in which the original data used for training a GAN model is either no longer
available or is not publicly accessible. We, however, assume access to an existing auxiliary classifier which
is a milder assumption as it exists for most use cases such as demographics (Serengil and Ozpinar, 2021).
Furthermore, you can train an auxiliary classifier even on an imbalanced dataset as we show in this paper for
the case of the CIFAR10 dataset.

Moreover, in situations with extremely imbalanced class distributions learning fair generative models is a
di�cult task as in these cases the original dataset may not contain su�cient samples of the underrepresented
groups/classes to enable training a fair model. To solve this problem, we propose that any biased generative
model can be debiased by training a new model of the same architecture (or alternatively retraining the same
model), on a balanced dataset extracted from the existing model. The new, balanced dataset is generated
from the unbalanced model by searching its latent space. We demonstrate that training on this balanced
data results in a fairer model, with no loss to image quality.
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To enable this procedure, we propose a novel fairness loss function, which is used to ensure that samples from
the model have equal probability of belonging to each class in the data distribution. This loss function in
addition to the proposed training methodology achieves state-of-the-art results in mitigating representation
bias. We show results on the StyleGAN2 (Karras et al., 2020) architecture when trained on the flicker-faces
high-quality (FFHQ) dataset (Karras et al., 2019) for generating racially diverse images. Our approach is
generalizable to any GAN model trained on any biased dataset. We do not make any assumptions as to the
architecture of the generative model or the nature of the dataset. To further investigate the generalizability
of this approach to a larger class of problems, we apply the same approach to a class-imbalanced CIFAR10
dataset and show that we can learn the balanced data distribution almost as well as when training on a twice
as large balanced dataset. In figure ?? we qualitatively show examples of images generated randomly using
the standard StyleGAN2 model and the proposed approach. We visually observe a change in the number of
people of color in the two images.

We make the following contributions in this paper:

• We propose a simple privacy-friendly approach to debias an existing generative model through model
rebalancing without using the original training or reference dataset.

• We propose a novel fairness loss function that can be used together with a latent evolutionary search
to mitigate biases in the existing GAN.

• We empirically show that this approach achieves significantly lower bias while maintaining the image
quality.

• We highlight the potential of this approach to be applied to any GAN, trained for any task. We show
results when applied to a class-imbalanced CIFAR10 dataset containing a long-tail class distribution.

• We discuss the shortcomings of the popularly used Frechet inception distance (FID) in measuring
image quality in the case of class or demographic biases. We show that it is sensitive to the balance in
the underlying data distribution and should not be used when studying biases if a balanced reference
dataset is not available.

2 Methodology

In this section, we present our approach for mitigating biases in GANs using data generated from itself and a
novel loss function. We start by formally formulating the problem in subsection 2.1, followed by a baseline
approach in section 2.2. We discuss our proposed approach in the section 2.3, the loss function definition in
section 2.3.3, and lastly the implementation details of the approach in section 2.5.

2.1 Problem Definition

Let’s assume there exists some biased dataset with data distribution pbias : X , D æ R over a set of classes
{d1, d2, ..., dn} œ D and observed variables x œ X . This dataset is used to train a generative model,
parameterized by ◊, to learn the training data distribution. The generative model learns a distribution
p◊ : X æ R. Let us also consider an ideal fair data distribution referred to as pref : X , D æ R. Now, the
primary definition of fairness, especially in the case of demographic fairness is that, when randomly sampling
images from a GAN, the expected number of samples for di�erent classes is equal (Hutchinson and Mitchell,
2019). To mathematically state this, let’s assume a Gaussian random latent vector z œ Rm, generative model
G : Rm æ Rn◊n and an auxiliary classifier C : Rn◊n æ {1, 2, . . . , |D|} that classifies that data into the
corresponding classes. We define an indicator random variable ’. This random variable is equal to 1 when
the randomly sampled image from the generator G corresponds to the target class, represented by a one-hot
vector di œ R|D|, and 0 otherwise.

