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ABSTRACT

Most existing video understanding benchmarks for multimodal large language
models (MLLMs) focus only on short videos. The limited number of bench-
marks for long video understanding often rely solely on multiple-choice questions
(MCQs). However, because of the inherent limitation of MCQ-based evaluation
and the increasing reasoning ability of MLLMs, models can give the current an-
swer purely by combining short video understanding with elimination, without
genuinely understanding the video content. To address this gap, we introduce
CG-Bench, a novel benchmark designed for clue-grounded question answering in
long videos. CG-Bench emphasizes the model’s ability to retrieve relevant clues
for questions, enhancing evaluation credibility. It features 1,219 manually cu-
rated videos categorized by a granular system with 14 primary categories, 171
secondary categories, and 638 tertiary categories, making it the largest bench-
mark for long video analysis. The benchmark includes 12,129 QA pairs in three
major question types: perception, reasoning, and hallucination. Compensating
the drawbacks of pure MCQ-based evaluation, we design two novel clue-based
evaluation methods: clue-grounded white box and black box evaluations, to as-
sess whether the model generates answers based on the correct understanding of
the video. We evaluate multiple closed-source and open-source MLLMs on CG-
Bench. Results indicate that current models significantly underperform in under-
standing long videos compared to short ones, and a significant gap exists between
open-source and commercial models. We hope CG-Bench can advance the devel-
opment of more trustworthy and capable MLLMs for long video understanding.
All annotations and video data will be publicly released.

1 INTRODUCTION

Recently, video understanding has made significant progress with the advent of multimodal large
language models (MLLMs). To evaluate these models, many recent efforts have been made to
create video understanding benchmarks (Li et al., 2023b; Mangalam et al., 2024; Liu et al., 2024e),
providing assessments of model comprehension capabilities and clues for future improvement.

Since early benchmarks only focus on short video clips, recent works have started to create bench-
marks (Fu et al., 2024a; Wu et al., 2024b; Zhou et al., 2024) for longer videos (≥ 10 minutes).
However, these works employ multiple-choice questions (MCQ), where the difficulty level is heav-
ily influenced by the configuration of negative options. In such scenarios, models (Chen et al.,
2023d; Li et al., 2024; Zhang et al., 2024b; Lin et al., 2024) tend to focus on only general video
knowledge and use elimination to avoid selecting the negative options. As a result, the models can
achieve correct answers without genuinely engaging with the relevant video content, leading to a
lack of trustworthiness. One illustration can be found in question 2 of Figure 1, the option ‘A’ can be
easily eliminated based purely on textual information. Recently, the NExT-GQA (Xiao et al., 2024)
benchmark tries to address the problem of credible models by incorporating temporal grounding into
MCQ. However, NExT-GQA is limited to the NextQA (Xiao et al., 2021) dataset, which lacks di-
versity and primarily consists of short videos. A comprehensive benchmark for credibly evaluating
generalist MLLMs for long video understanding, is still missing in the research community.

To make up this gap, we introduce CG-Bench, illustrated in Figure 1, a novel benchmark designed
to evaluate clue-grounded question answering in long videos. In contrast to traditional benchmarks
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Question 1: In the video, how 
many photo frames does the 
protagonist touch while strolling 
through the morning market in 
Amsterdam?

A. 1 B. 2 C. 3 D. 4 E. 5

Question 3: In the video, at the Louvre in Paris, 
which world-famous painting did the protagonist 
capture that was surrounded by people?
A. "Liberty Leading the People"
B. "The Coronation of Napoleon"
C. "The Wedding at Cana"
D. "Mona Lisa"
E. "The Gleaners"

Question 2: In the video, during a dinner 
in Italy, what did the protagonist and her 
husband do after a man finished singing?
A. Drive to the Louvre in Paris
B. Clinked glasses and drank together
C. Embraced each other
D. Took a photo with the singer
E. Made a toast together

CG-Bench Evaluation Suite

Multiple-Choice Question Evaluation

Long-Video MCQ

Clue-based MCQ

Clue-grounded Annotation for Long Videos

Credibility Evaluation

White-Box Eval

Black-Box Eval

Open-ended Evaluation

Open-Ended QA

Long-acc.

Clue-acc.

mIoU

acc@IoU

CRR

OE-acc.

Q1-Clues Q2-Clues Q3-Clues

Figure 1: Left: examples of CG-Bench’s clue-grounded annotation. To correctly answer the questions, models
need to ground their reasoning into the correct clue. Right: CG-Bench provides an evaluation suite with two
novel credibility evaluation criteria while supporting both MCQ and open-ended evaluations.

that primarily focus on the correctness of question answering, CG-Bench goes a step further by eval-
uating whether the model bases its answers on relevant clues within the video. CG-Bench designs
two novel clue-based evaluation methods to provide more reliable model performance assessments.
1) clue-grouded white box evaluation requires the model to directly provide the clue interval corre-
sponding to the question while selecting the correct answer. 2) clue-grouded black box evaluation
requires the model to align the accuracy of video-level MCQ and clue-level MCQ. Furthermore, we
propose a novel heuristic method, aided by human-annotated clues, for open-ended QA evaluation,
to effectively balance the cost and performance.

CG-Bench features 1,219 meticulously curated videos and 12,129 human-annotated question-
answer-clue (QAC) triplets, establishing it as the largest and held-out VideoQA and question ground-
ing benchmark for long videos. It employs a highly detailed manual classification system, organizing
each video into 14 primary categories, 171 secondary categories, and 638 tertiary categories. The
benchmark includes three main question types: perception, reasoning, and hallucination. Perception
questions are further divided into 10 subcategories, such as object and attribute recognition, while
reasoning questions are categorized into 12 subcategories, including relation reasoning, etc.

We evaluate a range of closed-source and open-source MLLMs using this benchmark. The com-
mercial models, GPT-4o (OpenAI, 2024) and Gemini-1.5 Pro (Anil et al., 2023) achieve scores of
53.9 and 43.4, respectively, with 128 frames for long-video multiple-choice questions. The leading
open-source MLLM, Qwen2-VL-72B (Wang et al., 2024b), scores 51.4 under the same conditions,
indicating its initial benchmarking against GPT-4o. However, our credibility assessments and open-
ended evaluations reveal a significant drop in accuracy for existing MLLMs, with scores decreasing
from 53.9 to 21.7. This underscores the considerable room for improvement in current MLLMs for
long video understanding. We hope this benchmark can become a vital tool for advancing research
and development of more reliable and capable MLLMs.

2 RELATED WORK

Multimodal Large Language Models (MLLMs) have rapidly gained popularity due to their pro-
ficiency in integrating visual and textual information (Liu et al., 2024a; 2023; Chen et al., 2023d).
Recent advancements, such as LLaVA-Next-Video (Zhang et al., 2024b), LLaVA-OneVision (Li
et al., 2024), and InternVL2 (Chen et al., 2024e), focus on enhancing MLLMs by integrating LLM
backbones with visual encoders and specialized adapters, or creating higher-quality multimodal in-
struction data. This results in improved performance across tasks that involve both text and images.

Another area of focus is multimodal video understanding. Most models (Chen et al., 2024e; Li et al.,
2023a; Maaz et al., 2023) are optimized for short videos, typically a few seconds or at most a few
minutes, without exploring their visual understanding with longer context. In response, researchers
have explored methods such as compressing video frames into fewer visual tokens to allow for the
handling of longer videos, as seen in models like LLaMA-Vid (Li et al., 2023c), LVChat (Wang et al.,
2024d), MovieChat (Song et al., 2024), MA-LMM (He et al., 2024) and Oryx (Liu et al., 2024f).
In addition, LongVA (Zhang et al., 2024a) and LongViLA (Xue et al., 2024) explore the system-
level optimization for long-context MLLMs which can natively support long video understanding.
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Figure 2: Distribution of video root categories, dis-
playing the number of videos within each category.
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Figure 3: Distribution of question root types, illus-
trating the frequency of different question types.

Despite the continuous proposal of various MLLMs, their real-world performance in long video
understanding is still under explored.

MLLM Benchmarks. The development of benchmarks is becoming increasingly essential, espe-
cially for evaluating the MLLM performance in video understanding tasks. As the field develops,
various benchmarks have been established to assess MLLMs across different modalities and video
lengths. Previous efforts primarily focused on short videos, with traditional specialized VideoQA
datasets like TVQA (Lei et al., 2018), NextQA (Xiao et al., 2021), and benchmarks for MLLM
like VideoBench (Ning et al., 2023), MVBench (Li et al., 2023b) and EgoSchema (Mangalam et al.,
2024). MVBench provides a comprehensive framework for evaluating general temporal understand-
ing capabilities through question-answering on short clips, while EgoSchema focuses on egocentric
video understanding with multi-choice questions. The videos in these benchmarks typically range
from a few seconds to several tens of seconds, making them similar to image benchmarks and thus
hindering the development of general video LLMs.

Recently, several works such as VideoMME (Fu et al., 2024a), CinePile (Rawal et al., 2024),
MLVU (Zhou et al., 2024), LongVideoBench (Wu et al., 2024b), and LVBench (Wang et al., 2024c),
have introduced long video benchmarks to evaluate MLLMs. VideoMME constructs a diverse video
MCQ dataset, incorporating multimodal evaluations with visuals, subtitles, and audio. MLVU de-
signs a range of tasks that focus on granular detail understanding to assess long video comprehension
capabilities. However, a common limitation of these benchmarks is their reliance on MCQs, where
the difficulty is heavily influenced by the construction of negative options. This allows MLLMs
to often eliminate incorrect answers by using sparse frames and common sense reasoning, which
can inflate performance metrics. With our clue interval annotation, CG-Bench enhances the evalua-
tion quality of MLLMs in long video understanding by introducing new evaluation mechanisms on
credibility.

3 CG-BENCH

3.1 DATASET CONSTRUCTION

The dataset construction process of CG-Bench consists of three steps: video collection, question-
answering-clue annotation, and quality review iteration. We provide details are as follows.