’di(z) = 1[C(G(z)) == di] (1)
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Now, we can define the fairness of a generative model with respect to each class as follows,

Ez≥p◊ [’di(z)] ¥ 1/|D| (2)

2.2 Baseline: Importance Reweighting

As a baseline, we have implemented a modified version of the importance reweighting method proposed
in (Choi et al., 2020; Grover et al., 2019). The authors had originally proposed an approach that utilizes
a reference dataset, using which, they reweigh the data points in the biased dataset based on the ratio of
densities assigned by the biased data distribution as compared to the reference data distribution. We derive a
modified version of the proposed loss function with milder assumptions i.e. a reference dataset is not available
but we have access to an auxiliary classifier C. Originally the authors had defined the bias mitigation loss
function as follows,

Ex≥pref [l(x, ◊)] = Ex≥pbias [ pref (x)
pbias(x) l(x, ◊)]

¥ 1
T

Tÿ

i=1
w(xi)l(xi, ◊) := L(◊, Dbias).

(3)

Given that both the reference and the biased datasets are randomly drawn from the same overall data
distribution (assumption made in (Choi et al., 2020)), it implies that,

pref (x|di) = pbias(x|di) ’di œ D. (4)

Additionally, given an equally representative reference dataset, we can state that, pref (di) = 1/|D|’di œ D.
We can thus, rewrite the loss definition as follows,

Ex≥pref [l(x, ◊)] = Ex≥pbias [ 1/|D|
pbias(C(x)) l(x, ◊)]

¥ 1
T

Tÿ

i=1
w(xi)l(xi, ◊) := L(◊, Dbias).

(5)

where, C(x) is the class label of x as determined by an auxiliary classifier C. For the entire proof please refer
to the appendix A.

2.3 Proposed Approach

We assume a setting where there exists a trained generative model that is extremely biased wrt to the
distribution of classes (e.g. protected attributes for face image generation). We assume we do not have any
reference datasets available nor do we have access to the original training dataset.

Our approach consists of two parts. The first part is generating balanced data from the existing generative
models using a latent space search algorithm. Secondly, we use the generated data in conjunction with a
novel bias mitigation loss function to train the same generative model.

2.3.1 Data Generation

The StyleGAN model, like most GANs, has disentangled latent spaces. This implies that there exist directions
or subspaces in the latent space corresponding to di�erent attributes or classes of the dataset. We can make
use of these disentangled subspaces to generate balanced synthetic datasets even from extremely biased
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generative models. To do so, we employ an algorithm similar to breadth-first search in latent space (Jain
et al., 2023).

The algorithm consists of two parts. The first one is finding a starting vector to begin the search and the
second is the search itself. We find a starting vector through random rejection sampling using an auxiliary
classifier for feedback. We then sample around the starting point in an iterative manner such that we are
always moving outwards. This algorithm can also be seem as an evolutionary algorithm. This approach allows
us to generate demographically balanced data in a zero-shot setting. The search algorithm is summarized in
Algorithm 2

2.3.2 Training

We use this generated data for rebalancing the same generative model by training on it. Given the balanced
nature of the generated dataset and the ability of generative models to generate highly realistic images,
we can expect to learn the reference data distribution. Let us assume that the generated dataset has a
data distribution pG◊ : X , D æ R. Now, given the ability of GANs to generate highly realistic images,
pG◊ (x|d) ¥ pref (x|d)’d œ D. Also, since we generate a balanced synthetic dataset pG◊ (d) = pref (d)’d œ D.
This implies that, pG◊ (x) ¥ pref (x). Thus, we finally train a generative model with distribution pGÕ

◊
that

approximately tries to learn the data distribution of a perfectly balanced set.

However, in practice, this may not always be the case. Generative models are well known to favor the
generation of classes and images that the discriminator finds di�cult to classify (i.e. mode collapse). Thus,
we further propose a loss function that specifically focuses on generating a balanced class distribution.

2.3.3 Fairness Loss Function

Choi et al. (2020) reweighted samples based on a reference dataset distribution, however, this does not
guarantee learning a balanced distribution. Without assuming access to a reference dataset, the proposed loss
function tries to directly minimize the deviation from an ideal class distribution. We do so by minimizing
the expected number of samples belonging to each class di from the ideal value 1/|D|. We take a weighted
sum of the deviation for each demographic subgroup using the weights ⁄di which is inversely proportional
to the current bias of the generative model. This gives more importance to the loss corresponding to the
underrepresented subgroups.