Video Collection. To avoid using videos that have been used for pre-training by existing MLLMs,
we manually collect videos from the internet and provide new annotations on them. To facilitate
the collection of raw videos from the Internet, we define 14 root domains as listed in Figure 2.
During the collection process, we manually assign a brief tag (4-8 words) to categorize the content
of each video. This supplementary tagging helps to ensure the diversity of the videos. We define
a video to be long if it exceeds 10 minutes in duration. Accordingly, we collected videos longer
than 10 minutes while considering the distribution of video duration. Furthermore, we retain the
accompanying subtitles and audio to provide multimodal information. We carefully review and
filter the videos manually for 7 rounds. More details about the video collection can be found in the
supplementary material.
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tion, showing the number of videos
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Annotation Statistics

#QAC Triplets 12129
#Avg/QAC per video 9.9
#Avg/Option per QAC 6.4
#Avg/Clue per QAC 1.23

#Avg/Words of Questions 13.6
#Avg/Words of Options 26.6
#Avg/Duration of Clues 29.3

Table 1: Annotation statistics, de-
tailing the number of QAC triplets,
questions, options, and clues.

Question-Answer-Clues Annotation. After collecting the raw video data, we annotate it with
high-quality question-answer-clue (QAC) triplets. To ensure question diversity, we first establish a
taxonomy with three main types: Perception, Reasoning, and Hallucination. As shown in Figure 3,
Perception and Reasoning questions are further divided into 10 and 14 subcategories, respectively,
while Hallucination questions combine elements of both perception and reasoning. Annotators are
instructed to include negative options to create a multiple-choice QA format, facilitating straight-
forward and cost-effective assessments. To minimize expression loss, annotators use their native
language during the annotation process. Each video requires between 6 to 15 QAC triplets, depend-
ing on its duration. To ensure consistency in QAC triplets, we standardized the annotation process
by first annotating the QA pairs and then identifying the clues. Annotators must watch the entire
video, select a question type from the predefined categories, and then annotate a new question and its
corresponding answer. Next, they select one or more intervals from the video to form a QAC triplet.
Since the actual clue intervals often consist of multiple short moments, annotating each fragment is
costly. Therefore, annotators are required to mark intervals that cover these short moments while
ensuring the completeness of each event.

Review Iteration. To ensure the difficulty and quality of the dataset, we conduct a repetitive review
and iteration process to enhance annotation quality. We reject annotations that do not meet our
quality standards and request annotators to revise them. Our quality requirements for annotations
and the measures taken to ensure them are as follows: 1) The rationality of the question, options,
and answer: we conduct manual reviews; 2) The video dependency of the question, options, and
answer: we input the questions and options into GPT-4 and filter out QA pairs that can be answered
solely based on the pure text; 3) The difficulty of negative options in multiple-choice questions: we
input the video, questions, and options into MLLMs and filter out QA pairs that can be answered
using only sparse frames and small models; 4) The positional diversity of clue intervals: We monitor
the distribution of clue duration and position and provide timely guidance to annotators.

3.2 DATASET STATISTICS & COMPARISONS

We present the detailed statistics of our dataset to provide a more comprehensive understanding, in-
cluding the meta information, QAC triplets, qualitative analysis, and comparison to previous works.

3.2.1 DATASET STATISTICS

Video Meta. Our dataset comprises a total of 1219 videos with multiple multimodal information,
including vision, audio, and subtitles. The duration of the videos varies between 10 and 80 minutes,
with a distribution illustrated in Figure 4. Notably, videos that last between 20 and 30 minutes are
the most prevalent. This selection process is manual, based on content relevance, which mirrors
real-world duration distributions and highlights a long-tail effect for longer videos. As illustrated
in Figure 2, each video is classified using a three-tiered tagging system that succinctly encapsulates
its content and assigns it to fundamental categories. The primary classification is augmented by a
secondary layer of 171 tags and a tertiary layer consisting of 638 tags. This multi-level tagging
mechanism guarantees a broad diversity of data content. For a more detailed classification of tags,
please consult the supplementary materials.

QAC Annotation. CG-Bench includes 12,129 annotations consisting of questions, answers, and
clues. Table 1 presents the sentence lengths and totals for the annotated questions and answers,
highlighting the linguistic diversity within our dataset. Each QAC triplet is annotated with 4 to 7
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Table 2: Comparison of benchmarks across key aspects: number of videos (#Video), average duration (#Du-
ration), number of QA pairs (#QA Pairs), number of clues (#Clue), annotation method (M/A for man-
ual/automatic), Open-Domain (OD), Open-Ended (OE), Multi-modal (MME), and Credibility (CE) Evaluation.

Benchmark #Video #Dur.(s) #QA Pairs #Clue Anno. OD OE MME CE

Question-Clue Grounding
NextGQA (Xiao et al., 2024) 1,000 39.5 - 10,531 M ✗ - - -
Ego4D-NLQval (Grauman et al., 2022) 415 499.7 - 4,554 M ✗ - - -
Ego4D-NLQtest (Grauman et al., 2022) 333 493.7 - 4,005 M ✗ - - -
MultiHop-EgoQAtest (Chen et al., 2024c) 360 - - 1,080 A&M ✗ - - -
E.T. Benchtest (Liu et al., 2024d) - 129.3 - 2,011 M ✓ - - -
RexTimetest (Chen et al., 2024a) - 141.1 - 2,143 A&M ✗ - - -
CG-Bench-QG 1,219 1624.4 - 14,945 M ✓ - - -

Short-Video QA
TVQA (Lei et al., 2018) 2,179 11.2 15,253 15,253 M ✗ ✗ ✗ ✗
STAR (Wu et al., 2024a) 914 11.9 7,098 7,098 A ✗ ✗ ✗ ✗
NextQA (Xiao et al., 2021) 1,000 44.0 8,564 ✗ A ✗ ✓ ✗ ✗
EgoSchema (Mangalam et al., 2024) 5,063 180.0 5,063 ✗ A&M ✗ ✗ ✗ ✗
TempCompass (Liu et al., 2024e) 410 11.4 7,540 ✗ A&M ✗ ✗ ✗ ✗
RexTimetest (Chen et al., 2024a) - 141.1 - 2,143 A&M ✗ ✗ ✗ ✓
MVBench (Li et al., 2023b) 3,641 16.0 4,000 ✗ A&M ✗ ✗ ✗ ✗
MMBench-Video (Fang et al., 2024) 600 165.4 1,998 ✗ M ✓ ✓ ✗ ✗
CG-Bench-Clue 12,129 32.9 12,129 - M ✓ - ✓ -

Long-Video QA
EgoTimeQAtest (Di & Xie, 2024) 148 492 500 ✗ A ✗ ✗ ✗ ✗
MovieChat-1K (Song et al., 2024) 130 500.0 1,950 ✗ M ✗ ✗ ✗ ✗
Video-MME (Fu et al., 2024a) 900 1017.9 2,700 ✗ M ✓ ✗ ✓ ✗
LongVideoBench (Wu et al., 2024b) 966 1408.0 6,678 ✗ M ✓ ✗ ✗ ✗
MLVU (Zhou et al., 2024) 757 720.0 2,593 ✗ M ✗ ✗ ✗ ✗
CG-Bench 1,219 1624.4 12,129 14,945 M ✓ ✓ ✓ ✓

negative samples, resulting in an approximately uniform distribution with ratios of options A to H
of 18%, 19%, 17%, 18%, 19%, 5%, 3%, and 1%. There are a total of 14,945 clue intervals across
all QAC triplets, with an average duration of 29.3 seconds each. Additionally, we conduct a further
analysis of the positions of clue intervals within the video. Figure 5 illustrates the frequency with
which each normalized timestamp is represented by intervals. This demonstrates the unbiased nature
of our interval annotations and highlights the diversity of our QA content in temporal position.

3.2.2 COMPARISON WITH PREVIOUS BENCHMARKS

CG-Bench is characterized by its diverse features, allowing it to be compared with three distinct
types of benchmarks, as depicted in the three sections of Table 2: Question Clue Grounding,
Short-Video QA, and Long-Video QA benchmarks. For the question clue grounding benchmarks,
NextGQA (Xiao et al., 2024), Ego4D-NLQ (Grauman et al., 2022), MultiHop-EgoQA (Chen et al.,
2024c), E.T. Bench (Liu et al., 2024d), and RexTime (Chen et al., 2024a) are primarily centered
around action and egocentric domains. Their videos are sampled from academic datasets. In com-
parison, the question clue grounding part of CG-Bench, CG-Bench-QG, stands out with the highest
number of videos and the longest average length, the diversity of which fosters a broad spectrum of
question-grounding queries.

Furthermore, we transform QAC triplets to our novel Short-Video QA benchmark, termed CG-
Bench-Clue. When contrasted with prior short video benchmarks such as TempCompass (Liu et al.,
2024e), MVBench (Li et al., 2023b) and MMBench-Video (Fang et al., 2024), our CG-Bench-Clue
emerges as the largest, held-out, open-domain and multimodal Short-Video QA benchmark.

As for the Long-Video QA benchmark, CG-Bench excels in the number of videos, length, quantity
of questions, and annotation quality. Owing to our clue interval annotations, CG-Bench further
facilitates reliable evaluations for long videos and open-ended evaluations with clue assistance, a
feature that sets it apart from existing long video benchmarks like Video-MME (Fu et al., 2024a)
and MLVU (Zhou et al., 2024).

3.3 EVALUATION

In this section, we describe the evaluation tasks of our CG-Bench which include traditional MCQ,
the unique credibility evaluation, and clue-aided open-ended QA evaluation.
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3.3.1 MULTIPLE-CHOICE QUESTION EVALUATION

We assess the accuracy of MCQ in two settings: Long-Video MCQ and Clue-based MCQ. In the
Long-Video MCQ setting, the model receives the entire video as input and is required to select the
correct answer based on the video, the question, and the candidate options. For the Clue-based MCQ
setting, the model is given only the video within the annotated clue interval as input. The model has
access only to the clue clip, the question, and the candidate options. It does not have access to the
original long video. Since a single QA may correspond to multiple clues, we merge these clues and
treat the combined clue as a single, cohesive clue segment.

3.3.2 CREDIBILITY EVALUATION

The ability of a model to identify relevant clues related to questions is a crucial factor in determining
its reliability. Therefore, we define a model’s reliability based on its proficiency in locating accurate
clues when addressing problems. To achieve this, we introduce two clue-grounded mechanisms for
credibility assessment: white-box evaluation and black-box evaluation.

White-Box Evaluation requires the model to directly output the intervals of clues that can accu-
rately answer the question. This task is similar to video temporal grounding (Lei et al., 2021; Huang
et al., 2023). Therefore, we use tIoU (Temporal Intersection over Union) as the evaluation metric.
Since each question may correspond to multiple intervals of clues, we allow the model to predict
multiple possible intervals. Given a set of prediction P and ground truths G, the tIoU is defined as:

tIoU =

∑
i∈G,j∈P max(0,min(bi, dj)−max(ai, cj))∑

i∈G(bi − ai) +
∑

j∈P(dj − cj)−
∑

i∈G,j∈P max(0,min(bi, dj)−max(ai, cj))
× 100%, (1)

where ai, bi are the start and end timestamps of the i-th ground truth interval of G. cj , dj are the
start and end timestamps of the j-th predicted interval of P . We calculate the mean IoU (mIoU) by
averaging the tIoU scores obtained by the model across all question queries. To further improve the
robustness of question grounding evaluation, we introduce the rec.@IoU metric. This metric mea-
sures the probability of successfully recalling clue intervals at various IoU thresholds. We calculate
the average recall rate at IoU thresholds of 0.1, 0.2, 0.3, 0.4, and 0.5 to determine the final result.

In addition, we propose a combined metric, acc.@IoU that evaluates both MCQ accuracy and clue-
grounding ability. For a question with multiple choice options, the response is considered correct
only if the selected answer is accurate and the tIoU between the prediction and the ground truth
exceeds a predefined threshold τ . Since locating short-duration clues in the long videos in CG-
Bench is inherently challenging, we set the default τ to be 0. Note that setting τ = 0 does not
degrade this metric to be equivalent to naive MCQ accuracy. acc@IoU with τ = 0 requires the
model to not only select the correct option but also produce a time interval that overlaps at least
slightly (tIoU > 0, not ≥ 0) with the annotated clue interval.

Black-Box Evaluation aims to evaluate the model’s ability to seek out clues implicitly. Understand-
ing long videos involves the retrieval of clues distributed across various spatiotemporal locations
within the entire video. Therefore, an effective model for long videos should naturally focus on cap-
turing human-annotated clue intervals in its hidden states. However, beyond the explicitly annotated
clue intervals, there are likely hidden clues scattered throughout the video that can also help to de-
termine the correct answer. Thus, a model with access to the full video should yield higher accuracy
compared to solely relying on the clue interval. In other words, the accuracy of Long-Video MCQ (
long-acc.) should be greater than or equal to the accuracy of Clue-based MCQ (clue-acc.).

With this insight, for the black box evaluation, we define a new metric called Clue Recovery Rate
(CRR). This metric evaluates the model’s robustness to context dilution, i.e., how stable a model
can find related clues from long but diluted video context. CRR is calculated by:

CRR =
min(long-acc., clue-acc.)

clue-acc.
× 100%, (2)

A CRR of less than 100% suggests that the MLLM’s ability to retrieve short clues from long video
representations is not optimal.
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Question: In the video, who ate the orange 
jelly?

GT: girl in black clothes

Prediction: Girl with blonde hair

Question: In the video, how does the protagonist 
show the bag she is carrying today?

GT: Show it while standing sideways.

Prediction: Show it by taking a selfie in front 
of the mirror.

Figure 6: Two examples illustrating the ambiguity challenge of using LLMs for open-ended evaluation. While
in different expressions, GT and prediction should both be treated as correct answers.

3.3.3 CLUE-AIDED OPEN-ENDED QA EVALUATION

Finally, CG-Bench supports open-ended QA evaluation for more comprehensive assessment results.
Previous works such as MM-Vet (Yu et al., 2023) and MMBench-Video (Fang et al., 2024) use
LLMs to evaluate open-ended QA for images and short videos. In contrast, long videos typically
contain more complex information, thus user-generated questions tend to be ambiguous. As a result,
the correct answer can be in many distinct forms, which can cause discrepancies between the LLM-
evaluated score and the real model’s QA ability, as shown in Figure 6.

To address this, we leverage a low-hallucination MLLM to evaluate the similarity between the text
output and the visual information. We choose GPT4o (OpenAI, 2024) as the multimodal evaluator
because it ranks among the top in several well-known benchmarks, such as OpenCompass (Contrib-
utors, 2023), Lmsys leaderboard (Chiang et al., 2024), etc., and shows relatively lower hallucinations
than other MLLMs. Since directly using GPT-4o for multimodal judging can still introduce halluci-
nation errors and incur high API costs, we propose a heuristic evaluation method to mitigate biases
and reduce costs. First, GPT-4o assesses whether the output can be evaluated based solely on the text
answer. If feasible, it outputs either yes or no; otherwise, it requests visual cues by stating “I need
visual clues”. This prompts the inclusion of supplementary visual data in the prompt to aid GPT-
4o in its evaluation process. By using pre-annotated time intervals with question clues, we sample
frames as visual aids, further reducing hallucination errors and costs. We quantitatively analyze this
evaluation method in Sec 4.3. More details can be found in the supplementary materials.

4 EXPERIMENTS

In this section, we evaluate a wide range of MLLMs using CG-Bench. We first introduce the evalua-
tion setup, followed by quantitative results for both closed-source and open-source models. Finally,
we analyze some key factors in the evaluation.

4.1 SETTINGS

We first briefly describe the settings used in our experiments. The supplementary material provides
more detailed settings.

Models. We evaluate the performance of three mainstream commercial models on our CG-Bench:
GPT4o (OpenAI, 2024), Gemini-1.5 (Anil et al., 2023), and Claude-3.5, including their different ver-
sions. Also, we assess the representative open-source video models such as LLaVA-OneVision (Li
et al., 2024), Qwen2-VL (Wang et al., 2024b) and InternVL2 (Chen et al., 2024e), among others.

Frame Sampling. For long video understanding, the frame sampling strategy significantly impacts
evaluation results. For open-source MLLMs, we make the best use of our computational resources to
use as many frames as possible. For closed-source MLLMs, since the local computational resource
is no longer a bottleneck, we can use even more frames. We uniformly sample 128 frames for
Long-video MCQ, and use 32 frames as the for Clue-based MCQ.

Modality. We also explore other modalities: subtitles and audio. For subtitles, we employ a uniform
sampling method. If the timestamp of a sampled frame falls within the time interval of a subtitle, that
subtitle will be included in the analysis. Each subtitle is considered only once to avoid redundancy.

Prompt. For MCQ tasks, the model is prompted to provide the uppercase letter corresponding to
the correct option. In Open-Ended QA tasks, the model responds freely based on the questions.
For the Clue Grounding task, we append the timestamps of each frame and subtitle to enhance
the model’s time-awareness, requiring it to return nested lists in the format [[s1, e1], [s2,

7
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Table 3: Performance of various open-source and closed-source MLLMs on CG-Bench. We provide human
evaluation for showing annotation agreements and the difficulty of our benchmark.

Models LLM #F MCQ Cred. Eval. OE

#param clue long clue-acc. long-acc. mIoU rec.@IoU acc.@IoU CRR acc.

Random - - - 14.2 14.2 0.1 0.2 1.4 100 0
Human (full-video) - - - 92.2 90.3 35.5 51.2 89.7 97.9 83.7
Human (sparse frames) - - 128 - 59.9 - - - - -
GPT4o (text) - 0 0 16.8 16.8 0.6 1.0 2.4 100 2.1

Open-source MLLMs

Videochat2 (Li et al., 2023b) 7B 16 16 48.5 30.1 3.03 2.4 8.31 62.1 8.1
VideoLLAMA (Zhang et al., 2023) 7B 32 32 49.2 31.2 3.67 3.2 9.1 63.4 9.1
Video-LLAVA (Lin et al., 2023) 7B 16 16 49.7 30.6 3.41 3.8 9.9 61.6 10.1
ST-LLM (Liu et al., 2024c) 7B 32 64 50.2 31.3 3.19 3.5 10.3 62.4 11.2
Chat-UniVi-v1.5 (Jin et al., 2024) 13B 32 64 50.6 33.1 4.45 5.1 11.4 65.4 12.9
ShareGPT4Video (Chen et al., 2024b) 16B 16 16 51.6 33.6 4.59 4.8 10.8 65.1 9.8
Qwen-VL-Chat (Bai et al., 2023) 7B 16 16 51.3 34.1 4.30 5.1 11.7 66.5 10.8
ViLA (Lin et al., 2024) 8B 14 14 53.2 34.6 4.82 4.6 11.5 65.0 9.4
GroundVQA (Liu et al., 2024d) 0.25B - 1200 - 27.3 3.32 3.5 - - -
GeLM (Chen et al., 2024c) 7B - 100 - - 5.15 4.2 - - -
ET-Chat (Liu et al., 2024d) 4B - 1fps - 17.6 2.33 2.5 - - -
InternVL-Chat-v1.5 (Chen et al., 2023d) 20B 10 10 54.6 36.3 4.24 4.6 14.2 66.5 9.2
MiniCPM-v2.6 (Yao et al., 2024) 8B 32 64 53.4 35.4 5.03 4.4 12.2 66.3 13.6
InternVL2 (Chen et al., 2024e) 34B 16 16 57.3 38.9 4.53 5.0 15.1 67.9 12.2
Kangaroo (Liu et al., 2024b) 8B 32 64 54.2 36.8 5.12 5.8 12.8 67.9 14.4
LLaVA-OneVision (Li et al., 2024) 72B 32 32 60.2 40.7 6.14 5.3 15.3 67.6 17.6
Video-CCAM (Fei et al., 2024) 14B 32 64 56.2 37.5 5.29 5.1 13.6 66.7 15.3
LongVA (Zhang et al., 2024a) 7B 32 64 53.6 36.9 5.21 6.0 12.7 68.8 14.8
VITA (Fu et al., 2024b) 8x7B 32 32 59.1 40.3 5.85 6.4 15.8 68.2 16.9
Qwen2-VL (Wang et al., 2024b) 72B 32 128 65.4 51.4 7.11 6.5 17.1 78.6 25.2

Closed-source MLLMs

GPT-4o-08-06 (OpenAI, 2024) - 32 128 66.5 53.9 8.33 12.3 21.7 81.1 37.2
GPT-4o-mini-07-25 (OpenAI, 2024) - 32 128 56.0 41.9 5.56 6.5 15.2 74.8 23.8
Gemini-1.5-Pro (Anil et al., 2023) - 32 128 61.6 43.4 7.56 11.4 18.6 70.5 18.9
Gemini-1.5-Flash (Anil et al., 2023) - 32 128 60.0 42.0 5.83 7.0 14.9 70.0 16.5
Claude-3.5-Sonnet - 20 20 61.7 39.8 5.09 5.5 12.3 64.5 10.3

e2], ...]. For open-ended evaluation, we require the model to assess the correctness between
the predictions and the ground truth and respond with yes or no.