L(◊) = Lstylegan +
ÿ

diœD

⁄dimax(0, 1/|D| ≠ Ez≥p◊ [’di ]) (6)

The expectation is calculated via Monte Carlo averaging over the batch of images as shown in equation 7. In
practice, this loss function is implemented as shown in Algorithm 1.

Ez≥p◊ [’di(z)] = 1
|B|

ÿ

zœB

1[C(G(z)) == di] (7)

2.4 Evaluation Metrics

Fairness Measure To evaluate the fairness of the generative model for di�erent classes or demographic
subgroups, we utilize a fairness discrepancy metric. The metric was first proposed by (Choi et al., 2020)
to measure the discrepancy between the expected marginal likelihoods of d as per pref and p◊. It can be
mathematically formulated as follows,

f(pref , p◊) = |Ex≥pref [p(d|x)] ≠ Ez≥p◊ [p(d|z)]|2 (8)

Like before, we eliminate the reference dataset in the metric by stating that all classes should be equally
likely to occur. This simplifies the way the fairness of the GAN model is calculated while also negating the
need for a real reference dataset. Equation 9 shows the updated fairness metric after incorporating this.
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Algorithm 1 Fairness Loss Function Computation
Input: A generative model G, an auxiliary ethnicity classifier C, mini-batch size B, weighting for each
demographic subgroup ⁄d, number of demographic subgroups |D|
Output: Loss value.

1: vl Ω random(B) {Initialize B latent vectors}
2: IB Ω G(vl)
3: C_logits Ω arg max C(IB)
4: C_one_hot Ω one_hot_encode(C_logits, dim = |D|)
5: C_count Ω sum(C_one_hot, axis = 0)
6: E_’d Ω 1/|B| ◊ C_count
7: E_’d Ω nn.ReLU(1/|D| ≠ E_’d)
8: loss Ω ⁄d ◊ E_’d

9: return loss

Algorithm 2 Algorithm for Generating Synthetic Data
Input: A generative model G, an auxiliary classifier C, target race t, starting latent vector found using
random sampling vs such that C(G(vs)) = t, number of mutations n, max range of random mutation ”, max
number of iterations for a particular starting vector ›
Output: A list of latent space vectors out.

1: queue Ω [] {Initialize empty list}
2: out Ω []
3: iter Ω 0
4: queue.enqueue(vs)
5: while len(queue) ”= 0 and iter Æ › do

6: vc Ω queue.pop()
7: I Ω G(vc)
8: if C(I) == t then

9: out.append(vc)
10: iter Ω iter + 1
11: for j = 0 to n do

12: vj Ω vc + random(range = [≠”, ”])
13: if dist(vj , vs) > dist(vc, vs) then

14: queue.enqueue(vj)
15: end if

16: end for

17: end if

18: end while

19: return List of latent vectors corresponding to the target class - out.

f(pref , p◊) = |1/|D| ≠ Ez≥p◊ [p(d|z)]|2 (9)

We compute the metric using Monte Carlo averaging. In our experiments, we have averaged this for 5 di�erent
evaluation sets consisting of 10,000 randomly drawn samples.

Sample Quality Measure The Frechet inception distance (FID) (Heusel et al., 2017) is used to measure
the similarity between two data distributions. Indicatively, FID is calculated using the distance between the
2048-dimensional activations of sets of images of the pool-3 layer of the inception network. This is popularly
used in measuring the quality of images generated by a GAN model. However, it is very sensitive to the
reference dataset distribution (Borji, 2022). This makes the metric inadequate in bias-mitigation scenarios
where a representative real dataset may not be present, as in our case. We observed that taking the FID
score between sets of real facial images from the FFHQ dataset is quite high when two sets are from di�erent
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Figure 3: Heatmap showing the FID scores between di�erent racial groups present in the FFHQ dataset.
The high scores in the cross-racial distributions show that the FID score is sensitive to the demographic
distribution of the underlying datasets.

ethnic groups. These images are collected in similar environments and have similar image quality, however,
the FID score is in the range of 12-60. This indicates that the metric is not just capturing the image quality;
if this was the case the value would have been significantly lower. For reference, the FID score between two
disjoint sets of images belonging to the White population is 1.76. We see a similar trend with the Kernel
Inception Distance (KID) as discussed in the appendix B.