4.2 MAIN RESULTS

As shown in Table 3, the closed-source MLLM GPT4o (OpenAI, 2024) achieved a significant overall
lead, surpassing other MLLMs across all metrics. Notably, GPT4o’s long-acc. approaches 53.9%,
significantly higher than Gemini-1.5-Pro (Anil et al., 2023), highlighting its strong capabilities in
long video understanding. For open-source MLLMs, Qwen2-VL’s (Wang et al., 2024b) performance
is undeniably impressive, achieving comparable results to GPT4o on long-acc. and clue-acc.. Other
models achieve sub-optimal performance due to the lack of supporting enough context or sufficient
training on videos. Although these MLLMs achieve relatively high accuracy on the MCQ task, they
all experienced significant performance degradation when subjected to credibility and open-ended
evaluation of CG-Bench. For example, GPT-4o’s long-acc. dropped from 53.9 to 21.7 in Acc@IoU
and 37.2 in OE-acc.. Notably, with the same number of sampling frames, GPT-4o achieves a CRR
of 81.7, while Gemini1.5-Pro only obtains 71.5. This indicates that Gemini-1.5-Pro has an inferior
ability to retrieve short-term clues from long videos. Overall, the current MLLMs do not perform
well on our CG-Bench, suggesting that there is still considerable room for improvement in their
capability and credibility.

Since it is difficult to input more than 128 frames due to the hardware limitations, we alternatively
conducted a human evaluation experiment under constrained visual conditions, to see how severe
the “undersampling” issue is for longer video. We uniformly sampled 30 videos from CG-Bench,
resulting in 296 questions. For each video, we uniformly sampled 128 frames and asked volunteers
to perform an MCQ testing. The resulting accuracy was 59.85% (row 3 in Table 3). This result
indicates that our dataset is indeed challenging and that it is difficult to derive solutions from a
limited number of frames. It also highlights that even the most advanced models, such as GPT-4o,
have ample room for improvement in long video comprehension.
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Table 4: Impact of different prompts and modalities. Each prompt can be composed of frames (F), frame
timestamps (FT), subtitles (S), subtitle timestamps (ST), and audio (A). We conduct the main experiments with
GPT4o-0806 (OpenAI, 2024) while studying the audio modality with Gemini-1.5 Pro (Anil et al., 2023).

model prompt & modality clue-acc. long-acc. mIoU Acc@IoU CRR OE-acc.

GPT4o S (128 frames) - 28.9 - - - -
GPT4o S (full-video) - 31.2 - - - -

GPT4o F 66.0 52.4 3.41 10.2 79.4 35.8
GPT4o F+FT 65.1(−0.9) 52.2(+0.2) 6.10(+2.69) 20.6(+10.4) 80.2(+0.8) 36.5(+0.7)

GPT4o F+S 66.1(+0.1) 53.4(+1.2) 3.54(+0.13) 11.0(+0.8 80.8(+1.4) 37.2(+1.4)

GPT4o F+S+ST 66.3(+0.2) 52.4(+0.0) 4.63(+1.22) 16.3(+6.1) 78.8(−0.6) 36.8(+1.0)

GPT4o F+S+FT 66.5(+0.5) 52.2(−0.2) 6.45(+3.04) 21.3(+11.1) 78.5(−0.9) 36.9(+1.1)

GPT4o F+S+ST+FT 66.5(+0.5) 53.9(+1.5) 8.33(+4.92) 21.7(+11.5) 81.1(+1.9) 37.2(+1.3)

Gemini F+S+ST+FT 61.0 43.0 7.64 18.7 70.5 18.1
Gemini F+S+ST+FT+A 61.2(+0.2) 43.1(+0.1) 7.56(−0.08) 18.6(−0.1) 70.5(+0.0) 18.9(+0.8)
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Figure 7: Impact of sampling frame numbers on different metrics for GPT-4o-0806 (OpenAI, 2024), Gemini-
1.5 Pro (Anil et al., 2023) and Qwen2VL-72B (Wang et al., 2024b).

4.3 ANALYSIS

Furthermore, we perform a comprehensive analysis of the two leading closed-source MLLMs,
GPT4o (OpenAI, 2024) and Gemini-1.5 Pro (Anil et al., 2023), as well as the best performing
open-source MLLM, Qwen2-VL (Wang et al., 2024b), on our CG-Bench. In this analysis, we use
1000 QAC triplets sampled uniformly from all annotations for fast experiments.

Impact of Prompt & Modality. As shown in Table 4, we explore the impact of different prompts
on GPT4o and the effect of the audio modality on Gemini-1.5 Pro. Our findings indicate that all
prompt types (FT/S/ST), except video frames (F), provide performance benefits across most metrics.
Subtitles contribute more to long-acc. than they do to clue-acc.. Additionally, the inclusion of
timestamp information (FT/ST) is critical for interval prediction. Timestamps from both frames and
subtitles enhance IoU-related metrics, revealing a complementary effect. When both FT and ST
are added simultaneously, mIoU increases from 3.54 to 8.33, Rec@IoU increases from xx to xx,
and Acc@IoU rises from 11.0 to 21.7. When S, FT, and ST are all used in the prompt, the model
achieves the best performance across all metrics. In contrast, our exploration of the audio modality
(A) revealed that audio does not yield significant performance gain and, in some cases, even slightly
degrades the results, as shown in Table 4. Finally, we conduct experiments using only subtitles from
128 frames versus the full video. The results show that while subtitles offer useful semantic cues,
their impact is significantly reduced when visual input is included. This suggests that our benchmark
favors visual signals.

Impact of Frame Number. As illustrated in Figure 7, we conducted experiments to analyze the
performance across various metrics as the number of frames increases. Overall, the performance of
all three MLLMs gradually improves with adding more frames, with GPT-4o consistently outper-
forming the others across all metrics. For long-acc. and OE acc., Qwen2VL achieves performance
comparable to GPT-4o. However, compared with Qwen2VL, Gemini excels in terms of mIoU and
Acc@IoU. Regarding CRR, GPT-4o demonstrates greater consistency between clue-acc. and long-
acc. across more frames, indicating its superior reliability in long video understanding. For open-
ended QA, Gemini’s higher refusal rate results in a noticeable decline in performance.

Open-ended Evaluation Quality. To assess the stability and accuracy of various MLLMs as evalu-
ators, we utilized four models—Gemini, Qwen2VL, Claude, and GPT-4o—each of which evaluated
GPT-4o’s predictions five times. Human evaluations of GPT-4o’s predictions are also conducted

9
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GPT4o

Claude

Qwen2-VL

Gemini

Human Score

Figure 8: Comparison of using different LLMs as
open-ended evaluators for GPT-4o’s outputs.

GT GT+Vis Vis Ours

Bias(%)↓ 12.4 6.4 17.0 1.0
Time (s)↓ 741 20,040 19,640 3,600
Price ($)↓ 0.05 6.1 6 2

Trigger Rate (%)↓ 0 100 100 14
Trigger Recall Rate (%)↑ 0 100 100 88

Table 5: Comparison of different modes: GT-only,
visual-only, GT+vision and heuristic (Ours).
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Figure 9: Long-Video-MCQ Accuracy grouped by
video duration for GPT4o-0806 with 128 frames.

#Frames Resolution Sampling Strategy long-acc.

128 Low Uniform 53.9
50 Low Uniform 46.7
50 Low Keyframe 45.7
50 High Uniform 51.0

Table 6: Impact of different frame sampling strategies
on long-acc. for GPT4o-0806.

for reference. The results, shown in Figure 8, indicate that GPT-4o has the highest stability and
the smallest deviation from human-assigned scores. Furthermore, Table 5 explores the impact of
different evaluation methods. When evaluators were provided only with ground truth (col. “GT”) or
visual information (col. “Vis”), the scoring bias (absolute difference) between human and model-
based evaluation increased. While fully leveraging visual information (col. “GT+Vis”) improved
evaluation accuracy, it also significantly increased the time and cost required. Our proposed heuris-
tic evaluation method achieves the lowest evaluation bias. Additionally, we manually annotated 200
evaluation samples to determine the necessity of visual request triggers. From the bottom block in
Table 5, the statistics show that our method achieved a visual request trigger rate (the probability
that the model triggers “visual clues required”) of 14%. The recall rate of this triggering achieves
88%. This proves that our approach effectively balances cost and performance.

Performance grouped by Video Duration. We grouped videos by duration and evaluated the long-
acc. performance of GPT-4o-0806 using 128 frames. Figure 9 shows that the model struggles with
undersampling, especially for longer videos.

Impact of Frame Sampling Strategy. We investigate how different frame sampling strategies affect
performance. To expedite testing, we primarily evaluated GPT4o-0806 using 50 uniformly sampled
frames, focusing on the long-acc metric. The experiment consists of three parts: 1) low resolution,
2) high resolution, and 3) keyframe extraction (via FFmpeg) combined with low resolution. As
shown in Table 6, higher resolution offers some improvement, while keyframe extraction has no
significant impact.

5 CONCLUSION AND FUTURE WORK

In this paper, we introduce CG-Bench, a novel benchmark designed to evaluate clue-grounded ques-
tion answering capabilities in long video understanding. Unlike existing benchmarks that focus on
short videos or rely solely on multiple-choice questions, CG-Bench emphasizes the importance of
models retrieving and grounding their answers in specific video segments, enhancing evaluation
credibility. By incorporating 1,219 manually curated videos categorized into a detailed three-tier
system and 12,129 QA pairs spanning perception, reasoning, and hallucination question types, CG-
Bench offers a comprehensive and diverse dataset for assessing MLLMs. Our two proposed clue-
based evaluation methods—clue-grounded white-box and black-box evaluations—provide novel
ways to assess whether models genuinely comprehend video content or merely rely on superficial
cues. Through extensive experiments involving various closed-source and open-source MLLMs,
we found that current models significantly underperform in long video understanding compared to
short videos. We hope that CG-Bench will serve as a valuable resource for the research community,
driving the development of more trustworthy and capable MLLMs for long video understanding.
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APPENDIX

• A: Annotation

– A.1: Quality Control
– A.2: Statistics
– A.3: QA Examples

• B: Model Inference and Evaluation

– B.1: Common Prompts
– B.2: Inference Prompts
– B.3: Evaluation Prompts

• C: Video

– C.1: Video Collection
– C.2: Video Tags
– C.3: Statistics

A ANNOTATION

A.1 QUALITY CONTROL

During the annotation process, we implement a quality control system as illustrated in Figure 10.
We use a batch increment method for data iteration, reviewing each batch of about 1,000 items.

QAC Batch First Manual 
Check Pure Text Check Small Model &

Sparse Frame Check
Second Manual 

Check Over

Re-Annotated

yes yes yes yes

no

nonono

annotate

annotate

Figure 10: Annotation Quality Control Flowchart.

First, a manual review checks for typos and ensures question quality. We focus on two main aspects:
clarity and granularity. Questions must have a clear anchor point, such as an event or scene, to avoid
confusion. The granularity should be appropriate; overly broad questions provide too many easy
clues, which undermines our goal of testing the model’s ability to pinpoint clues.

Next, to ensure question difficulty, we conduct tests using LLM, such as GPT4 (OpenAI, 2023) and
Qwen2.5 (Yang et al., 2024a), with pure text and small MLLM, like InternVL2-2B (Chen et al.,
2024e) and InternVL2-4B, with sparse frames. The pure text test ensures that questions and options
don’t reveal too much information, allowing models to answer without visual data.

Finally, the second manual review catches other remaining issues, resulting in the final test set.

We provide two examples of filtered samples for ”Small Model & Sparse Frame Check” in Figure 11
and Figure 12. For Figure 11, the protagonist is cycling in a first-person view, and the outfit appears
throughout the video. For Figure 12, the climbing wall is a prominent target, and the distinctions
between the options are very clear, requiring minimal comprehension.

And here is another example of filtered sample for ”Pure Text Check”:

In the video, according to the content shown in the PPT, the teacher talked about ethylene. So
what will be produced after ethylene is oxidized by potassium permanganate?
A. acetone
B. acetic acid
C. acetaldehyde
D. carbon dioxide
E. carbon monoxide

This QA is essentially a simple chemistry question and therefore did not pass the check.
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User: What color is the protagonist's cycling outfit in the video?

A. Red

B. Blue

C. Green

D. Black

E. White

Figure 11: Example 1 of filtered QA by ”Small Model & Sparse Frame Check”.

User:  What does the climbing wall in the video look like?

A. Indoor artificial climbing wall

B. Climbing wall with various color markings

C. Outdoor low-altitude climbing wall

D. Training wall with multiple climbing routes

E. Cliff

Figure 12: Example 2 of filtered QA by ”Small Model & Sparse Frame Check”.

A.2 STATISTICS

Question Categories and Definition. We list all question categories in Table 7. We also provide a
rough definition of each question type:

• Entity Recognition: Identifying entities within the context, focusing on recognizing specific
objects or entities present in the scene.

• Entity Counting: Addressing the quantity of entities, focusing on counting the number of
specific objects.

• Entity Attribute: Exploring the attributes of entities, such as shape, color, material, etc.
• Entity State: Investigating the state of an object, including its current condition and any

changes over time, focusing on the status of the entity and its evolution.
• Event Recognition: Identifying events within the context, focusing on recognizing specific

occurrences or actions taking place in the scene.
• Event Counting: Counting the occurrences of events, focusing on how many times a partic-

ular event takes place within the context.
• Scene Recognition: Identifying and understanding the scene where an event takes place.

Questions may explore details about the setting, such as its characteristics, background
elements, or overall atmosphere.

• Text Recognition: Identifying the content of text, focusing on recognizing specific text ele-
ments within the context.

• Text Counting: Addressing the number of specific aspects of the text, focusing on the number
of certain elements or directions within the text.

• Time Localization: Identifying the temporal range or specific time points of an event.
• Time-grounded Question: Exploring questions based on the time points or intervals of spe-

cific entities, such as when certain entities appear or events occur.
• Spatiotemporal-grounded Question: Exploring questions based on both the spatial and tem-

poral aspects of specific entities.
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Table 7: 3-level Question Categories.

Level-1 Level-2 Level-3 Example

Perception

Entity Perception

Entity Recognition Figure 13
Entity Counting Figure 14
Entity Attribute Figure 15
Entity State Figure 16

Event Perception Event Recognition Figure 17
Event Counting Figure 18

Scene Perception Scene Recognition Figure 19

Text Perception Text Recognition Figure 20
Text Counting Figure 21

Time Perception
Time Localization Figure 22
Time-grounded Question Figure 23
Spatialtemporal-grounded Question Figure 24

2D Spatial Perception Entity 2D Spatial Perception Figure 25

Cognition

Entity Cognition

Character Identity Reasoning Figure 26
Character Emotion Reasoning Figure 27
Character Intention Reasoning Figure 28
Character Relationship Reasoning Figure 29
Entity General Reasoning Figure 30
Entity Spatial Relationship Figure 31

Event Cognition
Event General Reasoning Figure 32
Event Time Relationship Figure 33
Event Causal Reasoning Figure 34

Scene Cognition Scene Time Relationship Figure 35

Text Cognition Text General Reasoning Figure 36
Text Spatial Relationship Figure 37

Time Cognition Time Interval Reasoning Figure 38
Duration Time Reasoning Figure 39

Hallucination Hallucination Hallucination Figure 40 41

• Entity 2D Spatial Perception: Inquiring about the 2D spatial position of entities within the
video frame, referencing specific areas such as top, bottom, left, right, center, lower-right,
lower-left, etc.

• Character Identity Reasoning: Inquiring about the identity of a character, focusing on de-
ducing or identifying who a character is within the context.

• Character Emotion Reasoning: Understanding a character’s emotions, focusing on analyz-
ing or interpreting the feelings or emotional state of a character.

• Character Intention Reasoning: Reasoning about a character’s motivations or intentions
within the video context, exploring the underlying purpose of actions by analyzing situa-
tional details and motivations.

• Character Relationship Reasoning: Delving into questions regarding the social or interper-
sonal relationships between characters, focusing on the type of relationship or connection
shared based on observed interactions and context.

• Entity General Reasoning: Examining general relationships between entities, including
person-object and object-object interactions, clarifying connections or associations beyond
spatial or social relationships.

• Entity Spatial Relationship: Understanding spatial relationships between objects or entities,
focusing on relative positioning to form a mental map of the scene’s layout.

• Event General Reasoning: Answering questions requiring deeper reasoning or cognitive un-
derstanding of events, encouraging a comprehensive interpretation of actions, motivations,
and consequences.

• Event Time Relationship: Understanding the temporal sequence of events, focusing on or-
dering events correctly or identifying a particular event’s position within a sequence to
grasp the flow of actions in the video.

• Event Causal Reasoning: Exploring cause-and-effect relationships within events, facilitating
an understanding of why an event occurred by linking it to its underlying causes.
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• Scene Time Relationship: Exploring the sequence in which different scenes occur, focusing
on chronological order or progression between different backgrounds.

• Text General Reasoning: Answering questions involving inferential content within text in
the video, deducing implied meanings, identifying underlying messages, or drawing con-
clusions from textual information.

• Text Spatial Relationship: Addressing the positioning of text within the video frame, such as
identifying specific locations (top, bottom, left, right, or center) to clarify the visual layout.

• Time Interval Reasoning: Addressing the time interval between two events, focusing on the
time gap or separation between occurrences.

• Duration Time Reasoning: Exploring the duration of a specific event, inquiring about how
long an event lasts or the time span of an action within the context.

• Hallucination: Evaluating multiple statements related to video content. Unlike single-
statement hallucination questions, the multiple hallucination class involves listing state-
ments and judging which ones are correct. It emphasizes attention to detail and careful
assessment of options, distinguishing between accurate and subtly altered statements.

A.3 QA EXAMPLES

We provide an example for each problem category from Figures 13 to 41.

User: In the video, what did the man in black throw to the person across on the yellow 

platform?

A. Bag

B. Microphone

C. Hat

D. Camera

E. Keys

Figure 13: An example of QA in CG-Bench for Entity Recognition.

B MODEL INFERENCE AND EVALUATION

In this section, we list the prompt we use in inference and evaluating existing models.

B.1 COMMON PROMPTS

Subtitle Prompt (Denoted as <Sub>):

User: When the video author gave way to sheep on the road, how many sheep crossed 

the road?

A. 0

B. 2

C. 1

D. 3

E. 4

Figure 14: An example of QA in CG-Bench for Entity Counting.
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User: In the video, when introducing the kitten’s toys, what color is the rolling ball that 

the kitten is playing with?

A. Blue

B. Orange

C. Green

D. Yellow

E. Purple

Figure 15: An example of QA in CG-Bench for Entity Attribute.

User: How did the protagonist hold the cutlery while eating pasta?

A. Hold a fork in left hand, and a spoon in right hand

B. Hold a spoon in left hand, and a fork in right hand

C. Only use fork in left hand

D. Use chopsticks

E. Only use fork in right hand

Figure 16: An example of QA in CG-Bench for Entity State.

User: What did the author do after making the cream?

A. Prepared a cheese platter

B. Made caramel cookie crumbs

C. Cooked a vegetable stew

D. Stirred a fruit smoothie

E. Baked a pie

Figure 17: An example of QA in CG-Bench for Event Recognition.

User: How many people fell in the video?

A. 1

B. 3

C. 4

D. 5

E. 2

Figure 18: An example of QA in CG-Bench for Event Counting.
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User: What was the weather like at the end of the author's last day in Taipei?

A. Cloudy

B. Sunny

C. Rainy

D. Foggy

E. Snowy

Figure 19: An example of QA in CG-Bench for Scene Recognition.

User: In the video, when scrubbing the induction cooker, what brand is the induction 

cooker being scrubbed?

A. Cuisinart

B. Tefal

C. Kenwood

D. Zojirushi

E. Taigroo

Figure 20: An example of QA in CG-Bench for Text Recognition.

User: How many lines are there in the letter the groom wrote to the bride?

A. 12

B. 8

C. 15

D. 10

E. 14

Figure 21: An example of QA in CG-Bench for Text Counting.

User: In the video, at what time did the first goal of the match occur?

A. 22nd minute of the first half

B. 60th minute of the second half

C. 45th minute of the first half

D. 34th minute of the first half

E. 12th minute of the first half

Figure 22: An example of QA in CG-Bench for Time Localization.
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User: What is the video author doing in the interval [00:14:59, 00:15:17]?

A. Watering a plant

B. Reading a book

C. Cooking a meal

D. Playing the guitar

E. Playing with cat

Figure 23: An example of QA in CG-Bench for Time-grounded Question.