Thus, we argue that in the case of bias mitigation, the Inception network-based metrics that require a
reference dataset are not a good measure of image quality when a balanced reference dataset is not present.
To further emphasize this point, we have also taken another use-case of generative modeling for another class
imbalance problem in section 3.2 wherein a reference dataset is present. Please refer to section 3 for further
analysis of the experimental results. However, we still report results on the metrics used by the original
StyleGAN2 authors (Karras et al., 2020) including FID, KID, inception score (IS), precision, and recall along
with the perceptual path length (PPL) metric.

Given the issues with reference-based image quality metrics, we also report results for evaluating the image
quality based on other no-reference image quality assessment metrics - Blind/Referenceless Image Spatial
Quality Evaluator (BRISQUE) (Mittal et al., 2012a), Naturalness Image Quality Evaluator (NIQE) (Mittal
et al., 2012b) and Clip-IQA (Wang et al., 2023). Additionally, we also use the referenceless image-quality
metric EQ-Face (Liu and Tan, 2021) that is specifically used for facial images.

2.5 Datasets and Implementation Details

To show the e�cacy of the proposed approach towards introducing demographic fairness we show results on
generating racially fair data using the FFHQ dataset. The dataset contains extreme biases in terms of the
racial groups, wherein 69% of the images are of Caucasians and only about 4% are of Africans (Maluleke
et al., 2022). We train our own StyleGAN2 model on 4 Nvidia RTX 8000 GPUs using their publicly available
codebase to maintain consistency across all the results. The model was trained at a resolution of 256x256 for
25 million iterations using the config-f parameters for both training and finetuning. We use a pre-trained
ethnicity classifier from the DeepFace (Serengil and Ozpinar, 2021) to serve as an auxiliary classifier.
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Table 1: Table comparing di�erent approaches proposed with the baselines on the fairness metric for racial
parity in the generated images.

Dataset/ Method Fairness ¿
FFHQ (reweighing) 0.4588 ± 0.0052
FFHQ 0.4525 ± 0.0064
+ bias loss 0.4503 ± 0.0063
+ Syn data 0.1024 ± 0.0053
+ freezeD=5 0.1056 ± 0.0044
Syn data 0.0992 ± 0.0041
+ bias loss 0.0947 ± 0.0071

We generated 50,000 unique synthetic identities for 6 di�erent racial groups - Blacks, Indians, Asians, Whites,
Hispanic Latinos, and Middle Easterners. We also included controlled variations in pose, expression, and
illumination to generate a total of 13.5 million images.

We also apply the proposed approach to the CIFAR10 dataset, by creating an imbalanced version of the
dataset following (Shu et al., 2019; Yuan et al., 2023; Cao et al., 2019) such that it has a long-tailed class
distribution. We use an imbalance ratio — = Nmin

Nmax
of 0.1; here Nmax is the most frequent class and Nmin is

the least frequent class. Using this dataset we train a biased version of the StyleGAN model. The model
was trained in a similar fashion using the cifar-config parameters to generate 32x32-sized images. Using the
biased model, we generate 50,000 synthetic images per class; totaling half a million images. We trained a
ResNet32 model on the same imbalanced dataset to serve as an auxiliary classifier using (Du et al., 2023).
This model achieved a balanced accuracy of 94% on the CIFAR10 test set.

We train the following variants of the StyleGAN model and have used these abbreviations in the tables and
corresponding discussions. These serve as ablations for the final proposed model configurations.

• reweighting: Baseline approach using the importance reweighting technique (Choi et al., 2020).

• + bias loss: Adding the bias mitigation loss to the training procedure. We weigh the StyleGAN loss
and the bias loss equally.

• + Syn data: Finetuning the existing model trained on the original dataset on the generated synthetic
dataset. The finetuning step is always done using the proposed bias mitigation loss function with a
10 times lower learning rate to preserve elements of the learned generative model.

• + freezeD=5 : Freezing the last five layers of the original discriminator model and then retraining
on the synthetic data. This is done to preserve the image quality when finetuning on the generated
dataset.

Overall, we propose training a new model with the same architecture on the synthetic data with the bias
loss (last row in the results tables). This is not only more privacy-aware as compared to retraining the same
model but also does not assume access to the biased GAN discriminator. We delve deeper into the results
obtained using each of these approaches in terms of fairness and image quality in the next section.

3 Experimental Results

In this section, we empirically validate the proposed approach of learning fairer generative models. We
structured the results section to answer the following two questions,

• Can we achieve a fairer generative model that is equally representative wrt to the di�erent classes in
the dataset?

• Can we do so without degrading the quality of generated images?
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Table 2: Comparison of the baseline model with the proposed approach on the no-reference image quality
metrics - ED-Face, NIQE, Brisque, and Clip-IQA when training the model for generating racially diverse
faces.

Dataset/ Method EQ-Face ø NIQE ¿ Brisque ¿ CLIP-IQA ø
FFHQ (reweighing) 0.5491 ± 0.1507 4.8018 ± 1.0926 7.0015 ± 8.2990 0.6814 ± 0.0940
FFHQ 0.5496 ± 0.1476 4.9053 ± 1.2079 6.9652 ± 8.3043 0.6835 ± 0.0905
+ bias loss 0.5396 ± 0.1483 4.7568 ± 1.0676 6.3721 ± 8.1770 0.6802 ± 0.0903
+ Syn data 0.5820 ± 0.1247 4.8395 ± 1.0846 7.5867 ± 7.5897 0.6877 ± 0.0797
+ freezeD=5 0.5815 ± 0.1250 4.8507 ± 1.0328 7.9044 ± 7.6993 0.6936 ± 0.0785

Syn data 0.5757 ± 0.1294 4.9408 ± 1.1059 8.7538 ± 7.6573 0.6803 ± 0.0811
+ bias loss 0.5739 ± 0.1255 4.7675 ± 0.9914 8.1593 ± 7.4206 0.6603 ± 0.0807

Table 3: Comparison of the proposed approach and the baseline trained on a long tail CIFAR10 dataset
(—=0.1) with the model trained on the balanced dataset. The metrics are measured wrt to the original
balanced CIFAR10 dataset. The proposed approach performs almost as well as training on balanced data
(row 5-8 vs row 1) with 40% of the training data and that too imbalanced.

Dataset/ Method FID ¿ KID ¿ Precision ø Recall ø IS ø PPL ¿
Balanced data 4.36 0.00155 0.6330 0.5684 9.49 ± 0.10 18.90

Imbalanced data (reweighting) 11.28 0.00614 0.6429 0.5100 8.33 ± 0.08 19.38
Imbalanced data 11.13 0.00628 0.6937 0.4398 8.30 ± 0.12 20.66
+ bias loss 10.30 0.00568 0.6837 0.4632 8.47 ± 0.17 22.85
+ Syn data 6.44 0.00201 0.6974 0.3860 9.19 ± 0.08 23.09
+ freezeD=5 6.56 0.00213 0.6984 0.3946 9.21 ± 0.10 23.19
Syn data 6.38 0.00152 0.6771 0.3905 9.44 ± 0.10 23.28
+ bias loss 6.32 0.00146 0.6800 0.3877 9.49 ± 0.11 23.96

We report results on the FFHQ dataset in section 3.1 and on the imbalanced CIFAR10 dataset in section 3.2.

3.1 Results on the FFHQ Dataset

Results on Fairness. We have reported the results pertaining to the demographic disparity in generative
models in table 1. We see the model trained on the synthetically generated balanced image set with the bias
loss (last row in the table), improves the fairness of the standard StyleGAN2 trained on the FFHQ dataset
by almost 5 times.

We also see that the proposed bias loss plays an important role as well when comparing the StyleGAN2
model trained on the FFHQ dataset (row 2) versus finetuning the model on the FFHQ dataset with the bias
loss (row 3). Further, this is lower than when using the baseline importance reweighting technique (row 1)
which has a fairness metric value of 0.4588 in comparison to 0.4503 of the former.