User: In the video, from 3:12 to 3:18, what is the object in the center of the video?

A. Fruit basket

B. Meet

C. Plastic bag

D. Dining Table

E. Cats

Figure 24: An example of QA in CG-Bench for Spatiotemporal-grounded Question.

User: What pattern appeared at the center of the screen at the end of the video?

A. A blue rectangle

B. A green triangle

C. A red circle

D. A blue circle

E. A red rectangle

Figure 25: An example of QA in CG-Bench for Entity 2D Spatial Perception.

User:   At the beginning of the video, in front of the clock tower building, a person 

dressed in all black squats down to take a photo of someone?

A. Woman wearing a rabbit headdress and a floral shirt

B. Woman with long red hair and blue top

C. Woman with long hair wearing a lolita skirt

D. Woman with brown hair and black pants

E. Woman in white dress

Figure 26: An example of QA in CG-Bench for Character Identity Reasoning.
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User: Why did the protagonist keep laughing after singing "Red Peach Sister Rocks 

Together"?

A. Because the lipstick stuck to his teeth

B. Because he forgot the lyrics halfway through the song.

C. Because her microphone stopped working

D. Because her voice cracked during a high note

E. Because she noticed her reflection and found it amusing

Figure 27: An example of QA in CG-Bench for Character Emotion Reasoning.

User: After the protagonist of the video republished the game, he clicked into the 

STEAMWORKS platform again. What was he doing?

A. In order to update the game's description

B. In order to adjust the game's release date

C. In order to price the game

D. In order to configure the game's graphics settings

E. In order to manage the game's download size

Figure 28: An example of QA in CG-Bench for Character Intention Reasoning.

User: In the video, when the first-person perspective protagonist pulls a small pile of 

boxes into the store with a car, what is the relationship between the person who appears 

and the protagonist?

A. They are employer-employee relationship

B. They are old friends

C. They are neighbors

D. They are colleagues

E. They are strangers

Figure 29: An example of QA in CG-Bench for Character Relationship Reasoning.

User: In the video, the protagonist is introducing what can be controlled and remotely 

controlled in the left armrest of the seat?

A. Seats, Curtains, TV, In-flight entertainment system

B. Table, Doors, Charging port

C. Reading light, Safety instructions, Armres

D. Temperature, Lights

E. Reclining feature, Storage bin, Table

Figure 30: An example of QA in CG-Bench for Entity General Reasoning.
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User: Where is the box of macaroni in the video placed after use?

A. Under the table

B. In the sink

C. On the shelf

D. Next to the microwave

E. On the counter

Figure 31: An example of QA in CG-Bench for Entity Spatial Relationship.

User:   Which two ties emerged in the first game?

A. 3:3, 4:4

B. 6:6, 9:9

C. 4:4, 6:6

D. 5:5, 8:8

E. 5:5, 9:9

Figure 32: An example of QA in CG-Bench for Event General Reasoning.

User: In the video, what is the third-to-last action that the protagonist performs before 

cleaning the first squid?

A. Removing the Hard Squid Mouth

B. Pulling Out the Internal Organs

C. Detaching the Squid's Tentacles

D. Cutting Open the Squid's Head

E. Removing the Squid Eyes

Figure 33: An example of QA in CG-Bench for Event Time Relationship.

User:  Why did the step count of the protagonist in August 2020 decrease in the video?

A. Because the protagonist was injured and needed to rest at home

B. Because the protagonist joined a new gym and focused on indoor workouts

C. Because the protagonist decided to dedicate more time to reading books

D. Because the protagonist quit his job and made YouTube videos at home

E. Because the protagonist took a vacation and traveled less

Figure 34: An example of QA in CG-Bench for Event Causal Reasoning.
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User:  During the ride, what terrain does the protagonist of the video experience and in 

what order?

A. Snow Mountain - Forest - Grassland

B. Snow Mountain - Lake - Grassland

C. Snow Mountain - Grassland - Forest

D. Snow Mountain - Grassland - Lake

E. Snow Mountain - Forest - Cliff

Figure 35: An example of QA in CG-Bench for Scene Time Relationship.

User:  In the video, if you buy 100 wood-grain tiles, how much will you have to pay 

based on the unit price from last year?

A. 150 yuan

B. 800 yuan

C. 480 yuan

D. 850 yuan

E. 840 yuan

Figure 36: An example of QA in CG-Bench for Text General Reasoning.

User:  In the video, when the protagonist was getting a massage, what was written in 

the red font at the bottom row on the blue sign next to him?

A. Le Minerale

B. Le Mineral

C. Le Mirable

D. Le Minale

E. La Minerale

Figure 37: An example of QA in CG-Bench for Text Spatial Relationship.

User:  In the video, the protagonist was holding a mushroom in his hand. How long did 

it take for him to pick the fourth mushroom?

A. About two minute

B. About three minute

C. About two and a half minute

D. About four minute

E. About one minute

07:30 08:35

Figure 38: An example of QA in CG-Bench for Time Interval Reasoning.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

User:  In the video, the protagonist captured the scene of fireworks. How long did the 

scene of fireworks last in total?

A. About 52 seconds

B. About 65 seconds

C. About 46 seconds

D. About 30 seconds

E. About 34 seconds

16:52 17:46

Figure 39: An example of QA in CG-Bench for Duration Time Reasoning.

User:   In the video, After humans fed parrots potato chips, the following statements are 

incorrect: 1. There are 4 parrots on the ground 2. There are 2 wild sunflower parrots on 

the ground 3. There are 2 crimson rosella on the ground 3. There are 2 wild sunflower 

parrots fighting 4. A crimson rosella flew away. 5. A wild sunflower parrot flew away.

A. 1 and 3

B. 3 and 4

C. 1 and 5

D. 2 and 5

E. 2 and 4

Figure 40: Example 1 in CG-Bench for Hallucination.

User: When the protagonist of the video set the language for the game, which of the 

following options are correct? 1. Thai is one of the languages selected by the 

protagonist 2. Bulgarian is one of the languages selected by the protagonist 3. 

Romanian is one of the languages selected by the protagonist 4. Finnish was selected 

by the protagonist first and then cancelled 5. Danish was selected by the protagonist 

first and then cancelled.

A. 1 and 3

B. 2 and 5

C. 2 and 4

D. 1, 3 and 5

E. 1, 2 and 4

F. 2, 3 and 4

Figure 41: Example 2 in CG-Bench for Hallucination.
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The subtitles of the video are as follows:
<Subtitles>

Subtitle Time Prompt
<Subtitle> -> [start, end]: <Subtitle> (Optional)

Frame Time Prompt (Denoted as <FT>)

A total of <n> frames are uniformly sampled from the video, and their
corresponding timestamps are <frame_time1>, <frame_time2>, ...,
<frame_timen>

Choices Prompt (Denoted as <Choices>)

A. ChoiceA
B. ChoiceB
...
E/H. ChoiceE/ChoiceH (5˜8 choices)

B.2 INFERENCE PROMPTS

Long-Video-MCQ & Clue-based-MCQ
Task description:

You will watch a video and read a multiple-choice question based on the
video content. You need to choose an answer that best matches the video
content from five to eight options.

<Frame1>, <Frame2>, ..., <Framen>
<Sub> (Optional)
<FT> (Optional)

Multiple-choice question:

<Question>
<Choices>

Important:
- You must only output the uppercase letter corresponding to the
correct answer.
- Do not include any additional text, punctuation, or explanations in
your response.

Your output is:

Blind-MCQ
Task description:

You will be read a multiple-choice question related to a visual task.
However, no visual context or information will be given. Please do your
best to answer the question based solely on the textual information.
Choose the most likely answer from the given options, even if the
question appears to require visual input.

Multiple-choice question:

<Question>
<Choices>

Important:
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- You must only output the uppercase letter corresponding to the
correct answer.
- Do not include any additional text, punctuation, or explanations in
your response.

Your output is:

Question-Clue Grounding

Task description:

You will watch a video and read a multiple-choice question based on the
video content. You need to output each clue interval that can answer
this question in a nested list format.

<Frame1>, <Frame2>, ..., <Framen>
<Sub> (Optional)
<FT> (Optional)

Multiple-choice question:

<Question>

<Choices>

Important:

- The output must strictly follow the format: [[start1, end1], [start2,
end2], ...]
where start and end are the timestamps in seconds.
- Any output that does not conform to this nested array format will be
considered incorrect.

Your output is:

Open-Ended QA

Task description:

You will watch a video and read a question based on the video content.
Please answer this question directly based on the frames sampled from
the video.

<Frame1>, <Frame2>, ..., <Framen>
<Sub> (Option)
<FT> (Option)

Question:
<Question>

Important:
- You must provide an answer. If explicit clues are lacking, make an
inference. Do your best based on the given frames.
- Failure to provide an inferred answer will be considered incorrect.

Your output is:

B.3 EVALUATION PROMPTS

Heuristic Evaluation Method for Open-ended QA: Step 1

Task Description:
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You are a judge. You will read a question, a model’s prediction, and
the ground truth answer to this question. You need to judge whether
the model’s prediction is correct. In most cases, this judgment can
be made by determining whether the meaning of the two texts is
consistent. That is, if the meaning of the model’s prediction is
consistent with the meaning of the ground truth answer, the prediction
is considered correct; otherwise, it is considered incorrect. However,
there are some special cases among the incorrect ones, where
inconsistencies may just focus on different details of the same visual
scene and don’t have fundamental differences. In this case, the problem
cannot be judged only by text, and additional visual information needs
to be introduced.

Therefore, I hope you:
Output "yes" if the meaning of the two texts of the model’s prediction
and the ground truth answer is consistent.
Output "no" if the model’s prediction and the ground truth answer are
not consistent, and their meanings are fundamentally different.
Output "need visual clue" if the model’s prediction and the ground
truth answer are not consistent but the model’s prediction does not
appear to be fundamentally different from the ground truth answer.
It is possible that the two focus on different details of the same
visual scene. Visual information is needed for further judgment.
You are required to give an explanation as to why they might focus
on different details.

Question:
<Question>

The ground truth answer is: "<Answer>"
The model’s prediction is: "<Prediction>"

Important:

- The "model’s prediction" has already been made based on visual
information. So "need visual clue" means that you need visual
information to make the next judgment, not that the model needs it.
- The "ground truth answer" is annotated by a human, so it is
ABSOLUTELY RIGHT.
Therefore, for relatively simple problems such as counting, if the
model’s prediction is different from the ground truth, just output
"no" directly and don’t need additional visual information. The only
difference between the "ground truth answer" and the
"model’s prediction" that requires further judgment based on visual
information is maybe the different details of the same visual scene
they focus on.