Results on Image Quality. We summarized the results on image quality using referenceless IQA metrics
in table 2 and on other metrics employed by the original StyleGAN2 authors in table 6. When comparing the
referenceless image qualities for the proposed approach with the baseline StyleGAN2 model trained on the
FFHQ dataset, we see that the model trained with the Syn data + bias loss configuration has comparable
image quality scores. The EQ-Face metric in particular has been trained on facial images to judge their
quality for performing facial recognition. We in fact see higher EQ-face image quality scores when using our
proposed approach with a score of 0.5739 as compared to the traditional model with a score of 0.5496. The
baseline traditional StyleGAN2 model has a better BRISQUE score of 6.96 as compared to the proposed
approach which has a score of 8.15. The NIQE and CLIP-IQA scores are similar across all the models.

As discussed in section 2.4, the traditional metrics utilized by the authors of the StyleGAN2 paper are
partially irrelevant to a class imbalance problem. We still report results on these metrics in table 6.
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Table 4: Table showing the comparison of various methods measuring the deviation of the probability of
generated samples belonging to each class of the CIFAR10 dataset from being equiprobable (i.e. equal to 0.1).

Dataset/ Method Fairness ¿
Balanced data 0.0286 ± 0.0018
Imbalanced data (reweighting) 0.2313 ± 0.0023
Imbalanced data 0.2279 ± 0.0020
+ bias loss 0.2183 ± 0.0029
+ Syn data 0.0290 ± 0.0019
+ freezeD=5 0.0285 ± 0.0015
Syn data 0.0288 ± 0.0022
+ bias loss 0.0281 ± 0.0033

Table 5: Comparison of the proposed approach applied to the imbalanced CIFAR10 dataset on no-reference
image quality metrics.

Dataset/ Method Brisque ¿ CLIP-IQA ø
Balanced data 60.13 ± 35.18 0.51 ± 0.05
Imbalanced data (reweighting) 62.57 ± 35.02 0.51 ± 0.05
Imbalanced data 62.14 ± 34.57 0.51 ± 0.05
+ bias loss 60.87 ± 34.13 0.51 ± 0.05
+ Syn data 61.51 ± 35.77 0.51 ± 0.05
+ freezeD=5 61.33 ± 35.84 0.51 ± 0.05
Syn data 62.21 ± 36.13 0.51 ± 0.06
+ bias loss 62.43 ± 36.34 0.51 ± 0.06

3.2 Results on the CIFAR10 Dataset

To further validate our approach of mitigating biases in generative models wherein there is a high imbalance
in the classes, we have applied the same approach to the CIFAR10-imbalanced dataset with a long tail
distribution. We have some interesting observations based on these results, especially since in this case we
have a balanced reference set and can accurately compute metrics such as FID and KID. Thus, we have
computed all the reference-based metrics with respect to the original balanced CIFAR10 dataset. By doing
so we observed that the FID and KID scores in fact improve when we just apply the bias loss. As seen in
Table 3 the FID score improves from 11.28 to 10.30. This clearly shows the bias loss pushes the generative
model to generate a more balanced dataset that better resembles the ideal underlying distribution. This also
acts as a further validation that the FID is highly sensitive to the class distribution and is lower when the
two distributions have similar ratios of the classes, going away from the popular belief that it only measures
the image quality.

The proposed training regime achieves FID and fairness scores of 6.32 and 0.0281 which are almost similar to
when trained on the fully balanced CIFAR10 dataset which yields scores of 4.36 and 0.0286 respectively. This
is also 10 times lower than the fairness value when trained using the importance weighting technique and
directly on the imbalanced dataset. It is also important to note that the imbalanced CIFAR10 dataset only
has 20,431 samples in comparison to the original CIFAR10 dataset which contains 50,000 samples. Thus, the
proposed approach despite having less than half the amount of original data is able to learn the true balanced
distribution almost as well as when training on the full balanced dataset.
We also looked at how the generated images performed on the di�erent no-reference image quality assessment
metrics. We report results on the BRISQUE and the CLIP-IQA metrics. However, given the extremely small
size of images in the CIFAR10 dataset, we were not able to compute the NIQE scores. But in reference to
the BRISQUE and Clip-IQA, the model trained with the bias loss performs at par with the model trained on
the balanced set, thus showing that it improves significantly on fairness without compromising on the image
quality.
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4 Related Work

Various researchers have studied fairness in generative models and have pointed out the extremely biased
nature of popularly used existing generative models including the StyleGAN models trained on the FFHQ
dataset (Maluleke et al., 2022; Tan et al., 2020). To tackle this issue researchers have worked on improving
the fairness in these models. Choi et al. (2020) presented an approach to train fair generative models by
weighting the loss based on the fairness importance of the sample. They use an unlabelled reference dataset
for learning the desired distribution using a density ratio technique. In a similar set-up with a smaller fair
reference dataset (Teo et al., 2023) proposed an approach to tune a biased model on the fair dataset. In this
work, we simplify the "fairness" meaning by simply stating that the ideal distribution is where the expectation
of every class is equal. This negates the need for a reference dataset. Kenfack et al. (2022) studied fairness in
situations when the dataset is fair, yet there are biases in the generative model. They proposed an approach
of group-wise gradient clipping in the discriminator to ensure that the generator doesn’t favor a particular
class. Early work in the field that focused on fairness in generative models focused on using labeled datasets
or creating labeled datasets (Xu et al., 2018; Sattigeri et al., 2018). This allows them to learn a downstream
classifier for target attributes. In this work, we do not assume that a demographically labeled or unbiased
dataset exists. In fact, the focus of this work is on making use of existing models and classifiers to mitigate
biases in them without using any real data. Kenfack et al. (2021) proposed using conditional GANs or an
ensemble of GAN models to improve fairness in situations where GAN models favor particular classes. Jalal
et al. (2021) proposed a new formulation of fairness for image-to-image translation models called Conditional
Proportional Representation and have argued that Representation Demographic Parity is incompatible in
this setting. This work is not directly comparable to our work since the notion of CPR is not extendable to
GANs. Karakas et al. (2022) proposed an approach to introduce fairness in StyleGAN by directly modifying
style channels that control particular attributes. They showed results on gender and other attributes such as
eyeglasses.

Interestingly, there has been a wider focus on generating more diverse images in terms of protected or
un-protected facial attributes from biased generative models (Jain et al., 2023; Tan et al., 2020; Colbois et al.,
2021; Parmar et al., 2022; Liu et al., 2019; He et al., 2019; Shen et al., 2020; Dabouei et al., 2020). We believe
this trend in the research community arises from the lack of publicly available datasets used to train large
models along with the computational cost associated with the training of such models. In this work, we have
tried to address both of these issues.

Researchers have also shown interest in proposing other fairness measuring metrics for generative models
that take into account the inaccuracy of the auxiliary classifier (Teo et al.; Teo and Cheung, 2021).

The generation of synthetic datasets is easier than the collection of real datasets and also preserves privacy.
Researchers have shown its applicability in various tasks such as multi-view representation learning (Jahanian
et al., 2021), face-swap detection (Jain et al., 2022), face morphing attack detection (Ivanovska et al., 2022)
and even in finance (Assefa et al., 2020). Thus it is important that these generative models are unbiased so
that the same biases are not propagated in the downstream tasks. Another line of related research explores
the generation of images for data augmentation in imbalanced situations Mullick et al. (2019); Dablain et al.
(2022).

Recently, Shumailov et al. (2023) showed that recursively training on generated data leads to model collapse.
The model begins losing information from the tails of the distribution or entangles multiple modes of the
original distribution. In this work, we only do one iteration of retraining the generative model on synthetic
data while specifically focusing on generating diverse images, thus, minimizing the risk of model collapse.

5 Conclusion

In conclusion, we present a novel approach to building a fair GAN from an existing biased GAN. We have
specifically proposed a privacy-aware approach that is useful while handling sensitive biometric data such that
we do not use any of the original training data. This is also important in cases where access to the original
training data is no longer available. Further, we eliminate the need for a balanced reference dataset. We
also propose a novel bias mitigation loss function. We experimentally validate our approach on two di�erent
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tasks of racial bias in facial image generation and imbalanced-CIFAR10 image generation. We see significant
improvements in the fairness metrics while maintaining the image quality. In fact on the CIFAR10 dataset,
we show that we are able to closely learn the true balanced distribution even on the imbalanced dataset
which contains less than half as many samples. We believe this approach is generalizable to any generative
model trained for any task. In the future, it would be interesting to see if such approaches can also be applied
to di�usion-based generative models.
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