Your output is:

Heuristic Evaluation Method for Open-ended QA: Step 2

Task description:

You are a judge. You will read a question, a model’s prediction, and
the sampling frames of the clue intervals of this question. You need
to determine whether the model answered the question correctly based
on the visual information.
I hope you:
- Output "yes", if the model’s prediction answers this question
correctly.
- Output "no", if the model’s prediction doesn’t answer this question
correctly.

Question:

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

<Question>

The model’s prediction is: "<Prediction>"

<Frame1>, <Frame2>, ..., <Framen>
<Sub> (Option)
<FT> (Option)

Your output is:

Pure Text Evaluation Method for Open-ended QA

Task description:

You are a judge. You will read a question, a model’s prediction and the
ground truth answer to this question. You need to determine whether the
model answered the question correctly.
I hope you:
- Output "yes", if the model’s prediction answers this question
correctly.
- Output "no", if the model’s prediction doesn’t answer this question
correctly.

Question:
<Question>

The ground truth answer is: "<Answer>"
The model’s prediction is: "<Prediction>"
Your output is:

Full Vision-aided Evaluation Method for Open-ended QA: With Ground Truth Answer

Task description:

You are a judge. You will read a question, a model’s prediction, the
ground truth answer to this question, and the sampling frames of the
clue intervals of this question. You need to judge whether the model
has answered the question correctly based on the sampling frames of
the clue intervals.

<Frame1>, <Frame2>, ..., <Framen>
<Sub> (Option)
<FT> (Option)

Question:
<Question>

The ground truth answer is: "<Answer>"
The model’s prediction is: "<Prediction>"
Your output is:

Full Vision-aided Evaluation Method for Open-ended QA: Without Ground Truth Answer

Task description:

You are a judge. You will read a question, a model’s prediction, and
the sampling frames of the clue intervals of this question. You need
to judge whether the model has answered the question correctly based
on the sampling frames of the clue intervals.

<Frame1>, <Frame2>, ..., <Framen>
<Sub> (Option)
<FT> (Option)
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Question:
<Question>

The model’s prediction is: "<Prediction>"
Your output is:

C VIDEO

C.1 VIDEO COLLECTION

Our videos primarily come from Bilibili and YouTube. We initially constructed broad Level-1 and
Level-2 video tags and used these tags for manual searches. During this process, we expanded the
Level-2 tags and annotated Level-3 tags. In the manual filtering process, we applied the following
criteria:

1. Videos must exhibit sufficient dynamism.
2. For knowledge-related videos, we retained those with some visual dynamism and excluded

those that were purely speech-based.
3. We prioritized selecting the most recently uploaded videos to ensure they are as held-out

as possible.
4. For each Level-3 tag, we retained only 1-2 videos.
5. We developed a checking program to ensure that the selected video IDs do not over-

lap with those in major existing video datasets, including COIN (Tang et al., 2019),
YouCook2 (Zhou et al., 2018), ActivityNet (Heilbron et al., 2015), HACS (Zhao et al.,
2019), CinePile (Rawal et al., 2024), CrossTask (Zhukov et al., 2019), FineGym (Shao
et al., 2020a), FineVideo (Farré et al., 2024), HD-VILA-100M (Sun et al., 2022),
HiREST (Zala et al., 2023), HowTo100M (Miech et al., 2019), InternVid (Wang et al.,
2023), Kinetics (Kay et al., 2017), Mira Data (Ju et al., 2024), OpenVid1M (Nan et al.,
2024), Panda70M (Chen et al., 2024d), QueryD (Oncescu et al., 2021), QVHighlight (Lei
et al., 2021), Shot2Story (Han et al., 2023), Sports1M (Tran et al., 2019), TAPOS (Shao
et al., 2020b), UVO (Wang et al., 2021), VALOR (Chen et al., 2023b), VAST (Chen et al.,
2023c), VidChapters (Yang et al., 2024b), VITT (Huang et al., 2020), Vript (Yang et al.,
2024c), YouTubeHL (Sun et al., 2014), YT-Temporal-1B (Zellers et al., 2022), MultiHate-
Clip (Wang et al., 2024a), and ChinaOpen (Chen et al., 2023a).

By this means, approximately 20M video IDs were excluded to ensure that our video data are held
out to the largest extent.

C.2 VIDEO TAGS

We collected 1219 videos on the two platforms, of which 570 videos were collected on YouTube,
accounting for 46.8%; and 649 videos were collected on Bilibli, accounting for 53.2%. 50.12% of
the videos have subtitles. In addition, we assigned a level-2 or level-3 tag to each video, of which
there are 171 level-2 tags and 638 level-3 tags. The specific categories and quantities of tag-2 and
tag-3 are shown in Tables 8 and 9.

C.2.1 TAG-1

The categories and quantities of Tag-1 (root categories) are shown in Figure 42.

C.2.2 TAG-2

The specific categories and quantities of Tag-2 are shown in Tables 8.
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Figure 42: Distribution of video root
categories, displaying the number of
videos within each category.
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Figure 43: Distribution of video
resolusion.
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Figure 44: Distribution of video
langauge.

Table 8: Categories and counts of the level-2 video tags.

Category # Category # Category # Category # Category #

Diverse life 66 Beach 3 Diet 47 Knowledge sharing 3 Variety shows 46

First-person work 40 Forest 3 Traditional sports 41 Board games 3 Travel 34

Extreme sports 28 Pet care 2 Simulation games 37 Russian cuisine 2 Movies/TV dramas 29

Software
demonstration

28 Racing games 2 Wildlife 24 MOBA games 2 Social games 25

Festivals 22 Driver’s license test 2 Documentary 21 Waterside living 2 Play 24

Coding 22 InDesign 2 Humor/Comedy 20 Designbuilder 2 Learning 21

Working 18 Illustrator 2 Makeup 17 ZBrush 2 Eating 16

Traditional crafts 16 Bus 2 RPG games 15 Digital product
reviews

2 Shopping sharing 16

Pets 14 Reality challenge
games

2 Public safety 13 Karting 2 Fitness 13

Cooking 12 Excavator 2 Housekeeping
services

12 Social news 2 Animation 12

Strategy games 11 Helicopter 2 Renovation 11 Motorcycle 2 Handicraft 10

Funny videos 10 Efficiency tool
software

2 Shopping 10 Ruins 2 Underwater 9

Music 9 House tour 2 Architecture 9 Political news 2 Humanities 9

Fashion 9 Insects 2 Dance 8 First-person
augmented reality
experience

2 Technology 8

Real
battlefield/Counter-
terrorism

7 Business news 2 School 7 Chemistry 2 Open world games 7

First aid 6 Antarctica 2 Shooting games 7 Debate competition 2 In the cave 7

Medical care 6 Human-animal
relationship

2 Art 7 Auction 2 Stage performance 6

Real-time strategy
games

6 First-person
live-action CS

1 Board games 6 Prison 2 Note-taking software 6

Desert 6 Raccoon 1 Clothing 6 Primates 2 Test drive 5

First-person sports 5 Battlefield 1 Packing 5 Chinese dim sum 1 First-person cooking 5

Aquatic animals 5 Installation 1 Storage 5 Robots 1 Cave 4

Trucks 4 Texas Hold’em 1 Graphic design
software

5 Laboratory 1 Train 4

Cars 4 Game: Cities
Skylines

1 First-person driving 4 Driver’s license 1 Space 4

Knowledge
management
software

4 Photography 1 Electric vehicles 4 Tea culture 1 Comprehensive 4

Snow 4 Comic convention 1 Sailing 4 Tennis 1 Religion 4

Health and wellness 3 First-person
adventure

1 Airplane 4 Motorcycle
maintenance

1 Repair 3

Street photography 3 Wild 1 Selection 4 Canyoning 1 Beach 3

Video editing
software

3 Cycling 1 Animation and
image generation
software

4 First-person
homework

1 Street interviews 1

Economic news 1 First-person work:
Coffee shop

1 Entertainment news 4 Driving 1 Diet and wellness 1

Rescue and disaster
relief

1 First-person virtual
reality experience

1 Environmental news 4 Sports games 1 Music production
software

1
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Category # Category # Category # Category # Category #

Jade carving 1 First-person work:
Burger shop

1 Detective 1 Military news 1 Drawing techniques 1

International news 1 Polar animals 1 First-person games 1

C.2.3 TAG-3

The specific categories and quantities of Tag-3 are shown in Tables 9.

Table 9: Categories and counts of the level-3 video tags.

Category # Category # Category # Category # Category #

Eight Cuisines 16 Photography Tips 2 Cat 5 Python 2 TV Series 5

Chinese Pastries 6 Raft Survival 2 Short Film 5 Psychology 2 Merchandise 5

Tea Culture 5 Portal 2 Opera 5 Drama 2 Giant Panda 2

Electric Vehicle 4 MasterChef 2 Pottery 4 Food Exploration 2 Basketball 4

Cleaning Tips 4 Action Film 2 Football 4 MatLab 2 Bullet Journal 4

Sketch 4 The Amazing Race 2 Motorcycle 4 History and Culture:
Museum

2 Parenting 3

Grocery Shopping 3 Detective Chinatown 2 Public Service Short
Film

3 Space Launch 2 Keep Running 3

Food Delivery 3 Unity 2 Taiwan Travel 3 Prison Documentary 2 Dog 3

Rescue and Disaster
Relief

3 Kung Fu 2 Monopoly 3 Golf 2 Tennis 3

Organization Tips 3 Pandemic Response 2 Grading Homework 3 Human-Animal
Symbiosis

2 Hide and Seek 3

Extreme Challenge 3 The Great British
Bake Off

2 Dou Dizhu 3 The Life We Long
For

2 Premiere Pro 3

Comedy 3 Shark 1 SketchUp 3 Puppy 1 Stable Diffusion 3

Meal Prep Tips 3 Dumplings 1 Winemaking 3 Driving Test 1 Turkish Cuisine 3

Photoshop 3 Gua Sha 1 Economy 3 Cardboard 1 Japan 3

Korea Shopping 3 VR 1 Pr 3 Japan Travel 1 Divas Hit the Road 3

Face Painting 2 Gourmet Food 1 Special Effects
Makeup

2 Cream Cake 1 Everyday Makeup 2

Campus Life 2 Freediving 1 Graduation 2 Biology/Chemistry
Experiments

1 Tap Dance 2

Nursing Procedures 2 Biology Experiment 1 Escape Room 2 Special Forces
Training

1 Underwater
Exploration

2

Racing 2 Surfing 1 Rock Climbing 2 Horizon 1 Wingsuit Flying 2

Paragliding 2 Foundation Makeup 1 Gymnastics 2 Cake 1 DOTA2 2

Civilization VI 2 Subway 1 Plants vs. Zombies 2 Pop-up Book 1 New Energy Vehicle
Test Drive

2

Novice Highway
Driving

2 Handmade Soap 1 CSGO 2 Milk Tea Shop 1 GTA5 2

Driver’s License 2 Solo Dining 1 Test Drive 2 Cheesecake 1 Night Market
Experience

2

Housework 2 Puff Pastry 1 Work Life 2 Annual Comedy
Competition

1 Craft Making 2

Music MV 2 Belly Dance 1 Symphony Orchestra 2 Trauma Care 1 Castle 2

Underwater Salvage 2 Pyramid 1 Skiing 2 Eyebrow Drawing 1 Baseball 2

Skating 2 Parrot 1 Counter-Terrorism
Action

2 Subway Operations 1 Rhino 2

No Man’s Sky 2 Sushi 1 Stardew Valley 2 Nail Art 1 Supermarket
Restocking

2

Amusement Park 2 Meal Prep 1 Family Feast 2 Underwater Fishing 1 Procurement 2

Magic 2 Underwater Welding 1 Where Are We
Going, Dad?

2 Music Festival 1 Street Dance of
China

2

Cave 2 Rabbit 1 Freediving 2 Biology 1 Cosplay Makeup 2

Velvet Flowers 2 Coffee 1 Lantern Festival 2 Medicine 1 Sailing 2

Car 2 Cultural District 1 Truck Driver’s Daily
Life

2 Healthy Living
Habits

1 Restaurant Waiter 2

Mountain Village 2 Baduanjin 1 Trash Picking 2 Elephant 1 Behind the Scenes 2

Latin Dance 2 Lion 1 Medical Equipment
Use

2 Meerkat 1 College Entrance
Exam

2

F1 Racing 2 Winter Solstice 1 Badminton 2 Mediterranean Diet 1 Long-Distance
Running

2

Fitness Plan 2 Makeup Removal 1 Truth or Dare 2 Korean Makeup 1 Leather Craft 2
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Category # Category # Category # Category # Category #

Hanfu 2 Shoe Making 1 Red Alert 2 2 Freelancer 1 Cooking 2

Shopping 2 Mountain Biking 1 Theme Park 2 Red Panda 1 Librarian 2

Concert 2 Brown Bear 1 Earthquake Drill 2 Wolf 1 Snowmobile 2

Cultural Relics
Archaeology

2 Oolong Tea 1 Embroidery 2 Paper Cutting 1 Indian Cuisine 2

Luxury Car Test
Drive

2 Collage 1 Hearthstone 2 Vanity 1 Vegetarianism 2

Microfilm 2 Mushroom Picking 1 Street Dance 2 Arab Robe 1 Emergency
Evacuation

2

Rescue 2 Beading 1 Space Station Life 2 Beachcombing 1 Skateboarding 2

Diving 2 Fishing 1 Truck 2 Duck House 1 Skyline 2

Ocean Park 2 Violin 1 Rehabilitation
Training

2 Dungeon 1 Real Battlefield 2

Water Splashing
Festival

2 Polar Animals 1 Minecraft 2 Traditional Chinese
Medicine

1 Cloud Notes 2

GoodNotes 2 Forza Horizon 1 Market Shopping 2 Delivery Service 1 Antique Market
Shopping

2

Volleyball 2 Convenience Store 1 Board Games 2 Board Game: Who
Are You

1 Sculpture 2

Bus 2 Board Game:
Storytelling

1 Valorant 2 Making Small Books 1 Notion 2

City Walk 2 Eyebrow Shaping 1 Superhero Movies 2 Watch Repair 1 Train 2

Fried Chicken 2 Concealer 1 Zotero 2 Laptop 1 Duty-Free Shopping 2

Waterside Life:
Beachcombing

2 Takoyaki 1 CPR 2 Creative Market 1 Free Fighting 2

Temple of Heaven 2 Variety Show 1 National Day 2 Board Game:
Redemption Journey

1 Halloween 2

Dragon Boat Festival 2 Tacit Challenge 1 Acupuncture 2 Supermarket
Challenge

1 Ancient Greek
Temples

2

Go-Karting 2 Elephants - Wild 1 Yacht 2 Airplane 1 World of Warcraft 2

After Effects 2 Digital Product
Review

1 Obsidian 2 Theme Park 1 Pixel Composer 2

Furniture Assembly 2 Digital Product
Review: Smart
Home

1 Digital Painting 2 Shopping in Europe 1 Digital Product
Review: Tablet

2

Abandoned
Buildings

2 Digital Product
Review: Ergonomic
Chair

1 Fat Loss Training 2 Chocolate Making 1 Ab Workout 2

Hockey 2 DIY Mini House 1 Spring Festival 2 Waterside Life:
Fishing

1 Easter 2

Warcraft III 2 Digital Product
Review: Smartphone

1 Wasteland Delivery 2 Drawing Techniques 1 Pizzeria 2

High-Altitude Work 2 Braised Pork Rice 1 Farming 2 Fish Pond
Construction

1 Shopping in
Thailand

2

Museum 2 Italy 1 Flea Market 2 Happy Old Friends 1 Art Gallery 2

Ace vs. Ace 2 Wilderness Survival 1 I Am a Singer 2 Medieval Dynasty 1 Firefighting 2

Military Exercise 2 The Witcher 1 Snow Survival 2 Planet Zoo 1 Beach Camping 2

Dumbbell Training 2 Aircraft Loading 1 Bowling 2 Real-life CS 1 Fitness Ball Training 2

Italian Cuisine 2 Car Repair 1 Japanese Cuisine 2 Pet Store Job 1 Elden Ring 2

Water Obstacle
Course

2 Ergonomic Chair 1 Markdown 2 Basement 1 Word 2

CapCut 2 Glacier Climbing 1 Ruby 2 Pufferfish 1 VSCode 2

Blender 2 Jade Carving 1 Australian Travel 2 Ancient Greek
Philosophy

1 Baking Techniques 2

Wedding 2 Train Driving
Simulator

1 Drowning 2 Theory of Relativity 1 Ruins Exploration 2

Archery 2 Used Cars 1 Colosseum 2 Taiwan Shopping 1 Thanksgiving 2

Autonomous Driving
Experience

2 AI Painting 1 Excavator 2 Fishing 1 Call of Duty 2

Adobe Acrobat Pro 2 Farm 1 Summer Outfits 2 Daily Life After
Returning Home

1 Southeast Asia
Travel

2

Camping 2 Home Tour 1 Disney 2 Village School 1 Massage Therapy 2

The Tonight Show
Starring Jimmy
Fallon

2 Desert 1 Fire Drill 2 Parkour 1 Fire Evacuation 2

Qipao 2 Buddhism 1 French Cuisine 2 Great Wall 1 Helicopter 2

Manor Lord 2 Real-Life Subway
Game

1 Fallout Shelter 2 Mixed Noodles 1 Mover 2

PPT 2 Epoxy Resin 1 SQL 2 Knitting 1 Spring Outfits 2
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Category # Category # Category # Category # Category #

Seafood Buffet 2 Paris 1 Studio 2 Yoga 1 North American
Travel

2

Helicopter Skiing 2 Calligraphy 1 Qixi Festival 2 Thriller 1 Spanish Cuisine 2

German Cuisine 2 Real
Battlefield/Counter-
Terrorism

1 inZOI 2 Chinese Painting 1 Vision Pro 2

Mailing and
Packaging

2 Opera 1 Making Hot Dogs 2 Luggage 1 LaTeX 2

Steam 2 Digital Product
Review: Electric
Toothbrush

1 Family Feud 2 Mythical Fantasy
Film

1 Thai Cuisine 2

Christianity 2 Strange House 1 Kingdom of Order 2 Mahjong 1 Plants vs. Zombies
Hybrid

2

Sunny and Warm 2 Cat Café 1 Grounded 2 Kimono (Japan) 1 Coffee Shop 2

JS 2 Cleaning 1 Quicker 2 Editing Tips: Movie
Commentary Editing

1 Hunting 2

Department Store
Shopping

2 Chicago 1 Home Gardening 2 Market Simulator 1 Costume Drama 2

Robot Wars 2 FamiStudio 1 Movie Trailers 2 Tattoo Covering 1 Snow Mountain
Adventure

2

Equestrian 2 Organic Chemistry 1 Desert Off-Roading 2 Street Food 1 Porcelain 2

Yacht Driving 2 Drawing Tips: AI
Drawing

1 OBS 2 Switzerland 1 C++ 2

Clothing 2 Iceland 1 Dishwashing 2 America’s Got Talent 1 Olympics 2

Rugby 2 New Journey to the
West

1 Korean Cuisine 2 Sand Sculpture Art 1 7 Days to Die 2

Bartender 2 Rafting 1 Radiomics 2 Battlefield 1 European Travel 2

Livehouse 2 Delivery 1 Hiking 2 Coat 1 Ping Pong 2

Christmas 2 Tea Set 1 Cat and Mouse
Game

2 Thailand 1 Frostpunk 2

Black Myth:
Wukong

2 Interior Design 1 First-Person Cooking 2 Hengdian 1 PC Building 2

Rainforest Survival 2 Who’s the
Undercover

1 High-Intensity
Interval Training

2 Real-Life Hide and
Seek

1 The Sinking Land 2

C.3 VIDEO STATISTICS

We provide an overview of the dataset’s characteristics through two statistical visualizations Fig-
ure 43 and Figure 44, which demonstrate the distribution of video resolutions, and languages.

Figure 43 illustrates the distribution of video resolutions. The majority of videos (1,065) have a
resolution between 720p and 1080p, while 120 videos are exactly 720p. Only 34 videos have a
resolution below 720p.

Figure 44 shows the distribution of video languages using a logarithmic scale. The most frequent
languages are Chinese (730 videos) and English (432 videos). Additionally, 38 videos have no
speech. Other languages such as German, Korean, and Japanese are also represented but in smaller
quantities.
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